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ABSTRACT  

We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and “fog aware” statistical 

features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding 

fogless image, without side geographical camera information, without training on human-rated judgments, and without 

dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use 

of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware 

collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS 

model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed 

model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each 

patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured 

by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed 
model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images. 
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1. INTRODUCTION  

The perception of outdoor natural scenes is important for understanding the environment and for executing visual 

activities such as object detection, recognition, and navigation. In bad weather, visibility can be seriously degraded due 

to the absorption or scattering of light by atmospheric particles such as fog, haze, and mist.1 Since the reduction of 
visibility can dramatically degrade an operator’s judgment in a vehicle and induce erroneous sensing in remote 

surveillance systems, visibility prediction and enhancement methods on foggy images have been widely studied.2-13 

Visibility prediction algorithms on a foggy image require a corresponding fogless image of the same scene under 

different weather conditions to compare visibility2 or salient objects in a foggy image such as lane markings or traffic 

signs to supply distance cues3. Hautiere et al.’s automatic fog detection and estimation of visibility distance method4 

depends on side geographical information obtained from an onboard camera, so such methods work only under limited 

conditions and are not necessarily applicable to general foggy scenes. Regarding visibility enhancement of foggy images, 

diverse defog algorithms5-13 have been introduced. Since direct visibility prediction from a foggy image is difficult, most 

defog algorithms use the estimated depth or transmission map to improve visibility using assumptions from, e.g., 

Koschmieder’s atmospheric scattering model14. In addition, early on, the performance of defog algorithms was only 

evaluated subjectively due to the absence of any appropriate visibility assessment tool. Recently, gain parameters11 were 
compared before and after a defog algorithm, or modified image quality assessment (IQA) tools were applied9. However, 

the subjective evaluation approach is not useful for large remote or mobile data, the gain comparison method requires 

both the original foggy image and the corresponding defogged image, and IQA methods are generally inappropriate 

since they are designed to measure distortion levels rather than the visibility of a foggy image. 

In this paper, we propose, for the first time (to our knowledge), a perceptual fog density prediction model. This model 

can predict the visibility in a foggy scene without reference to a corresponding fogless image, without side camera 

information, without training on human-rated judgments, and without dependency on salient objects in a foggy image. 

The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in 

natural foggy and fog-free images. The “fog aware” statistical features that define the perceptual fog density are derived 

from a corpus of 160 natural foggy and fog-free images based on a space domain regular natural scene statistic (NSS)15,
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model and observed characteristics of foggy images including low contrast, faint color, and shifted intensity. The spatial 

NSS model involves computing local mean subtracted contrast normalized coefficients (MSCN)16. The MSCN and the 

pairwise product of neighboring MSCN coefficients along vertical orientations serve as fog aware features. Other fog 

aware statistical features are derived from the local mean and local coefficient of variance for sharpness
17

, the contrast 

using edge energy18, the image entropy19, the pixel-wise dark channel prior9, the color saturation, and the colorfulness20.  

A total of 9 local fog aware statistical features are computed for each P × P partitioned image patch. Then, a multivariate 
Gaussian (MVG)21 distribution is applied to predict the fog density of a test foggy image by using a Mahalanobis-like 

distance measure between the “fog aware” statistics of the test image and the MVG models obtained from the natural 

foggy and fog-free images, respectively.  

To evaluate the performance of the proposed model, a subjective study is performed using another 100 foggy image set 

consisting of newly recorded foggy images, well-known standard defog test images, and the corresponding defogged 

output images. Results demonstrate that the predicted perceptual fog density of the proposed model correlates well with 

human judgments of fog density on a variety of foggy images.  

The remainder of this paper is organized as follows. Section 2 summarizes the optical model of foggy image formation 

and characteristics of foggy images. The perceptual fog density prediction model is described in Section 3. We then 

explain the executed human subjective study in Section 4 and evaluate the performance of the proposed model in Section 

5. We conclude this paper with future work in Section 6.     

2. OPTICAL FOGGY IMAGE FORMATION AND CHARACTERISTIS 

2.1 Optical foggy image formation  

Although the accurate nature of scattering is complex due to diverse particles constituting a media and characteristics of 

the incident light2, the simplified Koschmieder’s atmospheric scattering model14 has been used to explain optical foggy 

image formation.5-13 When light from the sun passes through a scattering fog atmosphere, light reflected from objects is 

directly attenuated along the path to the camera. Moreover, light scattered by the atmosphere, which is called “airlight,” 

is added to the camera and makes the scene color shifted. Mathematically, the captured image of a foggy scene I is 
represented as the linear combination of direct attenuation and airlight as follows.  

