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Abstract—We propose a referenceless perceptual defog and
visibility enhancement model based on multiscale “fog aware”
statistical features. Our model operates on a single foggy image
and uses a set of “fog aware” weight maps to improve the
visibility of foggy regions. The proposed defog and visibility
enhancer makes use of statistical regularities observed in foggy
and fog-free images to extract the most visible information
from three processed image results: one white balanced and
two contrast enhanced images. Perceptual fog density, fog
aware luminance, contrast, saturation, chrominance, and
saliency weight maps smoothly blend these via a Laplacian
pyramid. Evaluation on a variety of foggy images shows that
the proposed model achieves better results for darker, denser
foggy images as well as on standard defog test images.
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L. INTRODUCTION

The perception of outdoor natural scenes is important for
successfully conducting visual activities such as object
detection, recognition, and navigation. In bad weather, the
absorption or scattering of light by atmospheric particles
such as fog, haze, and mist can seriously degrade visibility
[1]. As a result, objects in images captured under such
conditions suffer from low contrast, faint color, and shifted
luminance. Since degraded visibility can cause operator
misjudgments in vehicles guided by camera images and can
induce erroneous sensing in surveillance systems, automatic
methods for visibility enhancement of foggy images have
been intensively studied [1-9].

The earliest approaches used multiple images of the same
scene under different weather conditions to compute a depth
map [1] or different degrees of polarization by rotating a
polarizing filter attached to a camera [2]. However, acquiring
enough images is time-consuming, and it is difficult to find
the maximum and minimum degree of polarization during
rapid scene changes.

The second approach is to combine a single image with
additional depth information obtained either by user input or
a 3D geometric model [3]. While this approach avoids the
multiple image requirement, it is still difficult to apply in
practice because user interaction is not an automatic process,
and it is difficult to generate accurate 3D geometric models
that can capture dynamic real-world structure.

The third approach is to use only a single image. Tan [4]
predicted scene albedo by maximizing the local contrast
while assuming a smooth layer of airlight, but the results
were overly saturated by halo effects. Fattal [5] improved
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visibility by supposing that transmission and surface shading
are statistically uncorrelated. However, this method requires
substantial color and luminance variation to occur in the
foggy scene. He et al. [6] made the important contribution of
the dark channel prior. It attains successful results by
refining the initial transmission map using a soft matting
technique; however, soft matting is computationally quite
expensive although it can be sped up using a guided filter
[7]. Tarel and Hautiére [8] built a fast solution using an edge
preserving median of median filter, but the extracted depth-
map must be smooth except along edges with large jumps.

Recently, Ancuti et al. [9] used multi-scale fusion [10-
11] for single image dehazing. Image fusion is a way to
blend several images into a single one by retaining only the
most useful features [10]. Dehazing by fusion has several
advantages: it can reduce patch-based artifacts by singe pixel
operations, and it is fast since it does not estimate a
transmission map. Still, the design of the preprocess images
and weight maps from only a single foggy image without
other references such as a corresponding fog-free image or
geographical information remains difficult.

Ancuti et al. derived a second preprocessed image by
subtracting the average luminance of a single foggy image,
then magnified the difference. This method captures rough
haze regions and recovers visibility, but the performance is
decreased when the foggy image is dark because the severe
dark aspects of the preprocessed image begin to dominate as
shown in Figure 2(c). Although saturation, chrominance, and
saliency weight maps can help mitigate the degradation, the
visibility is not enhanced much as can be seen in Figure 4.

We propose a referenceless multiscale perceptual defog
and visibility enhancement model. “Referenceless” means
that the proposed model does not require multiple images,
side information, and content dependent assumptions such as
smoothness of airlight layers, color, depth, even computation
of a depth dependent transmission map. While Ancuti et al.
used only the average luminance of the entire image, we use
fog aware statistical features [12] to capture accurate fog-free
and foggy regions. The proposed weight maps also include
perceptually relevant fog density, fog aware luminance, and
contrast attributes. Results on a wide range of foggy images
show that the proposed model achieves better results on dark,
dense foggy images as well as on standard defog test images.

