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Abstract
Rapidly occurring environmental changes in alpine lakes highlight the importance of better understanding the ecological 
structure and function associated with these systems. Previous research has identified how the physical characteristics of 
lakes change as a function of landscape position, but comparatively little is known about shifts in the biotic community across 
mountain regions. In 2016, we sampled 19 lakes across an elevation gradient (2480–3550 m a.s.l.) within the Rocky Moun-
tains, USA, to evaluate how both the abiotic characteristics of lakes and their planktonic biological communities covaried with 
elevation. Based on generalized linear mixed models (GLMMs), increases in elevation were associated with decreases in most 
nutrient concentrations (with the exception of nitrate), dissolved organic carbon, water temperature and lake stratification. 
Conversely, elevation increases were positively related to nitrate concentrations and water clarity. Extending this analysis to 
the biological community, we found that higher-elevation lakes exhibited lower phytoplankton and zooplankton densities, 
whereas elevation associated positively with average zooplankton size. Our data are consistent with the hypothesis that the 
alpine environment acts as a strong niche filter, limiting the quantity and diversity of taxa to groups capable of tolerating the 
short growing season, high flushing rate, strong variation in interannual precipitation, intense ultraviolet radiation exposure, 
and lower resource availability associated with such habitats.
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Introduction

Worldwide, an estimated 20% of lakes are located higher 
than 1000 m a.s.l. (Verpoorter et al. 2014). Growing evi-
dence suggests that these mountainous, often remote aquatic 
systems are critical to downstream ecosystems and may 
differ considerably from low-elevation lakes in both their 
physical and biological properties (Moser et al. 2019). For 
instance, mountain lakes often function as a hot spot for 
nutrient cycling (Alexander et al. 2007; Brown et al. 2008) 
and are a key source of freshwater for humans (Beniston 
2003; Viviroli et al. 2007). Relative to lakes at lower eleva-
tions, which have a much longer history of study (Jacobsen 
and Dangles 2017), alpine lakes (those above treeline) are 
characterized by sparse surrounding vegetation, extended 
ice-cover (Caine 2002; Hampton et  al. 2017), intense 
spring flushing rates (McGuire et al. 2005; Clow 2010), and 
high exposure to solar radiation (Blumthaler et al. 1997). 
The steep topography, abrupt transition in vegetation pat-
terns, unique basin shapes, dynamic weather patterns, and 
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interannual variation in winter snowpack of alpine environ-
ments make it probable that lakes will also vary broadly in 
responses to forecasted environmental changes, underscor-
ing the importance of research on the ecology of mountain 
lake ecosystems (Kamenik et al. 2001; Kraemer et al. 2015).

Previous limnological research has emphasized the 
importance of landscape position, or the concept of a lake’s 
hydrologic position within the local to regional flow sys-
tem, in shaping the physical characteristics of both lakes and 
streams in regard to patterns of loading, transport, storage, 
and utilization of inorganic and organic materials (Vannote 
et al. 1980; Kratz et al. 1997; Martin and Soranno 2006). 
Notably, the Landscape Position Model (LPM) postulates 
that in temperate lake systems, downward shifts in land-
scape position are associated with larger lake size, increased 
hydrologic connectivity, longer water residence times, and 
increased fish species richness (Kratz et al. 1997; Martin 
and Soranno 2006; Soranno et al. 2010). Application of 
these and related frameworks have helped capture varia-
tion among mountain lakes or across stream networks with 
respect to nutrient concentrations, primary production, and 
patterns of biodiversity (Sadro et al. 2012; Epstein et al. 
2013; Read et al. 2015). For mountain lakes in particular, 
the landscape position of a lake relative to forest treeline has 
enormous potential to affect in-lake ecological processes. 
For instance, both the extent and chemical quality of dis-
solved organic matter (DOM) derived from the surrounding 
landscape sharply influence the attenuation of UV radiation 
(McKnight et al. 1997). Allochthonous DOM derived from 
terrestrial vegetation and soils is typically enriched in yel-
low-colored, humic materials, which strongly absorb visible 
and UV radiation. However, clear water lakes above treeline 
(i.e., alpine) tend to support sparse terrestrial vegetation and 
thus have lower DOM concentrations often dominated by 
autochthonous (derived from within-lake processes) rather 
than allochthonous inputs (McKnight et al. 1994; Hood 
et al. 2003b). As a result, UVR often penetrates deeper in 
the water column, and the carbon subsidy offered by terres-
trially derived DOM is typically lacking or much reduced 
(e.g., Miller et al. 2009; Sadro et al. 2011).

Concomitantly, these extreme and dynamic physi-
cal characteristics of high-elevation ecosystems likely 
exert strong influences on the biological communities 
of mountain lakes. Compared with low-elevation lakes, 
alpine lake ecosystems generally support lower species 
richness (Füreder et al. 2006; Fjellheim et al. 2009) and 
have simplified food webs, often with fewer than three 
trophic levels (Ward et al. 1904; McNaught et al. 1999). 
These patterns could reflect abiotic characteristics such as 
cold temperatures (Dodds 1917; Havens et al. 2015), high 
flushing rates during snowmelt (Obertegger et al. 2007), 
variable patterns of precipitation (Sadro and Melack 2012) 
short ice-free seasons, intense ultraviolet radiation (UVR) 

and potentially limiting nutrient concentrations (Hansson 
et al. 2007; Miller and McKnight 2015). For instance, 
in a survey of lakes in the Pyrenees, macroinvertebrate 
richness decreased by 57% for lakes above 2800 m a.s.l. 
(De Mendoza and Catalan 2010). Similarly, Lyons and 
Vinebrooke (2016) found that zooplankton species rich-
ness in Canadian Rockies decreased from an average of 
10.7 species per lake for lakes at or below 1000 m a.s.l. 
to 1.9 species per lake for lakes at or above 2600 m a.s.l. 
However, decoupling the extent that elevation influences 
lake basin characteristics and biogeochemical processes 
and how these ambient conditions interactively affect the 
biological properties and community structures, is rela-
tively understudied, especially in regards to zooplankton 
(Vadeboncoeur et al. 2002; Cole et al. 2011).

