
ME AND CHATGPT: MAKING AN IMAGE PROCESSING CLASS DEMO SUITE

Al Bovik and ChatGPT

Colorado’s Laboratory for Image and Video Engineering (LIVE)

Department of Electrical, Computer, and Energy Engineering

University of Colorado Boulder

ABSTRACT

I discuss my adventures in substantially recreating my class

(again) Digital Image Processing to “catch up” to the wave

of Artificial Intelligence that is sweeping all of technology

space. This time, a complete destruction and recreation, in

modernized form, of my software for live image processing

demos. Rather than utilizing my programming skills to

program these, I spent the Summer of 2025 working with

ChatGPT (4.0 and 5.0) to create them. In the end, the

courseware “we” created has been a roaring success (as

proven in the classroom), but the process was hardly without

hiccups! To summarize, I found these language models to be

both amazingly capable and surprising incapable. But

perhaps the most important thing I can report is that a

domain expert, at least one having near-Jobian patience, can

create sophisticated educational software today with effort

matching what might have been needed in writing the code.

This portends that not far off, continuously evolving AI

models will become less fraught with limitations and

become transformative at assisted courseware creation.

Index Terms— Digital Image Processing, courseware,

image processing educational demos, large language

models, ChatGPT

1. INTRODUCTION

In the Year 2020, just before the Covid epidemic

smashed everyone’s lives, I wrote a small paper entitled

“Weeping and gnashing of teeth: Teaching deep learning in

image and video processing classes,” which I presented at

this conference in March 2020 [1]. I had an interesting

response to this paper. While it has cited little, I have

received email communications on it from more people than

any other paper I have written, and was even encouraged by

David Donoho to “go on the road” to encourage other to

take heart, and embrace the AI revolution. These e-letters

generally commiserated with what I had felt when I was

forced to reassess and erase half of my image processing

class, replacing much suddenly obsolete material by deep

learning methods. The current paper may be viewed as a

follow-up to that prior paper.

2. RENEWED ANGST AND FEARS

I must say that it was to some degree, dragged kicking

and screaming into this significant effort. While I had nicely

upgraded my course material in years prior to reflect

modern deep learning (as suitable for an upper-division

class), the class was held back by my old digital courseware:

dozens of Labview demonstrations of image processing

algorithms. These had served me admirably for decades

with only occasional updating, and included excellent,

highly visual, interactive demonstrations of image

processing methods, which the users could modify as they

liked to see the effects of parameter choices instantly. It was

excellent, but around the time that I wrote [1], I was

realizing that yes, I could use the existing class demos for all

the classical material still, and show pictures of the

outcomes of deep learning algorithms. This was acceptable,

since no one really expected a suite of live, sophisticated

deep learning image processing algorithms to be collected

together as a courseware. But I knew that day would come.

My only plan was to slowly bring deep learning based

models into the class as picture and video demoes and

eventually seek academic funding to create entirely new

courseware. However, just about the time that I transitioned

from UT Austin to CU Boulder, the decision was made for

me. This happened when Microsoft updated the Windows

OS back in 2024, and National Instrument made the

decision to longer support older Labview formats. National

Instruments was changing, had greatly reduced their interest

in image processing, and soon would be purchased by

Emerson Electric even as their share price stagnated.

In short, none of my suite of time-honored Labview

demos that has helped me teach thousands of students the

principles of Digital Image Processing operated anymore,

nor could they be made to work by any modification. With

considerable trepidation and misgivings, I starting mentally

planning new courseware, realizing that it appeared as

though I would have to spend a lot of time coding it up. For

a busy fellow like me, the idea of finding that much time,

even during summers, was pretty terrifying. It meant

developing suitable GUIs, interactivity, coding models both

classical and deep, gathering and using large image datasets

to train deep models, and much more. Sheesh! This was not

what someone at my career stage should be doing!

Of course, LLMs are being used increasingly to assist

programmers of all varieties, and there were public

statements from the likes of Mark Zuckerberg to the effect

that human programmers at Meta Platforms were being

replaced [2], with much of the work to be conducted by

language models, ostensibly under the guidance, control,

and prompting of human “super-programmers.”

It was clear that language models would be very good at

some things, such as creating GUIs. After all, building

windows, displaying images, placing menus, dropdowns,

and radio buttons should be easy. However, I planned to

create dozens of demos (as it turns out, nearly 100), and

many would have unique GUI requirements. Writing code

for so many algorithms, including deep models, appeared a

foreboding task. I wasn’t sure I could even accomplish it

over the temporal gap created by my transition to CU

Boulder, a pretty clear Summer of 2025 to give it a try. As it

turned out, it required two months of significant labor,

occupying most of my days during that span.

