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Abstract31

Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is32

well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite33

dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-34

fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes.35

To address these gaps, we characterized aggregation of the fungal pathogen Batrachochytrium dendrobatidis36

(Bd) in amphibian hosts. Utilizing the slope of Taylor’s Power Law, we found Bd intensity distributions37

were more aggregated than macroparasites, conforming closely to lognormal distributions. We observed that38

Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian39

populations, such as epizoological phase—invasion, post-invasion, and enzootic—and intensity-dependent40

disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host41

resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our42

results show that Bd aggregation is highly conserved across disparate systems and is distinct from aggrega-43

tion patterns in macroparasites, and contains signatures of potential biological processes of amphibian-Bd44

systems. Our work lays a foundation to unite host-fungal dynamics under a common theoretical framework45

and inform future modeling approaches that may elucidate host-fungus interactions.46

Introduction47

One of the few general laws of parasitology is that many hosts have few parasites, and few hosts have many48

parasites [1]. Known as ”aggregation”, this pattern has important implications for the dynamics of host-49

parasite systems and our ability to infer the dominant processes operating within them [2; 3; 4]. For example,50

some macroparasites can cause intensity-dependent parasite-induced mortality, and the severity of this pro-51

cess can be reflected in the intensity distribution of parasites across hosts [5; 6]. In wildlife-macroparasite52

systems, such as nematodes, trematodes, and ectoparasitic arthropods, the nature of aggregation has been53

extensively quantified [7; 8]: the distribution of macroparasites among hosts is often well-described by a54

negative binomial distribution, and variance-to-mean relationships are significantly different from Poisson55

expectations. While we have long been able to quantify the intensity of macroparasites (e.g., by counting56

parasites following dissection), we can now also quantify infection intensity of microparasites through the57

broad application of modern molecular techniques. Microparasites are organisms such as bacteria, viruses,58

protozoa, and fungi that have high replication rates within a host and often induce host immune responses [9].59

While studies on microparasites now regularly report quantitative measures of infection (e.g., viral titers or60
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fungal intensity within a host), we have few baseline expectations regarding what the intensity distributions61

of microparasites look like and the mechanisms shaping them.62

Here, we focus on fungal parasites. Fungal parasites are a global threat to wildlife populations [10]: e.g.,63

Batrachochytrium dendrobatidis (Bd), B. salamandrivorans, Ophidiomyces ophiodiicola, and Pseudogymnoas-64

cus destructans have led to dramatic declines and extinctions in hundreds of wildlife species [11; 12; 13; 14].65

Like macroparasites, animals infected with fungal parasites suffer intensity-dependent parasite-induced mor-66

tality [15; 16]. This means that accounting for the distribution of fungal parasite intensity within a population67

is critical for predicting population-level outcomes following fungal invasion [17; 18]. However, despite mod-68

eling work increasingly accounting for fungal infection intensity [17; 19], we still lack a general understanding69

of the quantitative patterns of aggregation in host-fungal parasite systems. Quantifying these patterns is70

important because i) different levels of aggregation change system dynamics and can significantly affect71

model predictions [20; 21] and ii) patterns in fungal intensity distributions may reflect dominant mechanistic72

processes structuring the host-parasite system [22]. The latter is particularly important for parasites like73

Bd where cryptic disease-induced mortality may drive ongoing declines [23], but detecting these declines is74

difficult. Aggregation patterns in fungal intensity distributions could potentially provide a mechanism to75

detect signatures of disease-induced mortality, as has been done in host-macroparasite systems [6].76

Describing the distribution of fungal parasite intensity requires a different statistical and conceptual77

treatment than traditional macroparasite models. Macroparasite infection intensity is typically described by78

parasite counts—in other words, how many parasites are found within a host, ranging from zero to some79

large number. As such, macroparasite counts are discrete and can be described by distributions such a80

Poisson or negative binomial distribution [8]. In contrast, fungal parasite intensity is typically quantified81

by molecular approaches such as quantitative PCR [qPCR; 24]. The qPCR technique measures the amount82

of a specific DNA sequence in a sample by amplifying the sequence while simultaneously detecting and83

quantifying the fluorescence of the product in real-time as the reaction proceeds. Because the amount of84

fluorescence generated is directly proportional to the amount of starting DNA, qPCR values correlate with85

fungal intensity. The resulting measurement of ”infection intensity” is a continuous variable ranging from86

zero to some arbitrarily large number.87

Using infection intensity as a continuous quantity computed by qPCR presents two methodological chal-88

lenges. First, qPCR measures of infection intensity are subject to substantial measurement error [25; 26].89

Measurement error can come when the sample of infection intensity is collected (e.g., the skin of amphibians90

infected with Bd are swabbed) or when the sample is processed with qPCR [26]. For example, the qPCR91

process often fails to detect very low quantities of genetic material and can miss low levels of infection [27; 26].92

Generally, increasing the noise in a sample due to measurement error might decrease our ability to detect93
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biological signals. Thus, we might expect measurement error to play a more significant role in affecting the94

patterns of aggregation in fungal intensity distributions than typical macroparasite distributions, obscuring95

mechanistic signatures of host-parasite processes on fungal intensity distributions.96

