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ABSTRACT

We propose a new ratio index for the detection of impulse-like
singularities in signals of arbitrary dimensionality. We show
that the new singularity index responds strongly to singulari-
ties that are like impulses or smoothed impulses in cross sec-
tion. For example, it responds strongly to curvilinear masses
(ridges) in images, while responding minimally to edge-like
singularities. The ratio index employs directional derivatives
of gaussians, which makes the index naturally scalable.

Index Terms— Singularities, impulses, singularity detec-
tion, image curves.

1. INTRODUCTION

Detection of singularities in images is a widely studied prob-
lem in computer vision and image analysis, since singularities
correspond to luminance discontinuities and provide evidence
of object contours and surface boundaries. Two types of sin-
gularities are often encountered: 1) edge (jump) singularities,
and 2) impulse-like singularities such as curvilinear ridges in
images. Impulses or curve-like singularities often arise from
curvilinear objects that exist at fine scales. Locating curve-
like singularities is important in many applications such as
the detection of blood vessels and cancers in human anatomy,
filaments in images of biological specimens and astronomical
bodies, and roads and river deltas in satellite images [1].

Many approaches have been proposed for detecting and
localizing singularities in images. The history of edge detec-
tion dating from Roberts [2] was greatly advanced by Marr
and Hildreth [3] and Canny [4] who employed smoothed
Laplacian and gradient operators to detect jump discontinu-
ities. Mallat and Hwang [5] studied singularity detection in
the context of wavelet theory. They characterized the Lip-
schitz regularity of the wavelet transform modulus extrema
across scales and showed that the Lipschitz exponent could
be used to reveal whether the signal varied smoothly, or
whether there was an edge, or an impulse like singularity [5].
Lindeberg [6] and Steger [7] presented a general scale-space
framework for detecting edges and ridges.

Here we present a new ratio index for the detection of
impulse singularities in images. The new index is inspired by
the conditions put forth by Lindeberg [6] and Steger [7], by

Fig. 1. 1-D impulse (left) and edge (right) profiles.

Canny’s approach to directional edge detection [4], and by an
energy operator developed by Teager and studied in detail by
Kaiser [8]. We show analytically and experimentally that the
singularity index responds strongly to impulse- or ridge-like
curves in images, while responding minimally to edges.

2. PROPOSED SINGULARITY INDEX

We first consider the new singularity index in 1-D. Let
f(z),x € R be a 1-D signal. Let f'(z) and f’(x) de-
note first and second order derivatives, respectively. Then
define the ratio index
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where Cy, Cy € R. Clearly ¢¥[f(x)] is a dimensionless
quantity. Ignoring the constants for a moment, the index v
is designed to respond strongly to impulse-like singularities,
where the twice-derivative is large, but to respond weakly
to step-like singularities, where the once-derivative is large.
Where the once-derivative is small, the denominator should
have little effect. This suggests the nominal values C; = 0
and Cy = 1 although other criteria such as noise might
promote other choices of these constants. For simplicity of
discussion, we assume the nominal values, hence
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Next we study the response of ¢ on 1-D impulse and edge
profiles.



2.1. 1-D impulse profile

Model a smoothed 1-D impulse as a gaussian of height K > 0
and scale o (see Fig. 1, left):

f(z) = Kew® )

The first and second derivatives are:
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Substituting (3)-(5) into (2) yields
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Clearly as the height K of the impulse increases, or as the
scale o of the impulse decreases, 1[f(0)] increases, which is
desired. The singularity index favors sharp, high-magnitude
impulses. In the limit 0 — oo, or x — o0, ¥ — 0. Thus
the index vanishes with increased smoothness of, or distance
from the impulse. The singularity index responds to both pos-
itive going and negative going impulses, although the polarity
could easily be retained. Note that Lindeberg [6] and Steger
[7] in their scale-space ridge detection work proposed that the
first order derivative in the direction of the maximum eigen
value of the Hessian matrix of the signal be 0, while the sec-
ond order derivative in the same direction be non zero. The
singularity index ¢ naturally embodies these conditions ty-
ing the first order and second order derivatives together in a
simple and elegant way to yield a dimensionless quantity.

2.2. 1-D edge profile

Model a 1-D edge profile as a step u(x) of height K > 0
smoothed by a gaussian g, (z) (see Fig. 1, right):
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The derivatives of f(x) are:
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Substituting (8)-(10) into (2) yields
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At x = 0, the index vanishes:

Y[f(0)]=0 (12)
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In the neighborhood of the edge, the index decreases with K,
which is desired. Finally, as x — oo, ¢[f(z)] — 0; in the
absence of other stimuli, the index vanishes away from the
edge. Note that Koller et al. [1] developed a line detector that
responds only to lines and not edges. Their method combines
the edge responses of two neighboring shifted first order di-
rectional gaussian derivatives.

2.3. Comments on the 1-D singularity index

We defined the index ¢ in (1) as operating directly on the sig-
nal f without additional smoothing or control of scale. More
generally, define a smoothed singularity index
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to control scale directly. Here, g, is a smoothing filter such as
a gaussian, and g/ and g/ are its first and second derivatives.
This also stabilizes derivative computations and reduces the
influence of noise.

The index % in (1) with Cy = Cy = 0 is closely related to
the Teager-Kaiser energy operator f/(x)? — f(z)f"(z) [8],
with the difference being replaced by an absolute ratio. In
prior work, we used the Teager-Kaiser operator for a differ-
ent purpose - demodulating AM-FM signals [9] [10], but we
observed the operator to also be strongly responsive to singu-
larities.