The rest of this paper is organized as follows. Section 2
reviews the optical model of foggy images. The referenceless
defog and visibility enhancement model is described in
Section 3. Section 4 studies the performance of the method.
We conclude the paper with future work in Section 5.
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II.  OPTICAL MODEL OF FOGGY IMAGE FORMATION

When light from the sun passes through a scattering fog
atmosphere, light reflected from objects is attenuated along
the path to the camera and is also scattered in other
directions. Using Koschmieder’s atmospheric scattering
model [13], a foggy image / can be decomposed into two
components, direct attenuation and airlight:

I(x) =J(x)(x) + A[l -1(x)]. (1)
Here, J(x) is the scene radiance or fog-free image to be
reconstructed, #(x) is the medium transmission at each pixel x,
and A4 is the skylight. This model assumes a linear correlation
between the reflected light and the distance between the
object and the camera. The first term is direct attenuation
representing how the scene radiance is attenuated in the
medium. The second term, known as airlight, arises from
previously scattered light and causes a shift in scene color.
The transmission #(x) can be expressed #(x) = exp[-fd(x)],
where f is the medium attenuation coefficient, and d(x) is the
distance between the scene and the observer.

III.  PERCEPTUAL DEFOGGING

Our model executes a defogging process without
estimating a transmission map. First, we preprocess a single
foggy image in three different ways. Next, six fog aware
weight maps are produced from each preprocessed result,
then the weight maps are normalized. Finally, the defogged
image is obtained via multi-scale fusion, using a Laplacian
pyramid. Figure 1 shows a block diagram of the model, and
each stage of processing is detailed in the following.

A. Preprocessing

The first preprocessed image, /;, is white balanced to
adjust the natural rendition of the output by eliminating
chromatic casts caused by atmospheric color. The shades-of-
gray color constancy technique [14] is used, similar to [9],
because it is fast and robust when applied to foggy images.

The second and the third preprocessed images are
contrast enhanced images. Ancuti et al. derived a contrast
enhanced image by subtracting the average luminance value,
I, of the image / from the foggy image /, then applying a
multiplicative gain. Thus 5, = y(I — I), where y = 2.5 [9].
Although 7 is a good estimate of image brightness, problems
can arise in very dark image regions or in denser foggy
images. To overcome this limitation, we also create another
type of preprocessed image using a model of statistical
regularity observed in natural fog-free images,

]3 = }/[I_ltl(lfbgﬁee)]b (2)
where u(lpgre.) is the average luminance of the fog-free
regions only of /. /.. indicates where each feature f; of /
takes larger values than £, where £, = 1/KxY'% fi(k) and where
fi(k) is the i feature of the K™ corpus image, and K = 160. f; ~
fsinclude the sharpness, the variance of the mean subtracted
contrast normalized (MSCN) image [16], the contrast, the
image entropy, the colorfulness, and the color saturation. For
Jo, pixel-wise dark channel prior, the regions of interest are
instead where the feature f; of / takes smaller values than /.
When there is no fog-free region in /, the least foggy regions

166

Single foggy image
4| Fog density prediction |
v
y

Weight maps:
Normalized
weight map
5. Luminance
6. Contrast
A4
Laplacian pyramid « Gaussian pyramid
decomposition decomposition
O
Fused pyramid
Laplacian pyramid
reconstruction
Defogged image

Block diagram of the proposed perceptual defogging model.
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Figure2. Original foggy image and preprocessing results. (a) foggy
image, / (b) white balanced image, /;, (c) contrast enhanced image after
mean subtraction, /, [9], and (d) fog aware contrast enhanced image, /3.

are used. These regions are defined as having larger feature
values than the 95% of one or more of f; ~f, (1 —f5).When
the 95% threshold fails to find the least foggy regions (e.g.,
on an extremely foggy scene), the percentage is reduced by
5% iteratively until such regions occur. Figure 2 shows a
foggy image and the corresponding preprocessed images.

