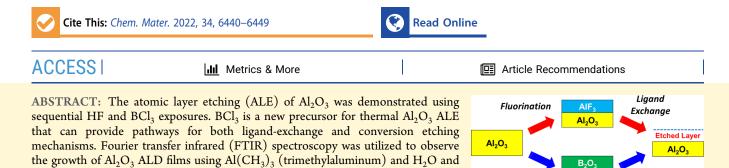


Article

Spontaneous

Etch


Al₂O₃

Conversion

Thermal Atomic Layer Etching of Al₂O₃ Using Sequential HF and BCl₃ **Exposures: Evidence for Combined Ligand-Exchange and Conversion Mechanisms**

Austin M. Cano, Jonathan L. Partridge, and Steven M. George*

the subsequent etching of the Al₂O₃ ALD films using HF and BCl₃. To confirm the

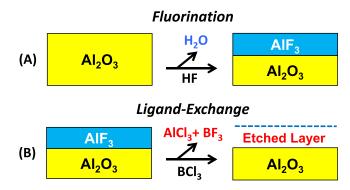
conversion reaction, FTIR difference spectra revealed that initial BCl₃ exposures on the Al₂O₃ ALD film converted the Al₂O₃ surface to a B₂O₃ layer. Surprisingly, larger BCl_3 exposures on the B_2O_3 layer could also etch the B_2O_3 layer. Quadrupole mass spectrometry (QMS) measurements revealed that BCl₃ produced ion intensities for AlCl₃⁺ from AlCl₃ during the conversion of the Al₂O₃ surface to a B_2O_3 layer. Concurrently, the BCl₃ also etched the converted B_2O_3 layer and ion intensities for $B_3O_3Cl_3^+$ were observed from $B_3O_3Cl_3$ boroxine rings. After the conversion of the Al_2O_3 surface to a B_2O_3 layer, the initial HF exposure then removed the B_2O_3 layer and fluorinated the underlying Al₂O₃ film. Following the initial BCl₃ and HF exposures, the FTIR difference spectra showed that Al₂O₃ ALE proceeded primarily by a reaction pathway where HF fluorinates the Al_2O_3 and then BCl_3 removes the surface fluoride layer by a ligand-exchange reaction. However, there was still evidence for some conversion of Al₂O₃ to a B₂O₃ layer during the subsequent BCl₃ exposures and then removal of the B_2O_3 layer by the HF exposures. Spectroscopic ellipsometry measurements determined the etch rates during thermal Al₂O₃ ALE during sequential HF and BCl₃ exposures. The etch rates were 0.03, 0.31, 0.65, and 0.92 Å/cycle at temperatures of 230, 255, 280, and 290 °C, respectively. QMS analysis also investigated the volatile etch products during the sequential HF and BCl₃ exposures on Al₂O₃ at 270 °C. During the BCl₃ exposures after the initial cycle, the QMS measurements observed ion intensities for BFCl₂⁺ and AlCl₂⁺. BFCl₂ was the major ligand-exchange product, and AlCl₃ was the main metal chloride etching product. In addition, small ion intensities for $B_3O_3Cl_3^+$ were also present from the conversion of Al_2O_3 to B_2O_3 and subsequent etching of B_2O_3 by BCl₃ to yield boroxine ring products. These results indicate that thermal Al₂O₃ ALE using sequential HF and BCl₃ exposures occurs by combined ligand-exchange and conversion mechanisms.

1. INTRODUCTION

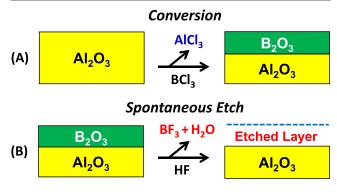
Atomic layer etching (ALE) is a technique that can remove Ångstrom-level amounts of material using sequential surface reactions.^{1,2} ALE can be performed using either plasma ALE or thermal ALE.¹⁻³ Both types of ALE utilize sequential surface modification and volatile release steps.¹⁻³ In plasma ALE, the volatile release is provided by energetic ions or neutral atoms through sputtering of the surface modified layer.² The sputtering can produce directional, anisotropic etching. In thermal ALE, the volatile release occurs during a chemical reaction between a gaseous reactant and the surface modified layer.^{1,3} This gas/surface reaction is not directional and thermal ALE leads to isotropic etching.

The thermal ALE of a variety of oxide and nitride materials can be performed using sequential fluorination and ligandexchange reactions.^{1,3,4} The surface is first fluorinated with a fluorination agent such as HF, SF₄, or XeF_2 .⁵⁻⁷ This fluorination changes the oxide or nitride surface to a surface fluoride layer. The surface fluoride layer can then be removed by various gaseous precursors through ligand-exchange reactions.^{1,8} Other mechanisms for thermal ALE can be based on conversion reactions where the initial surface is converted to a different material that has accessible pathways for etching.⁹⁻¹² Conversion mechanisms are important for the thermal ALE of Si-based materials and some metals and metal oxides.^{9,10,13,14} Other mechanisms for the thermal ALE of metals involve either oxidation or halogenation followed by ligand substitution/hydrogen transfer or ligand-addition reactions.15-18