                                                                           ( ) ( ) ( ) 1 ( ) ,I x J x t x A t x                                                                      (1) 

where J(x) is the scene radiance or a fog-free image at each pixel x, t(x) [0,1] is the transmission of the reflected light in 

the atmosphere, and A is the global atmospheric skylight that represents ambient light in the atmosphere. By assuming 

the atmosphere is homogenous, and by considering the light traveling a longer distance is more attenuated and scattered, 

the transmission t(x) is expressed as t(x) = exp[-βd(x)], where β is a medium attenuation coefficient, and d(x) is scene 

depth from the camera at pixel position x.      

2.2 Characteristics of foggy images  

The simplified Koschmieder’s atmospheric scattering model explains observable characteristics of foggy images such as 

low contrast, faint color, and shifted intensity.5, 13 When we measure the contrasts of an image as the magnitude of its 

gradient field or edge (or the number of edges), a scene radiance J(x) seen through a homogenous medium in iso-depth 
regions with t(x) = t < 1 can be described as 

                                                      ( )  (1 )   ( )  ( ) ,I x t J x t A t J x J x                                                  (2) 

where || || indicates the number of pixels whose gradients are larger than a given threshold. Hence, the contrast of 

foggy scenes is lower than that of fog-free scenes. In addition, since every pixel at each RGB color channel has the same 

depth, the color of a foggy image is fainter than that of a fog-free image as depth increases from a camera to scene 

objects. This can be explained as  

                                                                   
( )

 ( ) ( ) 
lim lim 0,

 ( ) ( ) 

i j d x

d d
i j

I x I x
e

J x J x



 


 


                                                              (3) 

where | ∙ | denotes an absolute value and i, j{r, g, b} represents RGB channels.  
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Furthermore, since the global atmospheric skylight A is larger than the intensity of I, the intensity of foggy scenes is 

larger than that of fog-free scenes as below: 

                                                                            ( ) 0,A I x A J x t x       

                                                                         1 0,I x J x A J x t x                                                                     (4)                                                                      

3. PERCEPTUAL FOG DENSITY PREDICTION MODEL 

The proposed perceptual fog density prediction model is based on the extraction of fog aware statistical features and 

fitting them to a multivariate Gaussian (MVG)21 model. The fog aware statistical features are derived using a space 
domain regular natural scene statistic (NSS)15, 16 model and observed characteristics of foggy images described in Section 

2. A test foggy image is applied to compute a Mahalanobis-like distance between the MVG fit of the fog aware statistical 

features obtained from the test image and the MVG model of the fog aware features extracted from a corpus of 160 

foggy images and fog-free images, respectively. Each corresponding distance is defined as a foggy level and a fog-free 

level. The perceptual fog density is then expressed as the ratio of the foggy level to the fog-free level of the test image.  

3.1 Fog aware statistical features  

The first and the second fog aware statistical features are derived from local image patches. The essential low order 

statistics of foggy and fog-free images, which are perceptually relevant, are derived from a spatial domain NSS model of 

local mean subtracted contrast normalized coefficients (MSCN)16. Ruderman observed that such normalized luminance 

values strongly tend towards a unit normal Gaussian characteristic on good quality photographic images.15 In addition, 

divisive normalization is related to the contrast-gain masking process in early human vision.22, 23 For natural foggy 

images, we have found that the variance of the MSCN coefficients increases as fog density increases. Furthermore, the 
variance of the pairwise product of neighboring MSCN coefficients along the vertical orientation exhibits a regular 

structure. Hence, we use both as fog aware statistical features and compute them as follows: 

                                                                      
 

 

, ( , )
, ,

, 1

gray

MSCN

I i j i j
I i j

i j









                                                                   (5) 

                                                            ,( , ) ( , ),
K L

k l grayk K l L
i j I i k j l 

 
                                                              (6) 

                                                 
2

,( , ) [ ( , ) ( , )] ,
K L

k l grayk K l L
i j I i k j l i j  

 
                                                       (7) 

                                                                    _ , , 1, ,Vpair MSCN MSCN MSCNI i j I i j I i j                                                         (8) 

where i{1, 2, … , M}, j{1, 2, … , N}are spatial indices, M and N are the image dimensions, and ω = {ωk,l | k = -K,…, 

K, l = -L,…, L} is a 2D circularly symmetric Gaussian weighting function sampled out to 3 standard deviations (K = L = 3) 

and rescaled to unit volume,16 and Igray is the grayscale version of I.  

