ECS Transactions, 69 (7) 233-241 (2015) 10.1149/06907.0233ecst ©The Electrochemical Society

Atomic Layer Etching Using Thermal Reactions: Atomic Layer Deposition in Reverse

Y. Lee^a, J.W. DuMont^a, and S.M. George^{a,b}

 ^a Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309, USA
^b Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, 80309, USA

Atomic layer etching (ALE) can remove thin films with atomic layer control based on sequential, self-limiting surface reactions. ALE can be viewed as atomic layer deposition (ALD) in reverse. This paper reviews Al₂O₃ ALE using sequential, self-limiting thermal reactions. In the proposed mechanism for thermal Al₂O₃ ALE, fluorination reagents, such as HF, fluorinate the Al₂O₃ substrate to form an AlF₃ surface layer and volatile H₂O. A metal precursor, such as Sn(acac)₂, subsequently accepts fluorine from the AlF₃ surface layer and donates an acac ligand to the aluminum in the AlF₃ surface layer to form volatile Al(acac)₃ or AlF(acac)₂ reaction products. These fluorination and ligand-exchange reactions with HF and Sn(acac)₂ lead to temperature-dependent etching rates of Al₂O₃ from 0.14 Å/cycle at 150°C to 0.61 Å/cycle at 250°C. This reaction mechanism can be extended to a variety of other materials including metal nitrides, metal phosphides, metal arsenides and elemental metals.

Introduction

Atomic layer etching (ALE) is a thin film removal process based on sequential, selflimiting surface reactions [1-3]. ALE can be viewed as the reverse of atomic layer deposition (ALD) [3-5]. ALE is able to remove thin films with atomic layer control. ALD and ALE are able to provide the necessary tools for surface engineering at the atomic level [6, 7]. This atomic level control is required for the nanofabrication of nanoscale devices.

Previous ALE processes have used ion-enhanced or energetic neutral atom beamenhanced surface reactions together with halogenation of the surface to etch the material. This ALE approach can produce anisotropic etching and has been used for the ALE of Si [8-11], Ge [12], compound semiconductors [13-16], metal oxides [17-21], and various carbon substrates [22-24]. In contrast to the large number of ALE processes performed using ion-enhanced or energetic neutral atom beams, there are very few ALE processes based on spontaneous thermal chemistry. These thermal ALE processes could be useful for the isotropic removal of thin films with atomic layer control [2].

The ALE of Al₂O₃ was recently reported using sequential, self-limiting thermal reactions with Sn(acac)₂ and HF as the reactants [25]. The linear removal of Al₂O₃ was observed at temperatures from 150-250°C without the use of ion or noble gas atom

bombardment. Al₂O₃ ALE etch rates varied with temperature from 0.14 Å/cycle at 150°C to 0.61 Å/cycle at 250°C [25, 26]. The ALE of HfO₂ also displayed very similar behavior [27]. This paper will review the recent work for Al_2O_3 ALE and examine the generality of this ALE approach for a wide range of materials.

Al₂O₃ ALE Monitored Using in situ QCM and FTIR Techniques

Thermal Al₂O₃ ALE has been demonstrated using *in situ* quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR) techniques [25, 26]. The thermal Al₂O₃ ALE was observed using sequential Sn(acac)₂ and HF exposures. The HF source was a solution of HF-pyridine. The initial Al₂O₃ film was deposited using Al₂O₃ ALD with trimethylaluminum and H₂O as the reactants.

Figure 1 shows the mass changes measured by the *in situ* QCM measurements during the sequential Sn(acac)₂ and HF exposures at 200°C [25]. The etching of the Al₂O₃ film is linear and displays a mass change per cycle (MCPC) of -8.4 ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.28 Å/cycle based on the Al₂O₃ ALD film density of 3.0 g/cm³ measured using x-ray reflectivity (XRR).

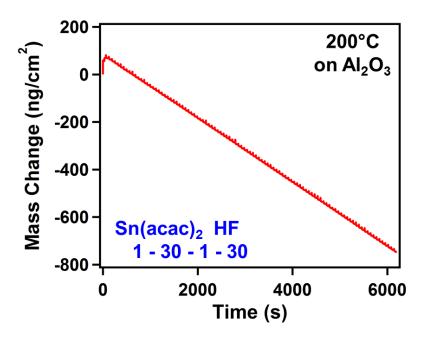


Figure 1. Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 200°C.