To better understand how the physical and biological 
characteristics that covary with elevation shape alpine lake 
zooplankton communities, we conducted repeat sampling of 
mountain lakes along an elevation gradient (2480–3550 m 
a.s.l.) within Colorado’s Rocky Mountains, USA. Our spe-
cific goal was to evaluate the strength and consistency of 
correlations between lake elevation and variation in features 
such as nutrient concentrations, thermal stratification and 
planktonic communities (across multiple trophic levels). 
Lakes were selected to encompass a range in altitude along-
side a representatively broad gradient in lake size, depth, and 
catchment area. We used a mixed-modeling framework to 
assess how measured characteristics shifted with elevation 
while accounting for lake-level characteristics (e.g., deep-
est depth, surface area, and fish presence) and sources of 
autocorrelation (e.g., catchment identity, lake identity and 
sampling period). As our survey area encompassed 10 dif-
ferent catchments and had a meridional extent of 36 km, we 
also compared the relative influence of geographic distance 
and elevation on the taxonomic composition of zooplank-
ton and phytoplankton among lakes. Building on previous 
research related to landscape position (1) we expected eleva-
tion and the associated, patterns of surrounding vegetation, 
UVR, and ice-free period, to act as a niche filter, leading 
to communities characterized by lower taxonomic rich-
ness and lower population densities. Additionally, (2) we 
hypothesized that the difference in elevation between sites 
would more strongly relate to community similarity com-
pared with straight-line distance or watershed identity alone, 
owing to the large number of physical variables that covary 
with elevation. The current study offers a novel contribution 
by characterizing how a broad range of variables, including 
physical attributes, nutrient profiles, and biological com-
munities, vary both within lakes (e.g., between depths and 
through the open-water season) and along an elevation gra-
dient. While numerous previous investigations have investi-
gated the relationship between elevation and specific lake-
level dimensions, comparatively few have used hierarchical 
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statistical approaches to comprehensively assess shifts in 
lake ecosystems over altitudinal ranges.

Methods

Field sampling

Throughout the ice-free season of 2016, we sampled 19 
lakes from 10 catchments in the Front Range of Colorado’s 
Rocky Mountains (Fig. 1, Table 1). Each lake was surveyed 
approximately three times (every other week) immediately 
following ice-off to reconcile any variation attributed to sea-
sonal extremes. Within this region, treeline typically occurs 
between 3300 and 3450 m a.s.l. (Greenland 1989; Hum-
phries et al. 2008), and we designated lakes as ‘alpine’ if 
they were above treeline with no surrounding trees in the 
catchment and terrestrial vegetation, if present, was com-
prised of short grasses or shrubs (n = 6 lakes, elevation range 

of 3425–3550 m a.s.l.). The remaining lakes (n = 12), all 
of which had tree groves visible from the shoreline, were 
classified as ‘subalpine’ (elevation range of 2980–3345 m 
a.s.l.). Additionally one lake was far enough below treeline 
to be considered montane (2480 m a.s.l.) (Rose et al. 2015). 
On each visit, we used an inflatable raft to census the deep-
est point in the lake (located with a Venterior VT-FF001 
Portable Fish Finder and georeferenced for ease of subse-
quent sampling) and measured temperature, conductivity 
and pH at 1-m depth intervals using a YSI 556 multi-probe 
meter, and photosynthetically active radiation (PAR) using 
a Li-Cor meter with a quantum sensor probe. We recorded 
water clarity to 0.25 m resolution using a Secchi disk (30 cm 
width). We collected water samples using a Van Dorn verti-
cal sampler from both the lake surface (0.5 m) and from the 
hypolimnion (2 m above the deepest depth, for lakes deeper 
than 4 m) and analyzed them for nutrients [total dissolved 
nitrogen (TDN), nitrate  (NO3), total dissolved phosphorus 
(TDP), phosphate  (PO4)], ions, dissolved organic carbon 
(DOC), phytoplankton communities and chlorophyll a (chl-
a) concentrations. Lastly, we collected zooplankton with an 
80 μm Wisconsin net (20 cm opening) from the deepest point 
in the lake. The contents of two vertical tows were combined 
and preserved in 80% ethanol. We established fish presence 
or absence using a combination of techniques, explicitly 
a portable Fish Finder, that were later corroborated with 

Fig. 1  Locations of surveyed lakes compiled from USGS National 
Gap Analysis Program. 2005. Southwest Regional GAP Analysis Pro-
ject—Land Cover Descriptions. RS/GIS Laboratory, College of Natu-
ral Resources, Utah State University

Table 1  Morphometric lake qualities including; elevation in m a.s.l., 
lake surface area (SA) in  m2, maximum depth (MD) in m, and the 
normalized difference vegetation index (NDVI) for the 19 surveyed 
lakes

Site Elevation SA MD NDVI
(m a.s.l) (m2) (m)