2.4. 2-D Singularity Index

The singularity index (1) is easily extended to 2-D. Let
f(z,y), R — R be the 2-D image luminance function, V?2

be the 2-D Laplacian V2f(x,y) = (BQQ(I’?’) + 82@;‘2@))
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and V be the 2-D gradient V f(z,y) = (L(m’y) L(m’y))
Then the 2-D singularity index is defined

|f(x,y)V2f(x,y)| + Cl

e =N e + 6,

(14)

We will again assume nominal values for the constants, hence

|f(z,y) V2 f(,y)|
1+ [V f(z,y)]?

YLf(z,y)] = (15)



Direct application of (15) to real images is not practi-
cal owing to noise and strong texture variations. As in 1-D,
(15) can be applied after smoothing the image, then comput-
ing partial derivatives or, by combining derivatives with the
smoothing filter to produce the scaled index
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(16)
The sensitivity of the index can be further improved by
adopting a design mechanism inspired by Canny [4]. First,
determine the direction along which the second order deriva-
tive of the isotropic gaussian filtered image attains a local
maxima or minima, which is a good estimate of the direction
orthogonal to an curvilinear singularity. Once this direction
is estimated, evaluate the responses of the gaussian deriva-
tive filters along this direction and compute the ratio index as
follows:
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In (17)» f0,070 (.’13, y)a fl,@,a (.17, y)’ and f279,<7(x7 y) are the re-
sponses to the zero, first and second order gaussian derivative
filters along the direction specified by 6(z,y) and at a fixed
scale 0. In particular, fo 0. (x,y) is just f(x,y) smoothed
by the gaussian function. The gaussian and the derivative
filters used to compute (17) need not be isotropic. Elongated
gaussians could be used to detect long curvilinear structures.
However, to estimate the direction 6(z,y), we deploy an
isotropic gaussian filter and exploit the steerable property of
the second order gaussian directional derivative as described
next.

Freeman and Adelson [11] showed that the response of
a second order directional derivative of an isotropic gaussian
can be synthesized as a linear combination of the responses
of 3 second order derivatives along evenly spaced directions:

G2 =1/3(1+2cos(20))(J2,0=0,0)+
1/3(1 = cos(26) + V35in(20))(Ja,0=r/30)+  (18)
1/3(1 — cos(26) — \/§Sin(29))(J2,0:27r/3,0)

In (18), G'2,9, is the derivative of the isotropic gaussian along
direction 6 at a fixed scale o, § = 0,7/3,27/3 are the ba-
sis directions, and J3 ¢ , are the responses of the basis fil-
ters. Squaring the response (18) and expanding it results in
a Fourier series in angle 6 containing only even frequency
terms. One can then use the lowest frequency terms to find
the direction 6 along which the squared second order direc-
tional derivative attains a local maximum or minimum [11].
Once this estimate of # at each (x,y) is obtained, (17) can
be applied to compute the singularity index. This approach
is similar to Canny’s method where the gradient orientation is
first estimated and then non-maxima responses in the gradient
direction are suppressed [4].
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3. EXPERIMENTS

In all our experiments, we fixed the scale o of the isotropic
gaussian used to find the direction 0(x,y) to 2.2 pixels, and
the constants C; = 0 and Cy; = 1. Prior to computing the
singularity index (17), the local DC component was removed
from each pixel by subtracting the local mean of pixel inten-
sity values around the pixel. The local mean was computed
using a unit-area isotropic gaussian of a large spatial width
(o = 15 pixels). This was done to locally debias the signal,
eliminating asymmetric responses to discontinuities. We then
computed the singularity index (17) by deploying elongated
gaussians and their derivatives, where the major axis of the
gaussian was elongated in the direction normal to §(z, y). The
scale o of the elongated gaussian was set to 2.2 pixels and the
aspect ratio (major axis to minor axis) was set to 2:1. The
side-lobes in the singularity response of the second order di-
rectional derivative filters manifest as weak ringing artifacts.
To ameliorate this problem, the scale o at which the second
order directional derivative response was computed was set
to half the scale at which the first order directional derivative
response was computed (¢ = 2.2 pixels). This method pro-
duces stronger response to impulses, and better suppresses the
already weak ringing artifacts.

Figs. 2, 3, and 4 illustrate the effect of applying the new
singularity index defined in (17) to three real world images
- a mammogram (Courtesy Emory University, Atlanta, GA,
USA), a volcano on venus (NASA, Magellan Project/courtesy
of apod.nasa.gov) captured by the Magellan spacecraft, and
the Ganges river delta (NASA/courtesy of nasaimages.org)
acquired as part of the NASA Human Spaceflight collection.
The first column in the first row of each of these figures illus-
trates the original image, while the second column illustrates
the output of the singularity index. The second row shows the
result of applying non-maxima suppression (NMS) in the di-
rection specified by 6(z,y). These results clearly illustrate a
strong response by the singularity index to impulse-like struc-
tures, with suppressed response to edges.

4. FUTURE WORK

We presented a new singularity index for analyzing impulse
singularities in images. Our analyses and experiments reveal
a promising behavior by the index for detecting impulse-like
or ridge curvilinear structures in images. The index is easily
scalable using directional derivatives of gaussians. We plan
to realize a multi-scale version of the index as part of future
work. Also interesting is the fact that the reciprocal of the
index is a powerful edge operator that rejects impulse singu-
larities. We will explore this reciprocal index in future work
as well.



Fig. 2. Result of applying the singularity index (top right)
defined in (17) to a mammogram (top left). The NMS result
is shown below.

Fig. 3. Result of applying the singularity index (top right)
defined in (17) to an image depicting a volcano on venus (top
left). The NMS result is shown below.

Fig. 4. Result of applying the singularity index (top right)
defined in (17) to an image depicting the Ganges river delta
(top left). The NMS result is shown below.
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