Additional XRR and spectroscopic ellipsometry (SE) measurements confirmed the Al₂O₃ ALE. These experiments were performed on Al₂O₃ ALD films grown on silicon wafers. Figure 2 displays the Al_2O_3 film thicknesses versus number of sequential Sn(acac)₂ and HF exposures at 200°C [25]. One initial Al₂O₃ ALD film was grown using 150 Al₂O₃ ALD cycles and the other initial Al₂O₃ ALD film was grown using 100 Al₂O₃ ALD cycles.

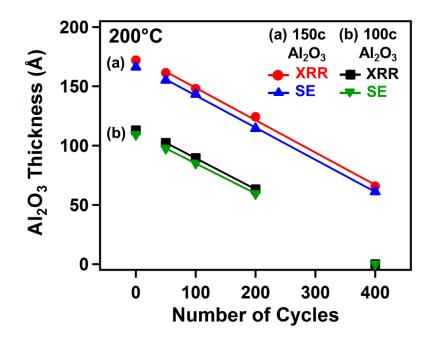


Figure 2. X-ray reflectivity and spectroscopic ellipsometry measurements of Al₂O₃ film thickness versus number of Al₂O₃ ALE cycles at 200°C for initial Al₂O₃ ALD films grown using (a) 150 Al₂O₃ ALD cycles and (b) 100 Al₂O₃ ALD cycles.

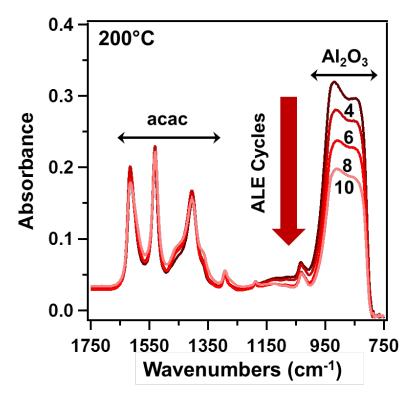
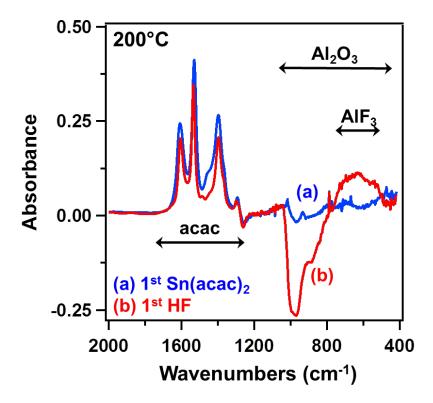



Figure 3. Infrared absorbance showing the loss of Al-O stretching vibrations in bulk Al₂O₃ versus number of Al₂O₃ ALE cycles at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.

The XRR and SE measurements confirm that the Al₂O₃ ALE is linear. The XRR results in Figure 2 are consistent with an Al₂O₃ etch rate of 0.27 Å/cycle at 200°C [25]. The SE results in Figure 2 are also consistent with an Al₂O₃ etch rate of 0.27 Å/cycle at 200°C [25]. These measurements are in excellent agreement with the Al₂O₃ etch rate of 0.28 Å/cycle obtained from the QCM analysis at 200°C.

The Al₂O₃ ALE can also be observed using *in situ* FTIR spectroscopy analysis. In these experiments, Al₂O₃ ALD films are first grown on ZrO₂ nanoparticles [26]. Subsequently, the absorbance of the Al-O stretching vibrations is monitored versus number of sequential Sn(acac)₂ and HF exposures. Figure 3 shows the absorbance of the Al-O stretching vibrations versus number of sequential Sn(acac)₂ and HF exposures [26]. The infrared absorbance decreases progressively versus the sequential Sn(acac)₂ and HF exposures.

Mechanism of Thermal Al₂O₃ ALE

Figure 4. Infrared absorbance after the first $Sn(acac)_2$ exposure and first HF exposure on an Al₂O₃ film at 200°C. These FTIR spectra were referenced to the SiO₂ nanoparticles coated with the Al₂O₃ ALD film.

The FTIR spectra can also help to determine the mechanism of Al₂O₃ ALE. Figure 4 shows the infrared absorbance in the region from 400-2000 cm⁻¹. This region contains the vibrations from the acac surface species, the Al-O stretching vibrations in Al₂O₃ and the Al-F stretching vibrations in AlF₃. Figure 4a displays the infrared absorbance after the first Sn(acac)₂ exposure on an initial Al₂O₃ substrate [26]. This spectrum reveals acac-containing species. These acac-containing species could be Sn(acac)₂* from the

molecular adsorption of $Sn(acac)_2$ or $Sn(acac)^*$ and $acac^*$ from the dissociative adsorption of $Sn(acac)_2$ on Al_2O_3 . The asterisks designate surface species.

