Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and Hydrogen Fluoride

Younhee Lee* and Steven M. George*,†,‡

†Department of Chemistry and Biochemistry, ‡Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States

ABSTRACT

The atomic layer etching (ALE) of Al₂O₃ was demonstrated using sequential, self-limiting thermal reactions with tin(II) acetylacetonate (Sn(acac)₂) and hydrogen fluoride (HF) as the reactants. The Al₂O₃ samples were Al₂O₃ atomic layer deposition (ALD) films grown using trimethylaluminum and H₂O. The HF source was HF-pyridine. Al₂O₃ was etched linearly with atomic level precision versus number of reactant cycles. The Al₂O₃ ALE was monitored at temperatures from 150 to 250 °C. Quartz crystal microbalance (QCM) studies revealed that the sequential Sn(acac)₂ and HF reactions were self-limiting versus reactant exposure. QCM measurements also determined that the mass change per cycle (MCPC) increased with temperature from 4.1 ng/(cm² cycle) at 150 °C to 18.3 ng/(cm² cycle) at 250 °C. These MCPC values correspond to etch rates from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C based on the Al₂O₃ ALD film density of 3.0 g/cm³. X-ray reflectivity (XRR) analysis confirmed the linear removal of Al₂O₃ and measured an Al₂O₃ ALE etch rate of 0.27 Å/cycle at 200 °C. The XRR measurements also indicated that the Al₂O₃ films were smoothed by Al₂O₃ ALE. The overall etching reaction is believed to follow the reaction Al₂O₃ + 6Sn(acac)₂ + 6HF → 2Al(acac)₃ + 6SnF(acac) + 3H₂O. In the proposed reaction mechanism, the Sn(acac)₂ reactant donates acac to the substrate to produce Al(acac)₃. The HF reactant allows SnF(acac) and H₂O to leave as reaction products. The thermal ALE of many other metal oxides using Sn(acac)₂ or other metal β-diketonates, together with HF, should be possible by a similar mechanism. This thermal ALE mechanism may also be applicable to other materials such as metal nitrides, metal phosphides, metal sulfides and metal arsenides.

KEYWORDS: atomic layer etching · Al₂O₃ · sequential exposures · thermal reactions · quartz crystal microbalance · X-ray reflectivity · atomic layer deposition

Atomic layer deposition (ALD) is a thin film growth technique based on sequential, self-limiting surface reactions. ALD can deposit extremely conformal thin films with atomic layer control. ALD has developed rapidly over the last 10–15 years to meet many industrial needs such as the miniaturization of semiconductor devices. ALD can deposit a wide range of materials from metal oxides to metals.

ALD is typically accomplished using thermal chemistry. However, sometimes plasma ALD is employed to enhance the surface reactions.

In contrast, atomic layer etching (ALE) is a thin film removal technique based on sequential, self-limiting surface reactions. ALE can be viewed as the reverse of ALD. ALE should be able to remove thin films conformally and isotropically with atomic layer deposition.
layer control. Compared with the large number of ALD processes, ALE processes have not been defined for as many materials. In addition, no thermal chemical processes have been reported for ALE. The ALE processes that have been reported have used excitation such as ion-enhanced or energetic noble gas atom-enhanced surface reactions.4–6 Most of the reported ALD processes have adsorbed a halogen on the surface of the material. Ion or noble gas atom bombardment is then used to desorb halogen compounds that etch the material.4–6

Most of the reports of ALE have focused on the ALE of Si, Ge, compound semiconductors, oxides and carbon substrates. Si ALE has been accomplished using either Cl or F adsorption that is subsequently followed by the removal of silicon halides using Ar ion bombardment.5–10 Very similar approaches are employed for Ge ALE.11,12 Alternative approaches for Si ALE utilize energetic neutral Ar beam bombardment.13 GaAs ALE has been demonstrated using Cl adsorption followed by excitation with either Ar ions,14 100 eV electrons,15 or UV radiation.16,17 InP ALE has also been accomplished using Cl adsorption and energetic neutral Ne beam bombardment.18

The ALE of a variety of oxides have been reported based on the adsorption of Cl using BCl3 and the removal of chloride compounds using energetic Ar atom neutral beam. This approach has been used for the ALE of Al2O3,19 HfO2,20 ZrO2,21 and TiO2.22 SiO2 ALE has also been performed using fluorocarbon adsorption followed by Ar+ ion bombardment.22 The ALE of various carbon substrates have also been accomplished using oxygen radical adsorption followed by material removal using Ar+ ion bombardment or an energetic Ar neutral beam. This approach has been demonstrated for graphite,23 graphene24 and polymer material.25

Developing thermal self-limiting ALE reactions that are the reverse of ALD reactions will be difficult. Thermal ALD reactions are typically exothermic and extremely favorable thermochemical reactions.1 These thermal reactions are spontaneous with negative ΔG values where G is the Gibbs free energy. Performing ALD reactions in reverse will not occur because of these thermodynamic considerations. The challenge for thermal ALE reactions is to find alternative, self-limiting reactions with different reactants that are exothermic and display negative ΔG values to ensure a spontaneous reaction.