Mud 2480 14,803 2.50 0.5489
Lost 2983 24,983 4.00 0.6452
Red Deer 3163 61,923 20.00 0.5723
Red Rock 3200 25,286 1.75 0.6569
Pear Reservoir 3226 61,783 16.00 0.5548
Long 3253 161,340 7.00 0.6653
Yankee Doodle 3267 16,072 7.50 0.5135
Mitchell 3272 53,606 1.75 0.5113
Jasper 3296 24,983 10.00 0.5053
Forest 3308 30,656 3.00 0.5121
Isabelle 3313 125,121 8.00 0.4788
Diamond 3335 67,692 7.00 0.5480
Lake Albion 3345 129,744 15.00 0.4255
GL1 3425 35,444 8.00 0.4133
Lion Lake 2 3432 17,815 9.00 0.3425
Upper Diamond 3460 6410 3.00 0.3975
Blue 3461 91,581 42.00 0.2981
Snowbank 3512 35,060 7.50 0.2829
GL4 3550 45,192 13.00 0.2963
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stocking records from the Colorado Department of Parks 
and Wildlife. Additional information on sampling proce-
dure, water chemistry and chl-a, phytoplankton, zooplankton 
analysis, observations for precipitation and fish occurrence, 
as well as our estimates of lake and basin characteristics are 
included in the supplementary information (SI).

Water chemistry and chlorophyll analysis

From each water sample, we filtered subsamples for nutri-
ent analysis (100 mL), DOC (125 mL) and chl-a (500 mL) 
through pre-rinsed Millipore 47 mm GF/F filters (0.7 μm 
pore size) into high density polyethylene (HDPE) (nutri-
ents) or acid-washed, pre-combusted amber glass bottles 
(DOC) (see SI). We calculated the fluorescence index (FI) 
to determine the molecular character of a sample’s DOM to 
estimate its source as either derived from terrestrial sources 
(degraded plant and soil organic matter; lower FI values) or 
microbial sources (extracellular release and leachate from 
bacteria and algae; higher FI values) (SI; McKnight et al. 
2001; Hansen et al. 2016). This value ranges from 1.2 to 1.8 
in natural waters (Helms et al. 2008; Fleck et al. 2014). The 
Arikaree Environmental Laboratory performed chemistry 
analyses in accordance with standard methods for nutrients 
and DOC concentrations and certain ions (SI).

Zooplankton and phytoplankton identification 
and quantification

We examined zooplankton samples from each lake-visit 
using an Olympus SZX10 stereo dissection microscope. We 
identified all zooplankton to the species-level for large-bod-
ied cladocerans and to the genus level for copepods, ostra-
cods, rotifers, mites, and aquatic insects, using taxonomic 
keys (Weglenska 1976; McCauley 1984; Dodson 1989; 
Haney 2013). Zooplankton taxonomic richness for each 
visit was estimated as the total number of morphometrically 
distinct taxa per sample. For Daphnia spp., we classified 
adults based on development of the brood chamber, which 
is undeveloped in neonates (Ebert 2005), while copepods 
adults were differentiated from nauplii based on develop-
mental stage (Haney 2013). We estimated zooplankton den-
sity  (L−1) by counting the number of individuals within a 
sample (summed across all life stages for cladocerans and 
copepods) and dividing by the lake water volume (L) sam-
pled across the two vertical tows (see SI). Smaller taxa that 
were not quantified reliably, such as rotifers, or relatively 
rare groups, such as mites and aquatic insects, were excluded 
from density estimates. We estimated average zooplankton 
size (mm) by measuring the length of the carapace or chitin-
ous body structure of the first 50 adult cladocerans and adult 
copepods of any species of a given sample and weighted 
these values by their densities (see SI). While collecting 

size measurements on this subset of adult zooplankton, we 
simultaneously quantified prevalence of gravid zooplankton 
among cladocerans and copepods based on the frequency of 
eggs and/or ephippia among adults in a given sample (also 
weighted by their relative sample densities).

To assess phytoplankton taxonomic diversity and over-
all abundance, we used a Benchtop B3 Series  FlowCAM® 
(Fluid Imaging Technologies)—an automated system for 
imaging particles within a fluid—and the associated soft-
ware (VisualSpreadsheet) to image algal cells for community 
diversity and obtain estimates of cell density. The FlowCAM 
was outfitted with a 10 × objective and 100 μm × 2 mm Flow 
Cells with silicon tubing (FlowCAM; Poulton and Martin 
2010; Álvarez et al. 2014; Camoying and Yñiguez 2016). 
We analyzed two replicates of concentrated 5 mL sample 
for a given lake-date-depth by manually sorting FlowCAM’s 
output images into morphometrically unique groups with 
the help of taxonomic guides (Smith 1933; Prescott 1964; 
Baker 2012). We algal cells for each run (Spaulding et al. 
2012) and calculated cell density  (L−1), then averaged the 
densities between the duplicate runs of each sample (SI). 
Although these approaches were applied consistently across 
all collected samples, the capacity of the FlowCAM to taxo-
nomically identify all groups of encountered phytoplankton 
is constrained by the range in morphological characteristics 
within a species for some algal groups. As such, we treat 
these as taxonomic units rather than as a finely resolved esti-
mate of species richness.