Other fog aware statistical features are derived from observed characteristics of foggy images including low contrast, 

faint color, and shifted intensity by using the local mean and the coefficient of variance for sharpness,17 the Michelson 

contrast18, the image entropy19, the pixel-wise dark channel prior9, the color saturation in HSV color space, and the 

colorfulness20. Since the standard deviation, σ(i, j), is a key factor of structural image information to capture and quantify 

local image sharpness17, and the impact of σ(i, j) can be different according to the center value, μ(i, j), we compute the 

coefficient of variation, 

                                                                                    
 
( , )

, ,
,

i j
i j

i j





                                                                              (9) 

to measure the normalized dispersion of probability distribution, and use both σ(i, j) and ξ(i, j) as fog aware features.  

The Michelson contrast (MC) measures the relation between the spread and the sum of luminances that take up similar 
fractions of an area.18 It is useful to determine the relative visibility of scene radiance to scattered airlight introduced into 

the view path by fog obscuring the scene behind it. It is expressed as 
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                                                                                  max min

max min

, ,
I I

MC i j
I I





                                                                     (10) 

where Imax and Imin are maximum and minimum values at each 2×2 pixel window, respectively. Since two single points 

of extreme brightness or darkness can determine the measure of contrast of the whole image, we used the smallest 

window (2×2 pixels) size to capture a local contrast. 

Entropy is a measure of uncertainty of a random variable.19 The entropy of an image (IE) describes the amount of detail 

information. For example, an image having lower entropy (e.g., a blue sky) contains very little variations and large runs 

of pixels with the same or similar values, while an image having higher entropy (e.g., a forest with colorful trees) 
includes richer details. Since foggy images contain less amount of detail information, we use IE as a fog aware feature 

and compute it as follows, 

                                                                                log ,i i

i

IE I p h p h


                                                                   (11) 

where p(hi) is the probability of the pixel intensity hi, which is estimated from the normalized histogram.  

The dark channel prior is based on the observation on outdoor haze-free images: in most non-sky or haze-free regions, at 

least one color channel has some pixels whose intensity are very low and close to zero. Equivalently, the minimum 

intensity in such a region is close to zero.8 We use a pixel-wise model of the dark channel prior9,  

                                                                              
 

 
, ,

, min , ,dark c
c r g b

I i j I i j


                                                                  (12) 

where c{r, g, b} represents RGB channels. We normalize the intensity of Idark from zero to one. Regions of high value 

in Idark indicate sky, fog, or white object regions. Conversely, regions of low value in Idark represent fog-free regions. 

To measure the visibility of a foggy scene with regards to color vision, we use the color saturation and the colorfulness 

as fog aware features. Since airlight scattered in a foggy atmosphere can cause scene color shifts, for denser foggy 

scenes, the color saturation and the colorfulness decrease. The color saturation, Isaturation, is represented by a saturation 

channel after a foggy image is transformed into HSV color space by using a MATLAB function “rgb2hsv,” while the 
colorfulness (CF) indicating a perceptual variety and intensity of colors is computed as follows20, 

                                                                                , , ,2 ,saturation HSVI i j I i j                                                                 (13) 

                                                                        2 2 2 20.3 ,rg yb rg ybCF                                                                    (14) 

                                                                                  2 2 2
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 


                                                                     (15) 

                                                                                  
1

1
,

X

a xx
a

X



                                                                               (16) 

where IHSV is a transformed image of I into HSV color space, rg = R – G, and yb = 0.5(R + G) – B.24 The pixel values of 

an image came from the range x = 1 … X. Table 1 summarizes a total of 9 local fog aware statistical features.  

Table 1. A summary of “fog aware” statistical features. 