In this paper, sequential exposures of tin(II) acetylacetonate (Sn(acac)2) and hydrogen fluoride (HF) are employed for the thermal ALE of Al2O3. The thermal Al2O3 ALE reactions are examined using quartz crystal microbalance (QCM) studies. The Al2O3 film thicknesses are measured using X-ray reflectivity (XRR) analysis. The QCM and XRR measurements can determine if the Al2O3 etching is linear versus the number of Sn(acac)2 and HF reaction cycles. The QCM measurements can evaluate whether the Al2O3 ALE is self-limiting versus the Sn(acac)2 and HF exposure times. This new method for ALE based on sequential, self-limiting, thermal reactions with Sn(acac)2 and HF as the reactants broadens the strategies for ALE reactions.

RESULTS AND DISCUSSION

Quartz Crystal Microbalance Studies. Figure 1 shows the mass change during 100 ALE cycles of Sn(acac)2 and HF reactions on an Al2O3 surface at 200 °C. The initial Al2O3 ALD film on the QCM surface was prepared by 100 cycles of Al2O3 ALD using TMA and H2O at 200 °C. One ALE cycle consisted of a Sn(acac)2 dose of 1 s, an N2 purge of 30 s, a HF dose of 1 s, and a second N2 purge of 30 s. This reaction sequence is denoted as 1–30–1–30. Pressure transients during Sn(acac)2 and HF doses were 20 and 80 mTorr, respectively.

The etching of the Al2O3 film in Figure 1 is very linear and displays a mass change per cycle (MCPC) = −8.4 ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.28 Å/cycle based on the Al2O3 ALD film density of 3.0 g/cm³ measured by XRR. All ALE cycles show mass loss resulting from the etching of the Al2O3 film except during the first ALE cycle. The first cycle displays mass gains of ΔM Sn = 57 ng/cm² and ΔM HF = 13 ng/cm².

The mass gain for ΔM Sn on the first cycle is attributed to Sn(acac)2 adsorption on the hydroxylated Al2O3 surface. Sn(acac)2 could adsorb either molecularly as Sn(acac)2* or dissociatively as Sn(acac)* and (acac)* where the asterisks designate a surface species. This adsorption would lead to a mass increase. In addition, the mass gain for ΔM HF on the first cycle is attributed to the formation of AlF3 by the reaction of HF with the underlying Al2O3 surface. The reaction Al2O3 + 6HF → 2AlF3 + 3H2O is spontaneous with ΔG = −58 kcal at 200 °C.28 AlF3 formation has also been confirmed by in situ Fourier transform infrared (FTIR) spectroscopy studies that will be presented in another publication.29 The first cycle of Sn(acac)2 and HF exposures establishes the initial Sn(acac)2 and AlF3 species on the Al2O3 substrate.

Figure 2 shows an enlargement of the mass losses versus time at 200 °C for three cycles in the steady state...
linear etching regime in Figure 1. There is a gradual mass decrease after a short mass gain coinciding with the Sn(acac)₂ exposure. This behavior suggests Sn(acac)₂ adsorption followed by either Sn(acac)₂ desorption and/or the removal of reaction products. A mass loss of \(\Delta M_{\text{Sn}} = \frac{8.1}{C_0} \) ng/cm² was observed after 1 s of Sn(acac)₂ exposure. In contrast, the HF exposure leads to little mass loss. A mass loss of \(\Delta M_{\text{HF}} = \frac{0.28}{C_0} \) ng/cm² was observed after 1 s of HF exposure.

