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ABSTRACT

In this paper we consider two new techniques

for image restoration, using order—constrained
least—squares methods. The first technique con-
sists of a cross—shaped moving window, within
which two operations are combined. The first
operation consists of simple hypothesis tests
for monotonicity in both the horizontal and ver-
tical directions. The second step finds the best
least—squares fit of the input variates in both
directions, constrained by the results of the

hypothesis tests.
The second technique consists of a square

moving window, again combining two operations.
With the first operation, we introduce a new
edge detector with specific edge height 5. Based
on detection or non—detection of an edge, we
either apply order—constrained least—squares
methods to determine the output, or simply average.
The techniques described are applied to an actual

noise—corrupted image.

I. INTRODUCTION

Information—bearing edges and sharp changes
in structure are important features in images. An
edge may be defined as a border between two ad-

jacent neighborhoods differing in some property
such as (average) grey level or textural structure.
The subjective nature of edge definition and char-
acterization has resulted in many edge detection
and enhancement schemes. Surveys and comparisons
of edge detection schemes can be found in several
sources [1—4].

Although many schemes have been proposed for
image restoration, most are linear and deal with
the spectral content of the signal or the cor-
ruptive noise. The techniques described here are
novel in that the operation of the restoration
algorithms depend directly on the edge or trend
structure of the image. While the techniques we
will introduce are both non—linear and spatially

varying, they are based upon natural assumptions.
We consider edge and trend detection methods that
impose a simple set of linear constraints on the
input variates. We then find the best least—
squares fit of the input set with these constraints.
First, however, we need some definitions and mathe-
matical preliminaries basic to the later work.
Definition — Consider a finite set X. A binary
relation " < " on X defines a simple order on X if

(1)
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1. it is reflexive: x < x for x r X
2. it is transitive: x,y,z a X, x<y, y<z

imply x<z;
3. it is atitisylnmetric: x,y;a X, x<y, y<x

imply x = y;
4. every two elements are comparable: x,ya X

implies either x < y or y < x.

A partial order on X is reflexive, transitive, and
antisymnetric, but not every pair of elements need
be comparable. It should be noted that every sim-
ple order is also a partial order. We will con-
sider a specific type of partial order in our later
applications. Suppose we partition X into subsets

A1,A2,.. . ,A which we will call key sets. Then
define a semi—partial order in the following way.
All elements in each set A are non—comparable
pairwise, but each element in A is identically
comparable with all other elements in X, with re-
spect to the semi—partial order, for i=1 k.

Definition — A function f:X ± R is isotonic with
respect to an ordering (simple or partial) "
on X if x,y a X, x < y imply f(x) f(y).

Similarly, a function g: X - R is antitonic
with respect to " ' if x,y a X, x < imply
g(x) g(y).

Definition - Suppose that g is a real—valued func-
tion on X. An isotonic function g on X is an
isotonic regression of g if and only if it mini-
mizes the sum

I [g(x) - f(x)]2
xaX

over the class of isotonic functions f on X.
We can similarly define the antitonic regres-

sion of g. It can be shown that an isotonic (anti—
tonic) regression of g must always exist, and that
it is unique. A more general form of the above
definitions can be found in [5], as well as proofs
of the existence and uniqueness of the isotonic
and antitonic regressions.

Suppose that we are endowed with or assume
some a priori knowledge about the local ordering,
or edges in the image. If we assume accurately,
we should be able to improve on our estimate. The
following theorem quantifies this notion [5].

Theorem — Let p be an unknown function on a finite
set A, known only to be isotonic with respect to
an order (simple or partial) on X. Let g be an
estimate of p, and let g be the isotonic regres—
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sion of g. Then

* 2 2
I [p(x)—g (x)] < I [p(x)—g(x)]

xcX xsX

It should be noted that this theorem presup-
poses absolutely no knowledge of the statistical
nature of g. Thus, given estimate or restor-
ation of a corrupted image, we can always improve
on the estimate by using the isotonic regression,
provided that we are supplied with accurate infor-
mation regarding the relative values of the grey
levels in the picture.