Estimates of lake and basin characteristics

We estimated lake stratification by examining the change 
in water density (as a function of temperature) between 
the surface and hypolimnion ( Δ � kg m−3) using the Thies-
sen–Scheel–Diesselhorst Equation (SI; McCutcheon et al. 
1993). For estimates of water clarity, we calculated the 
diffuse attenuation of PAR  (KPAR reported in  m−1) (SI; 
Buiteveld 1995; Markager and Vincent 2000). We measured 
lake circumference and surface area using the ‘path’ function 
in Google Earth Pro (09/07/2016 map). Lastly, to quantify 
the potential inputs of the surrounding terrestrial vegetation 
into each lake and reinforce our estimates of treeline, we cal-
culated the normalized difference vegetation index (NDVI) 
using the Landsat 8, Tier-1, surface-reflectance product, pro-
vided by the United States Geological Survey (SI).

Statistical analyses

We used generalized linear mixed-effects models 
(GLMMs) to evaluate how the physical and biological 
characteristics of lakes changed along the elevation gra-
dient. These models, which are fit iteratively using maxi-
mum-likelihood based estimation, have distinct advantages 
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in terms of being able to accommodate a range of response 
variable distributions often encountered in ecological data, 
handle unbalanced designs, and include a combination of 
fixed effects and random effects, thereby incorporating 
sources of non-independence (e.g., samples from differ-
ent depths within a lake, repeated visits to the same site 
over time, or lakes positioned within the same catchment) 
(Bolker et al. 2009). More specifically, we used GLMMs 
to model the influence of elevation on response variables 
in two broad categories. (1) Physicochemical characteris-
tics: DOC (mg C  L−1), FI, total dissolved nitrogen (TDN) 
(μmol  L−1), nitrate  (NO3) (μmol  L−1), total dissolved phos-
phorus (TDP) (μmol  L−1), phosphate  (PO4) (μmol  L−1), 
sulfate  (SO4) (μ eq  L−1), specific conductance (μS  cm−1), 
Secchi depth (m),  KPAR  (m−1), water temperature (°C), and 
Δ � . (2) Biological responses: chl-a (μg  L−1), phytoplank-
ton density  (L−1), zooplankton density  (L−1), phytoplank-
ton taxa richness, zooplankton taxa richness, zooplankton 
average size (mm), and zooplankton fecundity. For con-
tinuous response variables, we used linear mixed effects 
models (Gaussian distribution with an identity link) on 
either the raw or  log10-transformed data (with the addition 
of + 1 for any transformed variables that included zeros). 
For discrete counts such as taxonomic richness, we used 
a Poisson distribution with a log-link function. Finally, 
for zooplankton fecundity we used a binomial distribution 
with a logit-link function to model the number of fecund 
versus non-fecund adults (combined using the ‘cbind’ 
function in R). Models were built using the lme4 package 
(Bates et al. 2014) and implemented in R version 3.0.1 (R 
Development Core Team 2018).

In each model, we included fixed effects for elevation and 
lake size [both surface area (SA) and maximum depth (MD)] 
as well as random intercept terms for lake identity and visit 
number (early, middle, late season). To avoid collinearity, 
we evaluated pairwise correlations between predictor varia-
bles and ensured all relationships were low ( � ≤ |0.60) before 
including predictor variables into models. Depending on the 
response, we also included fixed factors for sample loca-
tion (epilimnion = 1, hypolimnion = 0, for all analyses based 
off of collected water samples) and fish presence (yes = 1, 
no = 0). In our initial models, we tested whether there were 
significant, two-way interactions between elevation and each 
of the following: maximum depth, sample location, and fish 
presence. We did not include all possible interactions both 
because of a lack of a priori hypotheses and a desire to avoid 
overfitting; non-significant interaction terms were removed 
and models re-run to improve coefficient estimates.

For all models, we checked for variance inflation using 
VIF (implemented in the car package) and estimated the 
significance of individual terms using likelihood ratio tests 
(implemented in the lmerTest package) (Fox and Weisberg 
2011; Kuznetsova et al. 2017). Approximate  R2 values for 

the final, reduced models were obtained using the function 
rsquaredglmm (Barton and Barton 2015).

Community composition

To evaluate how geographic and elevational distance 
influenced variation in lake community composition for 
planktonic communities for a given lake, we used Mantel 
tests to calculate the correlation between each lake-pairs’ 
community dissimilarity and either the Euclidean distance 
between those lakes (UTM straight-line distance) or their 
elevational distance (i.e., that raw difference in elevation 
between the lakes) (Legendre et al. 2015). We calculated 
dissimilarity metrics for a subset of 15 lakes with complete 
richness counts in the vegdist{vegan} package (Oksanen 
et al. 2013) based on the occurrence of 113 different mor-
phometrically distinct groups for both phytoplankton and 
zooplankton. Finally, we calculated gamma diversity (total 
number of distinct groups for all lakes found during the 
entire sampling period) and beta diversity (ratio between 
gamma (regional) and alpha (local, the amount of distinct 
groups for a single lake found during the entire sampling 
period) diversities for lakes above and below treeline 
(Baselga and Orme 2012; Baselga 2013).