Figure 3 examines the self-limiting nature of the Al₂O₃ ALE reactions at 200 °C. These MCPCs were measured versus different reactant exposure times. Figure 3a shows the self-limiting behavior of the Sn(acac)₂ reaction using different Sn(acac)₂ exposure times with a single 1 s exposure of HF. A constant N₂ purge of 30 s was used after each exposure. This reaction sequence can be denoted as \(x = 30 \)– 1 – 30. The MCPC versus Sn(acac)₂ exposure time decreases quickly and levels off at MCPC = \(-8 \) ng/(cm² cycle). Figure 3b examines the self-limiting behavior of the HF reaction using different HF exposure times with a single 1 s exposure of Sn(acac)₂. This reaction sequence can be denoted as \(1 - 30 - x - 30 \). The MCPC versus HF exposure time decreases and then levels off. The slow change in the MCPC beyond \(-8 \) ng/(cm² cycle) for longer HF exposures >1 s is believed to be caused by larger HF background pressures and longer HF residence times that lead to some chemical vapor etching (CVE) during the Sn(acac)₂ exposures. Figure 3a and 3b together show that the Sn(acac)₂ and HF reactions display nearly self-limiting behavior. The MCPC = \(-8\) ng/(cm² cycle) for 1 s exposures of Sn(acac)₂ and HF was independent of purge time for purge times between 20 and 120 s.

Figure 4 shows the mass change during 100 ALE cycles of Sn(acac)₂ and HF reactions on an Al₂O₃ surface at 150 °C using a reaction sequence of \(1 - 30 - 1 - 30 \). The initial Al₂O₃ film was prepared by 100 cycles of Al₂O₃ ALD using TMA and H₂O at 150 °C. The etching of the Al₂O₃ film is very linear with MCPC = \(-4.1\) ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.14 Å/cycle based on the Al₂O₃ ALD film density of 3.0 g/cm³ measured by XRR.

Figure 5 shows an enlargement of the mass losses versus time at 150 °C for three cycles in the steady state linear etching regime in Figure 4. There are distinct differences between the mass changes during the etching reactions at 200 and 150 °C. A mass gain of \(\Delta M_{\text{Sn}} = 0.19 \) ng/cm² was observed after the Sn(acac)₂ exposure for 1 s at 150 °C. In contrast, a mass loss of \(\Delta M_{\text{Sn}} = -8.1 \) ng/cm² was obtained at 200 °C. This difference may be attributed to more stable Sn(acac)₂ reaction products on the surface at 150 °C.

A mass decrease of \(\Delta M_{\text{HF}} = -4.3 \) ng/cm² was observed after the HF exposure for 1 s at 150 °C. This mass decrease is much larger than the mass decrease of \(\Delta M_{\text{HF}} = -0.28 \) ng/cm² at 200 °C. However, if more
Sn(acac)₂ reaction products remain on the surface following the Sn(acac)₂ exposure at 150 °C, then more Sn(acac)₂ reaction products can be lost during the HF reaction. This behavior would explain the mass gain after the Sn(acac)₂ exposure and larger mass loss after the HF exposure at 150 °C.

The ΔM_sn, ΔM_rf, and MCPC values at all the reaction temperatures are shown in Figure 6. All ALE reactions were performed using a reaction sequence of 1–30–1–30 on initial Al₂O₃ surfaces. Figure 6a displays the ΔM_sn and ΔM_rf values obtained at different reaction temperatures. ΔM_sn displays a slight mass gain at 150 °C and progressively larger mass losses at higher temperatures. In contrast, ΔM_rf displays a mass loss at temperatures between 150 and 200 °C and mass gains at higher temperatures.

Figure 6b shows the MCPC where MCPC = ΔM_sn + ΔM_rf. All the temperatures display a mass loss and the mass loss is larger at higher temperatures. The MCPC in Figure 6b correlates well with ΔM_sn in Figure 6a. This correspondence shows that the mass change during the Sn(acac)₂ reaction is primarily responsible for the temperature dependence of the mass loss during Al₂O₃ ALE. ΔM_sn, ΔM_rf, and MCPC at the different reaction temperatures are summarized in Table 1.

Table 1. ΔM_sn, ΔM_rf and MCPC for Al₂O₃ ALE at Different Temperatures

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>ΔM_sn ng/(cm² cycle)</th>
<th>ΔM_rf ng/(cm² cycle)</th>
<th>MCPC ng/(cm² cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.19</td>
<td>-4.3</td>
<td>-4.1</td>
</tr>
<tr>
<td>175</td>
<td>-3.2</td>
<td>-2.4</td>
<td>-5.6</td>
</tr>
<tr>
<td>200</td>
<td>-8.1</td>
<td>-0.28</td>
<td>-8.4</td>
</tr>
<tr>
<td>225</td>
<td>-14.6</td>
<td>2.3</td>
<td>-12.3</td>
</tr>
<tr>
<td>250</td>
<td>-24.0</td>
<td>5.7</td>
<td>-18.3</td>
</tr>
</tbody>
</table>

Figure 7 shows the X-ray intensity versus incident angle for Al₂O₃ films on Si(100). (a) Initial Al₂O₃ film grown using 150 Al₂O₃ ALD cycles; and Al₂O₃ films after various numbers of Al₂O₃ ALE cycles: (b) 50, (c) 100, (d) 200 and (e) 400 cycles.