Feature ID Feature Description Computation  

f1 The variance of MSCN coefficients (5) 

f2 The variance of the vertical product of MSCN coefficients (8) 

f3 The sharpness (7) 

f4 The coefficient of variance of sharpness (9) 

f5 The Michelson contrast  (10) 

f6 The image entropy (11) 

f7 The dark channel prior in a pixel-wise (12) 

f8 The color saturation in HSV color space (13) 

f9 The colorfulness (14) 
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3.2 Patch selection  

A total of 9 local fog aware statistical features are computed from each P × P partitioned image patch. To obtain fog 

aware statistical features for each patch, we use the average value of each computed f3 ~ f5, f7, and f8 at each patch, while 

we directly calculate f1, f2, f6, and f9 for each patch. For a collection of fog aware statistical features from a corpus of 160 

natural foggy and fog-free images, respectively, only a subset of the patches are used. Since humans tend to evaluate the 

visibility of foggy images based on regions of high sharpness, contrast, and saliency, and since every image is subject to 
some kind of limiting distortions including defocus blur,25 we use only a subset of the image patches, while, for a test 

foggy image, all patches are used. 

We select representative image patches that include rich information of the fog aware statistical features. Let the P × P 

sized patches be indexed b = 1, 2 … B. First, the average feature value of each patch indexed b at feature number m is 

computed as  

                                                                            
2

1 1

1
    ( , ),

P P

m m

i j

b f i j
P


 

                                                                         (17) 

where fm(i, j) denotes feature coefficients at feature number m, (m = 1, 3, 5, 6, 7, and 8). Second, to obtain patches from a 

corpus of natural fog-free images, we select the average feature value having δm > Tm (when m = 7, δm < Tm). The 

threshold, Tm is chosen to be a fraction qm of the peak patch feature value over the image except when m = 7. In our 

experiments, qm = 0.7 when m = 1, 3, 5, 6, and 8, and T7 = 0.4. We have observed small differences in performance when 

qm is varied in the range [0.6 0.8] and T7 is varied in [0.3 0.5]. Similarly, to obtain patches from a corpus of natural foggy 

images, we execute the same process with an opposite inequality sign (i.e., “ > ”). All of the parameters described here 

are tested in a wide range of patch sizes from 4 × 4 to 160 × 160 pixels. The patch size can be decided variously, and the 
image patches can be overlapped to any desired degree, with fog density prediction performance generally rising with 

greater overlap. An example of patch selection is shown in Figure 1.   

 

   
MSCN Sharpness Contrast 

   
Image entropy Dark channel prior Color saturation 

 

 

 

 Selected patches  

   

Figure. 1. A patch selection procedure using local fog aware statistical features. The blue marked patches in the first two 
rows show the satisfied patches for each feature selection criterion. The red marked patches in the third row represent the 
finally selected patches. A patch size is 96 × 96 pixels, and an image size is 480 × 320 pixels, respectively.  
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3.3 Natural fog-free and foggy image data sets 

To extract fog aware statistical features from a corpus of fog-free images, we selected a wide-ranging set of 160 natural 

fog-free images from the LIVE IQA database26, the Berkeley image segmentation database27, and the CSIQ image 

database28. Image sizes vary from 480 × 320 to 768 × 512 pixels, and fog-free images are selected to have highly diverse 

contents. Some sample images are displayed in Figure 2. 
 

     
 

    
 

     
 

Figure. 2. Sample images of a corpus of 160 natural fog-free images. 

 
Similarly, to extract fog aware statistical features from a corpus of foggy images, we selected a wide-ranging set of 160 

natural foggy images from a copy-right free website data, newly recorded foggy images, and well-known defog test 

images5-13. Image sizes vary from 380 × 234 to 950 × 564 pixels. Some sample images are displayed in Figure 3.  
 

     
 

    
 

     
 

Figure. 3. Sample images of a corpus of 160 natural foggy images.  
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3.4 Perceptual fog density prediction 

A test foggy image is partitioned into P × P patches. All patches are then used to compute the average feature values to 

yield a set of 9 fog aware statistical features at each patch. Next, the foggy level, Df, of a test foggy image is computed as 

a Mahalanobis-like distance between a multivariate Gaussian (MVG)21 fit of fog aware statistical features extracted from 

the test foggy image and a MVG model of the fog aware features extracted from a corpus of 160 natural fog-free images. 

