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ABSTRACT 

 

I discuss my adventures in substantially recreating my class 

(again) Digital Image Processing to “catch up” to the wave 

of Artificial Intelligence that is sweeping all of technology 

space. This time, a complete destruction and recreation, in 

modernized form, of my software for live image processing 

demos. Rather than utilizing my programming skills to 

program these, I spent the Summer of 2025 working with 

ChatGPT (4.0 and 5.0) to create them. In the end, the 

courseware “we” created has been a roaring success (as 

proven in the classroom), but the process was hardly without 

hiccups! To summarize, I found these language models to be 

both amazingly capable and surprising incapable. But 

perhaps the most important thing I can report is that a 

domain expert, at least one having near-Jobian patience, can 

create sophisticated educational software today with effort 

matching what might have been needed in writing the code. 

This portends that not far off, continuously evolving AI 

models will become less fraught with limitations and 

become transformative at assisted courseware creation. 

 

Index Terms— Digital Image Processing, courseware, 

image processing educational demos, large language 

models, ChatGPT 

 

1. INTRODUCTION 

 

In the Year 2020, just before the Covid epidemic 

smashed everyone’s lives, I wrote a small paper entitled 

“Weeping and gnashing of teeth: Teaching deep learning in 

image and video processing classes,” which I presented at 

this conference in March 2020 [1]. I had an interesting 

response to this paper. While it has cited little, I have 

received email communications on it from more people than 

any other paper I have written, and was even encouraged by 

David Donoho to “go on the road” to encourage other to 

take heart, and embrace the AI revolution. These e-letters 

generally commiserated with what I had felt when I was 

forced to reassess and erase half of my image processing 

class, replacing much suddenly obsolete material by deep 

learning methods. The current paper may be viewed as a 

follow-up to that prior paper. 

 

2. RENEWED ANGST AND FEARS 

 

I must say that it was to some degree, dragged kicking 

and screaming into this significant effort. While I had nicely 

upgraded my course material in years prior to reflect 

modern deep learning (as suitable for an upper-division 

class), the class was held back by my old digital courseware: 

dozens of Labview demonstrations of image processing 

algorithms. These had served me admirably for decades 

with only occasional updating, and included excellent, 

highly visual, interactive demonstrations of image 

processing methods, which the users could modify as they 

liked to see the effects of parameter choices instantly. It was 

excellent, but around the time that I wrote [1], I was 

realizing that yes, I could use the existing class demos for all 

the classical material still, and show pictures of the 

outcomes of deep learning algorithms. This was acceptable, 

since no one really expected a suite of live, sophisticated 

deep learning image processing algorithms to be collected 

together as a courseware. But I knew that day would come. 

My only plan was to slowly bring deep learning based 

models into the class as picture and video demoes and 

eventually seek academic funding to create entirely new 

courseware. However, just about the time that I transitioned 

from UT Austin to CU Boulder, the decision was made for 

me. This happened when Microsoft updated the Windows 

OS back in 2024, and National Instrument made the 

decision to longer support older Labview formats. National 

Instruments was changing, had greatly reduced their interest 

in image processing, and soon would be purchased by 

Emerson Electric even as their share price stagnated. 

In short, none of my suite of time-honored Labview 

demos that has helped me teach thousands of students the 

principles of Digital Image Processing operated anymore, 

nor could they be made to work by any modification. With 

considerable trepidation and misgivings, I starting mentally 

planning new courseware, realizing that it appeared as 

though I would have to spend a lot of time coding it up. For 

a busy fellow like me, the idea of finding that much time, 

even during summers, was pretty terrifying. It meant 

developing suitable GUIs, interactivity, coding models both 

classical and deep, gathering and using large image datasets 

to train deep models, and much more. Sheesh! This was not 

what someone at my career stage should be doing! 



Of course, LLMs are being used increasingly to assist 

programmers of all varieties, and there were public 

statements from the likes of Mark Zuckerberg to the effect 

that human programmers at Meta Platforms were being 

replaced [2], with much of the work to be conducted by 

language models, ostensibly under the guidance, control, 

and prompting of human “super-programmers.” 

It was clear that language models would be very good at 

some things, such as creating GUIs. After all, building 

windows, displaying images, placing menus, dropdowns, 

and radio buttons should be easy. However, I planned to 

create dozens of demos (as it turns out, nearly 100), and 

many would have unique GUI requirements. Writing code 

for so many algorithms, including deep models, appeared a 

foreboding task. I wasn’t sure I could even accomplish it 

over the temporal gap created by my transition to CU 

Boulder, a pretty clear Summer of 2025 to give it a try. As it 

turned out, it required two months of significant labor, 

occupying most of my days during that span. 