The Al₂O₃ thicknesses decrease with increasing number of ALE cycles. The decreasing film thickness is revealed by the longer modulation periods for the X-ray intensity versus angle after higher numbers of ALE cycles. The position of the critical angle of all the etched Al₂O₃ films is also constant. This constant critical angle indicates that there is no change of the film density during the ALE reactions.

The etched Al₂O₃ films are very smooth and do not roughen versus Al₂O₃ ALE. The XRR measurements yielded a roughness of the initial Al₂O₃ ALD film of ~5 Å. The surface roughness obtained by XRR analysis then decreased to ~2–3 Å after 50, 100, 200, and 400 ALE cycles at 200 °C. The XRR measurements suggest that the ALE process is able to smooth the surface of the initial Al₂O₃ films. The error in these XRR surface roughness measurements is ~1 Å. Atomic force microscope (AFM) measurements also examined the Al₂O₃ film after Al₂O₃ ALE at 200 °C. The AFM root-mean squared (RMS) surface roughness was 2.5 Å, 2.8 and 2.6 Å for the bare Si(100) wafer, an Al₂O₃ ALD film on Si(100) grown using 150 Al₂O₃ ALD cycles and the same Al₂O₃ film etched using 400 Al₂O₃ ALE cycles, respectively. This AFM analysis indicates that the Al₂O₃ film remained smooth during Al₂O₃ ALE.

Figure 8 shows the XRR measurements of the initial Al₂O₃ ALD film thickness of 172 Å can be obtained by fitting the reflected X-ray intensity versus incident angle. Figure 7b, 7c, 7d, and 7e show XRR scans of the etched Al₂O₃ film after 50, 100, 200, and 400 ALE cycles at 200 °C. For the Al₂O₃ films with an initial thickness of 172 Å in Figure 8a, the...
film thickness versus number of ALE cycles is very linear and yields an etch rate of 0.27 Å/cycle. The spectroscopic ellipsometry (SE) measurements on these same samples yield an etch rate of 0.27 Å/cycle with an initial Al2O3 ALD film thickness of 166 Å. The initial thickness of the Al2O3 film is not used to obtain the etch rate because of the mass gain that occurs on the first ALE cycle.

The y-intercepts for the linear least-squares fitting in Figure 8a are 176 and 169 Å by XRR and SE, respectively. These thicknesses are slightly higher than initial thicknesses of 172 and 166 Å measured by XRR and SE, respectively. These larger thicknesses originate from the mass gain that occurs during nucleation of the ALE process on the Si(100) wafer. The SE analysis also determined a refractive index of $n = 1.70$ for the Al2O3 film at a wavelength of 589 nm. This refractive index for the Al2O3 film remained at $n = 1.69 - 1.70$ after 50, 100, and 200 ALE cycles.

XRR measurements were also performed on Al2O3 ALD films with a thickness of 113 Å that were grown on Si(100) wafers. These Al2O3 ALD films were deposited at 200 °C using 100 cycles of TMA and H2O with a reaction sequence of 1–20–1–20. Figure 8b displays the film thickness versus number of Sn(acac)2 and HF reaction cycles at 200 °C. The XRR measurements yield an Al2O3 ALE etch rate of 0.26 Å/cycle. The SE measurements also yield an etch rate of 0.25 Å/cycle with an initial Al2O3 ALD film thickness of 109 Å. The initial thickness of the Al2O3 film is again not employed to determine the etch rate because of the mass gain that occurs on the first ALE cycle.

The y-intercepts for the linear least-squares fitting in Figure 8b are 116 and 110 Å by XRR and SE, respectively. These thicknesses are again slightly higher than the initial thicknesses of 113 and 109 Å measured by XRR and SE, respectively. These larger thicknesses originate from the mass gain that occurs on the first ALE cycle. After 400 ALE cycles for this thinner Al2O3 film, the XRR and SE measurements in Figure 8b indicate that the Al2O3 film is completely removed from the Si(100) wafer.