3. “IT ALWAYS SEEMS IMPOSSIBLE

UNTIL IT’S DONE”

Nevertheless, I felt intimidated by the effort required for

this task. Not only because of all the programming, but also

because I wanted to significantly expand the course material

at the same time. I want to include deep models for

denoising, compression, deblocking, inpainting, object

detection and recognition, and much more. Using modern

deep CNN and attention models, and yes, foundation models

and (visual) language models. I did not have much time to

accomplish this, just the summer, which I wanted to also

enjoy hiking the mountains of my new home, Colorado!

Along with everything else, it seemed an impossible task.

As N. Mandela stated in his above quote, in a famous

speech addressing far larger problems, tasks may seem

impossible, but when effort is made, may turn out not to be

so. But clearly, I needed help, and lots of it!

So, I turned to the famous language model ChatGPT

which I had been using for all kinds of Q&A, and who

would soon become my companion, AI-friend, co-worker,

and often utterly frustrating, obtuse, numbskull.

Given my ambitions for the course material revision and

for creating a comprehensive and (hopefully) amazing set of

image processing demo courseware, while also seeking a

learning challenge for myself, I made a decision that I hoped

might make my life easier. I would create the courseware

entirely without using my programming skills. I would work

with “Chat” via the conversational interface, or prompting,

to achieve the entire outcome, matching the need to

demonstrate all the surviving material to be covered, as well

as newer, more modernistic image processing demos of

deep learning based image processing, suitable for upper

division undergraduate ECE and CS students.

4. VIBING AND PROMPTING

I starting working on this project sometime around June

1, 2025. I was immediately impressed by Chat’s ability to

handle the creation of simple GUIs for image processing,

including menus for algorithm variations and browsing for

image files, buttons for choices, and for display of pictures.

The first Module of the class has some very introductory

Demos to give the students the feel of the dimensionality

and parameters of images. With some simple prompts, I was

quickly able to have Chat generate python scripts to

demonstrate image down-sampling (with a slider to select

factors of 2, 4, 8, or 16), image quantization (slider for bit

depth reduction from 1 to 8 bits/channel), and for RGB to

YUV conversion. In creating these demos, I realized there

could be many similar repetitive commands going forward.

My solution was to ask Chat to remember “protocols”

that be remembered for future scripts. For example, SPLIT

PROTOCOL generates an interface having a browsing

menu (to select an image), displays the image on the left

half of the display window, without changing its aspect

ratio, while displaying the outcome on the right side under

the same constraints. This worked beautifully and saved me

a lot of time! Chat is, after all, a very sophisticated computer

program; defining operations and variables is natural to its

operation, and I was delighted that Chat would remember

these, even months later, and even today.

Significantly emboldened, I moved forward to Module 2,

where I worked with Chat to develop interactive scripts for

image histogram, binary thresholding (both of gray-scale

only), and then too a step forward with morphological

operators which required the definition of structuring

elements and the basic binary morphological correction

methods (DILATE, ERODE, OPEN, CLOSE, and so on).

While these methods have a limited ranges of uses these

days, I find they are an excellent way to introduce students

to the concepts of spatiality and shape, separate from grey-

scale variation. I was not surprised to find that Chat knew

about all these operations and could import available

routines from public libraries with ease, and along with the

SPLIT protocol command, I developed these Demo

programs with ease. I should say Chat and I, since while I

gave the directives, Chat implemented them efficiently. In

all of these there would be a few corrections, such as

ensuring histograms were sized nicely, with tick marks.

I then moved on to point operations: full-scale contrast

stretch, nonlinear point operations such as logarithms and

gamma. Easy as pie, and all familiar to Chat.

I should mention that this is very much a deep learning

for image processing class. But since I assume the students

know nothing about machine learning (ML), I begin with

Rosenblatt’s Perception, move on to MLPs and the basics of

ML, including backpropagation, and at this point introduce

the first ML Demo: a simple MLP trained on a 1719-picture

Day-Night image dataset (available to all that access this

course, as are all the datasets) that learns to classify images

and “Day” or “Night.” Not surprisingly, elaborately trained

AI that he is, Chat was able to follow my instructions, to

build a 2-layer MLP accepting 5 basic luminance features.