Figure 4b displays the infrared absorbance after the first HF exposure following the first Sn(acac)₂ exposure on the initial Al₂O₃ substrate [26]. This spectrum reveals a loss of absorbance in the region corresponding to the Al-O stretching vibrations. In addition, this spectrum also shows a gain of absorbance in the region corresponding to the Al-F stretching vibrations.

The loss of absorbance from the Al-O stretching vibrations and gain of absorbance from the Al-F stretching vibrations strongly suggests that the HF exposure fluorinates the Al₂O₃ substrate. This fluorination reaction can be written as Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O. Thermochemical calculations indicate that this reaction is very favorable. The Gibbs free energy change for this reaction is $\Delta G = -58$ kcal at 200°C [28].

The etching rate during Al₂O₃ ALE is also temperature dependent. Figure 5 shows QCM measurements of Al₂O₃ ALE at temperature from 150-250°C [26]. The MCPC increases with temperature from -4.1 ng/(cm² cycle) at 150°C to -18.3 ng/(cm² cycle) at 250°C. These MCPCs correspond to etch rates that vary from 0.14 Å/cycle at 150°C to 0.61 Å/cycle at 250°C. The determination of these etch rates is again based on the Al₂O₃ ALD film density of 3.0 g/cm³.

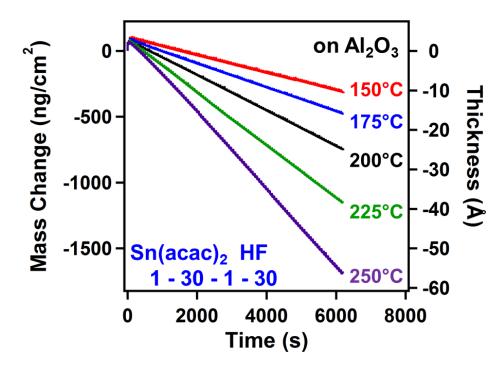


Figure 5. Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

The temperature dependence of Al₂O₃ ALE is also observed in the FTIR spectra after sequential Sn(acac)₂ and HF exposures. Figure 6 shows the FTIR difference spectra during sequential Sn(acac)₂ and HF exposures [26]. The growth of absorbance from the Al-F stretching vibrations after the HF exposures is larger at higher temperatures. In

237 Downloaded on 2016-02-06 to IP 198.11.31.125 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). addition, the removal of the absorbance from the Al-F stretching vibrations after the $Sn(acac)_2$ exposures is also larger at higher temperatures.

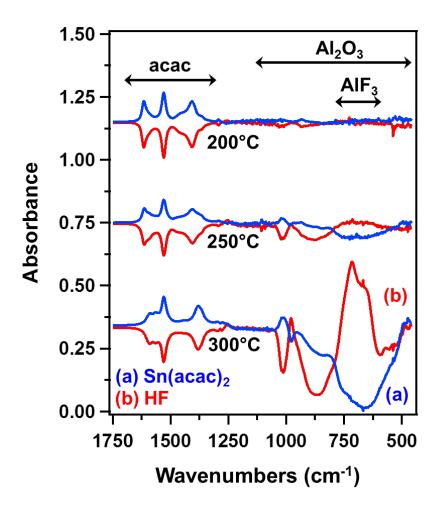


Figure 6. FTIR difference spectra during Al₂O₃ ALE at 200°C, 250°C and 300°C. The difference spectra recorded after the Sn(acac)₂ and HF exposures were referenced using the spectra after the previous HF and Sn(acac)₂ exposures, respectively.

The absorbance changes at 250°C and 300°C in Figure 6 reveal a loss of absorbance from Al-O stretching vibrations that is concurrent with the gain of absorbance from Al-F stretching vibrations. These absorbance changes again argue that the HF exposure fluorinates the Al₂O₃ substrate and forms an AlF₃ surface layer. The Sn(acac)₂ exposure is then able to remove some of this AlF₃ surface layer.