Second, discrete distributions that are typically used to describe macroparasite counts are not technically97

applicable to continuous molecular infection intensity data. In amphibian-Bd systems, there has been some98

previous discussion on reasonable assumptions for the distribution of infection intensity [particularly with99

regards to the random component of generalized linear models; 25] and how approximating a continuous100

random variable with a discrete random variable [e.g., using a negative binomial distribution to describe101

infection intensity 25] can affect the conclusions one draws. However, there has been no systematic exami-102

nation of the distribution that most consistently describes observed amphibian-Bd distributions or parasitic103

fungal distributions more broadly. As we continue to develop models for predicting the dynamics of fungal104

outbreaks, a systematic quantification of the nature of fungal intensity distributions can help direct these105

modeling efforts, as it has done in traditional macroparasite systems [7; 8].106

In addition to these statistical differences, there are key biological differences between fungal parasites107

and macroparasites that may affect observed patterns of aggregation. Fungal parasites grow within/on a host108

leading to increases in infection intensity. Typically (though not always), macroparasite infections increase109

in intensity through ”immigration processes” rather than ”birth processes”—hosts repeatedly encounter110

parasites in the environment which leads to an accumulation of parasites. Birth processes such as the within-111

host reproduction of parasites are known to increase the aggregation of macroparasite distributions [28; 29].112

An initial expectation might be that fungal distributions are typically more aggregated than macroparasite113

distributions. However, this prediction is complicated by the speed and mode of transmission of fungal114

parasites, which can be faster than many macroparasites. For example, Bd can complete its life cycle in four115

to ten days, whereas a trematode parasite with multiple intermediate hosts might take months to complete116

its life cycle [30; 31]. This could lead to faster spread, more homogenization, and lower levels of aggregation117

for fungal parasites like Bd compared to macroparasites.118

Here, we utilized 56,912 skin swab samples from 93 amphibian species to ask two main questions: (1)119

What is the general structure of these fungal intensity distributions, and (2) do they reflect biological pro-120

cesses? First, we examined whether we see aggregation in host-Bd systems, how these patterns compare121

to those of macroparasites, and what statistical distribution best describes these fungal intensity distribu-122

tions. We hypothesized that i) fungal distributions will be aggregated, ii) they will show higher levels of123

aggregation than most macroparasite distributions, and iii) they will generally conform to a lognormal dis-124

tribution. Our prediction of a lognormal distribution stems from theoretical work showing that lognormal125

distributions robustly describe population densities subject to demographic and environmental stochastic-126
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ity, as well as measurement error [32]. To address our second question, we compared aggregation patterns127

among amphibian-Bd systems in different epizoological states (e.g., invasion, post-invasion, and enzootic)128

to see if they reflect underlying biological processes. To complement data analysis, we employed an integral129

projection model to gain insight into the possible mechanisms driving the observed aggregation patterns.130

Given intensity-dependent disease dynamics in amphibian-Bd systems, we expected reduced aggregation131

in populations experiencing significant disease-induced mortality, such as those in post-invasion, epizootic132

states. Similarly, we expected disease-induced mortality to be a critical model parameter in reproducing133

these patterns.134

Materials and Methods135

Amphibian-Bd infection intensity data136

We analyzed four datasets of Bd infection intensities (henceforth ”intensity” or ”load”) obtained from am-137

phibian skin swabs collected in the field. Bd loads were obtained through DNA extraction and qPCR, which138

detects the number of genomic equivalents or ITS1 copy number of Bd on amphibian skin. These procedures139

were standardized within but not across datasets. As such, it is important to note that our analysis does140

not aim to compare absolute values of fungal intensities across datasets or even among disparate sites within141

datasets. Variations in techniques between labs and calculations of Bd intensity (e.g. multiplying by different142

scaling factors) as well as differences in ITS copy numbers for different strains of Bd in different sites [e.g.,143

33] could make comparisons challenging. Instead, we use measures of aggregation (described below) that144

are scale invariant, thus providing robust measures to analyze aggregation patterns. However, if individuals145

of the same species of amphibian in the same site in the same season are co-infected with different strains146

of Bd that vary in their ITS1 copy number [e.g., 34], then the aggregation metrics we estimate could suffer147

bias.148

The first dataset we included was from Brazil (henceforth the Brazil dataset) which contained 4,365149

swabs from 41 amphibian species collected primarily within the state of São Paulo (see Fig. S1 for general150

locations of research sites for all datasets). Our second dataset comes from the East Bay region of California151