At this point I was becoming rather confident, and for

Module 3 Chat and I developed special-purpose Fourier

transform demonstration routines, with the ability to show

reverse transforms of frequency bands and slices, and of

special functions important in image processing. We

handled these pretty effortlessly, as defining radial

frequency and orientation bands is easy, and the rest was

SPLIT PROTOCOL or similar (such as splitting the right

half screen into two or three sub-displays) with some simple

graphics. Module 4 covered linear filtering, filter banks, and

introduced CNNs. Again, things went smoothly although I

encountered some difficulties in creating the scripts for the

Wiener Filter and Gabor Filter Bank Maker. Both these

required multiple steps of implementation. Chat became

confused at times, and left out steps, but we finally arrived.

My patience at that time was pretty strong. The Filter Bank

Maker was more difficult, as Chat had difficulty creating

many objects (filters) satisfying frequency-intersection

constraints. Towards the end of Module 4, I introduce CNNs

and their construction, using VGG-16 [3] as an exemplar.

Finally, we build a small and fun VGG-7 classifier (with

around 2.7M parameters), trained on about 7500 exemplars,

able to classify Dogs vs Cats mostly accurately!

Module 5 (Image Denoising) began easily again – I felt,

I’m on a roll! With classical denoisers including the median

filter, nonlocal means, and BM3D. These are again easy

before-and-after Demos, using available routines. As we

delve into more powerful networks – ResNets and

Denoising Autoencoders, I find that again, prompting Chat

through the creation of deep models is one of its strongest

points. However, when training a ResNet-18 to conduct

image denoising I encountered a difficulty. Since much of

the course is devoted to perception-based image processing,

I was interested in showing the power of using image

quality models as loss functions. SSIM [4] and MS-SSIM

[5] are ideal for this purpose, as they are differentiable and

quasi-convex [6]. However, I discovered that existing

Pytorch implementations of SSIM/MS-SSIM are unstable,

at least in the context of using them as losses during

training. There are a variety of reasons for this, related to

vanishing gradients. However, I got past this, and developed

ResNet-18 denoisers optimized using both MSE and MS-

SSIM, with outcomes clearly showing the visual superiority

of using MS-SSIM as a loss.Only three Modules to go, and

less than a month had passed. A piece of cake!!

5. NOT A PIECE OF CAKE

At this point, I felt things were moving very well and I

would have an earlier summer vacation that I thought.

However, the last three Modules are the largest, and cover

more difficult and complex topics like image compression,

image quality prediction, and image analysis. Module 6

began with easy Demos of DPCM, BTC, and JPEG, for

which there are available routines. An important thing to

note is that I had been creating all of these easier scripts

within a single long session. I began to notice that Chat

began to make small mistakes or forget little things with

increasing frequency. I inquired, and Chat confessed that its

efficacy tended to be reduced with session length. I

therefore began new sessions at suitable breakpoints. Later,

I would do this more often! We then created a simple image

de-blocker using the same ResNet-18 architecture as earlier

used for denoising. This was easy to do, the model being

trained on 5000 before-and-after JPEG images.

We then moved to deep image compression. A favorite

model of mine, and influential, is the Ballé et al autoencoder

[7] architecture that uses divisive normalization (DT)

instead of ReLu or other common activations, and using the

classic additive uniform noise model [8] to approximate /

linearize quantization to allow backprop. We created our

own Deep Compressor Demo using 9 layers of ResNet

encoding to a bottleneck, and 8 layers of ResNet decoding.

Instead of DT, we used ReLu, and left out quantization

approximation entirely. Optimization was over MSE + L1

loss, combined with an entropy term on the bottleneck code.

During the creation of the Deep Compressor Demo, I

began to encounter something I had several times earlier,

but more severely: indent errors, and Chat’s inability to fix

them. Indenting is fundamental to Python formatting, and

misplaced indents produce errors. Recall my intention not to

open the programs and fix them: hence I asked Chat to find

them and fix them. Upon compiling the script and

executing, the same error would arise again. Ask to correct,

compile, and then again, the same error. One late night I

counted 20 consecutive error messages, each fixing one

error then allowing another. Naturally I prompted with “fix

all indent errors” and “loop through and check your work

for any indent errors.” Each time Chat would return with a

cheery message that all is well, and this time our beautiful

program would be perfect! Once I demanded Chat loop 100

times, and find all indent errors, before finishing. Chat

cheerily replied that it surely would, once it had “passed my

100-loop gauntlet,” which seemed to pass for dry humor!