B. Weight maps

Weight maps selectively filter the most visible regions of
the preprocessed images. Ancuti et al.[9] used saturation,
chrominance, and saliency weight maps. We summarize
these and propose a set of additional fog aware weight maps.

The saturation weight map, W,,, measures the visibility
of each pixel by estimating the loss of colorfulness. It takes
higher values at saturated pixels assumed to be part of haze-
free regions. The chrominance weight map, W, controls
saturation gain with the distance between local saturation S
and the maximum (S, = 1) in HSI color space. The saliency
weight map, W,,, emphasizes areas by enhancing the global
and local contrast. The maps are computed as follow [9]:

wh = J1/3[(R — ) +(G* — ") +(B* - I')*],
(8" = Sp )
202 ’

W, = exp| — ®

We =L = I |,
where k is an index on the preprocessed images. R', G*, B,
and L* are the red, green, blue color channels and the average
luminance of ;. The standard deviation, ¢ = 0.3 [9]. [,"“is a
Gaussian smoothed version of [, [ is the mean pixel value

of I, in Lab color space, and || || is the L, norm [15].



The fog density weight map plays an integral role of
guiding the other weight maps to accurately select and filter
fog-free and foggy regions. A perceptual fog density map on
1 is first predicted using a Mahalanobis-like distance measure
on overlapped 8 x 8§ patches [12]. Next, a guided filter [7] is
applied to reduce noise, and the range of the denoised fog
density map is scaled to [0 1]. As shown in Figure 2, since /,
contains the most visible information regarding denser foggy
regions of /, we assign the denoised and scaled fog density
map, D, to the fog density weight map of 7, as follows:

w: =D,, W, =1-D,, W, =W, ><W,§g, @)

Jog Jog ps Jog
where W3f(,g is scaled to [0 1].

The fog aware luminance weight map represents how
close the luminance of the preprocessed images is to the
luminance of the fog-free (or least foggy) regions of /. Since
contrast enhancement methods often cause severe shifts in
the luminance profiles of the processed images, yielding
excessively dark patches or a faded appearance in some
areas, the fog aware luminance weight map seeks to alleviate
these degradations by allocating a high value to luminances
closer to u(/pgpiee). The map is achieved using a Gaussian
curve at each RGB color channel, then they are multiplied,

VVhllcm = I/Vh]:miR x VVlll:nLG X VVIII:nLB >
wk = exp| — —[[;c _ ‘u(l.ingfree )]2 (5)
lum _i 20_2 >

where [/ is the color channel of /,, and /;l([i:/bgﬁ‘eg) is the
average luminance of /', at i € {R,G,B}. =02 [11].

The contrast weight map indicates the sharpness of the
preprocessed images by assigning higher weights at regions
of high gradient values. The map is expressed as a local
weighted contrast:

Wi =S S 0, [ pj+ )= (i)

9 P 0 ay g .
ITGED I SRR el (RN E')) (6)

where i€ {I,2,..,M},j€ {1, 2, ..., N} are spatial indices, M
and N are image dimensions. w={w,,|p=-P, ..., P, q=-0, ...,
0} is a 2D circularly symmetric Gaussian weighting function
sampled out to 3 standard deviations (P = Q= 3) and rescaled
to unit volume [17], and 5 is the grayscale version of /.

Normalized weight maps are obtained to ensure that they
sum to unity as follows:

W=y W, 0)
where W' = W;fc,,WZ,,Wfa,W_k,bng‘,,m%,,, and £ is the index of /.

C. Multi-scale refinement

2
s

Multi-scale refinement [18] is used to achieve a halo-free
defogged image. Each preprocessed image and corresponding
normalized weight map are decomposed using a Laplacian
pyramid, then they are blended to yield a fused pyramid

F=3 Gy}, ®)

where [ is the number of pyramid levels. In our experiment, /
= 9 to eliminate fusion degradation. G,{-} and L,{-} mean the
Gaussian and the Laplacian decomposition at pyramid levels
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Figure 3. Weight maps. The first, second, and third rows are weight maps
of the preprocessed images, /1, /», and /5, shown in Figure 2, respectively.
Saturation, chrominance, saliency, perceptual fog density, luminance,
contrast, and normalized weight maps are shown from left to right column.

