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Abstract-We propose a referenceless perceptual defog and 

visibility enhancement model based on multiscale "fog aware" 

statistical features. Our model operates on a single foggy image 

and uses a set of "fog aware" weight maps to improve the 

visibility of foggy regions. The proposed defog and visibility 

enhancer makes use of statistical regularities observed in fog gy 

and fog-free images to extract the most visible information 

from three processed image results: one white balanced and 

two contrast enhanced images. Perceptual fog density, fog 
aware luminance, contrast, saturation, chrominance, and 

saliency weight maps smoothly blend these via a Laplacian 

pyramid. Evaluation on a variety of foggy images shows that 

the proposed model achieves better results for darker, denser 
foggy images as well as on standard defog test images. 
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I. INTRODUCTION 

The perception of outdoor natural scenes is important for 
successfully conducting visual activities such as object 
detection, recognition, and navigation. In bad weather, the 
absorption or scattering of light by atmospheric particles 
such as fog, haze, and mist can seriously degrade visibility 
[1]. As a result, objects in images captured under such 
conditions suffer from low contrast, faint color, and shifted 
luminance. Since degraded visibility can cause operator 
misjudgments in vehicles guided by camera images and can 
induce erroneous sensing in surveillance systems, automatic 
methods for visibility enhancement of foggy images have 
been intensively studied [1-9]. 

The earliest approaches used multiple images of the same 
scene under different weather conditions to compute a depth 
map [1] or different degrees of polarization by rotating a 
polarizing filter attached to a camera [2]. However, acquiring 
enough images is time-consuming, and it is difficult to find 
the maximum and minimum degree of polarization during 
rapid scene changes. 

The second approach is to combine a single image with 
additional depth information obtained either by user input or 
a 3D geometric model [3]. While this approach avoids the 
multiple image requirement, it is still difficult to apply in 
practice because user interaction is not an automatic process, 
and it is difficult to generate accurate 3D geometric models 
that can capture dynamic real-world structure. 

The third approach is to use only a single image. Tan [4] 
predicted scene albedo by maximizing the local contrast 
while assuming a smooth layer of airlight, but the results 
were overly saturated by halo effects. Fattal [5] improved 
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visibility by supposing that transmission and surface shading 
are statistically uncorrelated. However, this method requires 
substantial color and luminance variation to occur in the 
foggy scene. He et al. [6] made the important contribution of 
the dark channel prior. It attains successful results by 
refming the initial transmission map using a soft matting 
technique; however, soft matting is computationally quite 
expensive although it can be sped up using a guided filter 
[7]. Tarel and Hautiere [8] built a fast solution using an edge 
preserving median of median filter, but the extracted depth­
map must be smooth except along edges with large jumps. 

Recently, Ancuti et al. [9] used multi-scale fusion [lO­
ll] for single image dehazing. Image fusion is a way to 
blend several images into a single one by retaining only the 
most useful features [10]. Dehazing by fusion has several 
advantages: it can reduce patch-based artifacts by singe pixel 
operations, and it is fast since it does not estimate a 
transmission map. Still, the design of the preprocess images 
and weight maps from only a single foggy image without 
other references such as a corresponding fog-free image or 
geographical information remains difficult. 

Ancuti et al. derived a second preprocessed image by 
subtracting the average luminance of a single foggy image, 
then magnified the difference. This method captures rough 
haze regions and recovers visibility, but the performance is 
decreased when the foggy image is dark because the severe 
dark aspects of the preprocessed image begin to dominate as 
shown in Figure 2(c). Although saturation, chrominance, and 
saliency weight maps can help mitigate the degradation, the 
visibility is not enhanced much as can be seen in Figure 4. 

We propose a referenceless multiscale perceptual defog 
and visibility enhancement model. "Referenceless" means 
that the proposed model does not require multiple images, 
side information, and content dependent assumptions such as 
smoothness of airlight layers, color, depth, even computation 
of a depth dependent transmission map. While Ancuti et al. 
used only the average luminance of the entire image, we use 
fog aware statistical features [12] to capture accurate fog-free 
and foggy regions. The proposed weight maps also include 
perceptually relevant fog density, fog aware luminance, and 
contrast attributes. Results on a wide range of foggy images 
show that the proposed model achieves better results on dark, 
dense foggy images as well as on standard defog test images. 