Keep in mind that I encountered this error with both

ChatGPT 4.0 and 5.0, and when using the special coding

mode. The jolly reassurances seem to be part of Chat’s

nature, perhaps a programming team’s response to problems

encountered by other users. However, this false cheer lost its

impact on me pretty quickly. In the end, I found the best

solution was to feed the model my last indent-error-free

copy of the script, and tell it to try from there as a reference.

In the end, the Deep Compressor Demo works quite

well, delivering compression in the range 40:1 – 100:1 with

pretty good (given only 750K trainable parameters) de-

compressed outcomes. Fig. 1 illustrates it in action,

achieving 82:1 compression, with pretty good quality.

Fig. 1. The Deep Compressor Demo in action.

Things calmed down after that, and Module 6 concludes

with self-attention models and a successful Transformer

based Inpainting Model, able to fill small masked regions.

This simple “before and after” model was easy to create.

Module 7 covers image quality prediction: SSIM, MS-

SSIM, VIF [9], NIQE [10], PaQ-2-PiQ [11], and more. With

the increased, multi-step sophistication of the Demos,

greater problems were encountered. The first three were

easy enough, as Python code exists, but NIQE presented

important difficulties and more lessons. NIQE is a no-

reference “blind” image quality prediction model related to

BRISQUE [12], but with no ML component. There aren’t

any “correct” implementations of NIQE available in Python

(there are some, but using ineffective approximations), so

building a NIQE demo was necessary.

NIQE consists of multiple steps of computing local mean

subtraction, and contrast normalization (MSCN), followed

by histogram fitting to MSCN and products (correlations) of

MSCN coefficients, over two scales, ultimately yielding 36

fitting parameters. These are expressed as a 36-D Gaussian

model, which is compared to a similar model computed on a

dataset of naturalistic images, the Mahalanobis Distances

between them constituting the quality predictions.

Even given a long and very detailed expert prompt, Chat

was unable to follow through at all on creating NIQE,

leaving out entire steps, or critical portions of stages, and we

could never get there by that approach. So instead, I

sequenced the stages, allowing Chat to first conduct MSCN

while plotting histograms, then computing best fits to

various generalized gaussian models, and so on. Aside from

a touch stretch of displaying 4 plots next to an MSCN image

(depicting univariate and product histograms, over a choice

of scales), with labels, this approach worked quite well, and

had the benefit of allowing Demos of each of the steps. In

the end, the NIQE Demo is quite successful, and is probably

the best Python implementation available.

Following NIQE, we created a couple of Deep IQA

demos, the first called “Colorado-QA” based on a large,

pretrained ResNet-50 backbone (23.5 frozen parameters),

which supplies “semantic awareness” with a Transformer-

based head (8.5M learnable parameters), and trained on

9000 images from the FLIVE IQA Dataset [11]. The model

performs quite well, apparently matching the prediction

capability of the SOTA Feedback version of PaQ-2-PiQ

[11]. Then I introduce a CLIP-based version of a similar

model, called ColoradoCLIP-QA, using the ViT-B/32

version (151M fixed parameters) of CLIP to feed a similar

but slightly smaller Transformer head (7.5M parameters),

trained on the same data as Colorado-QA. Interestingly, the

CLIP model converged in fewer than 5 epochs as compared

to the ResNet (~40 epochs), delivering similar IQA

performance, owing no doubt to exposure to vast troves of

highly diverse images of all kinds of perceptual qualities.

Module 8 is the final one, starting with edge detection –

which I still cover, despite the fading relevance of “edge

maps,” if only to hammer home the usefulness of the image

gradient. Gradient, LoG [13], and Canny [14] edge detector

Demos were easy-peasy, as was SLIC [15], the neat

superpixel algorithm. The next Demo is another foundation

model, Segment Anything (SAM) [16], an interesting

comparison against the tiny and heuristic SLIC. Of course,

SAM was originally trained on millions of images and

billions of segmentation masks! This is followed by a

various feature detectors including the hoary Hough

Transform and the still-ubiquitous SIFT [18], the classic

Viola-Jones face detector [19], and finally the classic

YOLOv5 object detector [20], a masterwork of handcrafted

deep learning! These Demos were pretty easy to create,

given public-domain Python code. Somehow, I was done!

6. TIPS AND TRICKS

Thanks for reading! I am happy to share this courseware

with any image processing educators that are interested. At

some point I will make them publicly available. A few

things which made this effort possible and which resulted in

excellent courseware.