April 12, 2022 Received: **Revised:** June 21, 2022 Published: July 11, 2022



The first reported thermal ALE process was Al_2O_3 ALE based on sequential HF and $Sn(acac)_2$ exposures.¹⁹ HF fluorinated the Al_2O_3 surface, and then $Sn(acac)_2$ reacted with the fluorinated Al_2O_3 surface by ligand exchange to produce volatile Al complexes.^{19,20} These volatile Al complexes were believed to be $Al(acac)_3$.^{19,20} Subsequent thermal Al_2O_3 ALE processes were defined using HF for fluorination and different reactants for ligand exchange. Two prominent ligandexchange precursors have been $Al(CH_3)_3$ and $AlCl(CH_3)_2$.^{7,21–31} Mass spectrometry studies have identified the main ligand-exchange products from the $Al(CH_3)_3$ reactant as $AlF(CH_3)_2$ with either itself or $Al(CH_3)_3$ in dimers or trimers.^{8,32} Thermal Al_2O_3 ALE has also been developed using SF₄ for fluorination and $Sn(acac)_2$ for ligand exchange.⁵ Other approaches for thermal Al_2O_3 ALE include NbF₅ for fluorination and CCl_4 for ligand exchange.³³ Hybrid plasma/ thermal Al_2O_3 ALE processes have also been defined using SF₆ plasma for fluorination and $Al(CH_3)_3$ for ligand exchange.³⁴


Although all the ligand-exchange precursors for thermal Al_2O_3 ALE discussed above may etch Al_2O_3 , they may not all etch other materials. These etching differences can lead to selectivity in thermal ALE.³⁵ One of the important goals for thermal ALE is to etch one material selectively in the presence of other different materials.³⁶ This goal is known as the "multiple color" challenge.³⁶ In the "multiple color" challenge, one etching process is desired to remove the "red" material and not the "blue" material. For another etching process, the objective is to remove the "blue" material and not the "red" material. The importance of thermal ALE chemistries based on different ligand-exchange precursors is to develop a portfolio of etching chemistries that can meet this "color challenge."

Boron trichloride (BCl₃) is a precursor that can undergo ligand exchange with metal fluorides to etch metal oxides and metal nitrides by the fluorination and ligand-exchange mechanism. BCl₃ has been used previously as a ligandexchange precursor during thermal AlN ALE using HF or XeF₂ for fluorination and BCl₃ for ligand exchange.³⁷ BCl₃ has also been employed as a ligand-exchange precursor during thermal TiO₂ ALE using WF₆ for fluorination and BCl₃ for ligand exchange.³⁸ In addition, BCl₃ can form B₂O₃ by converting the surface of a metal oxide to a B_2O_3 layer and the corresponding volatile metal chloride. This conversion can occur because B_2O_3 is a stable metal oxide and the conversion reaction can be thermochemically favorable. Following conversion to a B₂O₃ layer, the B_2O_3 can be spontaneously etched using HF exposures.^{10,39} Spontaneous etching is chemical vapor etching as defined by continuous volatilization of material resulting from precursor exposure.³⁹⁻⁴¹ BCl₃ was used previously during WO₃ thermal ALE for the conversion of the surface of WO₃ to a B_2O_3 layer.¹⁰ The B_2O_3 layer was then removed by spontaneous etching resulting from HF exposures.¹⁰

This study explored thermal Al_2O_3 ALE using sequential exposures of HF and BCl₃. The key question was the reaction mechanism. Will Al_2O_3 be etched by a fluorination and ligandexchange mechanism as illustrated in Figure 1? Or will Al_2O_3 be etched by conversion to B_2O_3 by BCl₃ followed by the spontaneous etching of B_2O_3 by HF as displayed in Figure 2? To investigate thermal Al_2O_3 ALE and discover the reaction mechanism, in situ Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface compositional changes during sequential HF and BCl₃ exposures. In situ quadrupole mass spectrometry (QMS) analysis was also utilized to monitor the volatile etch products formed during

Figure 1. Thermal Al_2O_3 ALE occurring by a fluorination and ligandexchange mechanism. (A) HF fluorinates Al_2O_3 to produce AlF_3 and gaseous H_2O . (B) BCl₃ then undergoes a ligand-exchange reaction with AlF₃ to remove the AlF₃ layer by producing gaseous AlCl₃ and BF₃.

Figure 2. Thermal Al_2O_3 ALE occurring by a conversion and spontaneous etch mechanism. (A) BCl₃ converts Al_2O_3 to B_2O_3 and gaseous AlCl₃. (B) HF then spontaneously etches the B_2O_3 layer by producing gaseous BF₃ and H₂O.

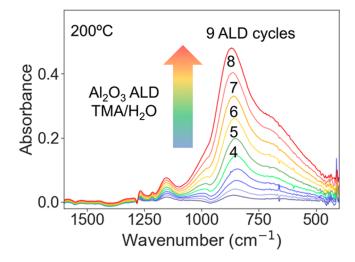
the sequential HF and BCl_3 exposures. In addition, in situ spectroscopic ellipsometry studies were performed to measure Al_2O_3 film thicknesses during the ALE cycles to determine Al_2O_3 etch rates.

2. EXPERIMENTAL METHODS

The in situ FTIR spectroscopy studies were performed in a warmwalled viscous flow reactor as described earlier.^{20,42} The reactor was heated by a custom ceramic heater (Watlow). The wall temperature was held at 150 °C during both the ALD and ALE experiments. To enhance the surface sensitivity, the FTIR experiments were performed in transmission mode through high surface area silicon nanoparticles.⁹ The silicon nanoparticles had an average diameter of 30–50 nanometers (US Research Nanomaterials). The use of nanoparticles to facilitate FTIR vibrational spectroscopy studies of surface processes has been discussed earlier.^{43,44}

For the transmission FTIR measurements, the silicon nanoparticles were pressed into a tungsten grid with dimensions of 3 cm by 1.7 cm with a thickness of 50 μ m and 100 gridlines per in.⁴³ The grid had tantalum foils spot-welded on each side of the grid to provide good electrical contact for resistive heating. To increase the temperature, the tungsten grid was resistively heated by a direct current power supply (HP 6268B). This current was regulated using a temperature controller (16B PID Love). To monitor the temperature, a type-K thermocouple was attached to the tungsten grid with an insulating epoxy (Ceramabond, Aremco 571).