The rest of this paper is organized as follows. Section 2 
reviews the optical model of foggy images. The referenceless 
defog and visibility enhancement model is described in 
Section 3. Section 4 studies the performance of the method. 
We conclude the paper with future work in Section 5. 
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II. OPTICAL MODEL OF FOGGY IMAGE FORMATION 

When light from the sun passes through a scattering fog 
atmosphere, light reflected from objects is attenuated along 
the path to the camera and is also scattered in other 
directions. Using Koschmieder's atmospheric scattering 
model [13], a foggy image 1 can be decomposed into two 
components, direct attenuation and airlight: 

I(x) =J(x)t(x) +A[l-t(x)]. (1) 
Here, J(x) is the scene radiance or fog-free image to be 
reconstructed, lex) is the medium transmission at each pixel x, 
and A is the skylight. This model assumes a linear correlation 
between the reflected light and the distance between the 
object and the camera. The fIrst term is direct attenuation 
representing how the scene radiance is attenuated in the 
medium. The second term, known as airlight, arises from 
previously scattered light and causes a shift in scene color. 
The transmission lex) can be expressed lex) = exp[-j3d(x)], 
where j3 is the medium attenuation coefficient, and d(x) is the 
distance between the scene and the observer. 

III. PERCEPTUAL DEFOGGING 

Our model executes a defogging process without 
estimating a transmission map. First, we preprocess a single 
foggy image in three different ways. Next, six fog aware 
weight maps are produced from each preprocessed result, 
then the weight maps are normalized. Finally, the defogged 
image is obtained via multi-scale fusion, using a Laplacian 
pyramid. Figure 1 shows a block diagram of the model, and 
each stage of processing is detailed in the following. 

A. Preprocessing 

The first preprocessed image, 11, is white balanced to 
adjust the natural rendition of the output by eliminating 
chromatic casts caused by atmospheric color. The shades-of­
gray color constancy technique [14] is used, similar to [9], 
because it is fast and robust when applied to foggy images. 

The second and the third preprocessed images are 
contrast enhanced images. Ancuti el al. derived a contrast 
enhanced image by subtracting the average luminance value, 
1, of the image 1 from the foggy image 1, then applying a 
multiplicative gain. Thus 12 = y(I - 1), where y = 2.5 [9]. 
Although 1 is a good estimate of image brightness, problems 
can arise in very dark image regions or in denser foggy 
images. To overcome this limitation, we also create another 
type of preprocessed image using a model of statistical 
regularity observed in natural fog-free images, 

(2) 
where /J(Jjog/ree) is the average luminance of the fog-free 
regions only of 1. Ijog/ree indicates where each feature j; of 1 
takes larger values than],', where],' = 1/KxL�J;(k) and where 
j;(k) is the z-lh feature of the ktl1 corpus image, and K = 160.j/ � 

Is include the sharpness, the variance of the mean subtracted 
contrast normalized (MSCN) image [16], the contrast, the 
image entropy, the colorfulness, and the color saturation. For 
19, pixel-wise dark channel prior, the regions of interest are 
instead where the feature.f9 of 1 takes smaller values than};. 
When there is no fog-free region in 1, the least foggy regions 
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Figure I. Block diagram of the proposed perceptual defogging model. 

(a) (b) (c) (d) 
Figure 2. Original foggy image and preprocessing results. (a) foggy 
image, I (b) white balanced image, I" (c) contrast enhanced image after 
mean subtraction, h [9], and (d) fog aware contrast enhanced image, h. 

are used. These regions are defmed as having larger feature 
values than the 95% of one or more of ]; � Is, (1 -];). When 
the 95% threshold fails to fInd the least foggy regions (e.g., 
on an extremely foggy scene), the percentage is reduced by 
5% iteratively until such regions occur. Figure 2 shows a 
foggy image and the corresponding preprocessed images. 
B. Weight maps 

Weight maps selectively fIlter the most visible regions of 
the preprocessed images. Ancuti et al. [9] used saturation, 
chrominance, and saliency weight maps. We summarize 
these and propose a set of additional fog aware weight maps. 