These FTIR results in Figure 6 and the previous FTIR results in Figure 4 suggest the following mechanism for thermal Al₂O₃ ALE. The HF exposure fluorinates the Al₂O₃ substrate to form an AlF₃ surface layer and volatile H₂O. The Sn(acac)₂ reactant subsequently accepts fluorine from the AlF_3 surface layer and donates an acac ligand to the aluminum in the AlF₃ surface layer to form volatile Al(acac)₃ or AlF(acac)₂ reaction products. This reaction mechanism is shown in Figure 7 assuming that $Al(acac)_3$ is the reaction product [25, 26].

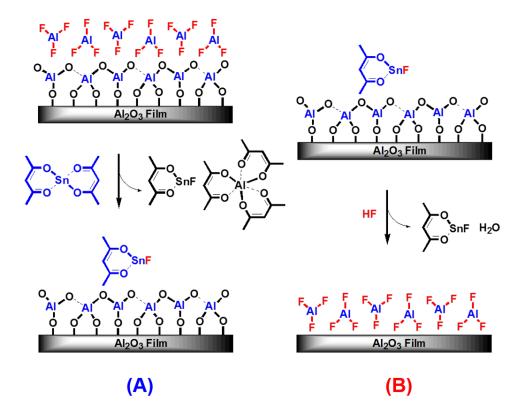


Figure 7. Schematic of the proposed surface chemistry for Al_2O_3 ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.

The Al₂O₃ ALE reactions can be viewed in terms of fluorination and ligand-exchange reactions. The order of the $Sn(acac)_2$ and HF exposures was also changed and the HF exposure was applied to the initial Al_2O_3 substrate before the $Sn(acac)_2$ exposure. QCM measurements revealed that this change of order did not affect the steady state Al₂O₃ ALE. There was only a small difference in the mass changes during the initial HF and $Sn(acac)_2$ exposures in the nucleation region.

The fluorination and ligand-exchange reactions can be viewed in terms of the general scheme shown in Figure 8. The HF fluorinates the Al₂O₃ substrate and forms an AlF₃ surface layer. The $Sn(acac)_2$ then accepts fluorine from the AlF₃ surface layer and donates an acac ligand to an aluminum atom in the AlF₃ surface layer. The SnF(acac) and Al(acac)₃ reaction products lead to the etching of AlF₃.

Generality of Thermal ALE

This thermal ALE procedure is general and can be applied to many materials including metal nitrides, metal phosphides, metal arsenides and elemental metals [25]. In all cases, thermochemical calculations confirm that fluorination can lead to the formation of metal fluorides by spontaneous reactions [25]. If the metal fluorides are stable, then thin films of these materials can be etched by the subsequent ligand-exchange reaction.

Most metals have stable metal fluorides. Some exceptions are iridium, molybdenum, platinum, rhenium, tantalum and tungsten. The metal fluorides of these elements have melting points less than 100°C and will have high volatility under typical etching reaction conditions. These metals may be etched spontaneously during the fluorination reaction. Silicon and germanium are two other elements with fluorides that have melting points less than 100°C. These fluorides will also have high volatility under etching reaction conditions.

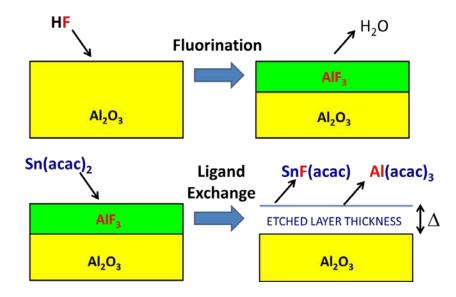


Figure 8. General schematic of the proposed surface chemistry for Al₂O₃ ALE showing (A) fluorination reaction that converts the surface of the Al₂O₃ substrate to an AlF₃ surface layer and (B) ligand-exchange reaction that leads to volatile species that removes the AlF₃ surface layer.

Conclusions

The ALE of Al_2O_3 by sequential, self-limiting thermal reactions demonstrates that new reactions are possible to etch materials with atomic layer control. These reactions are equivalent to ALD in reverse. These reactions occur spontaneously without the need for ion-enhanced or energetic neutral atom beams. The etching is linear with the number of Sn(acac)₂ and HF reaction cycles. Higher temperatures also lead to larger etching rates. The new capabilities provided by these sequential, self-limiting thermal reactions should be useful in nanofabrication. This new approach to thermal ALE should be particularly useful for isotropic etching.

Acknowledgments

This research was funded by the National Science Foundation (CHE-1306131). Additional personnel support for YL was provided by the Department of Energy through the DOE-BATT program.