The FTIR spectra were recorded using a Nicolet 6700 spectrometer with a KBr beam splitter. The infrared light was generated from a glow bar light source. The light was directed outside the spectrometer, entered the reactor through a KBr window, passed through the tungsten grid containing the silicon nanoparticles, exited the reactor through another KBr window, and was then focused onto an MCT-B detector. The two KBr windows were isolated from the reactor by gate valves. These gate valves were only opened when obtaining the FTIR spectra. The FTIR spectra were averaged for 100 scans with a resolution of 4 cm⁻¹. Background reference spectra were collected before each experiment.


The Al₂O₃ ALD was performed in the in situ FTIR reactor using trimethylaluminum (TMA) (Sigma-Aldrich, 99.5%) and reagentgrade water (H₂O, Sigma). The Al₂O₃ ALD was conducted at 200 °C and employed TMA exposures at 100 mTorr for 1 s and H₂O exposures at 70 mTorr for 2 s. The Al₂O₃ ALE studies were performed using HF-pyridine (70% HF, 30% pyridine, Millipore-Sigma) as the fluorination reactant together with BCl₃ (Synquest Chemicals, 99%). The HF-pyridine solution has an HF vapor pressure of 90–100 Torr with negligible pyridine vapor pressure at 700 mTorr for 1 s. These ALE investigations were performed to a stainless-steel bubbler that was gold-plated to prevent corrosion of the stainless-steel walls. A carrier gas of UHP N₂ flowed through the FTIR reactor at a flow rate of 100 sccm. This N₂ gas flow established a background N₂ pressure of 1.5 Torr in the reactor.

The in situ spectroscopic ellipsometry studies of ALD and ALE were conducted in a second reactor that has been described previously.¹⁰ This reactor is a warm-walled reactor with a heated sample holder that achieved temperatures up to 300 °C. The polarized light from the ellipsometer was incident on the sample surface at a 70° angle from the surface normal. A spectroscopic ellipsometer (M-2000, J. A. Woollam) was utilized for all ellipsometry experiments. Wavelengths from 240 to 1700 nm were used to obtain the film optical properties. The Ψ and Δ parameters were analyzed using a software package (CompleteEASE, J. A. Woollam). Silicon coupons with a native oxide were used as the substrates for Al₂O₃ ALD. A Cody Lorentz model was used to fit the data during Al₂O₃ ALD. The Al₂O₃ ALD films were grown using TMA and ozone from an ozone generator (Ozonia).

QMS was performed in a reactor that has been described previously.⁸ The reactants were exposed to Al_2O_3 and B_2O_3 powders (US Research Nanomaterials). The volatile etch products were formed in a N_2 background gas at a pressure of ~4.5 Torr in the sample holder. These gases expanded through an aperture into a low pressure differentially pumped region to form a molecular beam. The products in the beam then passed through a skimmer into a second differentially pumped region that housed the quadrupole mass spectrometer (Extrel, MAX-QMS Flanged Mounted System). An electron ionization energy of 70 eV was used for the QMS experiments. To minimize exposures to corrosive gases, the ionizer and analyzer were positioned perpendicular to the incoming molecular beam.

3. RESULTS AND DISCUSSION

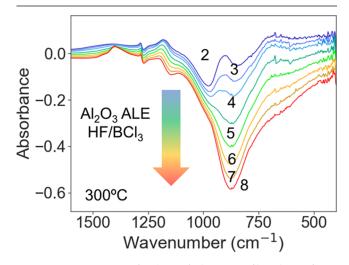

3.1. FTIR Studies of Al₂O₃ ALD, Al₂O₃ ALE, and Al₂O₃ **Conversion to B_2O_3.** Figure 3 shows the growth of an Al_2O_3 ALD film on the silicon nanoparticles as measured by FTIR spectroscopy. The Al₂O₃ ALD was conducted at 200 °C using sequential exposures of TMA and H₂O. One ALD cycle was defined by one TMA exposure followed by one H₂O exposure. The spectra in Figure 3 display the absorbance growth from the Al-O stretching mode at 850 cm^{-1.21,43} The absorbance for this vibrational mode increases with increasing number of ALD cycles during the nine ALD cycles. The spectra were all recorded after the H₂O exposures. The additional small absorption peak at 1130 cm⁻¹ is assigned to a Si-O-Al vibrational mode. The Si-O-Al species is formed during the initial stages of Al₂O₃ ALD at the interface with the native oxide film on the silicon nanoparticles. After the TMA exposures (not shown), the absorption peak observed at

Figure 3. FTIR spectra of growth of Al₂O₃ ALD films on silicon nanoparticles during first 9 Al₂O₃ ALD cycles using TMA and H₂O as reactants at 200 °C. Spectra show progressive absorbance gain of Al–O vibrations. Spectra were recorded after H₂O exposures.

