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ABSTRACT

I discuss my adventures in substantially recreating my class
(again) Digital Image Processing to “catch up” to the wave
of Artificial Intelligence that is sweeping all of technology
space. This time, a complete destruction and recreation, in
modernized form, of my software for live image processing
demos. Rather than utilizing my programming skills to
program these, | spent the Summer of 2025 working with
ChatGPT (4.0 and 5.0) to create them. In the end, the
courseware “we” created has been a roaring success (as
proven in the classroom), but the process was hardly without
hiccups! To summarize, | found these language models to be
both amazingly capable and surprising incapable. But
perhaps the most important thing | can report is that a
domain expert, at least one having near-Jobian patience, can
create sophisticated educational software today with effort
matching what might have been needed in writing the code.
This portends that not far off, continuously evolving Al
models will become less fraught with limitations and
become transformative at assisted courseware creation.

Index Terms— Digital Image Processing, courseware,
image processing educational demos, large language
models, ChatGPT

1. INTRODUCTION

In the Year 2020, just before the Covid epidemic
smashed everyone’s lives, | wrote a small paper entitled
“Weeping and gnashing of teeth: Teaching deep learning in
image and video processing classes,” which | presented at
this conference in March 2020 [1]. | had an interesting
response to this paper. While it has cited little, | have
received email communications on it from more people than
any other paper | have written, and was even encouraged by
David Donoho to “go on the road” to encourage other to
take heart, and embrace the Al revolution. These e-letters
generally commiserated with what | had felt when | was
forced to reassess and erase half of my image processing
class, replacing much suddenly obsolete material by deep
learning methods. The current paper may be viewed as a
follow-up to that prior paper.

2. RENEWED ANGST AND FEARS

I must say that it was to some degree, dragged kicking
and screaming into this significant effort. While I had nicely
upgraded my course material in years prior to reflect
modern deep learning (as suitable for an upper-division
class), the class was held back by my old digital courseware:
dozens of Labview demonstrations of image processing
algorithms. These had served me admirably for decades
with only occasional updating, and included excellent,
highly visual, interactive demonstrations of image
processing methods, which the users could modify as they
liked to see the effects of parameter choices instantly. It was
excellent, but around the time that | wrote [1], | was
realizing that yes, | could use the existing class demos for all
the classical material still, and show pictures of the
outcomes of deep learning algorithms. This was acceptable,
since no one really expected a suite of live, sophisticated
deep learning image processing algorithms to be collected
together as a courseware. But | knew that day would come.

My only plan was to slowly bring deep learning based
models into the class as picture and video demoes and
eventually seek academic funding to create entirely new
courseware. However, just about the time that | transitioned
from UT Austin to CU Boulder, the decision was made for
me. This happened when Microsoft updated the Windows
OS back in 2024, and National Instrument made the
decision to longer support older Labview formats. National
Instruments was changing, had greatly reduced their interest
in image processing, and soon would be purchased by
Emerson Electric even as their share price stagnated.

In short, none of my suite of time-honored Labview
demos that has helped me teach thousands of students the
principles of Digital Image Processing operated anymore,
nor could they be made to work by any modification. With
considerable trepidation and misgivings, | starting mentally
planning new courseware, realizing that it appeared as
though | would have to spend a lot of time coding it up. For
a busy fellow like me, the idea of finding that much time,
even during summers, was pretty terrifying. It meant
developing suitable GUIs, interactivity, coding models both
classical and deep, gathering and using large image datasets
to train deep models, and much more. Sheesh! This was not
what someone at my career stage should be doing!



Of course, LLMs are being used increasingly to assist
programmers of all varieties, and there were public
statements from the likes of Mark Zuckerberg to the effect
that human programmers at Meta Platforms were being
replaced [2], with much of the work to be conducted by
language models, ostensibly under the guidance, control,
and prompting of human “super-programmers.”

It was clear that language models would be very good at
some things, such as creating GUIs. After all, building
windows, displaying images, placing menus, dropdowns,
and radio buttons should be easy. However, | planned to
create dozens of demos (as it turns out, nearly 100), and
many would have unique GUI requirements. Writing code
for so many algorithms, including deep models, appeared a
foreboding task. | wasn’t sure | could even accomplish it
over the temporal gap created by my transition to CU
Boulder, a pretty clear Summer of 2025 to give it a try. As it
turned out, it required two months of significant labor,
occupying most of my days during that span.