The general MVG density in d dimensions is  

                                                              1

1/2/2

1 1
   exp ( )

2(2 )

t

d
MVG



 
    

 
Σ

Σ
f f ν f ν                                          (18) 

where f is the set of fog aware statistical features computed as in (1) ~ (16), and ν and Σ denote the mean and d-by-d 

covariance matrix, and |Σ| and Σ-1 are the determinant and inverse, respectively, of the covariance matrix under the MVG 
model, which are estimated using a standard maximum likelihood estimation procedure21 as follows: 

                                                                                            ,ν   f                                                                                (19) 

                                                                                  ( )( ) ,t    Σ f ν f ν                                                                        (20) 

where [∙] denotes the expected value, and t indicates transpose. The Mahalanobis-like distance is computed as 

                                                              
1

1 2
1 2 1 2 1 2 1 2, ,

2
, ,

t

fD


 

   
 

Σ Σ
Σ Σν ν ν ν ν ν                                              (21) 

where ν1, ν2 and Σ1, Σ2 are the mean vectors and covariance matrices of the MVG model in a fog-free corpus and the 

MVG fit of a test foggy image, respectively. Similarly, the fog-free level, Dff, of a test foggy image is also computed as a 

distance between a MVG fit of fog aware statistical features extracted from the test foggy image and an MVG model 
from a corpus of 160 foggy images. Finally, the perceptual fog density, D, of a foggy image is achieved as follows,  

                                                                                          ,
1

f

ff

D
D

D



                                                                            (22) 

where a constant “1” is used to prevent a denominator from being a zero. Smaller value of D indicates lower perceptual 

fog density. Figure 4 shows an overall block diagram of the proposed perceptual fog density prediction model.  

 

Figure. 4. Block diagram of the proposed perceptual fog density prediction model. 
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4. HUMAN SUBJECTIVE STUDY 

4.1 Test image set  

To test the performance of the proposed perceptual fog density prediction model, a human subjective study was 

performed using another 100 test images consisting of newly recorded foggy images, well-known defog test images5-13, 

and the corresponding defogged output images. Image sizes varied from 425 × 274 to 1024 × 768 pixels. Some sample 

images are displayed in Figure 5. 
 

    
 

     
 

     
 

Figure. 5. Sample images from the 100 test image set used in a human subjective study.  

 
4.2 Methodology 

A total of 20 naïve students at The University of Texas at Austin rated the fog density of images using a single-stimulus 

continuous quality evaluation (SSCQE)29 method. All subjects were between the ages of 20 and 35. No vision test was 

performed although a verbal confirmation of soundness of (corrected) vision was obtained from the subjects. Each 

subject attended one session that lasted less than 30 minutes, which consisted of the subject viewing 100 randomized test 

images. A short training set (10 images) preceded the actual study.  

The test images were displayed on the center of the 15” LCD monitor (Dell, Round Rock, TX, USA) at a resolution of 

1920 × 1080 pixels for 8 seconds by using a specially designed MATLAB program and the Psychophysics toolbox30. 

The subjects were requested to rate the fog density of the test images at the end of each display. A continuous bar 

calibrated as “Hardly”, “Little”, “Medium”, “Highly”, and “Extremely” by markings, equally spaced across the bar, was 

displayed on the center of the screen, where “Highly” corresponded to “I think the test image contains high fog density.” 

The fog density ratings were in the range from 0 to 100, where 0 means fog-free. Once the judgment was received using 

a mouse, the subject was not allowed to change the score. There was no rejected subject in the subject screening 

procedure29, so all of the subjective study data was used for the evaluation of the proposed model.  

5. RESULTS 

The proposed model not only predicts perceptual fog density for an entire image but also provides a local perceptual fog 

density prediction for each patch size. Figure 6 shows the results of the proposed model over non-overlapped diverse 

patch sizes from 4 × 4 to 160 × 160 pixels, where the predicted fog density is shown visually in gray scales ranging from 

black (low) to white (high). Results using a smaller patch size yield a more detailed fog density map.  
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Figure. 6. The results of the proposed perceptual fog density prediction model over diverse patch sizes from 4 × 4 to 160 × 

160 pixels. The predicted perceptual fog density is shown visually by gray levels ranging from black (low) to white (high).  
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To evaluate the performance of the proposed model, we utilized Pearson’s linear correlation coefficient (LCC) and 