1215 cm⁻¹ was assigned to Al–CH₃ deformation modes from Al–CH₃ species.^{7,22} In addition, the absorption peak monitored at 2900 cm⁻¹ was attributed to C–H stretching vibrations from surface Al–CH₃ species.^{7,22}

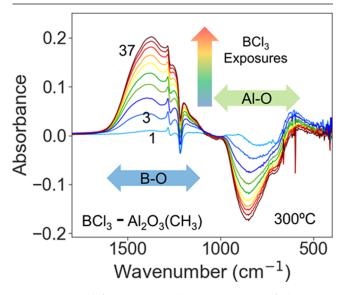

Figure 4 shows the etching of the Al_2O_3 ALD film by thermal Al_2O_3 ALE using sequential exposures of HF and BCl₃

Figure 4. FTIR spectra of etching of Al_2O_3 ALD films during first 8 Al_2O_3 ALE cycles using HF and BCl₃ as reactants at 300 °C. Spectra show progressive absorbance loss of Al–O vibrations. Spectra were recorded after BCl₃ exposures.

at 300 °C. Figure 4 displays difference spectra referenced to the initial Al₂O₃ ALD film. There is clear evidence of Al₂O₃ etching because the absorbance from the Al–O vibrational band at 850 cm⁻¹ decreases progressively during the 8 Al₂O₃ ALE cycles. The spectra were all recorded after the BCl₃ exposures. The difference spectra in Figure 4 also display a small increase in absorbance at 1370 cm⁻¹ attributed to a B–O vibrational mode.³⁹ The appearance of this B–O vibrational mode may indicate that BCl₃ can convert Al₂O₃ to B₂O₃ by the reaction Al₂O₃ + 2BCl₃(g) \rightarrow B₂O₃ + 2AlCl₃(g), as shown in Figure 2.^{10,11} Thermochemical calculations yield a small positive standard free energy change of $\Delta G^0 = +2.3$ kcal/mol for this reaction at 300 °C.⁴⁷ Although ΔG^0 is slightly positive, this conversion could be feasible under the nonstandard and nonequilibrium conditions for this surface reaction.

To explore the possibility that BCl_3 can convert Al_2O_3 to B_2O_3 , difference spectra were recorded during successive BCl_3 exposures on an Al_2O_3 ALD film. Figure 5 shows the difference

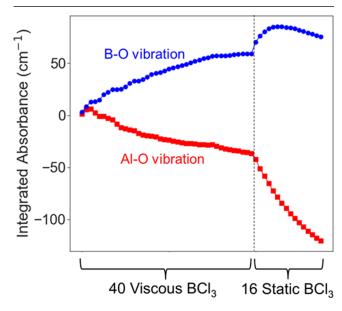


Figure 5. FTIR difference spectra showing conversion of Al_2O_3 ALD films to B_2O_3 using 37 BCl₃ exposures at 300 °C. Spectra display absorbance loss of Al–O vibrations for Al_2O_3 and absorbance gain of B–O vibrations for B_2O_3 . Difference spectra are referenced to a methyl-terminated Al_2O_3 ALD film after TMA exposure.

spectra corresponding to 37 BCl₃ sequential exposures on the Al₂O₃ ALD film. The BCl₃ exposures were at 500 mTorr for 1 s. An Al–CH₃ methyl-terminated Al₂O₃ surface was employed to remove the possible reaction of BCl₃ with Al–OH surface species that would also produce B–O stretching vibrations. These difference spectra are all referenced to the spectrum of the initial Al₂O₃ ALD film after the last TMA exposure. Figure 5 shows a loss of absorbance for the Al–O vibrations at 860 cm⁻¹ with an increasing number of BCl₃ exposures. There is also a gain of absorbance for B–O vibrations at 1370 cm⁻¹ with an increasing number of BCl₃ exposures.³⁹ This absorbance loss for Al–O vibrations from Al₂O₃ and absorbance gain for B–O vibrations from B₂O₃ is clear evidence for the conversion reaction.

The difference spectra in Figure 5 also show evidence for the self-limiting nature of the conversion of Al_2O_3 to B_2O_3 . The progressive absorbance loss for Al–O vibrations from Al_2O_3 and absorbance gain for B–O vibrations from B_2O_3 becomes smaller with each successive BCl₃ exposure. This progressive reduction in the absorbance changes is attributed to the B_2O_3 conversion layer on the Al_2O_3 surface that acts as a diffusion barrier for Al_2O_3 conversion.⁴⁸ Additional BCl₃ exposures must diffuse through the B_2O_3 layer to reach the underlying Al_2O_3 substrate. In addition, Figure 5 displays a negative absorption feature at 1215 cm⁻¹ that is assigned to the $Al-CH_3$ deformation mode. The initial Al_2O_3 ALD film was methyl-terminated after the TMA exposure. The absorbance from this $Al-CH_3$ deformation mode is lost during the BCl₃ conversion reaction.