1. Produce and distribute compilable rather than executable

code, so students can fiddle with and learn from it.

2. Create only small models (<10M parameters) using small

datasets (<10K) so students’ machines can handle them.

3. Define PROTOCOLS for repetitive Demo set-ups.

4. Limit the lengths of ChatGPT sessions to avoid fatigue

5. Ignore all of Chat’s cheery assurances – it’s probably

hiding something!

6. When Chat produces errors repeatedly, restart the process

from a known reference script without that error. Of

course, store prior versions.

7. Break complex, multiple-stage processes into pieces, then

assemble the completed pieces afterwards.

7. REFERENCES

[1] A.C. Bovik, “Weeping and gnashing of teeth:

Teaching deep learning in image and video processing

classes,” IEEE Southwest Symposium on Image

Analysis and Interpretation, Las Vegas, Nevada,

March 30-31, 2020.

[2] G. Marks, “Business tech news: Zuckerberg says AI

will replace mid-level engineers soon,” Forbes, online

at:https://www.forbes.com/sites/quickerbettertech/202

5/01/26/business-tech-news-zuckerberg-says-ai-will-

replace-mid-level-engineers-soon/, Jan 26, 2025.

[3] K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large-scale image

recognition,” arXiv:1409.1556. April 10, 2015.

[4] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P.

Simoncelli, “Image quality assessment: From error

visibility to structural similarity,” IEEE Transactions

on Image Processing, vol. 13, no. 4, pp. 600-612,

April 2004.

[5] Z. Wang, E. Simoncelli, and A.C. Bovik, “Multi-scale

structural similarity for image quality assessment,”

Asilomar Conference on Signals, Systems, and

Computers, Pacific Grove, California, November 9-12,

2003.

[6] S.S. Channappayya, A.C. Bovik, C. Caramanis and

R.W. Heath, “Design of linear equalizers optimized

for the structural similarity index,” IEEE Transactions

on Image Processing, vol. 17, no. 6, pp. 857-872, June

2008.

[7] J. Ballé, V. Laparra, and E.P. Simoncelli, “End-to-end

optimized image compression,” arXiv preprint

arXiv:1611.01704. 2016 Nov 5.

[8] B. Widrow, “Statistical analysis of quantized systems”

IRE Transactions on Circuit Theory, vol. CT-3, pp.

266–276, 1956.

[9] H.R. Sheikh and A.C. Bovik, “Image information and

visual quality,” IEEE Transactions on Image

Processing, vol. 15, no. 2, pp. 430-444, February

2006.

[10] A. Mittal, R. Soundararajan, and A.C. Bovik, “Making

a ‘completely blind’ image quality analyzer,” IEEE

Signal Processing Letters, vol. 21, no. 3, pp. 209-212,

March 2013.

[11] Z. Ying, H. Niu, P. Gupta, D. Mahajan, D.

Ghadiyaram, and A.C. Bovik, “From patches to

pictures (PaQ-2-PiQ): Mapping the perceptual space

of picture quality,” IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, Seattle, Washington, June 13-19, 2020.

[12] A. Mittal, A.K. Moorthy, and A.C. Bovik, “No-

reference image quality assessment in the spatial

domain,” IEEE Transactions on Image Processing,

vol. 21, no. 12, pp. 4695-4708, December 2012.

[13] E. Hildreth and D. Marr, “Theory of edge detection,”

Proceedings of the Royal Society of London, vol.

207(1167), pp. 187-217, Feb. 1980.

[14] J. Canny, “A computational approach to edge

detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, pp. 679-98, January 2009.

[15] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk, “SLIC superpixels compared to state-of-

the-art superpixel methods,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 34,

no. 11, pp. 2274-2282, May 2012.

[16] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland L.

Gustafson, T. Xiao, S. Whitehead, A.C. Berg, W.Y.

Lo, and P. Dollár, “Segment anything,” IEEE/CVF

International Conference on Computer Vision

(CVPR), pp. 4015-4026, Vancouver, British

Columbia, June 2023.

[17] P.C.V. Hough, “Method and means for recognizing

complex patterns,” U.S. Patent 3,069,654, December

18, 1962.

[18] D.G. Lowe, “Distinctive image features from scale-

invariant keypoints,” International Journal of

Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[19] P. Viola and M. Jones, “Rapid object detection using a

boosted cascade of simple features,” IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR), Kauai, Hawaii, December 2001.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Las Vegas, Nevada,

June 2016.

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1409.1556