X-ray photoelectron spectroscopy (XPS) measurements were employed to determine the elements on the Al2O3 film after Al2O3 ALE. The XPS analysis measured Sn 3d5/2 XPS signals of 1 at. % and F 1s XPS signals of 6 at. % after 200 or 400 Al2O3 ALE cycles after the HF exposure. These XPS signals are consistent with AlF3 formation and residual Sn(acac)3 adsorption products. The Sn and F XPS signals were removed completely below the XPS detection limit after Ar ion sputtering for 2 min. This sputtering time is the time required to remove adventitious carbon from the surface.

Proposed ALE Reaction Mechanism. Figure 9 shows the schematic for the proposed ALE reaction mechanism. This mechanism is based on the mass changes during the Sn(acac)2 and HF exposures as determined by the QCM measurements.

During the Sn(acac)2 reaction (A), the Sn(acac)2 reacts with the AlF3 layer on the Al2O3 substrate. This AlF3 layer is formed from the reaction of Al2O3 with HF after several ALE reactions on the initial Al2O3 surface. The Sn(acac)2 reacts with the AlF3 layer to form volatile SnF(acac) and Al(acac)3 reaction products and SnF(acac)* surface species. The slow loss of mass in Figures 2 and 5 after the Sn(acac)2 exposure is attributed to the slow desorption of acac species.30,31 SnF2 formation is unlikely because Sn(acac)2 is expected to react with AlF3 to form volatile SnF(acac) and Al(acac)3 until depleting the AlF3 layer. After the AlF3 layer is lost resulting from Al(acac)3 and SnF(acac) product formation, there may be a strong interaction between SnF(acac)* surface species and the underlying Al2O3 substrate. This interaction may lead to SnF(acac)* species adsorbed to the Al2O3 substrate.

During the HF reaction (B), HF reacts with the underlying Al2O3 surface to form a new AlF3 layer. Figure 5 illustrates that this reaction has a rapid mass change. This fast mass change is attributed to the favorable thermochemistry for the Al2O3 + 6HF → 2AlF3 + 3H2O reaction.28 The formation of the AlF3 layer also leads to the removal of the SnF(acac)* species. The reaction of HF with SnF(acac)* species to form SnF2 can not be ruled out. However, SnF2 surface species would be expected to react with Sn(acac)2 to form SnF(acac)* again during the Sn(acac)2 exposure. In addition, HF also provides hydrogen to form H2O as a reaction product. This reaction removes the oxygen in Al2O3. The AlF3 layer is then ready for the next Sn(acac)2 reaction.

The overall proposed reaction can be expressed as

\[
\text{Al}_2\text{O}_3 + 6\text{HF} + 6\text{Sn(acac)}_{2} \rightarrow 2\text{Al(acac)}_{3} + 6\text{SnF(acac)*} + 6\text{H}_2\text{O (1)}
\]

This overall reaction can be divided into the Sn(acac)2 and HF reactions:

\[
\text{Al}_2\text{O}_3 + 2\text{AlF}_3 + 6\text{Sn(acac)}_{2} \rightarrow 2\text{Al}_2\text{O}_3|x\text{SnF(acac)*} + 2\text{Al(acac)}_{3} + (6 - x)\text{SnF(acac) (2)}
\]
The asterisks indicate the surface species and the vertical lines are used to separate the various surface species. The Al₂O₃ shown in eqs 2 and 3 is the amount of Al₂O₃ that is etched in one Al₂O₃ ALE cycle. \(x \) is a parameter determined by the \(\Delta M_{Sn} \) and \(\Delta M_{HF} \) mass changes. To obtain agreement with the \(\Delta M_{Sn} \) and \(\Delta M_{HF} \) mass changes in Table 1, \(x = 0.74, 0.46, 0.29, 0.19, \) and 0.15 at 150, 175, 200, 225, and 250 °C, respectively. Note that AlF₃ is the key reaction intermediate. The production of all the Al(acac)₃ is assumed to occur during eq 2. This assumption needs to be confirmed by mass spectrometry studies. Al(acac)₃ is a stable metal \(\beta \)-diketonate with a vapor pressure of \(\sim 3-4 \) Torr at 150 °C. The temperature dependence of \(\Delta M_{Sn} \) and \(\Delta M_{HF} \) is believed to be dependent on the surface species present after the Sn(acac)₂ and HF exposures. The larger mass gains after the Sn(acac)₂ exposure and the larger mass losses after the HF exposure at lower temperatures can be explained by more Sn(acac)₂ adsorption products on the surface after the Sn(acac)₂ exposure at lower temperatures. The larger mass gains after the HF exposure and the larger mass losses after the Sn(acac)₂ exposure at higher temperatures can be explained by more AlF₃ species on the surface after the HF exposure at higher temperatures.