3. “IT ALWAYS SEEMS IMPOSSIBLE
UNTIL IT’S DONE”

Nevertheless, | felt intimidated by the effort required for
this task. Not only because of all the programming, but also
because | wanted to significantly expand the course material
at the same time. | want to include deep models for
denoising, compression, deblocking, inpainting, object
detection and recognition, and much more. Using modern
deep CNN and attention models, and yes, foundation models
and (visual) language models. | did not have much time to
accomplish this, just the summer, which | wanted to also
enjoy hiking the mountains of my new home, Colorado!
Along with everything else, it seemed an impossible task.
As N. Mandela stated in his above quote, in a famous
speech addressing far larger problems, tasks may seem
impossible, but when effort is made, may turn out not to be
s0. But clearly, | needed help, and lots of it!

So, | turned to the famous language model ChatGPT
which | had been using for all kinds of Q&A, and who
would soon become my companion, Al-friend, co-worker,
and often utterly frustrating, obtuse, numbskull.

Given my ambitions for the course material revision and
for creating a comprehensive and (hopefully) amazing set of
image processing demo courseware, while also seeking a
learning challenge for myself, | made a decision that | hoped
might make my life easier. | would create the courseware
entirely without using my programming skills. I would work
with “Chat” via the conversational interface, or prompting,
to achieve the entire outcome, matching the need to
demonstrate all the surviving material to be covered, as well
as newer, more modernistic image processing demos of
deep learning based image processing, suitable for upper
division undergraduate ECE and CS students.

4. VIBING AND PROMPTING

| starting working on this project sometime around June
1, 2025. | was immediately impressed by Chat’s ability to
handle the creation of simple GUIs for image processing,
including menus for algorithm variations and browsing for
image files, buttons for choices, and for display of pictures.
The first Module of the class has some very introductory
Demos to give the students the feel of the dimensionality
and parameters of images. With some simple prompts, | was
quickly able to have Chat generate python scripts to
demonstrate image down-sampling (with a slider to select
factors of 2, 4, 8, or 16), image quantization (slider for bit
depth reduction from 1 to 8 bits/channel), and for RGB to
YUV conversion. In creating these demos, | realized there
could be many similar repetitive commands going forward.

My solution was to ask Chat to remember “protocols”
that be remembered for future scripts. For example, SPLIT
PROTOCOL generates an interface having a browsing
menu (to select an image), displays the image on the left
half of the display window, without changing its aspect
ratio, while displaying the outcome on the right side under
the same constraints. This worked beautifully and saved me
a lot of time! Chat is, after all, a very sophisticated computer
program; defining operations and variables is natural to its
operation, and | was delighted that Chat would remember
these, even months later, and even today.

Significantly emboldened, I moved forward to Module 2,
where | worked with Chat to develop interactive scripts for
image histogram, binary thresholding (both of gray-scale
only), and then too a step forward with morphological
operators which required the definition of structuring
elements and the basic binary morphological correction
methods (DILATE, ERODE, OPEN, CLOSE, and so on).
While these methods have a limited ranges of uses these
days, | find they are an excellent way to introduce students
to the concepts of spatiality and shape, separate from grey-
scale variation. | was not surprised to find that Chat knew
about all these operations and could import available
routines from public libraries with ease, and along with the
SPLIT protocol command, | developed these Demo
programs with ease. | should say Chat and I, since while |
gave the directives, Chat implemented them efficiently. In
all of these there would be a few corrections, such as
ensuring histograms were sized nicely, with tick marks.

I then moved on to point operations: full-scale contrast
stretch, nonlinear point operations such as logarithms and
gamma. Easy as pie, and all familiar to Chat.

I should mention that this is very much a deep learning
for image processing class. But since | assume the students
know nothing about machine learning (ML), | begin with
Rosenblatt’s Perception, move on to MLPs and the basics of
ML, including backpropagation, and at this point introduce
the first ML Demo: a simple MLP trained on a 1719-picture
Day-Night image dataset (available to all that access this



course, as are all the datasets) that learns to classify images
and “Day” or “Night.” Not surprisingly, elaborately trained
Al that he is, Chat was able to follow my instructions, to
build a 2-layer MLP accepting 5 basic luminance features.