 

3. “IT ALWAYS SEEMS IMPOSSIBLE 

UNTIL IT’S DONE” 

 

Nevertheless, I felt intimidated by the effort required for 

this task. Not only because of all the programming, but also 

because I wanted to significantly expand the course material 

at the same time. I want to include deep models for 

denoising, compression, deblocking, inpainting, object 

detection and recognition, and much more. Using modern 

deep CNN and attention models, and yes, foundation models 

and (visual) language models. I did not have much time to 

accomplish this, just the summer, which I wanted to also 

enjoy hiking the mountains of my new home, Colorado! 

Along with everything else, it seemed an impossible task. 

As N. Mandela stated in his above quote, in a famous 

speech addressing far larger problems, tasks may seem 

impossible, but when effort is made, may turn out not to be 

so. But clearly, I needed help, and lots of it! 

So, I turned to the famous language model ChatGPT 

which I had been using for all kinds of Q&A, and who 

would soon become my companion, AI-friend, co-worker, 

and often utterly frustrating, obtuse, numbskull. 

Given my ambitions for the course material revision and 

for creating a comprehensive and (hopefully) amazing set of 

image processing demo courseware, while also seeking a 

learning challenge for myself, I made a decision that I hoped 

might make my life easier. I would create the courseware 

entirely without using my programming skills. I would work 

with “Chat” via the conversational interface, or prompting, 

to achieve the entire outcome, matching the need to 

demonstrate all the surviving material to be covered, as well 

as newer, more modernistic image processing demos of 

deep learning based image processing, suitable for upper 

division undergraduate ECE and CS students. 

 

4. VIBING AND PROMPTING 

 

I starting working on this project sometime around June 

1, 2025. I was immediately impressed by Chat’s ability to 

handle the creation of simple GUIs for image processing, 

including menus for algorithm variations and browsing for 

image files, buttons for choices, and for display of pictures. 

The first Module of the class has some very introductory 

Demos to give the students the feel of the dimensionality 

and parameters of images. With some simple prompts, I was 

quickly able to have Chat generate python scripts to 

demonstrate image down-sampling (with a slider to select 

factors of 2, 4, 8, or 16), image quantization (slider for bit 

depth reduction from 1 to 8 bits/channel), and for RGB to 

YUV conversion. In creating these demos, I realized there 

could be many similar repetitive commands going forward. 

My solution was to ask Chat to remember “protocols” 

that be remembered for future scripts. For example, SPLIT 

PROTOCOL generates an interface having a browsing 

menu (to select an image), displays the image on the left 

half of the display window, without changing its aspect 

ratio, while displaying the outcome on the right side under 

the same constraints. This worked beautifully and saved me 

a lot of time! Chat is, after all, a very sophisticated computer 

program; defining operations and variables is natural to its 

operation, and I was delighted that Chat would remember 

these, even months later, and even today. 

Significantly emboldened, I moved forward to Module 2, 

where I worked with Chat to develop interactive scripts for 

image histogram, binary thresholding (both of gray-scale 

only), and then too a step forward with morphological 

operators which required the definition of structuring 

elements and the basic binary morphological correction 

methods (DILATE, ERODE, OPEN, CLOSE, and so on). 

While these methods have a limited ranges of uses these 

days, I find they are an excellent way to introduce students 

to the concepts of spatiality and shape, separate from grey-

scale variation. I was not surprised to find that Chat knew 

about all these operations and could import available 

routines from public libraries with ease, and along with the 

SPLIT protocol command, I developed these Demo 

programs with ease. I should say Chat and I, since while I 

gave the directives, Chat implemented them efficiently. In 

all of these there would be a few corrections, such as 

ensuring histograms were sized nicely, with tick marks. 

I then moved on to point operations: full-scale contrast 

stretch, nonlinear point operations such as logarithms and 

gamma. Easy as pie, and all familiar to Chat. 

I should mention that this is very much a deep learning 

for image processing class. But since I assume the students 

know nothing about machine learning (ML), I begin with 

Rosenblatt’s Perception, move on to MLPs and the basics of 

ML, including backpropagation, and at this point introduce 

the first ML Demo: a simple MLP trained on a 1719-picture 

Day-Night image dataset (available to all that access this 



course, as are all the datasets) that learns to classify images 

and “Day” or “Night.” Not surprisingly, elaborately trained 

AI that he is, Chat was able to follow my instructions, to 

build a 2-layer MLP accepting 5 basic luminance features. 

At this point I was becoming rather confident, and for 

Module 3 Chat and I developed special-purpose Fourier 

transform demonstration routines, with the ability to show 

reverse transforms of frequency bands and slices, and of 

special functions important in image processing. We 

handled these pretty effortlessly, as defining radial 

frequency and orientation bands is easy, and the rest was 

SPLIT PROTOCOL or similar (such as splitting the right 

half screen into two or three sub-displays) with some simple 

graphics. Module 4 covered linear filtering, filter banks, and 

introduced CNNs. Again, things went smoothly although I 

encountered some difficulties in creating the scripts for the 

Wiener Filter and Gabor Filter Bank Maker. Both these 

required multiple steps of implementation. Chat became 

confused at times, and left out steps, but we finally arrived. 