Eqs 2 and 3 present the surface chemistry for the Sn(acac)₂ and HF reactions as determined by the QCM measurements. Complementary in situ Fourier transform infrared (FTIR) vibrational spectroscopy studies have shown that there are surface species that do not change during the Sn(acac)₂ and HF reactions. These surface species are not observed by the QCM measurements that only detect a change in mass. More detail on the reaction mechanism and the temperature dependence of Al₂O₃ ALE using both QCM and FTIR studies will be presented in another publication.²⁹

Generality and Advantages of Thermal ALE Approach. The ALE of other materials including metal oxides, metal nitrides, metal phosphides, metal sulfides and metal arsenides should be possible using sequential, self-limiting thermal reactions with Sn(acac)₂ and HF as the reactants. Sn(acac)₂ can readily react with fluorine to form SnF(acac). Sn—F bond formation is expected to be favorable because tin has a high affinity for fluorine. The Sn—F bond enthalpy is 466.5 kJ/mol in the diatomic SnF molecule. The reaction of Sn(acac)₂ with fluorine to form SnF(acac) enables Sn(acac)₂ to release an acac ligand to the surface. Metals easily form complexes with acac ligands and have comparable stabilities. The hydrogen from HF can combine with either oxygen, nitrogen, phosphorus, sulfur or arsenic from the metal oxide, metal nitride, metal phosphide, metal sulfide or metal arsenide to form H₂O, NH₃, PH₃, H₂S or AsH₃, respectively.

ALE reactions for various metal oxides, metal nitrides, metal phosphides, metal sulfides, and metal arsenides are given in Table 2. The ALE of many other metal oxides, metal nitrides, metal phosphides, metal sulfides and metal arsenides may also be possible using Sn(acac)₂ and HF. The reaction efficiency may be dependent on the volatility of the metal acetylacetonate reaction product. For example, many metal oxides, in addition to Al₂O₃, should be etched by the Sn(acac)₂ and HF reactants including HfO₂, ZrO₂, Fe₂O₃, Co₂O₃, Cr₂O₃, Sc₂O₃ and Ga₂O₃.

Figure 9. Schematic of proposed reaction mechanism for Al₂O₃ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.
These metal oxides all produce etch products, M(acac)₃ or M(acac)₄, with vapor pressures of ~1 Torr at 150 °C. The ALE of elemental metals could also be performed using sequential exposures of Sn(acac)₂, and HF. The surface of the elemental metal would first be oxidized using an oxidant such as O₂ or O₃. The metal oxide could then be etched with Sn(acac)₂ and HF. Alternatively, the surface of the elemental metal could be nitrided, phosphided, sulfurized or arsenided prior to etching the metal nitride, metal phosphide, metal sulfide or metal arsenide, respectively, with Sn(acac)₂ and HF.

Other Sn β-diketonates may also serve as etching reactants besides Sn(acac)₂ with acac = acetylacetonate. Many other β-diketone ligands on the Sn metal center are possible such as hfac = hexafluoroacetylacetonate, tfac = trifluoroacetylacetonate, and tmhd = tetramethylheptanedionate. Different β-diketone ligands can change the physical properties of the metal β-diketonate. For example, fluorine substituted β-diketone ligands generally show higher vapor pressure.

Other metal β-diketonates, in addition to Sn-based compounds, could also react with HF to yield β-diketone ligands that could then form the etch products. The possible advantage of using different metal β-diketonates may be their more favorable vapor pressure, thermal stability, reaction kinetics or thermochemistry. Metal β-diketonates with metals in higher oxidation states can bind to more β-diketone ligands. The larger number of β-diketone ligands may facilitate the etching of the metal oxide. However, Sn(acac)₂ with tin in the +2 oxidation state has an open coordination sphere and a readily available electron lone-pair that may facilitate fluorine binding to tin.

There is also the possibility that the ALE of metal oxides would be possible with HCl or HBr instead of HF as a reactant. For example, the reaction of HCl with Sn(acac)₂ could produce SnCl(acac). This Sn chloride β-diketonate compound was produced earlier by the reaction of Sn(acac)₂ and SnCl₃. The Sn–Cl bond energy in the diatomic SnCl molecule is 414 kJ/mol. This bond energy is only slightly less than the bond energy of 466.5 kJ/mol in the diatomic SnF molecule.