The saturation weight map, Wsal, measures the visibility 
of each pixel by estimating the loss of colorfulness. It takes 
higher values at saturated pixels assumed to be part of haze­
free regions. The chrominance weight map, Weh r, controls 
saturation gain with the distance between local saturation S 
and the maximum (Smax = 1) in HSI color space. The saliency 
weight map, Wsa/, emphasizes areas by enhancing the global 
and local contrast. The maps are computed as follow [9]: 

w,:, = �1I3[(Rk 
_ Lk )

2
+ (Gk _ Lk )

2
+ (Bk _ Lk )2 ] , ( (Sk 

_ sk )2 ) 
�:r = exp 

2a;"X ' (3) 

W,:/ =11 1;"< - It II, 
where k is an index on the preprocessed images. R\ d, B\ 
and Lk are the red, green, blue color channels and the average 
luminance of h The standard deviation, (J = 0.3 [9]. I/"hc is a 
Gaussian smoothed version of h, It is the mean pixel value 
of h in Lab color space, and 11 11 is the L2 norm [15]. 



The fog density weight map plays an integral role of 
guiding the other weight maps to accurately select and filter 
fog-free and foggy regions. A perceptual fog density map on 
f is first predicted using a Mahalanobis-like distance measure 
on overlapped 8 x 8 patches [12]. Next, a guided filter [7] is 
applied to reduce noise, and the range of the denoised fog 
density map is scaled to [0 1]. As shown in Figure 2, since lz 
contains the most visible information regarding denser foggy 
regions of f, we assign the denoised and scaled fog density 
map, Dd, to the fog density weight map of lz as follows: 

W;g =Dd, W)Og =1-Dd' W;�g =W)og X W;�g , (4) 
where W3[og is scaled to [0 1]. 

The fog aware luminance weight map represents how 
close the luminance of the preprocessed images is to the 
luminance of the fog-free (or least foggy) regions of 1. Since 
contrast enhancement methods often cause severe shifts in 
the luminance profiles of the processed images, yielding 
excessively dark patches or a faded appearance in some 
areas, the fog aware luminance weight map seeks to alleviate 
these degradations by allocating a high value to luminances 
closer to J.l(fjogfree)' The map is achieved using a Gaussian 
curve at each RGB color channel, then they are multiplied, 

w.k - w.k 
X 

w.k 
X 

w.k 
111111 - IIIIII_R IlInI_G 111111_8' 

w.k = X 
[ [I� - ,u(l�Ogfiu)]2 J '1/11/ i e P 2 2 ' - a 

(5) 

where f/ is the color channel of h, and J.l(i[ogfree) is the 
average luminance of f[ogfree at i E {R,G,B}. (J = 0.2 [11]. 

The contrast weight map indicates the sharpness of the 
preprocessed images by assigning higher weights at regions 
of high gradient values. The map is expressed as a local 
weighted contrast: 

r-----------------------------� 
��,,( i,j) = I:=_p I�=-Qwp,q [ff"'Y(i + p,j +q) -,uk (i,j) J, 
,u(i,j) = I:=-pI�=-Qwp,,/fraY(i + p,j +q), (6) 

where iE {l,2, ... ,M},jE {l,2, ... ,N} are spatial indices, M 
and N are image dimensions. w= {wp,qlp=-P, ... , P, q=-Q, . . .  , 
Q} is a 2D circularly symmetric Gaussian weighting function 
sampled out to 3 standard deviations (P= Q= 3) and rescaled 
to unit volume [17], and fray is the grayscale version of h 

Normalized weight maps are obtained to ensure that they 
sum to unity as follows: 

Wk = Wk / Lk Wk , (7) 
where W' = W'sa/W'chrW'sa/wjogWh,mw':vn, and k is the index of h 

C. Multi-scale refinement 

Multi-scale refmement [18] is used to achieve a halo-free 
defogged image. Each preprocessed image and corresponding 
normalized weight map are decomposed using a Laplacian 
pyramid, then they are blended to yield a fused pyramid 

F; = LkG,{W
k
}L,{1k}' (8) 

where I is the number of pyramid levels. In our experiment, I 
= 9 to eliminate fusion degradation. G/O and L/O mean the 
Gaussian and the Laplacian decomposition at pyramid levels 

167 

Figure 3. Weight maps. The first, second, and third rows are weight maps 
of the preprocessed images, 11, 1" and h, shown in Figure 2, respectively. 
Saturation, chrominance, saliency, perceptual fog density, luminance, 
contrast, and normalized weight maps are shown from left to right column. 