My patience at that time was pretty strong. The Filter Bank 

Maker was more difficult, as Chat had difficulty creating 

many objects (filters) satisfying frequency-intersection 

constraints. Towards the end of Module 4, I introduce CNNs 

and their construction, using VGG-16 [3] as an exemplar. 

Finally, we build a small and fun VGG-7 classifier (with 

around 2.7M parameters), trained on about 7500 exemplars, 

able to classify Dogs vs Cats mostly accurately! 

Module 5 (Image Denoising) began easily again – I felt, 

I’m on a roll! With classical denoisers including the median 

filter, nonlocal means, and BM3D. These are again easy 

before-and-after Demos, using available routines. As we 

delve into more powerful networks – ResNets and 

Denoising Autoencoders, I find that again, prompting Chat 

through the creation of deep models is one of its strongest 

points. However, when training a ResNet-18 to conduct 

image denoising I encountered a difficulty. Since much of 

the course is devoted to perception-based image processing, 

I was interested in showing the power of using image 

quality models as loss functions. SSIM [4] and MS-SSIM 

[5] are ideal for this purpose, as they are differentiable and 

quasi-convex [6]. However, I discovered that existing 

Pytorch implementations of SSIM/MS-SSIM are unstable, 

at least in the context of using them as losses during 

training. There are a variety of reasons for this, related to 

vanishing gradients. However, I got past this, and developed 

ResNet-18 denoisers optimized using both MSE and MS-

SSIM, with outcomes clearly showing the visual superiority 

of using MS-SSIM as a loss.Only three Modules to go, and 

less than a month had passed. A piece of cake!! 

 

5. NOT A PIECE OF CAKE 

 

At this point, I felt things were moving very well and I 

would have an earlier summer vacation that I thought. 

However, the last three Modules are the largest, and cover 

more difficult and complex topics like image compression, 

image quality prediction, and image analysis. Module 6 

began with easy Demos of DPCM, BTC, and JPEG, for 

which there are available routines. An important thing to 

note is that I had been creating all of these easier scripts 

within a single long session. I began to notice that Chat 

began to make small mistakes or forget little things with 

increasing frequency. I inquired, and Chat confessed that its 

efficacy tended to be reduced with session length. I 

therefore began new sessions at suitable breakpoints. Later, 

I would do this more often! We then created a simple image 

de-blocker using the same ResNet-18 architecture as earlier 

used for denoising. This was easy to do, the model being 

trained on 5000 before-and-after JPEG images. 

We then moved to deep image compression. A favorite 

model of mine, and influential, is the Ballé et al autoencoder 

[7] architecture that uses divisive normalization (DT) 

instead of ReLu or other common activations, and using the 

classic additive uniform noise model [8] to approximate / 

linearize quantization to allow backprop. We created our 

own Deep Compressor Demo using 9 layers of ResNet 

encoding to a bottleneck, and 8 layers of ResNet decoding. 

Instead of DT, we used ReLu, and left out quantization 

approximation entirely. Optimization was over MSE + L1 

loss, combined with an entropy term on the bottleneck code. 

During the creation of the Deep Compressor Demo, I 

began to encounter something I had several times earlier, 

but more severely: indent errors, and Chat’s inability to fix 

them. Indenting is fundamental to Python formatting, and 

misplaced indents produce errors. Recall my intention not to 

open the programs and fix them: hence I asked Chat to find 

them and fix them. Upon compiling the script and 

executing, the same error would arise again. Ask to correct, 

compile, and then again, the same error. One late night I 

counted 20 consecutive error messages, each fixing one 

error then allowing another. Naturally I prompted with “fix 

all indent errors” and “loop through and check your work 

for any indent errors.” Each time Chat would return with a 

cheery message that all is well, and this time our beautiful 

program would be perfect! Once I demanded Chat loop 100 

times, and find all indent errors, before finishing. Chat 

cheerily replied that it surely would, once it had “passed my 

100-loop gauntlet,” which seemed to pass for dry humor! 

Keep in mind that I encountered this error with both 

ChatGPT 4.0 and 5.0, and when using the special coding 

mode. The jolly reassurances seem to be part of Chat’s 

nature, perhaps a programming team’s response to problems 

encountered by other users. However, this false cheer lost its 

impact on me pretty quickly. In the end, I found the best 

solution was to feed the model my last indent-error-free 

copy of the script, and tell it to try from there as a reference. 