(henceforth the East Bay dataset) and contains 10,490 swabs from 11 host species. The third dataset152

contains 12,457 Bd swabs from amphibians collected from 2016-2019 on 43 amphibian species across 31153

research sites in four states—Louisiana, Pennsylvania, Tennessee, and Vermont. Although collected across a154

wide geographical range, swabs from this study were all processed at a centralized location using a consistent155

methodology. Therefore, we will refer to this dataset broadly as the Eastern US dataset. Our final dataset is156
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from the Sierra Nevada mountains of California (henceforth the Sierra dataset) and contains 29,600 samples157

collected from mountain yellow-legged frogs (MYL frogs; composed of sister species Rana muscosa and Rana158

sierrae) at high elevation lakes, ponds, and wetlands.159

Samples within each dataset were grouped based on host species, life stage (larva, subadult, or adult),160

research site, season (Brazil: Wet or Dry; East Bay and Sierra: Summer; Eastern US: winter, spring, summer,161

or fall), and year (see Table S1 for more detailed composition of each dataset). Moving forward, we will refer162

to a particular combination of species, life stage, research site, season, and year as a ”group”. Examining163

specific ”groups” allows us to quantify the patterns of Bd aggregation in a biologically relevant temporal164

period at a particular location. In total, the Brazil dataset had 109 candidate groups for analysis, East Bay165

had 714, Eastern US had 391, and the Sierra had 647.166

Question 1a: Are fungal intensity distributions aggregated and how do these167

compare with aggregation patterns in macroparasite systems?168

To address this question, we analyzed aggregation in the fungal intensity distributions using Taylor’s Power169

Law (TPL) which relates the log mean and log variance in fungal intensity, calculated for each group. This170

metric allows for direct comparison to the macroparasite literature. Specifically, we focused on the slope171

of TPL as a metric of aggregation, where a greater slope indicates greater aggregation [28; 3]. Across all172

datasets, we only included groups with at least three infected individuals, yielding 961 groups across all four173

datasets (Table S1).174

We first fit a linear regression to the log mean vs. log variance relationship for each of the four datasets and175

calculated the slope. We compared the slopes to the empirical relationship previously seen in macroparasite176

populations (slope=1.55, 95% Confidence Interval: [1.48,1.62]) [7], as well as a Poisson distribution (mean-177

variance slope equal to 1), which is generally considered the null distribution in many host-macroparasite178

studies [2]. However, the continuous nature of Bd load data also suggests considering the alternative null179

with a TPL slope of 2. A baseline of TPL slope of 2 has been used to describe the aggregation of free-living180

organisms in space and time [35; 36]. Moreover, given our expectation of a lognormal distribution of Bd181

intensity across hosts, we would expect a TPL slope of 2 based on the simple definitions of the mean and182

variance for a lognormal distribution. Note that for this analysis, the log mean and the log variance for each183

group was computed using both infected and uninfected individuals, consistent with macroparasite studies.184

Second, to explore variability in the slope of TPL across the 36 species with sufficient sampling, we185

ran a linear mixed effect model (i.e., Gaussian error) with random effects of amphibian species and sub-186

region on the intercept and slope. Specifically, the model we fit was log(variance) ∼ log(mean) + (1 +187
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log(mean)|subregion)+ (1+ log(mean)|species), where subregion was a factor with the following levels: East188

Bay, Sierra, Pennsylvania, Tennessee, Vermont, Louisiana, and Brazil. We then examined the species-specific189

TPL slopes and compared them to the macroparasite slope from Shaw and Dobson (1995) [7].190

Question 1b: What distribution best describes fungal intensity distributions?191

To characterize the shape of fungal intensity distributions conditional on infection, we considered continuous192

distributions of nonnegative real numbers: gamma, exponential, lognormal, and Weibull. We did not consider193

Poisson and negative binomial distributions because fungal intensity, as assessed using qPCR, is a continuous194

measure. Although qPCR results can be transformed into integer values and analyzed using standard195

generalized linear models [37], we opted to keep the data on the continuous scale, consistent with previous196

models [19]. Each of the continuous distributions can capture a strong right skew in intensity distributions,197

consistent with canonical patterns in host-macroparasite systems. The gamma distribution is the continuous198

analog to the negative binomial distribution, a distribution that describes many macroparasite populations199

[8]. Similarly, the exponential is a special case of the gamma distribution that is represented by only one200

parameter and is analogous to the discrete geometric distribution which has been proposed as a potential null201

distribution in host-macroparasite systems [38; 39]. Lognormal distributions are found throughout natural202

systems empirically and theoretically [32] and are representative of nonnegative metrics with relatively low203

means but large variance. Finally, we considered the Weibull distribution which is typically used to model204

”time-to-failure” or survival analyses but has been used to describe macroparasite aggregation data [40].205

For this analysis, we only considered groups with at least 10 infected individuals to ensure we had power206

to distinguish between competing distributions. This resulted in 525 groups. We used the fitdistrplus207

package in R to fit exponential, lognormal, Weibull, and gamma distributions using maximum likelihood208

estimation (MLE) or moment matching estimation, if the MLE model would not converge. We compared209