The advantage of using HCl or HBr would be avoiding the use of HF and its safety concerns. However, HCl and HBr are also chemically corrosive. A possible disadvantage of HCl or HBr is the lower stability of metal chlorides and metal bromides compared with metal fluorides for metal oxides, metal nitrides, metal phosphides and metal arsenides. The AIF₃ layer plays a key role as a reaction intermediate in the proposed reaction mechanism for Al₂O₃ ALE. The stability of the metal fluoride reaction intermediate may be critical for the ALE mechanism for self-limiting reactions based on Sn(acac)₂ and HF.

The absolute etch rate may also differ between various metal oxides during ALE with Sn(acac)₂ and HF as the reactants. The etch rate may be dependent upon the residual coverage of acetylacetonate species on the metal oxide surface. Higher acetylacetonate coverages may block surface sites and prevent the adsorption of Sn(acac)₂ or formation of the metal fluoride layer. This site-blocking by acetylacetonate surface species may reduce the etch rate. Site-blocking by hfac and hfacH was recently demonstrated during Pt ALD and Pd ALD using Pt(hfac)₂ and Pd(hfac)₂, respectively. The temperature dependence of the Al₂O₃ ALE may be attributed to the lower residual coverage of acetylacetonate surface species at higher temperatures. Other ligands on the metal β-diketonate may alter the residual coverage of ligands on the metal oxide surface and change the etch rate.

There are advantages to the thermal ALE approach compared with ALE based on halogen adsorption and ion or energetic neutral noble atom bombardment. The thermal ALE approach avoids any damage to the underlying substrate resulting from high energy ions or energetic neutrals. Ions from plasmas have been implicated in the performance degradation of high-k metal gate stacks. Using neutral noble gas beams is able to mitigate the structural and electrical damage caused by ions.

ALE based on ion or neutral noble atom bombardment also requires line-of-sight to the substrate. This requirement can be used advantageously to minimize undercutting with directional ions or energetic neutral atoms during ALE. However, this line-of-sight requirement is detrimental if conformality is required for the etching. The line-of-sight requirement is also limited to the relatively small surface areas that are subjected to ion or neutral noble atom bombardment. The thermal ALE approach will be particularly important for etching high surface area and high aspect ratio structures.
CONCLUSIONS

Al2O3 ALE was observed using Sn(acac)2 and HF as the reactants. The sequential, self-limiting thermal reactions of Sn(acac)2 and HF etched Al2O3 linearly with atomic level precision. Al2O3 ALE was demonstrated at temperatures from 150 to 250 °C. The sequential Sn(acac)2 and HF reactions were self-limiting versus reactant exposure as revealed by QCM studies. The QCM studies also measured MCPC values that increased with temperature from −4.1 ng/(cm² cycle) at 150 °C to −18.3 ng/(cm² cycle) at 250 °C. These MCPC values correspond to etch rates of 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C. The linear removal of Al2O3 was confirmed by XRR analysis. The XRR studies measured Al2O3 ALE etch rates of 0.27 Å/cycle at 200 °C. The Al2O3 films also remained smooth during Al2O3 ALE.

The overall etching reaction is believed to follow the reaction Al2O3 + 6Sn(acac)2 + 6HF → 2Al(acac)3 + 6SnF(acac) + 3H2O. In the proposed reaction mechanism, AlF3 is the key reaction intermediate. The Sn(acac)2 reactant donates acac to the AlF3 layer on the Al2O3 substrate to produce Al(acac)3. The HF reactant forms the AlF3 reaction intermediate from Al2O3 and allows SnF(acac) and H2O to leave as reaction products. The ALE of many other metal oxides besides Al2O3 should also be possible using Sn(acac)2, or other metal β-diketonates, together with HF. This ALE reaction mechanism should also be applicable for the ALE of metal nitrates, metal phosphides, metal sulfides, and metal arsenides.

METHODS

Viscous Flow Reactor Equipped for In Situ QCM Measurements. The ALE reactions at 150–250 °C were performed in a viscous flow ALD reactor. A proportional-integral-derivative (PID) temperature controller (2604, Eurotherm) stabilized the temperature in the reactor to within ±0.04 °C. A capacitance manometer (Baratron 1211A, MKS) measured the pressure in the reactor. The ALD reactor was equipped with an in situ quartz crystal microbalance (QCM). The RC-cut quartz crystal46 (gold coated and polished, 6 MHz, Colnatec) was placed in a sensor head (BSH-150, Inficon) and then sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). All in situ QCM measurements were recorded by a thin film deposition monitor (Mastek TM-400, Inficon).