In the end, the Deep Compressor Demo works quite 

well, delivering compression in the range 40:1 – 100:1 with 

pretty good (given only 750K trainable parameters) de-

compressed outcomes. Fig. 1 illustrates it in action, 

achieving 82:1 compression, with pretty good quality. 



 
Fig. 1. The Deep Compressor Demo in action. 

 

Things calmed down after that, and Module 6 concludes 

with self-attention models and a successful Transformer 

based Inpainting Model, able to fill small masked regions. 

This simple “before and after” model was easy to create. 

Module 7 covers image quality prediction: SSIM, MS-

SSIM, VIF [9], NIQE [10], PaQ-2-PiQ [11], and more. With 

the increased, multi-step sophistication of the Demos, 

greater problems were encountered. The first three were 

easy enough, as Python code exists, but NIQE presented 

important difficulties and more lessons. NIQE is a no-

reference “blind” image quality prediction model related to 

BRISQUE [12], but with no ML component. There aren’t 

any “correct” implementations of NIQE available in Python 

(there are some, but using ineffective approximations), so 

building a NIQE demo was necessary. 

NIQE consists of multiple steps of computing local mean 

subtraction, and contrast normalization (MSCN), followed 

by histogram fitting to MSCN and products (correlations) of 

MSCN coefficients, over two scales, ultimately yielding 36 

fitting parameters. These are expressed as a 36-D Gaussian 

model, which is compared to a similar model computed on a 

dataset of naturalistic images, the Mahalanobis Distances 

between them constituting the quality predictions. 

Even given a long and very detailed expert prompt, Chat 

was unable to follow through at all on creating NIQE, 

leaving out entire steps, or critical portions of stages, and we 

could never get there by that approach. So instead, I 

sequenced the stages, allowing Chat to first conduct MSCN 

while plotting histograms, then computing best fits to 

various generalized gaussian models, and so on. Aside from 

a touch stretch of displaying 4 plots next to an MSCN image 

(depicting univariate and product histograms, over a choice 

of scales), with labels, this approach worked quite well, and 

had the benefit of allowing Demos of each of the steps. In 

the end, the NIQE Demo is quite successful, and is probably 

the best Python implementation available. 

Following NIQE, we created a couple of Deep IQA 

demos, the first called “Colorado-QA” based on a large, 

pretrained ResNet-50 backbone (23.5 frozen parameters), 

which supplies “semantic awareness” with a Transformer-

based head (8.5M learnable parameters), and trained on 

9000 images from the FLIVE IQA Dataset [11]. The model 

performs quite well, apparently matching the prediction 

capability of the SOTA Feedback version of PaQ-2-PiQ 

[11]. Then I introduce a CLIP-based version of a similar 

model, called ColoradoCLIP-QA, using the ViT-B/32 

version (151M fixed parameters) of CLIP to feed a similar 

but slightly smaller Transformer head (7.5M parameters), 

trained on the same data as Colorado-QA. Interestingly, the 

CLIP model converged in fewer than 5 epochs as compared 

to the ResNet (~40 epochs), delivering similar IQA 

performance, owing no doubt to exposure to vast troves of 

highly diverse images of all kinds of perceptual qualities. 

Module 8 is the final one, starting with edge detection – 

which I still cover, despite the fading relevance of “edge 

maps,” if only to hammer home the usefulness of the image 

gradient. Gradient, LoG [13], and Canny [14] edge detector 

Demos were easy-peasy, as was SLIC [15], the neat 

superpixel algorithm. The next Demo is another foundation 

model, Segment Anything (SAM) [16], an interesting 

comparison against the tiny and heuristic SLIC. Of course, 

SAM was originally trained on millions of images and 

billions of segmentation masks! This is followed by a 

various feature detectors including the hoary Hough 

Transform and the still-ubiquitous SIFT [18], the classic 

Viola-Jones face detector [19], and finally the classic 

YOLOv5 object detector [20], a masterwork of handcrafted 

deep learning! These Demos were pretty easy to create, 

given public-domain Python code. Somehow, I was done! 

 

6. TIPS AND TRICKS 

 

Thanks for reading! I am happy to share this courseware 

with any image processing educators that are interested. At 

some point I will make them publicly available. A few 

things which made this effort possible and which resulted in 

excellent courseware.  

1. Produce and distribute compilable rather than executable 

code, so students can fiddle with and learn from it. 

2. Create only small models (<10M parameters) using small 

datasets (<10K) so students’ machines can handle them. 

3. Define PROTOCOLS for repetitive Demo set-ups. 

4. Limit the lengths of ChatGPT sessions to avoid fatigue 

5. Ignore all of Chat’s cheery assurances – it’s probably 

hiding something! 

6. When Chat produces errors repeatedly, restart the process 

from a known reference script without that error. Of 

course, store prior versions. 

7. Break complex, multiple-stage processes into pieces, then 

assemble the completed pieces afterwards. 
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