Akaike information criterion (AIC) values across distributions to find the best predictive model, assuming210

no notable difference in performance when AIC values were within +/- 2.211

Question 2: Do patterns of aggregation in Bd intensity reflect biological pro-212

cesses, such that there are quantifiable differences in aggregation between epi-213

zoological states?214

To address this question, we used a metric that can be applied to a single group (unlike TPL) known215

as Poulin’s Discrepancy Index, or simply Poulin’s D [41; 4]. Poulin’s D is bounded from 0 to 1 and is a216

proportional measure of the difference between an observed distribution and a uniform distribution. A higher217
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value indicates greater discrepancy from a uniform distribution and is suggestive of higher aggregation. The218

equation for Poulin’s D is D = (
∑n

i=1

∑n
j=1 |xi − xj |)/(2n2x̄), where x is the fungal load of host i or j, n219

is the total number of hosts, and x̄ =
∑n

i=1 xi/n [we use the equation given in 42, which is the Gini index].220

We also calculated the coefficient of variation (CV) on the natural scale and other related metrics—log10-221

transformed CV on the natural scale and CV on the log10 scale—which should provide comparable results222

to Poulin’s D [42]. We calculated CV on the log10-transformed data to determine if trends remained similar223

on different scales. When calculating our aggregation metrics, we excluded uninfected individuals to remove224

the effect of prevalence on the observed patterns. We only included groups that had at least two infected225

individuals—the minimum number for a meaningful value of our metrics. We also explored only including226

groups with a minimum of 10 infected individuals, and our results were unchanged.227

For this question, we focused on the Sierra dataset. Of the datasets used in this study, the Sierra dataset228

is unique because for many southern populations in the Sierra Nevada, we know when Bd invaded, when229

epizootics ensued, and when populations declined [43; 15; 44]. Moreover, for more northern populations,230

such as those in Yosemite National Park, we know that populations are past the invasion-epizootic-declining231

phase and are persisting enzootically with Bd [45; 17]. Thus, we have three clearly definable epizoological232

phases for MYL-Bd populations in the Sierra Nevada: 1) invasion stage [when Bd prevalence is less than233

50% in a population; 46] 2) post-invasion phase (consisting of epizootic host declines or recent declines)234

and 3) enzootic phase (Bd invaded before the early 2000’s and amphibian populations are persisting in the235

presence of Bd). Moreover, from targeted field surveys and laboratory experiments, we know that there is236

strong intensity-dependent mortality in MYL frogs [15; 19]. If patterns of Bd aggregation contain information237

about intensity-dependent mortality, we would expect a notable reduction in Bd aggregation for higher mean238

infection intensity in MYL frog populations [3]. In other words, mortality in highly infected individuals would239

effectively reduce the tail of the right-skewed distribution characteristic of aggregated populations, thereby240

decreasing aggregation.241

To explore signatures of epizoological phase on Bd aggregation, we first plotted each metric—Poulin’s D,242

CV, log CV, and CV of log-scale data—against mean log10-transformed Bd intensity and asked whether pop-243

ulations in known epizoological phases clustered in mean intensity-aggregation space (henceforth intensity-244

aggregation space) and whether there were notable reductions in aggregation at high infection intensities245

(note that epizoological phases were determined independently of aggregation or mean infection intensity).246

We used beta regression [4] to test for a quadratic effect of mean infection intensity on aggregation metrics,247

where a strong quadratic effect is indicative of aggregation being reduced at high infection intensity.248

Finally, to better understand how mechanisms such as intensity-dependent mortality and epizoological249

phase could theoretically affect patterns of aggregation in host-fungal systems, we adapted an Integral250
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Projection Model (IPM) that has been previously developed for amphibian-Bd systems [19]. In short,251

IPMs provide an approach for modeling intensity-dependent infection dynamics of host-fungal interactions252

by specifically modeling the entire distribution of fungal intensities within a population (see supplementary253

material for more detail). Hosts are born uninfected, and in the absence of disease, the host population grows254

logistically toward a carrying capacity. In one time step of the model, hosts may become infected by encounter255

with environmental pathogens and gain some initial log number of parasites (infection load). Parasites grow256

within hosts, with some stochasticity, toward a within-host carrying capacity. In each time step, infected257

hosts have a probability of recovery from infection and a probability of survival, both of which decline258

with infection load. Infected hosts shed parasites back into the environment proportional to the number of259

parasites they currently hold. We simulated disease invasion for one year to represent the effects of disease260

spread without host evolution. We then added simulations where we included multiple host genotypes with261

different traits to simulate evolution over 30 years (a relevant timescale for the MYL-Bd system). Specifically,262

we focused on host evolution of resistance that lowers pathogen growth rate, an important mechanism in263

the MYL-Bd system [45; 37]. We performed simulations at parameter values from laboratory experiments264

for the MYL-Bd system (see Table S2 in supplementary material) and then explored how varying certain265

parameters impacted the intensity-aggregation patterns in our simulations. We calculated the same four266

aggregation metrics in our simulations as were calculated from field data to determine intensity-aggregation267

patterns. We did this to investigate the patterns that could emerge in intensity-aggregation space for the268

different metrics and if they are indicative of specific biological mechanisms.269

Results270

Question 1a: Are fungal intensity distributions aggregated and how do these271

compare with aggregation patterns in macroparasite systems?272

Based on TPL, Bd showed a greater degree of aggregation compared to macroparasites (Fig. 1). The slopes273

of TPL across the groups for each dataset ranged between 1.90, 95% CI [1.86-1.94] (Sierra) and 2.06, 95%274