The Al2O3 ALE reactions were performed using sequential exposure of tin(II) acetylacetonate (Sn(acac)2, 37–38% Sn, Gelest) and HF/pyridine (70 wt % HF, Sigma-Aldrich). HF-pyridine is a liquid at room temperature and has an equilibrium with gaseous HF. The HF pressure from HF-pyridine is >2–3 Torr at room temperature. The two pneumatic valves and one metering valve used for HF dosing produced HF pressure transients of ~80 mTorr. HF-pyridine enabled the safe handling of anhydrous HF. Note that HF-pyridine can be dangerous if not utilized properly. Sn(acac)2 and HF-pyridine were transferred to stainless steel bubblers in a dry N2-filled glovebag. The stainless steel bubbler containing Sn(acac)2 was held at 100 °C. The one pneumatic valve used for Sn(acac)2 dosing produced Sn(acac)2 pressure transients of ~20 mTorr. The Al2O3 films were grown with Al2O3 ALD using TMA (97%, Sigma-Aldrich) and H2O (Chromasolv for HPLC, Sigma-Aldrich). The HF-pyridine, TMA, and H2O precursors were maintained at room temperature.

The reactor was pumped using a mechanical pump (Pascal 2015SD, Alcatel). The base pressure of the reactor without any N2 flow was ~10 mTorr. Separate mass flow controllers were used to provide N2 carrier gas for each reactant. An additional mass flow controller streamed N2 gas through the reactor. These three separate mass flow controllers (Type 1179A, MKS) delivered a constant total flow of 150 sccm of ultra high purity (UHP) N2 carrier gas into the reactor. Additional N2 gas flow of 20 sccm using a metering bellows-sealed valve (SS-4BMG, Swagelok) prevented deposition on the backside of the QCM crystal.47 The total N2 gas flow of 170 sccm produced a background N2 pressure of ~1 Torr in the reactor.

Sample Preparation and Ex Situ Film Analysis. Boron-doped Si(100) wafers (p-type, Silicon Valley Microelectronics) were cut into samples with dimensions of 2.5 cm by 2.5 cm. These substrates were used for Al2O3 ALD deposition. The Si wafers were first rinsed with acetone, isopropanol, and deionized water. Subsequently, the Si wafers were dried with UHP N2 gas.

The ex situ X-ray reflectivity (XRR) scans were recorded by a high resolution X-ray diffractometer (Bede D1, Jordan Valley Semiconductors) using Cu Kα (λ = 1.540 Å) radiation. The filament voltage and current in the X-ray tube were 40 kV and 35 mA, respectively. A 10 arcsec step size and a 5 s acquisition time were used for recording all XRR scans with a range of 300 to 6000 arcsec. The analysis software (Bede REFS, Jordan Valley Semiconductors) fitted the XRR scans to determine film thickness, film density and surface roughness.

Spectroscopic ellipsometry (SE) determined the film thicknesses and refractive index. The measurement of Δ and Ψ was recorded using a spectroscopic ellipsometer (M-2000, J. A. Woollam) with a spectral range of 240 to 1700 nm and an incidence angle of 75°. The analysis software (CompleteEASE, J. A. Woollam) fitted Ψ and Δ based on a Sellmeier model to determine the thicknesses and refractive index of the film.47

X-ray photoemission spectroscopy (XPS) analysis was performed using a PHI 5600 X-ray photoelectron spectrometer using a monochromatic Al Kα source. The XPS data were collected using Auger Scan (RBD Instruments). The XPS data were analyzed in CASA XPS (Casa Software Ltd.). Atomic force microscopy (AFM) analysis was performed using an EasyScan 2 (Nanosurf) with a dynamic force mode. The scan software (EasyScan 2, Nanosurf) measured the RMS roughness using a 5 μm × 5 μm image size.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. This research was funded by the National Science Foundation (CHE-1306131). Additional personnel support for Y.L. was provided by the Department of Energy through the DOE-BATT program. The authors thank Huaxing Sun for the x-ray photoelectron spectroscopy (XPS) analysis of elemental film composition. The authors also thank Timothy J. Porcelli for the atomic force microscopy (AFM) measurements of surface roughness.

REFERENCES AND NOTES