For later use consider order—constrained
maximum likelihood (ML) parameter estimation.
Suppose, for example, that we have a set of in-
dependent observations Y'(y1,. y) and we would
like to estimate the means M=(p ,. . . ,p ). Let
us define an ordering " < " on , and enote the
class of functions that are isotonic with respect
to " " on X as I. If we then assume that the
means M are isotonic with respect to " < ", we
may define an order—constrained ML estimate

,) as

arg{ max f(YIM)}
M: sI

where f(YIM) is the conditional density or like-
lihood function of V given H. In general, this
is a difficult problem to solve, depending on
the nature of f. Suppose, however, that the
observations are Gaussian with (equal) variances
2. Then,

= arg{a (2ll2)exp[- 2 E (y.-.)2]}
2a i=l

which easily reduces to
II

2
M = arg( miii I (y.—u.) }.

M:ijel il
This is simply the definition of the isotonic

regression given earlier, so that

M = 'n
where p is the isotonic regression of V with
respect to " < ". We will use this result in
Section III, where a hypothesis testing scheme is
used for trend detection. We will now consider
the computation of isotonic regressions for simple
and semi—partial orders.

II. ALGORITHMS FOR CALCULATION

The isotonic regression with respect to a
particular ordering can be found using the "Pool—

Adjacent Violators" algorithm from [5]. For simple
orders we proceed as follows.

Consider a function g on a finite set
x}. We wish to compute the isotonic

regression g* of g so that g*(x1) < g*(x) when
i < j. The function g* can be shown to par-
tition X into subsets of consecutive elements of
X on which it is constant; these will be refer-
red to as solution blocks. On each of the solution
blocks the value of g* is the average of the values
of g over the block. Associated with each solution
block is a weight, equal to the number of elements
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in the block. The object of the algorithm is to
find a set of solution blocks such that elements of
adjacent solution blocks satisfy the simple order.
An arbitrary set of consecutive elements of X will
be referred to as a block, also associated with a
weight. The algorithm is begun with the finest
possible partition into blocks, that is, the in-
dividual elements of X. Two or more adjacent
blocks whose elements do not satisfy the simple
order between blocks are known as violators; these
are "pooled" into a single block by taking the
weighted average of the violators and assigning
this value to the elements of the new block. This
process is continued until the final partition of
solution blocks is obtained.

A version of this algorithm due to Kruskal [6]
is easily implemented numerically and was used for
our applications. These algorithms can also be
applied for partial and semi—partial orders, but
due to space limitations we will not discuss this.

III. ISOTONIC MEDIAN FILTERS (IMF's)

We will first introduce a one—dimensional
version of this scheme. The two—dimensional version
is composed of a combination of one—dimensional
filters.

Consider a moving filter window containing an
odd number of input signal values X=x ,.. . ,x,, where
the filter is centered at with m=n+1)/2. The
filtering process consists of two steps. The first
step is a trend detection scheme based on a simple
hypothesis test. It is a trend detector, rather
than an edge detector, since only simple orders
will be considered. We will assume for simplicity
that the input variates are independent and Gaus-
sian with equal variances 2, and unknown means

M=j1,. '1n respectively. Consider the hypotheses

H0: p2 —

versus

H:i>i>...>
1 1— 2— — n

based on observations x ,x. The hypotheses
H0 and H1 assume that tlie p are isotonic and anti—

tonic, respectively, with respect to simple (alge-
braic) order.

The decision rule for this test follows, where
we assume that either hypothesis is equally likely:

H0
choose

H1

>

if max log f(XIM) max log f(XIM).

McH0 < MtH1

The log of the likelihood function is maximized
by the maximum likelihood estimate, which we showed
in section II to be given in the order—constrained
case by the isotonic (antitonic) regression of the x.
under H0 (H1). Hence, if we denote<the>isotonic
(antitonic) regression of x1 to be ii1 () for
i=1,. .. ,n, then simple algebra yields the test

H0
choose if

H1

I f(x.-.)2 - (xjj)2} 0.

i= 1

ICASSP 83, BOSTON 829

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on January 06,2026 at 21:55:51 UTC from IEEE Xplore.  Restrictions apply. 