CI [1.99-2.12] (Brazil), which are all significantly higher than the macroparasite slope given by Shaw and275

Dobson (1.55, 95% CI [1.48-1.62])[7] (Fig. 1). Therefore, the variance of Bd infection intensity increases to276

a greater degree with respect to average fungal load than many macroparasites.277

We examined how the slopes of TPL varied among amphibian species and life stages. While we found278

significant variation in the slope of TPL among species (including slope as a random effect among species279

yielded a better predictive model than a model without a species-level random effect of slope: ∆AIC=13.6),280
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Bd was more aggregated on all amphibian species than for many macroparasites (see Fig. S2). We found281

a similar pattern across host life stage, showing slopes greater than that of macroparasites. However, the282

slopes for each life stage were statistically distinct: larval (1.85, 95% CI [1.82-1.89]), subadult (1.93, 95% CI283

[1.91-1.95]), and adult (2.01, 95% CI [1.98-2.04]).284

Question 1b: What distribution best describes fungal intensity distributions?285

Of the distributions that we fit to the Bd-positive data, the lognormal model consistently performed better286

than the others, as determined by comparing AIC scores (Fig. 2). Assuming models perform equally well if287

AIC scores are within 2 units of each other, over half of the groups (57.3%) were well-described by multiple288

distributions. The lognormal performed best or just as well as another model in 76.7% of the groups, the289

Weibull in 58.8%, the gamma in 35.2%, and the exponential in 25.7%. The lognormal model also fit 38.0% of290

groups better (> 2 AIC units) than any of the other models. Whereas, the Weibull, gamma, and exponential291

models performed better than all others in 4.4%, 0.4%, and 0% of the groups, respectively.292

With the lognormal model outperforming the other distributions, we sought to determine if the lognormal293

is objectively a good fit to the data. We used a Shapiro-Wilk’s test of normality on the log-transformed294

data, after adjusting the p-values for multiple tests to account for false discovery rate (using the p.adjust295

function in R with method fdr). For 96.7% of sampled groups, we fail to reject the null hypothesis that the296

data follows a normal distribution (Fig. S3, at an adjusted significance level of α = 0.05). Cognizant that297

failure to reject the null is not proof of the null, we conclude there is not strong evidence that distributions298

deviate from a lognormal distribution.299

Question 2: Do patterns of aggregation in Bd intensity reflect biological pro-300

cesses, such that there are quantifiable differences in aggregation between epi-301

zoological states?302

Empirical results303

To gain mechanistic intuition on the broader results in this section, we first examined seven specific popula-304

tions from the Sierra dataset that 1) were repeatedly surveyed during Bd invasion and declines and 2) had305

sufficient samples of infected adults or subadults at a minimum of three time points to compute Poulin’s306

D (n ≥ 2). Fig. 3A shows the abundance trajectory of adult frogs in these populations through time,307

including the well-known pattern of dramatic population declines following Bd invasion. In Fig. 3B, we plot308

these same populations in intensity-aggregation space and see a consistent counterclockwise pattern emerge.309

Upon invasion, mean infection intensity is low, and aggregation is low. Once the population transitions to310
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the post-invasion phase, mean intensity is high, but aggregation remains relatively low. As the population311

progresses through the epizootic, mean intensity declines and aggregation increases. These patterns suggest312

that there is a signature of epizoological phase on observed patterns of aggregation.313

To examine this pattern more broadly, we plotted 313 Sierra groups in intensity-aggregation space and314

observed a strong clustering of invasion, post-invasion, and enzootic groups (Fig. 4A-D) that was consistent315

with what we saw in our seven focal populations with time series data (Fig. 3B). Namely, the invasion stage316

was characterized by low mean intensity and low aggregation, the post-invasion phase was characterized317

by medium to high intensity and high to low aggregation, and the enzootic phase was characterized by318

intermediate mean intensity and high aggregation.319

A distinct pattern that emerges in Fig. 4A-D is the notable unimodal shape of the data in intensity-320

aggregation space. The downward curvature is consistent with predictions from host-macroparasite theory321

that intensity-dependent mortality should reduce aggregation for high mean intensities as it truncates the322

tail of the Bd intensity distribution resulting in lower variance for a given mean within a population. This323

pattern was statistically supported by strong quadratic effect of mean intensity on aggregation, with the324

quadratic model performing better than the linear-effect only model (∆AIC = 150.13 from comparing a325

model with quadratic effect to one with only a linear relationship). Moreover, this unimodal pattern was326

robust to different measures of aggregation (Fig. 4A-D).327

Interestingly, putative enzootic populations rarely occupy the space of high mean intensity and low328

aggregation (Fig. 4). We observed seven enzootic populations in this region of high mean intensity and lower329

aggregation. Although one group in the enzootic stage was composed of adults, the rest were subadults—a330

life stage that still experiences substantial disease-induced mortality even in enzootic populations [45].331