Spearman’s rank ordered correlation coefficient (SROCC). The predicted perceptual fog density scores of the proposed 

model were passed through a logistic non-linearity26 before computing LCC and SROCC relative to fog density scores 

on foggy images from the human subjects. The logistic function
26 

is 
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                                           (23) 

where y is the predicted fog density score produced by the proposed model, and β1 … β5 are parameters which are 

estimated through a non-linear curve fitting procedure26. The performance of the proposed model was compared using 

diverse patch sizes ranging from 4 × 4 to 160 × 160 pixels. The LCC and SROCC of the proposed model for a patch size 

8 by 8 is 0.8748 and 0.8578, respectively, while the LCC and SROCC across a wide range of patch sizes show stable 

performance over all test fog images as shown in Table 2. 

Table 2. The performance of the proposed model on 100 test images: the predicted perceptual fog density of the proposed 
model and the mean of all subject’s measured fog density on 100 test images were evaluated using Pearson’s linear 
correlation coefficient (LCC) and Spearman’s rank ordered correlation coefficient (SROCC) over diverse patch sizes. 

Patch size 4 × 4 8 × 8 10 × 10 16 × 16 32 × 32 64 × 64 96 × 96 160 × 160 

LCC 0.8732 0.8748 0.8740 0.8713 0.8602 0.8536 0.8444 0.8150 

SROCC 0.8618 0.8578 0.8575 0.8597 0.8515 0.8502 0.8386 0.7875 
 

In addition, we validated the possibility of the proposed model as a tool to assess the performance of defog algorithms by 

comparing the predicted fog density of defogged images with the corresponding measured fog density from the human 
subjects. The high correlation between the predicted fog density of the proposed model and the measured fog density 

from human judgments indicates that the proposed model can reasonably evaluate the performance of defog algorithms. 

Table 3 tabulates LCC and SROCC of the predicted fog density scores after a logistic non-linearity26 against human 

subjective scores for two defog test image sets shown in Figure 7. Although the results present a potential possibility of 

the proposed model as a visibility assessment tool, since only a small number of image sets were tested, for better 

validation, a subjective study using a larger number of foggy and defogged image test sets is planned.    

Table 3. The performance of the proposed model as a tool to assess defog algorithms on 10 test images shown in Figure 7. 
The predicted perceptual fog density of the proposed model and the mean of all subject’s measured fog density were 
evaluated by using Pearson’s linear correlation coefficient (LCC) and Spearman’s rank ordered correlation coefficient 
(SROCC) over diverse patch sizes. 

Patch size 4 × 4 8 × 8 10 × 10 16 × 16 32 × 32 64 × 64 96 × 96 160 × 160 

LCC 0.9348 0.9381 0.9417 0.9444 0.9532 0.9652 0.9573 0.9628 

SROCC 0.5758 0.6606 0.6606 0.6606 0.6364 0.7939 0.7818 0.7697 
 

     
     

     
Foggy image Tan5  Koph6 Fattal7 He8 

 
Figure. 7. The original foggy images and the corresponding defogged images5-8 used in a subjective study. 
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6. CONCLUSION AND FUTURE WORK 

We have proposed a perceptual fog density prediction model that estimates the degree of visibility of a foggy scene from 

a single image using “fog aware” statistical features. The features that define the perceptual fog density are obtained 

from a corpus of natural foggy and fog-free images based on a spatial domain natural scene statistics (NSS) model and 

observed characteristics of foggy images. The perceptual fog density is expressed as the ratio of the foggy level to the 

fog-free level of a test foggy image, where the foggy level and the fog-free level are computed using a Mahalanobis-like 

distance between the MVG fit of the fog aware statistical features of the test image and the MVG models obtained from 

the natural foggy and fog-free images, respectively. The predicted perceptual fog density correlates well with human 

judgments of fog density when applied to 100 test images. We have also found that the proposed fog density prediction 

model can be used as a visibility assessment tool on the results of defog algorithms. The proposed model may be 

improved by adding more perceptually relevant fog aware statistical features into a current framework. Future work 

would involve creating a perceptual defog algorithm to enhance the visibility of foggy scenes based on the proposed 

perceptual fog density prediction model. In addition, for better validation of the proposed model as a visibility 
assessment tool, we plan to execute a human subjective study with a larger number of foggy image data sets.     
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