At this point | was becoming rather confident, and for
Module 3 Chat and | developed special-purpose Fourier
transform demonstration routines, with the ability to show
reverse transforms of frequency bands and slices, and of
special functions important in image processing. We
handled these pretty effortlessly, as defining radial
frequency and orientation bands is easy, and the rest was
SPLIT PROTOCOL or similar (such as splitting the right
half screen into two or three sub-displays) with some simple
graphics. Module 4 covered linear filtering, filter banks, and
introduced CNNs. Again, things went smoothly although |
encountered some difficulties in creating the scripts for the
Wiener Filter and Gabor Filter Bank Maker. Both these
required multiple steps of implementation. Chat became
confused at times, and left out steps, but we finally arrived.
My patience at that time was pretty strong. The Filter Bank
Maker was more difficult, as Chat had difficulty creating
many objects (filters) satisfying frequency-intersection
constraints. Towards the end of Module 4, I introduce CNNs
and their construction, using VGG-16 [3] as an exemplar.
Finally, we build a small and fun VGG-7 classifier (with
around 2.7M parameters), trained on about 7500 exemplars,
able to classify Dogs vs Cats mostly accurately!

Module 5 (Image Denoising) began easily again — | felt,
I’m on a roll! With classical denoisers including the median
filter, nonlocal means, and BM3D. These are again easy
before-and-after Demos, using available routines. As we
delve into more powerful networks — ResNets and
Denoising Autoencoders, | find that again, prompting Chat
through the creation of deep models is one of its strongest
points. However, when training a ResNet-18 to conduct
image denoising | encountered a difficulty. Since much of
the course is devoted to perception-based image processing,
I was interested in showing the power of using image
quality models as loss functions. SSIM [4] and MS-SSIM
[5] are ideal for this purpose, as they are differentiable and
quasi-convex [6]. However, | discovered that existing
Pytorch implementations of SSIM/MS-SSIM are unstable,
at least in the context of using them as losses during
training. There are a variety of reasons for this, related to
vanishing gradients. However, | got past this, and developed
ResNet-18 denoisers optimized using both MSE and MS-
SSIM, with outcomes clearly showing the visual superiority
of using MS-SSIM as a loss.Only three Modules to go, and
less than a month had passed. A piece of cake!!

5.NOT A PIECE OF CAKE

At this point, | felt things were moving very well and |
would have an earlier summer vacation that | thought.
However, the last three Modules are the largest, and cover
more difficult and complex topics like image compression,

image quality prediction, and image analysis. Module 6
began with easy Demos of DPCM, BTC, and JPEG, for
which there are available routines. An important thing to
note is that | had been creating all of these easier scripts
within a single long session. | began to notice that Chat
began to make small mistakes or forget little things with
increasing frequency. | inquired, and Chat confessed that its
efficacy tended to be reduced with session length. |
therefore began new sessions at suitable breakpoints. Later,
I would do this more often! We then created a simple image
de-blocker using the same ResNet-18 architecture as earlier
used for denoising. This was easy to do, the model being
trained on 5000 before-and-after JPEG images.

We then moved to deep image compression. A favorite
model of mine, and influential, is the Ballé et al autoencoder
[7] architecture that uses divisive normalization (DT)
instead of ReLu or other common activations, and using the
classic additive uniform noise model [8] to approximate /
linearize quantization to allow backprop. We created our
own Deep Compressor Demo using 9 layers of ResNet
encoding to a bottleneck, and 8 layers of ResNet decoding.
Instead of DT, we used RelLu, and left out quantization
approximation entirely. Optimization was over MSE + L1
loss, combined with an entropy term on the bottleneck code.

During the creation of the Deep Compressor Demo, |
began to encounter something | had several times earlier,
but more severely: indent errors, and Chat’s inability to fix
them. Indenting is fundamental to Python formatting, and
misplaced indents produce errors. Recall my intention not to
open the programs and fix them: hence | asked Chat to find
them and fix them. Upon compiling the script and
executing, the same error would arise again. Ask to correct,
compile, and then again, the same error. One late night |
counted 20 consecutive error messages, each fixing one
error then allowing another. Naturally | prompted with “fix
all indent errors” and “loop through and check your work
for any indent errors.” Each time Chat would return with a
cheery message that all is well, and this time our beautiful
program would be perfect! Once | demanded Chat loop 100
times, and find all indent errors, before finishing. Chat
cheerily replied that it surely would, once it had “passed my
100-loop gauntlet,” which seemed to pass for dry humor!

Keep in mind that | encountered this error with both
ChatGPT 4.0 and 5.0, and when using the special coding
mode. The jolly reassurances seem to be part of Chat’s
nature, perhaps a programming team’s response to problems
encountered by other users. However, this false cheer lost its
impact on me pretty quickly. In the end, | found the best
solution was to feed the model my last indent-error-free
copy of the script, and tell it to try from there as a reference.