Modeling results332

Modeling showed that the unimodal intensity-aggregation patterns likely contain important, mechanistic333

information about disease processes. The hump-shaped patterns in intensity-aggregation space found in the334

field data for all four metrics did not emerge trivially from the model; depending on parameter values, the335

model simulations produced this hump shape for none, some, or all metrics. Simulations with parameter336

values based mostly on laboratory experiments [19; 47] did not produce unimodal patterns for any of the337

four metrics (Fig S5), indicating different biological processes may occur in the field than in a lab setting.338

This possibility of a quantitative mismatch between the laboratory and the field is also supported by the339

observation that the laboratory-based parameter values produced significantly lower values of intensity and340

higher values of aggregation than was observed in the field. To address this possible mismatch, we explored341

additional parameter sets (details in supplementary material). When we weakened the negative density de-342
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pendence of pathogen growth within hosts and decreased the variance in initial infection load, our simulations343

produced slightly higher mean loads, lower aggregation, and a unimodal pattern in one metric, matching344

the field data somewhat better (Fig. S6). When we also decreased host mortality, parasite shedding rate345

(keeping prevalence from maxing out at one), and stochasticity in parasite growth, the model simulations346

produced higher intensities and still lower aggregation. Moreover, the model produced unimodal patterns347

for all four metrics (Fig. 4E-H). Thus, in terms of matching the intensity-aggregation patterns from the348

field, we considered this our best parameter set.349

From host-macroparasite theory, we might expect that this unimodal pattern depends on intensity-350

dependent mortality driving lower aggregation at high intensity. Changing the parameter values so that351

hosts could survive very high loads with no mortality did increase aggregation somewhat, as expected, but352

unexpectedly did not significantly change the unimodal patterns (Fig. S8). Lastly, the path our simulation353

results take through intensity-aggregation space may explain observed counterclockwise motion through354

intensity-aggregation space for populations in Fig. 3B; if we sample our simulated populations at one355

month, one year, and thirty years to simulate the infrequent sampling of the field populations, we see how356

a counterclockwise motion could arise (e.g., colored points in Fig. 4E-H).357

Our modeling further shows that the position of the enzootic populations in intensity-aggregation space358

may be a signal of host evolution. Host evolution of resistance that lowers pathogen growth rate moves359

populations left, toward lower mean intensity, and up, toward higher aggregation, in intensity-aggregation360

space for all four metrics (dashed black in Fig. 4E-H). This position of post-evolution populations higher and361

to the left of post-invasion populations that have experienced an epizootic but not yet evolved is consistent362

with the field data (Fig. 4). If hosts evolved a different defense, e.g., tolerance of higher parasite loads363

without dying, we would not observe this shift (Fig. S7). Thus, the enzootic populations’ position in364

intensity-aggregation space may indicate the evolution of resistance rather than tolerance in the host.365

Discussion366

Parasite aggregation is a strong driver of disease dynamics within host populations [20]. Though aggregation367

in macroparasites has been extensively examined, little has been done to systematically explore aggregation368

within host-fungal parasite systems, despite the known impact of fungal pathogen intensity on its host. In369

this study, we used a dataset of nearly 57,000 samples of amphibian infection intensity to show that i) Bd is370

consistently more aggregated than typical macroparasites, ii) the distribution of Bd intensity within a pop-371

ulation is generally consistent with a lognormal distribution, and iii) patterns of Bd aggregation can contain372

consistent signatures of biological mechanisms. This study demonstrates the utility of fungal aggregation373
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as a means of identifying cryptic biological processes (e.g. disease-induced mortality or evolution of defense374

mechanisms) within host populations.375

Patterns of aggregation376

Although both macroparasites and fungal parasites are aggregated within hosts, the magnitude of aggrega-377

tion, as determined by the TPL slope, was significantly greater in Bd systems compared to many macropar-378

asites. There are two possible explanations for this result that we cannot separate in this study. First,379

because Bd can rapidly reinfect its hosts in a process akin to within-host reproduction, we would expect380

levels of aggregation to be higher than most macroparasites. Supporting this expectation, [28] demonstrated381

similar patterns of high aggregation in Oxyuridae pinworms that rapidly reinfect their host (TPL slope of382

Oxyuridae pinworms: 2.82 [2.44, 3.22]). For both pinworms and Bd, already-infected hosts can acquire383

additional infection faster than uninfected hosts, increasing the variance and skew in the distribution of384

parasites. Second, the values of the Bd TPL slopes were highly consistent across sites and host species, in-385

dicating that levels of aggregation are conserved across populations with widely varying biology. The highly386

conserved nature of aggregation in macroparasites can be partially explained through statistical constraints387

that are independent of parasite biology [e.g., 39; 3]. This might also be true for Bd. For example, given388

a lognormal distribution, we would expect a TPL slope of 2, generally consistent with what we observe389

across Bd systems. Lognormal distributions consistently emerge in dynamic population models in ecology390

[32] and it is possible that the lognormal distribution of Bd (and thus the TPL slope of 2) arises because391

Bd dynamics, swabbing, and testing are a combination of multiplicative random processes that necessarily392

lead to a lognormal distribution [i.e., a central limit theorem type of argument 48]. Regardless of the exact393

drivers, we found that Bd aggregation does not look like that of most macroparasites.394