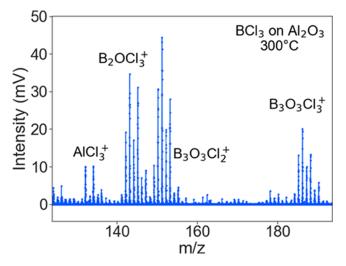
To visualize the conversion of Al_2O_3 to B_2O_3 , the integrated absorbance for the Al–O and B–O vibrations versus BCl_3 exposures is displayed in Figure 6. The integrated absorbance for the Al-O vibrations was determined from 400 to 1050

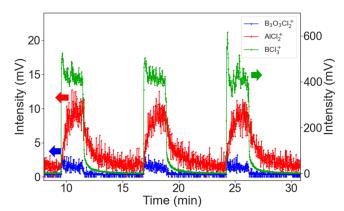
Figure 6. Integrated absorbance for B–O vibrations from 1050 to 1800 cm⁻¹ and Al–O vibrations from 400 to 1050 cm⁻¹ from difference spectra during 40 viscous BCl_3 exposures and 16 static BCl_3 exposures.

cm⁻¹. The integrated absorbance for the B–O vibrations was determined from 1050 to 1800 cm⁻¹. The first 40 BCl₃ exposures were conducted using viscous flow conditions with a BCl₃ pressure at 500 mTorr for 1 s. The subsequent 16 BCl₃ exposures were static exposures at a pressure at 1 Torr for 5 s. The first 40 BCl₃ exposures display an integrated absorbance decrease for the Al–O vibrations and an integrated absorbance increase for the B–O vibrations. The conversion slows after a larger number of BCl₃ exposures as the B₂O₃ conversion layer progressively acts as a diffusion barrier on Al₂O₃.

After the first 40 BCl₃ exposures, 16 additional BCl₃ exposures were conducted at a higher pressure of 1 Torr for 5 s. This change in the BCl₃ exposure conditions increased the conversion of Al₂O₃ to B₂O₃. Figure 6 shows that the decrease of the integrated absorbance for the Al–O vibrations is larger with each static BCl₃ exposure compared with the previous 40 BCl₃ exposures. In contrast, the increase of the integrated absorbance for the B–O vibrations was also larger for the first few static BCl₃ exposures. However, the integrated absorbance for the B–O vibrations then begins to decrease with progressive static BCl₃ exposures may be able to spontaneously etch the B₂O₃ layer.

3.2. Mass Spectrometry Studies of BCl₃ Exposure on Al₂O₃ and B₂O₃. The initial exposures of BCl₃ on Al₂O₃ and B₂O₃ were also examined using QMS analysis. Figure 7 shows the mass spectrum during a BCl₃ exposure on Al₂O₃ powder at 300 °C. The BCl₃ exposures were conducted at 2 Torr above the N₂ background pressure for 120 s. There was a 300 s purge between successive BCl₃ exposures. The peaks at m/z values from 132 to 134 are characteristic of AlCl₃⁺. The intensity of the different masses in this region are consistent with the natural abundances of the ³⁵Cl and ³⁷Cl isotopes. AlCl₃ is the expected Al volatile product resulting from the conversion of Al₂O₃ to B₂O₃ by the reaction: Al₂O₃ + 2BCl₃(g) \rightarrow B₂O₃ +




Figure 7. Mass spectrum of volatile products from BCl_3 exposure on Al_2O_3 powder at 300 °C. Ion signals are attributed to $AlCl_3$ and $B_3O_3Cl_3$ (trichloroboroxin) resulting from conversion of Al_2O_3 to B_2O_3 and BCl_3 etching of B_2O_3 to produce $B_3O_3Cl_3$.

 $2AlCl_3(g)$. These QMS results corroborate the conversion of Al_2O_3 to B_2O_3 observed by the FTIR studies in Figure 5.

Figure 7 also reveals a cluster of peaks located at m/z values from 184 to 190. These peaks are consistent with the ion intensities of $B_3O_3Cl_3^+$ resulting from the ionization of trichloroboroxin. Trichloroboroxin is a chlorinated boroxine ring molecule. The various peaks represent the masses expected from the national abundance of the ³⁵Cl and ³⁷Cl isotopes and the ¹⁰B and ¹¹B isotopes. In addition, Figure 7 also has a cluster of masses at m/z values from 149 to 155 attributed to $B_3O_3Cl_2^+$. This ion is a fragment of the $B_3O_3Cl_3^+$ parent ion. There is also another cluster of masses at m/zvalues from 141 to 147 that is assigned to $B_2OCl_3^+$.

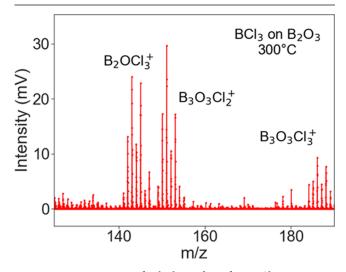

The presence of trichloroboroxin in the mass spectrum during the BCl₃ exposure on Al₂O₃ powder indicates that BCl₃ can proceed to etch B₂O₃ following the conversion of Al₂O₃ to B₂O₃. The spontaneous etching of B₂O₃ by BCl₃ can occur by the reaction B₂O₃ + BCl₃(g) \rightarrow B₃O₃Cl₃(g). Thermochemical calculations for this reaction at 300 °C yield a small positive standard free energy change of $\Delta G^0 = +5.3$ kcal/mol.⁴⁷ This reaction should not be spontaneous under equilibrium conditions at standard state. However, this reaction may be possible at the nonstandard and nonequilibrium conditions for this surface reaction.