I, respectively. Operations are executed successively for each 
pyramid layer, in a bottom-up manner. A defogged image J is 
achieved by the Laplacian pyramid reconstruction as follows, 

J = LJ'; tn, (9) 
where f is the upsampling operator with factor n = 2'-1 [9]. 

IV. RESULTS 

A large number of foggy images were tested to evaluate 
the performance of the proposed model. First, to explore the 
importance of fog aware statistical features that capture 
perceptual fog density in a fusion based defogging algorithm, 
we compared the results obtained using the method of Ancuti 
et al. [9] and ours on darker, denser foggy images in Figure 4. 
Results show that our model achieves better restoration of 
the contrast of edges and colors. Quantitative evaluation of 
defogged outputs was performed using the blind measure of 
Hautiere et al. [19] and the perceptual fog density, D, of 
Choi et al. [12]. The metrics e, �, and r denote newly visible 
edges, the percentage of pixels that become black or white 
after defogging, and the mean ratio of the gradients at visible 
edges, respectively. Table I shows that the proposed model 
yields more naturalistic, clear edges after defogging while 
maintaining lower percentage of black or white pixels. D 
denotes that foggy images are more defogged in our model. 

Figure 5 and Table II show results on standard defog test 
images for the models of Tan [4], Fattal [5], He et al. [6], 
Tarel et al. [8], Ancuti et al. [9], and ours. While He et al. 
[6], Ancuti et al. [9], and ours recover visible edges yielding 
positive values of the metric e, our model reduces perceptual 
fog density most significantly among these. Although Tan 
[4] achieves the most reduction of perceptual fog density, 
since it increases the local contrast too strongly, this method 
removes visible edges and has higher values of metric � and 
r. Results demonstrate that our model obtains comparable or 
better visibility enhancement than the compared models. 

V. CONCLUSION AND FUTURE WORK 

We presented a referenceless perceptual image defogging 
model based on fog aware statistical features. The fog aware 
weight maps effectively filter the most visible areas of three 
preprocessed images and smoothly blend them via a multi-



(c) 

(a) 

(b) 

Foggy image Ancuti [9] Ours 

Figure 4. Comparison of defogged images on Ancuti et at. [9] and ours. 

TABLE I. QUANTITATIVE COMPARISON OF DEFOGGED IMAGES SHOWN IN 
FIGURE 4 USING e, L, r OF HAUTIERE et al. [19] AND D OF CHOI et al. [12]. 

Foggy image Anellti el at. [9] The proposed model 

D e L r D e L r D 
(a) 6.66 0.28 0.00 1.12 4.39 0.63 0.04 1.82 2.05 
(b) 9.58 0.27 0.00 1.03 7.99 0.99 0.00 1.44 5.88 
(e) 11.32 13.06 0.00 1.50 6.61 58.59 0.00 2.41 4.37 

Foggy image Tan [4] Fattal [5] He [6] Tarel [8] Ancuti [9] Ours 

(a) 

(b) 

Figure 5. Comparison of defogged images on Tan [4], Fattal [5], He et al. [6], Tarel et al. [8], Ancuti et al. [9], and the proposed model. 

TABLE n. QUANTITATIVE COMPARISON OF DEFOGGED [MAGES SHOWN IN FIGURE 5 USING e, L, r OF HAUT1ERE et al. [19] AND D OF CHO[ et al. [12]. 

Foggy image Tan [4] Fanal [5] He [6] 

D e L r D e L r D e L r 
(a) 1.46 -0.09 0.72 2.57 0.36 -0.06 0.09 1.32 0.89 0.06 0.00 1.42 

(b) 1.35 -0.10 1.28 2.29 0.34 -0.12 0.02 1.56 0.73 0.01 0.00 1.65 

scale Laplacian refinement. Results show that the proposed 
model achieves better performance for darker, denser foggy 
images as well as on standard defog test images. In future 
work, we plan to build a larger foggy image database and 
perform a human subjective test to understand the human 
perception of foggy images. 
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