Results

Lake characteristics

Sampled lakes ranged in elevation from 2480 to 3550 m 
a.s.l. (1 SD = 32.84 m a.s.l.), in surface area from 4366 to 
161,340 m2 (mean ± 1 SD: 56,017 ± 5811 m2) and deepest 
depth from 1.5 m to 42 m (mean ± 1 SD: 10.81 ± 8.97 m) 
(see Table 1 for a summary lake morphometric characteris-
tics). Our estimates of NDVI around the lakes (range: 0.28 
to 0.67) correlated strongly with elevation ( � = − 0.899, 
P < 0.001), with lakes below treeline (3345 m) typically 
having NDVI scores of 0.42 or greater. As expected, 
lakes with NDVI scores below 0.42 (all above treeline) 
were associated with low DOC concentrations that aver-
aged < 1.2 mg C  L−1 (Table 2, see SI). Overall, 14 of the 
19 lakes supported fish, including Oncorhynchus clarkii 
stomias (greenback cutthroat trout), Oncorhynchus mykiss 
(rainbow trout), Salmo trutta (brown trout) and tiger trout 
(sterile hybrid of brook and brown, Salmo trutta × Salve-
linus fontinalis). During the 12 week-long survey period 
we observed little precipitation prior to each sampling visit 
and all lakes slightly increased in thermal stratification 
from the first to thirds visits (βvisit: 0.014 ± 0.007, P = 0.05, 
 R2c = 0.44).
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Influence of elevation on physicochemical responses

Increases in lake elevation were associated with weaker strat-
ification (βelevation: − 0.063 ± 0.016, P = 0.0013,  R2c = 0.60), 
colder water temperatures (βelevation: − 1.09 ± 0.40, P = 0.02, 
 R2c = 0.73) and lower specific conductance (βelevation: 
− 0.145 ± 0.03, P = 0.003,  R2c = 0.87). Concentrations of 
nutrients and DOC were generally dilute and (with the excep-
tion of  NO3) tended to decrease with elevation while water 
clarity increased (Table 3). Thus, higher elevation lakes 
had lower concentrations of TDN (βelevation: − 3.55 ± 1.14, 
P = 0.009,  R2c = 0.68) and  PO4 (βelevation: − 0.014 ± 0.004, 
P = 0.002,  R2c = 0.14) and DOC (βelevation: − 0.16 ± 0.03, 
P = 0.003,  R2c = 0.97). Concomitantly with observed pat-
terns for DOC, Secchi depth increased with elevation 
(βelevation: 0.07 ± 0.04, p = 0.067,  R2c = 0.73) while capacity 
to attenuate PAR  (KPAR) decreased (βelevation: − 0.06 ± 0.01, 
P = 0.001,  R2c = 0.36). In contrast, concentrations of  NO3 
were greater in higher elevation lakes (βelevation: 0.20 ± 0.05 
P = 0.002,  R2c = 0.81). Variation in TDP,  SO4, and pH were 
not significantly associated with elevation (Fig. 2, Table 3), 
and interactions between elevation and other predictors were 
generally non-significant (and removed).

Among a subset of 16 lakes for which we estimated FI, 
values averaged 1.35, indicative of DOM predominantly 
derived from plant and soil sources. FI values ranged from 
1.30 with some higher values up to 1.49 (standard devia-
tion of 0.041) indicating potential contribution of micro-
bially derived DOM (Table 2). Moreover, we found that 
FI was negatively associated with lake surface area (βSA: 
− 0.002 ± 0.001, P = 0.007) and positively associated with 
both lake maximum depth (βMD: 0.003 ± 0.001, P = 0.012) 
and sample depth (βEPI: − 0.005 ± 0.001, P = 0.034, 
 R2c = 0.27), but unrelated to elevation (Fig. 2; Table 3).

Table 3  Model-averaged scaled elevation coefficients, unconditional 
standard errors, significance, the conditional coefficient of determi-
nation for Generalized mixed-effect models, and number of observa-
tions included in each model for both physiochemical characteristics: 
TDN, TDP,  NO3,  PO4 in µmol  L−1;  SO4 in µeq  L−1, DOC in mg C 
 L−1, FI, water temperature in °C, specific conductance (Sp.C.) in µS 
 cm−1, pH, Secchi depth in m,  KPAR in PAR  m−1, ∆ ρ in kg m−3, as 
well as biological responses: zooplankton (zoo.) and phytoplankton 
(phyto.) density  L−1, zoo. and phyto. richness, zoo. average size in 
mm, zoo. fecundity and chlorophyll-a (chl-a) in µg  L−1

Response βelevation SD error Significance R2c n

Physiochemical characteristics
log10(NO3 +1) 0.204 0.052 0.0020 0.811 115
PO4 − 0.014 0.004 0.0023 0.142 125
∆ ρ − 0.018 0.004 0.0003 0.647 55
log10(KPAR) − 0.059 0.014 0.0001 0.362 52
log10(Sp.C) − 0.145 0.030 0.0003 0.866 111
log10(DOC +1) − 0.160 0.033 0.0003 0.968 125
Water temperature − 1.091 0.400 0.0168 0.725 111
TDN − 3.551 1.143 0.0090 0.683 125
Secchi depth 0.072 0.036 0.0672 0.725 55
log10(TDP +1) 0.023 0.018 0.2181 0.853 115
FI − 0.005 0.004 0.1789 0.269 83
pH − 0.022 0.065 0.7470 0.430 109
log10(SO4) − 0.054 0.087 0.5440 0.987 125
Biological responses
log10(zoo. density 

+ 1)
− 0.269 0.088 0.0136 0.710 55

Zoo. size 0.108 0.044 0.0324 0.866 47
log10(phyto. density 

+ 1)
− 0.142 0.071 0.0690 0.502 102

Phyto. richness − 0.033 0.032 0.3060 0.078 38
Zoo. richness − 0.087 0.088 0.3231 0.391 38
Zoo. fecundity 0.077 0.472 0.8700 0.562 55
log10(chl-a + 1) − 0.006 0.036 0.8677 0.257 109