Figure 8 displays the intensities of the $B_3O_3Cl_2^+$, $AlCl_2^+$, and BCl₃⁺ ion signals during three sequential BCl₃ exposures on the Al_2O_3 powder. $AlCl_2^+$ is the dominant ion signal in the mass spectrum of $AlCl_3^{49}$ The $AlCl_2^+$ and $B_3O_3Cl_2^+$ ion signals are correlated directly with the BCl₃⁺ ion signal. This correlation argues that BCl₃ converts Al₂O₃ to B₂O₃ and volatile AlCl₃. In addition, BCl₃ is able to etch B₂O₃ and produce volatile B₃O₃Cl₃. The production of AlCl₃ and B₃O₃Cl₃ occurs consistently with each BCl₃ exposure in Figure 8. There is no sign of any decrease of the $AlCl_2^+$ and $B_3O_3Cl_2^+$ ion signals with successive BCl₂ exposures. This behavior argues that the BCl₃ etching of B₂O₃ is spontaneous. In addition, the removal of B_2O_3 by BCl_3 allows BCl_3 to continue to convert Al_2O_3 to more B₂O₃. These results indicate that BCl₃ should be able to etch Al₂O₃ continuously by this conversion and spontaneous etching mechanism.

Figure 8. Time-dependent ion signals for $B_3O_3Cl_2^+$, $AlCl_2^+$, and BCl_3^+ for three successive BCl₃ exposures on Al_2O_3 powder at 300 °C. $B_3O_3Cl_2^+$, $AlCl_2^+$, and BCl_3^+ ion signals are monitored at m/z values of 186, 97, and 116, respectively.

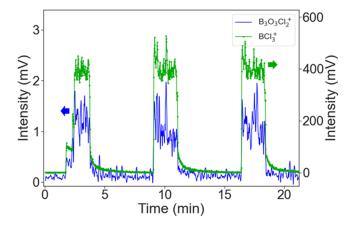

To confirm that BCl_3 can spontaneously etch B_2O_3 , additional QMS experiments were performed using BCl_3 exposures on B_2O_3 powder. Figure 9 displays QMS results

Figure 9. Mass spectrum of volatile products from BCl_3 exposure on B_2O_3 powder at 300 °C. Ion signals are attributed to $B_3O_3Cl_3$ (trichloroboroxin) resulting from BCl_3 etching of B_2O_3 .

for BCl₃ exposures on B₂O₃ powder at 300 °C. The results in Figure 9 are nearly identical to the results for BCl₃ exposure on Al₂O₃ powder shown in Figure 7. The difference is the absence of AlCl₃⁺ ion signals in Figure 9. There is no conversion of Al₂O₃ to B₂O₃ occurring when BCl₃ exposures are incident on B₂O₃ powder. Consequently, there are no AlCl₃ products produced that could yield AlCl₃⁺ ion signals. Similar to the results in Figure 7, the results in Figure 9 are consistent with the spontaneous etching reaction: B₂O₃ + BCl₃(g) \rightarrow B₃O₃Cl₃(g).

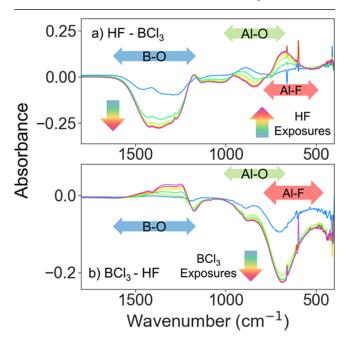

Figure 10 shows the $B_3O_3Cl_2^+$ and BCl_3^+ ion signals during sequential BCl₃ exposures on the B_2O_3 powder. The $B_3O_3Cl_2^+$ ion signals are coincident with the BCl₃⁺ ion signal. This coincidence demonstrates that BCl₃ can etch B_2O_3 and produce trichloroboroxin as the etch product. There is no decrease of $B_3O_3Cl_2^+$ ion signals with an increasing number of BCl₃ exposures. This behavior argues that BCl₃ can spontaneously etch B_2O_3 and produce $B_3O_3Cl_3$ with nothing

Figure 10. Time-dependent ion signals for $B_3O_3Cl_2^+$ and BCl_3^+ for three successive BCl_3 exposures on B_2O_3 powder at 300 °C. $B_3O_3Cl_2^+$ and BCl_3^+ ion signals are monitored at m/z values of 186 and 116, respectively.

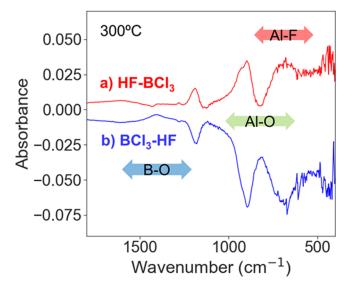
building up on the surface that could decrease the spontaneous etching.

Figure 11. (a) FTIR difference spectra during 20 HF exposures at 300 °C immediately following the BCl₃ exposures on Al_2O_3 shown in Figure 5. (b) FTIR difference spectra during 20 BCl₃ exposures at 300 °C immediately following the HF exposures shown in (a).

the difference spectra for the subsequent HF and BCl₃ exposures after the BCl₃ exposures on the Al₂O₃ ALD films that were presented earlier in Figure 5. The results in Figure 5 for the BCl₃ exposures displayed an absorbance loss at 860 cm⁻¹ corresponding to the Al–O vibrations and an absorbance gain at 1370 cm⁻¹ corresponding to the B–O vibrations. These results were consistent with the conversion of Al₂O₃ to B₂O₃. On the subsequent HF exposures at 200 mTorr for 1 s, the difference spectra in Figure 11a display a large decrease in absorbance from 1100–1600 cm⁻¹. This absorbance loss is consistent with the removal of absorbance from the B–O

vibrations in B_2O_3 formed by the previous BCl_3 exposure on Al_2O_3 .