Amajor impetus for quantifying patterns of aggregation in host-parasite systems is to effectively build and395

analyze population-level models of host-parasite dynamics. In host-macroparasite systems, the application396

of the negative binomial distribution has led to many basic and applied ecological insights about host-397

macroparasite dynamics [20; 21; 49]. Models of fungal dynamics are adopting similar approaches to those398

of macroparasite modeling, focusing on modeling host infection intensity [17]. However, there are still few399

generalizable expectations regarding fungal distributions across hosts in a population, making subsequent400

model assumptions somewhat tenuous.401

We found that distributions of Bd intensity, conditional on infection, were most consistent with lognormal402

distributions across species, life stages, and locations. Lognormal distributions describe the spatial distribu-403

tion of abundance and density of organisms in many natural systems and theoretically emerge in populations404

experiencing environmental and demographic stochasticity [32]. Surprisingly, the gamma distribution—the405
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continuous analogue to the negative binomial distribution—performed relatively poorly when describing Bd406

intensity distributions. As we continue to use models to describe observed fungal infection dynamics in407

the field, fitting empirical data to models generally requires making some distributional assumptions about408

fungal intensity. Currently, host-fungal models in amphibian-Bd systems have assumed that Bd intensi-409

ties are approximately lognormally distributed [50; 43], but this assumption has only been validated for410

a few focal amphibian-Bd systems. Our results show that a lognormal assumption is broadly applicable411

within amphibian-Bd systems, making theoretical and applied applications of these models robust across412

amphibian-Bd systems. While we only examined Bd in this study, we expect approximate lognormal distri-413

butions to hold more broadly across host-fungal systems. Testing this expectation is an important next step414

for uniting host-fungal dynamics under a common theoretical framework, as has been so successfully done415

with host-macroparasite dynamics.416

Mechanisms of aggregation417

While fungal aggregation was highly consistent across amphibian species and populations, we found that418

there are also distinct patterns that arise in fungal aggregation that reflect underlying biological processes.419

In the empirical data, we observed a notable reduction in aggregation in post-invasion populations that420

we know were experiencing high-levels of disease-induced mortality [based on previous field observations,421

15]. Moreover, we observed that the life stage in enzootic populations with the lowest levels of aggregation422

tended to be juveniles, the life stage in which disease-induced mortality is still occurring at a high rate423

even in enzootic populations [37]. While it is tempting to conclude that this pattern of reduced aggregation424

is solely driven by intensity-dependent mortality as predicted in host-macroparasite systems [2; 3], our425

modeling results show that reduced aggregation in post-invasion populations can arise even in the absence426

of intensity-dependent mortality.427

The mechanism by which our model can produce the observed unimodal pattern in intensity-aggregation428

space is described as follows. When Bd first invades a population the observed intensity distribution is429

primarily structured by the dynamics of initial infection so that hosts have relatively similar low loads and430

low levels of aggregation. As the Bd outbreak proceeds, the distribution of fungal intensity begins to include431

both older infections with higher loads structured by within-host growth dynamics and newer infections432

with loads structured by initial infection dynamics. This mixture of newer and older infections increases433

aggregation in the intensity distribution. Most hosts become infected as the outbreak continues, and most434

infections are older and closer to the pathogen’s within-host carrying capacity. This drives a subsequent435

increase in mean intensity and reduction in aggregation. Overall, the shift from mostly newer infections436

to a mixture of newer and older infections then finally to mostly older infections drive a unimodal pattern437
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in intensity-aggregation space. Our model shows that while we can get the expected unimodal pattern of438

reduced aggregation being driven predominantly by intensity-dependent mortality, the pattern requires that439

i) all hosts get infected essentially simultaneously and ii) hosts rarely lose infection during an outbreak.440

However, as these conditions are violated, the effect of intensity-dependent mortality on aggregation quickly441

becomes dwarfed by the joint effect of initial infection and within-host growth. Host-macroparasite theory has442

shown that there is not always a one-to-one mapping between aggregation patterns and biological processes443

[51]. Our results clearly highlight this point for fungal intensity distributions—there are two plausible444

biological mechanisms that could explain and jointly contribute to the observed reduction in aggregation at445

high loads: intensity-dependent mortality and the balance between initial infection and within-host growth446

along an epizoological trajectory. The latter is an aggregation mechanism that, to our knowledge, has not447

been considered in macroparasite systems, highlighting the need for unique theory describing the patterns448

and mechanisms of aggregation in host-fungus systems.449

In addition to intensity-dependent mortality and the balance between initial infection and within-host450

growth, we found that patterns of aggregation contained clear signatures of the epizoological stage of a451

host-Bd system. Empirically, we saw populations follow a characteristic counterclockwise pattern on the452

yearly time scale in intensity-aggregation space. Interestingly, our modeling results illustrated that this453

counterclockwise pattern was likely a result of the timescale on which we observed these MYL frog-Bd454

systems. Our model showed that the transition from invasion phase to post-invasion epizootic phase should455

actually traverse a humped curve, rather than seamlessly jumping from the left to the right side of the456

curve. Because these sites were only sampled once a year, this data likely missed the transition from457