[, respectively. Operations are executed successively for each
pyramid layer, in a bottom-up manner. A defogged image .Jis
achieved by the Laplacian pyramid reconstruction as follows,

J=X FT, ©)

where 1" is the upsampling operator with factor n = 2" [9].

IV. RESULTS

A large number of foggy images were tested to evaluate
the performance of the proposed model. First, to explore the
importance of fog aware statistical features that capture
perceptual fog density in a fusion based defogging algorithm,
we compared the results obtained using the method of Ancuti
et al. [9] and ours on darker, denser foggy images in Figure 4.
Results show that our model achieves better restoration of
the contrast of edges and colors. Quantitative evaluation of
defogged outputs was performed using the blind measure of
Hautiére et al. [19] and the perceptual fog density, D, of
Choi et al. [12]. The metrics e, X, and r denote newly visible
edges, the percentage of pixels that become black or white
after defogging, and the mean ratio of the gradients at visible
edges, respectively. Table I shows that the proposed model
yields more naturalistic, clear edges after defogging while
maintaining lower percentage of black or white pixels. D
denotes that foggy images are more defogged in our model.

Figure 5 and Table II show results on standard defog test
images for the models of Tan [4], Fattal [5], He et al. [6],
Tarel et al. [8], Ancuti et al. [9], and ours. While He et al.
[6], Ancuti et al. [9], and ours recover visible edges yielding
positive values of the metric e, our model reduces perceptual
fog density most significantly among these. Although Tan
[4] achieves the most reduction of perceptual fog density,
since it increases the local contrast too strongly, this method
removes visible edges and has higher values of metric X and
r. Results demonstrate that our model obtains comparable or
better visibility enhancement than the compared models.

V. CONCLUSION AND FUTURE WORK

We presented a referenceless perceptual image defogging
model based on fog aware statistical features. The fog aware
weight maps effectively filter the most visible areas of three
preprocessed images and smoothly blend them via a multi-
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Figure 4. Comparison of defogged images on Ancuti ef al. [9] and ours.

TABLE 1.

QUANTITATIVE COMPARISON OF DEFOGGED IMAGES SHOWN IN

FIGURE 4 USING e, X, r OF HAUTIERE et al. [19] AND D OF CHOl et al. [12].

Foggy image Ancuti et al. [9] The proposed model
(b) D e D) r D e ) r D
(a) 6.66 028 0.00 1.12 | 439 0.63 0.04 182 | 2.05
(b) 958 027 0.00 1.03 | 799 099 | 0.00 144 5.88
() 11.32 13.06 | 0.00 150 | 661 [ 5859 | 0.00 241 437
Foggy image Ours

Tan [4]

Fattal [5]

(2)

Comparison of defogged images on Tan

He [6]

Tarel [8]

Ancuti [9]

, Fattal [5], He et al. [6], Tarel et al. [8], Ancuti et al. [9], and the proposed model.

Figure 5. (4]
TABLE II.  QUANTITATIVE COMPARISON OF DEFOGGED IMAGES SHOWN IN FIGURE 5 USING ¢, X, r OF HAUTIERE et al. [19] AND D OF CHOI et al. [12].

Foggy image Tan [4] Fattal [5] He [6] Tarel [8] Ancuti [9] The proposed model

D e z r D e z r D e z r D e z r D e z r D e z r D

(a) | 146 |-0.09(0.72 257|036 [-006(0.09| 132 0.89 |0.06 (000|142 0.85 |0.07]|0.00]|1.88|0.63 [0.02]0.00(1.49] 0.80 |0.05(001 |1.47]0.42
() | 1.35 [-0.10( 1.28 [ 2.29| 0.34 |-0.12( 0.02 | 1.56 | 0.73 | 0.01 | 0.00 | 1.65 [ 0.56 [-0.01[0.00 | 1.87 | 0.52 [ 0.12 | 0.00 | 1.54 | 057 [ 0.01 | 0.00 | 1.44]0.39
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