These results indicate that HF can spontaneously etch B_2O_3 by the reaction $B_2O_3 + 6HF(g) \rightarrow 2BF_3(g) + 3H_2O(g)$, as illustrated in Figure 2. This spontaneous etching of B_2O_3 by HF has been investigated by earlier studies.^{10,39} Thermochemical calculations for this reaction at 300 °C yield a negative standard free energy change of $\Delta G^0 = -16.4$ kcal/mol.⁴⁷ This negative standard free energy change predicts a spontaneous reaction under equilibrium conditions at the standard state. In addition, this negative standard free energy change also suggests that the reaction would likely be spontaneous under the nonstandard and nonequilibrium conditions for this surface reaction.


In addition to removing B_2O_3 , the HF exposure is also able to fluorinate Al_2O_3 . Figure 11a shows an increase in absorbance at 680 cm⁻¹. This absorbance is attributed to the Al–F stretching vibrations in AlF₃. This absorbance feature for the Al–F stretching vibration has been observed earlier in studies of Al_2O_3 fluorination.²¹ In addition, this Al–F stretching vibration has been monitored during Al_2O_3 ALE using fluorination and ligand-exchange reactions.^{7,21}

The difference spectra for the next 20 BCl₃ exposures at 500 mTorr for 1 s after the previous HF exposures are shown in Figure 11b. These difference spectra are not identical to difference spectra for the BCl₃ exposures on the initial Al₂O₃ ALD film shown in Figure 5. The absorbance gain for the B–O vibrations at 1370 cm⁻¹ in Figure 11b is much smaller than the absorbance gain for the B–O vibrations in Figure 5 for the initial BCl₃ exposures. There is also a pronounced absorbance loss is red-shifted relative to the absorbance loss at 860 cm⁻¹ in Figure 5.

This absorbance loss at 690 cm⁻¹ is attributed to the reduction of Al–F stretching vibrations resulting from the ligand-exchange reaction of BCl₃ with AlF₃. The ligand-exchange reaction volatilizes the AlF₃ layer and can be expressed as AlF₃ + 3BCl₃(g) \rightarrow AlCl₃(g) + 3BFCl₂(g) if each BCl₃ reactant undergoes only one ligand-exchange reaction. The reaction could also be expressed as AlF₃ + BCl₃(g) \rightarrow AlCl₃(g) \rightarrow AlCl₃(g) \rightarrow AlCl₃(g) \rightarrow AlCl₃(g) \rightarrow AlCl₃(g) \rightarrow Blcl₃(g) \rightarrow

The difference spectra evolved during the subsequent HF and BCl₃ exposures during Al₂O₃ ALE. Figure 12 shows the difference spectra after HF and BCl₃ exposures in the steady state regime of Al₂O₃ ALE. The difference spectra are referenced to the spectra after the previous exposure. In Figure 12a for the difference spectrum corresponding to HF-BCl₃, there are absorbance increases at 690 and 900 cm⁻¹ resulting from the HF exposure. These absorbance increases are consistent with formation of more AlF₃ and Al–F stretching vibrations by the fluorination of Al₂O₃ to AlF₃ as shown in Figure 1.^{7,21} There is also a slight reduction in absorbance from 1100 to 1600 cm⁻¹ in the region corresponding to the B–O vibrations in B₂O₃. The HF exposure is able to remove the B₂O₃ formed by the previous BCl₃ exposure as displayed in Figure 2.

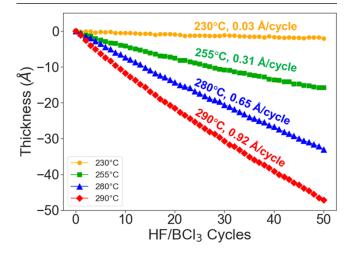

In Figure 12b for the difference spectrum corresponding to BCl_3 -HF, there are absorbance decreases at 690 and 900 cm⁻¹

Figure 12. Difference spectra during steady state thermal Al_2O_3 ALE at 300 °C. (a) FTIR difference spectra after HF exposure referenced to previous BCl₃ exposure and (b) FTIR difference spectra after BCl₃ exposure referenced to previous HF exposure.

resulting from the BCl₃ exposure. These are the same Al–F vibrational features that were produced during the HF exposure. The BCl₃ exposure is able to remove these Al–F vibrational features by ligand-exchange reactions as illustrated in Figure 1. There is also a slight increase in absorbance from 1100 to 1600 cm⁻¹ in the region corresponding to the B–O vibrations in B₂O₃. The BCl₃ exposure is able to convert more Al₂O₃ to B₂O₃ after removing the AlF₃ layer on the Al₂O₃ surface.

3.4. Spectroscopic Ellipsometry Measurements of Etch Rates and Mass Spectrometry Studies in Steady State. The sequential exposures of HF and BCl₃ lead to thermal Al_2O_3 ALE. The etch rates of Al_2O_3 were obtained using spectroscopic ellipsometry measurements. Figure 13 shows the thickness measurements during Al_2O_3 ALE using HF and BCl₃ at a variety of temperatures. The HF exposure was 100 mTorr for 1 s, and the BCl₃ exposure was at 500

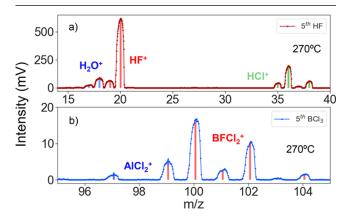


Figure 13. Spectroscopic ellipsometry measurments of Al_2O_3 thickness loss during Al_2O_3 ALE using HF and BCl₃ as reactants at variety of temperatures. Etch rates were 0.03, 0.31, 0.65, and 0.92 Å/ cycle at 230, 255, 280, and 290 °C, respectively.

mTorr for 1 s. There was a purge time of 60 s between each reactant exposure. The etch rates were 0.03, 0.31, 0.65, and 0.92 Å/cycle at temperatures of 230, 255, 280, and 290 °C, respectively. The uncertainties of these etch rates were \pm 0.004, 0.005, 0.006, and 0.006 Å/cycle, respectively. These uncertainties were determined by the error in the linear fits.