Fig. 2  Beta coefficients of phys-
icochemical responses based 
on individual GLMMS for 
transformed TDP,  NO3 and  PO4 
in μmol  L−1; transformed  SO4 
in μeq  L−1, transformed DOC in 
mg C  L−1, FI, specific conduct-
ance (Sp.C.) in μs cm−1, pH, 
secchi depth in m, transformed 
PAR attenuation (KPAR)  m−1, 
thermal stratification (Δ ρ) in 
kg m−3 and elevation (scaled). 
Point shape corresponds to 
a significant relationship 
values for each physiochemi-
cal response and horizontal 
bars represent the standard 
error. Temperature and TDN 
were excluded as their range 
was much larger than the other 
response variables
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Influence of elevation on biological responses

Cumulatively, we found 74, 33, and four morphometrically 
unique groups of phytoplankton, zooplankton, and other 
arthropods. Within the zooplankton taxa we found 11 clad-
ocerans, three copepods and 19 rotifers. With respect to phy-
toplankton at the phylum level we found 23 Bacillariophyta, 
nine Charophyta, 17 Chlorophyta, four Cryptophyta, four 
Cyanophyta, two Euglenozoa, three Miozoa, eight Ochro-
phyta and three unidentifiable unique groups. We also found 
one protozoan, Ciliophora, in our phytoplankton samples.

Chl-a concentrations exhibited a large range with values 
as low as 0.4 μg  L−1 in Upper Diamond Lake to values as 
high as 22 μg  L−1 in Lake Albion (Table 2). This broad 
range of concentrations was observed in lakes both above 
and below treeline and for all NDVI values for the surround-
ing watershed. Overall, chl-a concentrations were greater 
in hypolimnetic samples (βEPI: − 0.10 ± 0.05, P = 0.039, 
 R2c = 0.37), regardless of elevation or other lake charac-
teristics. In contrast, phytoplankton density was lower in 
higher elevation lakes (βelevation: − 0.15 ± 0.07, P = 0.058), 
but also higher in hypolimnetic samples (βEPI: -0.28 ± 0.07, 
P < 0.001,  R2c = 0.49). Additionally, we observed no sig-
nificant increase or decrease in either chl-a concentrations 
or phytoplankton density with sample date. Elevational 
increases were associated with decreases in zooplankton 
density (βelevation: − 0.26 ± 0.09, P = 0.013,  R2c = 0.69) and 
increases in average zooplankton size (βelevation: 0.11 ± 0.04, 
P = 0.032,  R2c = 0.87). Fish presence was also associated 
negatively with zooplankton size (βfish: − 0.62 ± 0.10, 
P < 0.001,  R2c = 0.87). We also observed a slight increase 
for zooplankton density from the first to third visits (βvisit: 
0.085 ± 0.04, P = 0.040,  R2c = 0.71). There was no relation-
ship between elevation and either phytoplankton or zoo-
plankton taxonomic richness or zooplankton fecundity, 
although zooplankton taxonomic richness and zooplankton 
fecundity both were significantly associated with lake sur-
face area (richness: βSA:0.18 ± 0.09, P = 0.048,  R2c = 0.38; 
fecundity: βSA:− 0.44 ± 0.22, P = 0.043,  R2c = 0.55) (Fig. 3, 
see Table  3 for physicochemical and biological model 
responses to elevation).

Spatial variation in lake community composition

Using data on the combined zooplankton and phytoplankton 
taxonomic composition of each lake, we found a positive 
correlation between community dissimilarity and elevational 
distance (r = 0.35, P = 0.02), but no significant association 
between straight-line distance and community dissimilarly 
(r = 0.15, P = 0.12, Fig. 4). For instance, average community 
dissimilarity changed by 18% for every 500 m of elevation 
distance, while only changing by 4% for 500 m in UTM 
distance. Overall, lakes above treeline supported fewer total 

planktonic taxa (gamma diversity = 70) compared with those 
below treeline (gamma diversity = 109), and beta diversity 
(for aggregated planktonic taxa) was significantly higher for 
lakes below treeline (F(1,12) = 5.82, P = 0.033). In particu-
lar, lakes below treeline tended to have zooplankton popula-
tions dominated by cyclopoid copepods and greater densities 
of chydoridae (small cladocerans) as well as high densities 
of phytoplankton groups such as bacillariophytes, chryso-
phytes, cyanophytes, and other microeukaryotes eugle-
nophytes and ciliates. In contrast, alpine lakes contained 
mostly zooplankton and phytoplankton groups dominated 
by calanoid copepods and chlorophytes.

Discussion

While low-elevation lakes have a long history of limnologi-
cal study and characterization, considerably less is known 
about the ecology of alpine aquatic systems. Rapid yet con-
tinuous variation in lake characteristics with elevation offer 
an important opportunity to investigate the role of physi-
cal heterogeneity on aquatic chemistry and biology. Our 
results supported past patterns of elevation driven catch-
ment characteristics (Rose et al. 2009; Moser et al. 2019), 
where increases in elevation were associated with greater 
water clarity and higher nitrate concentrations with signifi-
cant decreases in stratification strength, dissolved organic 
carbon (DOC), water temperatures, and conductivity. The 
lower temperatures and shorter growing seasons of high-
elevation lakes can limit both ambient water temperatures 
as well as strengthen the contrast between surface and 
hypolimnetic temperatures (i.e., stratification strength) 
(Livingstone 1997; Weyhenmeyer et  al. 2004; Kraemer 
et al. 2017). Lakes above treeline, which in our study were 
typically surrounded by talus slopes, also had less influx of 
terrestrially derived sources of dissolved organic material 
(DOM), helping to account for the progressive declines in 
DOC concentrations with elevation (Rose et al. 2009; Sadro 
et al. 2012). The uppermost lakes in mountain catchments 
also receive the majority of precipitation and are closely 
linked to cryospheric features like snow fields and perma-
frost. As a result, these lakes collect the greatest amount of 
nitrate  (NO3) from both atmospheric deposition associated 
with human activities (Williams et al. 1997; Baron et al. 
2009; Saros et al. 2010). These findings are broadly consist-
ent with patterns reported for other montane and alpine lake 
ecosystems, including those from European mountain ranges 
(Reche et al. 2005; Camarero et al. 2009), the Sierra Nevada 
Mountains of California (Sadro et al. 2012), the Beartooth 
Mountains of Wyoming and Montana (Williamson et al. 
2010; Rose et al. 2015), and the Canadian Rockies (Pinel-
Alloul et al. 2013).
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Analytically, the use of a mixed-modeling approach 
allowed us to statistically incorporate the inherent hetero-
geneity in lake ecosystems by accounting for variation in 