invasion phase (< 50% prevalence) to post-invasion phase (> 50% prevalence), as this often occurs rapidly458

within MYL frog-Bd systems. Therefore, we could only observe the invasion point and the post-invasion459

epizootic point within the intensity-aggregation space. Moreover, our model shows that the transition back460

to an intermediate intensity and high aggregation state does not occur in the model without some level of461

evolution in host defense; specifically, host evolution of resistance that lowers pathogen growth rate produced462

this pattern, while evolution of tolerance could not. MYL frog populations have persisted enzootically and463

begun to recover, likely due to evolved resistance to Bd [37]. As such, this is an intriguing basis for utilizing464

population-level aggregation patterns to identify biologically relevant processes in wild populations, such as465

the evolution of host defense.466

Examining aggregation patterns in a system where epizoological phase was known a priori enabled us to467

discern patterns across the intensity-aggregation space. The full epizoological trajectory of many amphibian468

populations is rarely observed, and it is well known that similar amphibian populations infected with Bd469

can be at different places along an epizoological trajectory or on different trajectories altogether [52]. By470

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.609018doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.29.609018
http://creativecommons.org/licenses/by-nc-nd/4.0/


substituting spatial replication across populations for temporal replication within populations, we show that471

intensity-aggregation space can help locate disparate populations along a common epizoological trajectory.472

We expect the approach we develop to be particularly useful for species that are generally considered to be473

persisting enzootically with Bd, but in reality, may be experiencing cryptic invasions and epizootics across474

populations (e.g., Fig. S4).475

Conclusions476

Beyond amphibian-Bd systems, our study is useful for understanding fungal parasite dynamics in other477

wildlife populations. By extending our analyses to other host-fungal parasite systems, such as those involv-478

ing white-nose syndrome in bats or B. salamandrivorans in amphibians, we can elucidate broader patterns479

of aggregation of fungal parasites. This comparative approach can unveil commonalities and distinctions480

in fungal intensity patterns across different hosts and parasites. Identifying patterns of aggregation and481

how they reflect biological processes in diverse systems has implications for conservation strategies, dis-482

ease management, and disease modeling efforts. By demonstrating the ubiquity of aggregation, identifying483

distributional characteristics, and deciphering the biological significance of these patterns, we advance our484

understanding of host-fungal parasite ecology and pave the way for broader consideration of the implications485

of microparasite aggregation in wildlife disease ecology and epidemiological theory.486
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Figure 1: The relationship of log mean and log variance of fungal intensity for all groups. Regression lines
were fit to each dataset. Slopes and their 95% confidence intervals are provided in the legend. The solid
black line represents the slope that is typically seen in macroparasites (1.55, 95% CI [1.48-1.62] )[7]. The
dotted line with a slope of 1 is expected in a Poisson distribution (null distribution for macroparasites) and
the dashed line with a slope of 2 is expected for a lognormal distribution.
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Figure 2: Comparison of log10(∆AIC + 1) values across the four continuous distributions that were fit to
the fungal intensity data for the 525 amphibian groups across four datasets. Each data point was a group
of amphibians that had at least 10 infected individuals.
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Figure 3: A. The adult abundance trajectories of seven focal MYL frog populations through time. Black
points show each time the population was surveyed for abundance and Bd and colored points indicate when
a sufficient number of infected individuals (n ≥ 2) were sampled to compute Poulin’s D, with a higher value
indicating more aggregation. The invasion phase was delineated when prevalence was less than 0.5, following
Wilber et al. (2022) [46]. B. The same seven populations with trajectories plotted in intensity-aggregation
space. The colored dots in B. correspond to the same colored dots in A.
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Figure 4: Groups in different epizoological phases plotted as a relationship between mean log10 Bd intensity
and different aggregation metrics. A. Soon after Bd invasion, mean loads and aggregation (Poulin’s D) are
low (yellow points). Later, post-invasion, mean loads are high and aggregation is still relatively low (blue
points). Then much later, mean loads are intermediate and aggregation is higher (purple points), leading
to an overall unimodal shape. This same pattern holds for other aggregation metrics including B. log10
of CV (coefficient of variation) on the natural scale, C. CV on the natural scale, and D. CV on the log10
scale. The unimodal trend for all empirical results is emphasized through a best-fit spline (black). The
shaded gray region is the 95% confidence interval around the best fit spline. A parameterized IPM model
can generally reproduce these hump-shaped patterns in all four metrics without evolution (black curve in
E-H); we compare empirical to model results for each metric as the model need not necessarily produce a
hump shape in every metric (e.g., see Fig. S5, S6). Evolution of lower pathogen growth rate (dashed black)
moves populations to lower mean loads and higher aggregation metrics, generally matching the empirical
results for enzootic populations. We plot the points corresponding to sampling the model results at one week
(invasion, yellow), one year (post-invasion, blue), and thirty-one years (enzootic, purple) for comparison to
the empirical results in Fig. 3B; low temporal resolution sampling can create a counterclockwise pattern in
intensity-aggregation space (emphasized by dotted gray line connecting colored points in E-H).
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