In the end, the Deep Compressor Demo works quite
well, delivering compression in the range 40:1 — 100:1 with
pretty good (given only 750K trainable parameters) de-
compressed outcomes. Fig. 1 illustrates it in action,
achieving 82:1 compression, with pretty good quality.
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Fig. 1. The Deep Compressor Demo in action.

Things calmed down after that, and Module 6 concludes
with self-attention models and a successful Transformer
based Inpainting Model, able to fill small masked regions.
This simple “before and after” model was easy to create.

Module 7 covers image quality prediction: SSIM, MS-
SSIM, VIF [9], NIQE [10], PaQ-2-PiQ [11], and more. With
the increased, multi-step sophistication of the Demos,
greater problems were encountered. The first three were
easy enough, as Python code exists, but NIQE presented
important difficulties and more lessons. NIQE is a no-
reference “blind” image quality prediction model related to
BRISQUE [12], but with no ML component. There aren’t
any “correct” implementations of NIQE available in Python
(there are some, but using ineffective approximations), so
building a NIQE demo was necessary.

NIQE consists of multiple steps of computing local mean
subtraction, and contrast normalization (MSCN), followed
by histogram fitting to MSCN and products (correlations) of
MSCN coefficients, over two scales, ultimately yielding 36
fitting parameters. These are expressed as a 36-D Gaussian
model, which is compared to a similar model computed on a
dataset of naturalistic images, the Mahalanobis Distances
between them constituting the quality predictions.

Even given a long and very detailed expert prompt, Chat
was unable to follow through at all on creating NIQE,
leaving out entire steps, or critical portions of stages, and we
could never get there by that approach. So instead, |
sequenced the stages, allowing Chat to first conduct MSCN
while plotting histograms, then computing best fits to
various generalized gaussian models, and so on. Aside from
a touch stretch of displaying 4 plots next to an MSCN image
(depicting univariate and product histograms, over a choice
of scales), with labels, this approach worked quite well, and
had the benefit of allowing Demos of each of the steps. In

the end, the NIQE Demo is quite successful, and is probably
the best Python implementation available.

Following NIQE, we created a couple of Deep IQA
demos, the first called “Colorado-QA” based on a large,
pretrained ResNet-50 backbone (23.5 frozen parameters),
which supplies “semantic awareness” with a Transformer-
based head (8.5M learnable parameters), and trained on
9000 images from the FLIVE IQA Dataset [11]. The model
performs quite well, apparently matching the prediction
capability of the SOTA Feedback version of PaQ-2-PiQ
[11]. Then I introduce a CLIP-based version of a similar
model, called ColoradoCLIP-QA, using the ViT-B/32
version (151M fixed parameters) of CLIP to feed a similar
but slightly smaller Transformer head (7.5M parameters),
trained on the same data as Colorado-QA. Interestingly, the
CLIP model converged in fewer than 5 epochs as compared
to the ResNet (~40 epochs), delivering similar 1QA
performance, owing no doubt to exposure to vast troves of
highly diverse images of all kinds of perceptual qualities.

Module 8 is the final one, starting with edge detection —
which | still cover, despite the fading relevance of “edge
maps,” if only to hammer home the usefulness of the image
gradient. Gradient, LoG [13], and Canny [14] edge detector
Demos were easy-peasy, as was SLIC [15], the neat
superpixel algorithm. The next Demo is another foundation
model, Segment Anything (SAM) [16], an interesting
comparison against the tiny and heuristic SLIC. Of course,
SAM was originally trained on millions of images and
billions of segmentation masks! This is followed by a
various feature detectors including the hoary Hough
Transform and the still-ubiquitous SIFT [18], the classic
Viola-Jones face detector [19], and finally the classic
YOLOVS5 object detector [20], a masterwork of handcrafted
deep learning! These Demos were pretty easy to create,
given public-domain Python code. Somehow, | was done!

6. TIPS AND TRICKS

Thanks for reading! I am happy to share this courseware

with any image processing educators that are interested. At

some point | will make them publicly available. A few
things which made this effort possible and which resulted in
excellent courseware.

1.Produce and distribute compilable rather than executable
code, so students can fiddle with and learn from it.

2. Create only small models (<10M parameters) using small
datasets (<10K) so students’ machines can handle them.

3. Define PROTOCOLS for repetitive Demo set-ups.

4. Limit the lengths of ChatGPT sessions to avoid fatigue

5.1gnore all of Chat’s cheery assurances — it’s probably
hiding something!

6. When Chat produces errors repeatedly, restart the process
from a known reference script without that error. Of
course, store prior versions.

7.Break complex, multiple-stage processes into pieces, then
assemble the completed pieces afterwards.
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