sample depth, sampling date, and morphometric character-
istics, thereby focusing our analyses on how a broad range 
of responses covaried with elevation. Superimposed upon 

a d

b

c

e

f

Fig. 3  Correlations of elevation with a transformed chlorophyll-
a (chl-a) concentrations in μg  L−1, b transformed phytoplankton 
(phyto.) density in  L−1, c transformed zooplankton (zoo.) density in 
 L−1, d NDVI e average individual zooplankton size in mm and the f 
proportion of gravid zooplankton. Point colors correspond to sample 

location when relevant for the response. Point shape corresponds to 
whether the lake was contained by fish. Plots with regressions lines 
and 95% confidence bands indicate statistically significant linear 
regressions
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the large-scale influences of elevation are the more local 
effects associated with the catchment and lake morphometric 
factors, which can mediate the duration of ice-cover and the 
dynamics of snowmelt (Sadro et al. 2019). In regards to our 
biological sampling of multiple planktonic communities this 
approach revealed clear patterns with respect to elevation 
and community organization, and density for which there are 
fewer previous studies on mountain lakes (Stoddard 1987; 
Catalan et al. 2009; Skála 2015; Lyons and Vinebrooke 
2016). We found beta diversity (aggregated across all plank-
tonic groups measured) was higher in lakes below treeline. 
Similarly, the estimated average density (for all samples col-
lected) of both phytoplankton and zooplankton increased by 
60% and 77%, respectively for lakes below treeline. Lower 
densities are consistent with the potential influences of 
reduced total nutrient availability, colder temperatures, and 
shorter water residence times associated with alpine aquatic 
ecosystems (Williamson et al. 2010; Kissman et al. 2017). 
Average zooplankton body size also increased by 18% for 
cladocerans and 41% for copepods for lakes above treeline, 
even while controlling for the established negative influence 
of introduced fish (Loewen and Vinebrooke 2016). This 
pattern was driven mainly by the presence of large-bodied 

cladocerans (e.g., Daphnia pulicaria) and calanoid copepods 
(e.g., Hesperodiaptomus shoshone) in lakes above treeline 
and could also reflect the tendency of cold-water systems to 
favor slower-growing, larger-sized, and longer-lived organ-
isms (Dodson 1974; Angilletta et al. 2004). We caution, 
however, that the uneven distribution of fish—which were 
less common among the highest lakes—limit opportunities 
for strong inference.

Elevation was more strongly correlated with planktonic 
community similarity among lakes relative to measures such 
as geographic distance. Thus, lakes at similar elevations—
even when relatively far apart—shared more similar spe-
cies of phytoplankton and zooplankton than lakes within 
the same catchments but at different elevations. Planktonic 
communities are often considered to be broadly distributed 
across regional scales and potentially greater scales (Finlay 
2002; Filker et al. 2016); but recent efforts to characterize 
micro-biodiversity have shown that planktonic species often 
cluster in certain environments regardless of dispersal poten-
tial (Martiny et al. 2006; Stomp et al. 2011). Specifically, 
in 2016 Flicker et al. looked at community composition of 
small-sized eukaryotes across three separate continents and 
found clear dissimilarity between communities separated by 
large scales (> 10,000 km), a high degree of similarity due to 
regional scale environmental factors in high-mountain lakes. 
Contextualizing this trend to zooplankton communities; we 
found that taxa such as the calanoid Diaptomus (subgenus: 
Hesperodiaptomus) were only observed in alpine lakes, 
and past studies have suggested these copepods are high-
elevation specialists (Loewen et al. 2019). In part, this may 
be due to their carotenoid pigmentation and formation of 
mycosporine‐like amino acids (MAAs) which help protect 
them against harmful UVR (Stoddard 1987; Moeller et al. 
2005; Larson et al. 2008; Nevalainen et al. 2015). Similarly, 
alpine cladocerans tended to exhibit a greater frequency of 
melanization, which can help protect against UVR but is 
energetically costly, creating a trade-off between photopro-
tection and the costs of melanin synthesis (Hessen 1996, 
2002; Hessen et al. 1999). This trade-off could help explain 
why cladocerans tended to have lower abundances than 
copepods within high-elevation systems (Sommaruga 2001). 
Overall, these findings contribute to a growing effort to char-
acterize mountain lake community composition at various 
trophic scales (Oikonomou et al. 2015; Filker et al. 2016; 
Loewen et al. 2019) and provide evidence that elevation and 
the physical changes associated with it function as a niche 
filter, for which the biological communities are more closely 
associated with their elevational position rather than their 
geographic position or connectivity with neighboring lakes.