References

- 1. A. Agarwal and M.J. Kushner, J. Vac. Sci. Technol. A 27, 37 (2009).
- 2. C.T. Carver, J.J. Plombon, P.E. Romero, S. Suri, T.A. Tronic and R.B. Turkot, ECS Journal of Solid State Science and Technology 4, N5005 (2015).
- 3. G.S. Oehrlein, D. Metzler and C. Li, ESC Journal of Solid State Science and *Technology* **4**, N5041 (2015).
- 4. T. Faraz, F. Roozeboom, H.C.M. Knoops and W.M.M. Kessels, ECS Journal of Solid State Science and Technology 4, N5023 (2015).
- 5. S.M. George, Chem. Rev. 110, 111 (2010).
- 6. M. Leskela and M. Ritala, Angew. Chem. Int. Ed. 42, 5548 (2003).
- 7. N. Marchack and J.P. Chang, J. Phys. D Appl. Phys. 44, 174011 (2011).
- 8. S.D. Athavale and D.J. Economou, J. Vac. Sci. Technol. B 14, 3702 (1996).
- 9. S.D. Park, D.H. Lee and G.Y. Yeom, *Electrochem. Solid State Lett.* 8, C106 (2005).
- H. Sakaue, S. Iseda, K. Asami, J. Yamamoto, M. Hirose and Y. Horiike, Jpn. J. 10. Appl. Phys. 1 29, 2648 (1990).
- J. Yamamoto, T. Kawasaki, H. Sakaue, S. Shingubara and Y. Horiike, Thin Solid 11. Films 225, 124 (1993).
- 12. T. Sugiyama, T. Matsuura and J. Murota, Appl. Surf. Sci. 112, 187 (1997).
- 13. W.S. Lim, S.D. Park, B.J. Park and G.Y. Yeom, Surf. Coat. Tech. 202, 5701 (2008).
- 14. T. Meguro, M. Hamagaki, S. Modaressi, T. Hara, Y. Aoyagi, M. Ishii and Y. Yamamoto, Appl. Phys. Lett. 56, 1552 (1990).
- T. Meguro, M. Ishii, T. Sugano, K. Gamo and Y. Aoyagi, Appl. Surf. Sci. 82-3, 15. 193 (1994).
- 16. S.D. Park, C.K. Oh, J.W. Bae, G.Y. Yeom, T.W. Kim, J.I. Song and J.H. Jang, Appl. Phys. Lett. 89, 043109 (2006).
- 17. W.S. Lim, J.B. Park, J.Y. Park, B.J. Park and G.Y. Yeom, J. Nanosci. Nanotechnol. 9, 7379 (2009).
- D. Metzler, R.L. Bruce, S. Engelmann, E.A. Joseph and G.S. Oehrlein, J. Vac. Sci. 18. Technol. A 32, 020603 (2014).
- 19. K.S. Min, S.H. Kang, J.K. Kim, Y.I. Jhon, M.S. Jhon and G.Y. Yeom, Microelectron. Eng. 110, 457 (2013).
- 20. J.B. Park, W.S. Lim, B.J. Park, I.H. Park, Y.W. Kim and G.Y. Yeom, J. Phys. D Appl. Phys. 42, 055202 (2009).
- 21. J.B. Park, W.S. Lim, S.D. Park, Y.J. Park and G.Y. Yeom, J. Korean Phys. Soc. 54, 976 (2009).
- 22. Y.Y. Kim, W.S. Lim, J.B. Park and G.Y. Yeom, J. Electrochem. Soc. 158, D710 (2011).
- 23. W.S. Lim, Y.Y. Kim, H. Kim, S. Jang, N. Kwon, B.J. Park, J.-H. Ahn, I. Chung, B.H. Hong and G.Y. Yeom, Carbon 50, 429 (2012).
- E. Vogli, D. Metzler and G.S. Oehrlein, Appl. Phys. Lett. 102, 253105 (2013). 24.
- Y. Lee and S.M. George, ACS Nano 9, 2061 (2015). 25.
- Y. Lee, J.W. DuMont and S.M. George, Chem. Mater. 27, 3648 (2015). 26.
- 27. Y. Lee, J.W. DuMont and S.M. George, ECS J. Solid State Sci. Technol. 4, N5013 (2015).
- HSC Chemistry, Pori, Finland.: HSC Chemistry 5.1, Outokumpu Research Oy. 28.