Suppose that M*11,..., is the result of
the LRT, that is, the better least—squares fit of

- >> > .<<
X (either =1 or M=p1 u0). The second
step of the algorithmis quite simple: replace the
center input value with the median of the p',
that is, the middle value in the algebraic sene.
With the median filter, the input variates must be
ordered first, but here, the are already ordered,
either by increasing or decreasing value. Hence,
the filter output is simply .

The two—dimensional filter is defined simply:
at each image pixel, we center two one-dimensional
filters, one oriented horizontally, one vertically
(giving a cross—shaped window). The average of the
two 1—D filter outputs is then considered to be the
2—D output. Consider the image in Fig. 1, cor-
rupted with zero—mean Gaussian noise with variance
100, as shown in Fig. 2. The images are 240 x 240
with values ranging from 0 to 256 (8 bits of re-
solution). Fig. 3 shows a filtered version using
a 5 x 5 IMF. The noise is suppressed considerably
while the edge and trend structure is not disrupted.

IV. f—HEIGHT ISOTONIC EDGE FILTERS (f—lET's)

Consider an n x n square moving filter
window, where n is odd. As before, we first apply
a process to detect the presence or absence of an
edge at the center window pixel. We separately
test for vertically and horizontally oriented edge
components, but we will describe the process for
vertical edges only, since the horizontal case is

completely analogous. We begin by partitioning
the window values into two key sets A={Xv xv)

v V 2 m
AR{xm+1 XN}, with m=n(n+1)/2 and o=n . AL
contains the leftmost m window values, and AR
contains the N—rn rightmost, as illustrated in
Fig. 4 for n=5. So that we may specify the 'height"
of an edge, we introduce the f—height edge model.
Let

C =
1

xY ; x'G AR

and ( v v
x —5 x

ALi i

i I V V
Ix. ; x.€

1

Consider the hypotheses

v v V
H2: x1=... =5N

where we again assume additive white background
noise. Further, let f(i) and fI(i) denote the
isotonic and antitonic regressions of the and
4 respectively, with respect to the semi—partial
ordering " " defined by 4 A, x G AR imply

sf' < x. With hynothesis if' we associate the ML1 1
N

2

estimate f(i) = 5 xV, i=1 N. The test is

based on the errors

NV 1

e2 N {f2(i)

The decision rule is then

choose if' if j=arg { mm eV},
f{0,1,2}

and we associate with our choice the minimizing
func t ion v. - v

f.(i) + c, 1:x.V. j i
v v
f.(i), i:x.

AR

where c=—5 if j=0, c5 if j=l, and c=0 if j=2.
We define a completely analogous operation

based on upper and lower key sets AT and AD to
obtain a horizontally oriented minimizing tunction

f. We conpete the filtering operation by defin-
ing f*(f+f*)/2 and by replacing the center window
value with the corresponding value of f* in the
filtered version. Fig. 5 illustrates a tiltered
version of the image using a 3 x 3 5—IEF with 5=20,
while Fig. 6 shows the effect of a 5 x 5 5—lET with
5=30. The noise is effectively removed while pre-
serving the edges end considerable detail, but most
notably the selectivity of the filter allows averag-

ing at appropriate pixels, producing very smooth
flat regions. In Table I, below, the empirical mean—
squared error

e= 2 ti=l j=1 {F(i,j)-0(i,j)}2

is given, where 0 and F are the original and
filtered image pixel values respectively, and K =

240, for two window sizes and several values of 5.
Values of e for square median snd averaging filters
are given for comparison. Some of the new S—IEF's

obviously perform well.

TABLE I

Filter Window Size S e
5—IEF 3x3 0 72.6
5—IEF 3x3 10 60.6
S—IEF 3x3 20 37.1
5—IEF 3x3 30 26.7
S—IEF 5x5 0 57.3
S—IEF 5x5 15 34.3
S—IEF 5x5 30 22.3
5—IEF 5x5 40 22.1

Averager 3x3 —— 74.0

Averager 5x5 —— 97.8
Median 3x3 —— 72.7
Median 5x5 —— 71.8
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Fig. 3 Filtered image usimg 3x3 IMF.
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Fig. 4 Configuration for 5x5 —IEF for detecting
vertical edges.

Fig. 5 Filtered image using 3x3 —IEF with S=20.

Filtered image usimg 5x5 6—TEF with 6=30.
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Fig. 1 Origimal Image.
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