While our results showed distinctive patterns for how 
biological communities shifted along elevation, they were 
more ambiguous with respect to chlorophyll-a concentra-
tions and allochthony. Interestingly, we found no relationship 

Fig. 4  Plot A and B represent community dissimilarity for three 
visits for a subset of 15 lakes with complete richness observations. 
Dissimilarly was calculated using Jaccard’s dissimilarity index for 
observations of occurrence of 111 different taxonomic groups rang-
ing from species to class for both phytoplankton and zooplankton 
and ranged from 0.620 to 0.310. a UTM distance ranged from 427.57 
to 36,000.77  m and was not correlated with community dissimilar-
ity (r = 0.101, p = 218). b Elevation distance ranged from 1 to 530 m 
and was positively correlated community dissimilarity (r = 0.347, 
p = 0.02)
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between elevation and chlorophyll a (chl-a) values, despite 
other marginal evidence of increased water clarity and lower 
standing stocks of phytoplankton. Several past studies in 
Green Lakes Valley (one of the catchments surveyed here), 
have shown for multiple summer seasons that FI was great-
est in the alpine lakes above treeline, reflecting autochtho-
nous DOM production, and decreased in sub-alpine lakes 
reflecting greater inputs of DOM derived from plants and 
soils (Hood et al. 2003a; Miller et al. 2009). Our fluores-
cence index (FI) data (which did not include Green Lakes 
Valley lakes) averaged around 1.4, a value slightly higher 
than 1.3 which is indicative of allochthonous DOM (Cory 
and McKnight 2005). Notably, higher FI values occurred in 
hypolimnetic waters, where higher chl-a concentrations also 
occurred; but these patterns were unrelated to elevation. In 
general, we observed little precipitation preceding our sam-
pling visits and lakes tended to become more thermally strat-
ified. The stratification pattern combined with the evidence 
of hypolimnetic chlorophyll-a maximums and autochthonous 
DOM, indicates that ultraviolet radiation (UVR) could be 
potentially restricting primary productivity particularly in 
the high elevation lakes that were strongly stratified (Laurion 
et al. 2000). This inclination could have been better substan-
tiated with additional sampling visits; however, the sudden 
and unpredictable occurrence of ice-cover at our survey sites 
challenged our ability to capture later seasonal variation and 
limits our current scope of inference (Kolesar et al. 2002). 
The complex relationship between elevation and lake-wide 
metabolism make it difficult to disentangle the patterns of 
DOM concentrations from a strictly comparative sampling 
design in which lakes vary in exposure to UVR, precipitation 
and snow melt patterns, basin morphologies, and stratifica-
tion regimes (Miller et al. 2009; Sadro et al. 2011, 2018).

For instance, the influence of treeline, which is often a 
relatively abrupt and non-linear transition between forested 
areas and alpine areas (Humphries et al. 2008), plays a key 
role in the determining the influence of terrestrial vegeta-
tion and organic matter for in-lake processes (Miller and 
McKnight 2015). One of these processes is the photoprotec-
tive role DOC plays in limiting UVR penetration, which for 
lakes above treeline (with less contact with terrestrial carbon 
sources) can be a significant factor in regulating biology 
at multiple trophic levels (Vincent and Roy 1993). Addi-
tionally, landscape factors like position of treeline and the 
associated source of terrestrially derived carbon could have 
widespread cascading effects on nutrient availability and 
ecosystem productivity. For example, researchers observed 
shifts in the bacterial community composition and increased 
the rate of carbon and phosphorus cycling following exper-
imental treatments of allochthonous carbon (Rofner et al. 
2017). Similarly, because mountain lakes have unique bio-
geochemical patterns often dominated by snow deposition 
(Ventura et al. 2000; Kuhn 2001), atmospheric nitrogen 

deposition often leads to greater nitrate concentrations at 
higher rather than lower elevations (i.e., the Landscape 
Continuum Model, Seastedt et al. 2004). The ratio of lake 
productivity to respiration may therefore shift from > 1 (net 
autotrophic) to < 1 (net heterotrophic) as elevation moves 
downward toward treeline. This work emphasizes opportuni-
ties to develop novel predictive frameworks for capturing the 
unique physical and biological characteristics of mountain 
ecosystems.

Although there has been persistent interest in understand-
ing landscape-level controls on lake characteristics (Soranno 
et al. 2017; Hill et al. 2018), this effort has rarely extended 
to dynamics within mountain lakes; either along lake chains, 
elevations, or in regards to their biological communities, 
despite the fact that these ecosystems represent almost a 
quarter of the world’s lakes (Verpoorter et al. 2014). And 
while high-elevation aquatic ecosystems are often relatively 
remote, they are nonetheless vulnerable to contemporary 
threats such as warming (Preston et al. 2016; Sadro et al. 
2019) and nutrient deposition, which have the potential to 
alter fundamental aspects of their ecology. Alpine lakes 
along the Front Range of the Colorado Rocky Mountains, for 
instance, experience high rates of upland inorganic nitrogen 
deposition (both as nitrate and ammonium) from agricultural 
and industrial sources (Bowman et al. 2015). Current and 
future changes in deposition, warming, and treeline move-
ment (Bueno de Mesquita et al. 2018) have the potential 
to threaten the more unique attributes of alpine lakes and 
their ability to play an important role in ecosystem services 
ranging from water provisioning to nutrient cycling (Rhodes 
et al. 2017).
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