Progressively larger etch rates at higher temperatures have been observed previously for thermal ALE systems.^{7,20,27} The larger etch rates at higher temperatures could be attributed to either greater fluorination or more complete ligand-exchange reactions at higher temperatures.^{7,27} In addition, the temperature-dependent etch rates could result from more efficient conversion of Al₂O₃ to B₂O₃ at higher temperatures. Understanding the temperature dependence resulting from the fluorination and ligand-exchange mechanism or the conversion and spontaneous etching mechanism would require detailed QMS analysis of the reaction products at different temperatures.

QMS analysis was performed during the HF and BCl₃ exposures in the steady state regime during Al_2O_3 ALE at 270 °C. The mass spectrum during the HF exposure for the 5th Al_2O_3 ALE cycle is shown in Figure 14a. The HF exposure

Figure 14. Mass spectrum during the fifth thermal Al₂O₃ ALE cycle on Al₂O₃ powder. (a) Mass spectrum during the fifth HF exposure observing H_2O^+ , HF⁺, and HCl⁺ ion signals. (b) Mass spectrum during the fifth BCl₃ exposure observing AlCl₂⁺ and BFCl₂⁺ ion signals.

was 2 Torr over the N₂ background pressure for 120 s. The QMS analysis detects a number of species including H₂O, HF, and HCl. HF is expected because HF is the reactant. H₂O is also anticipated because H₂O is a product of the fluorination reaction: Al₂O₃ + HF(g) \rightarrow 2AlF₃ + 3H₂O(g) as shown in Figure 1. Thermochemical calculations for this reaction at 270 °C yield a large negative standard free energy change of $\Delta G^0 = -51.9 \text{ kcal/mol.}^{47}$ The HCl is attributed to residual chlorine left on the Al₂O₃ surface after the BCl₃ exposure. HCl could be formed by HF exchange with surface chlorine by the reaction: Al-Cl + HF(g) \rightarrow Al-F + HCl(g).

There were also no boron-containing species observed by the QMS analysis during the HF exposures. Earlier QMS studies observed BF₃, BF₂OH, and various boroxine ring molecules, such as $B_3O_3F_3$ and $B_3O_3F_2(OH)$, during HF exposures on B_2O_3 powder.³⁹ These boron-containing species may be below the detection limit for the QMS analysis. In addition, the lack of boron-containing species suggests that the primary mechanism for Al_2O_3 ALE using HF and BCl₃ in steady state is by HF fluorination of Al_2O_3 to AlF₃ and then ligand-exchange reactions between BCl_3 and AlF_3 to form volatile BF_3 and $AlCl_3$ products.

To explore the volatile products during the BCl₃ reaction, Figure 14b shows the QMS analysis for m/z values from 95 to 107 during the BCl₃ exposure for the 5th Al₂O₃ ALE cycle on the Al₂O₃ powder at 270 °C. The BCl₃ exposure was 2 Torr over the N₂ background pressure for 120 s. The QMS measurements observe ion intensities for AlCl₂⁺ and BFCl₂⁺. AlCl₂⁺ at an m/z value of 97 is the most intense cracking fragment of the AlCl₃ parent.⁴⁹ AlCl₃ is expected from the ligand-exchange reaction AlF₃ + 3BCl₃(g) \rightarrow AlCl₃(g) + 3BFCl₂(g), as displayed in Figure 1. AlCl₃ is also possible from the conversion reaction Al₂O₃ + 2BCl₃(g) \rightarrow B₂O₃ + 2AlCl₃(g), as shown in Figure 2.

An ion signal is also detected for $BFCl_2^+$ with the largest signal at an m/z value of 100 in Figure 14b. $BFCl_2$ would be produced by a single ligand exchange between BCl_3 and the AlF₃ surface. Small peaks that were consistent with BF_2Cl were also observed in the QMS spectrum (not shown). There was no evidence for BF_3 that would indicate three ligand-exchange reactions between BCl_3 and the AlF₃ surface. In addition, there were small amounts of $B_3O_3Cl_3$ present in the QMS spectrum with a low intensity of ~0.5 mV during BCl_3 exposures. The removal of B_2O_3 by BCl_3 to yield trichloroboroxin may have reduced the quantity of boron-containing species that could have otherwise been observed during the spontaneous etching of B_2O_3 by the HF exposures.

4. CONCLUSIONS

BCl₃ is a new reactant for thermal Al₂O₃ ALE. BCl₃ has the potential to enable thermal ALE through either ligandexchange or conversion reaction mechanisms. FTIR spectroscopy and QMS analysis revealed that initial BCl₃ exposures on Al₂O₃ converted the Al₂O₃ surface to a B₂O₃ layer. The FTIR studies observed the absorbance loss of Al–O vibrations from Al₂O₃ and the absorbance gain of B–O vibrations from B₂O₃ with BCl₃ exposures. The QMS investigations also observed ion intensities for AlCl₃⁺ from AlCl₃ during the conversion of Al₂O₃ to B₂O₃.

Larger BCl₃ exposures on the converted B_2O_3 layer on Al_2O_3 were also observed to etch the B_2O_3 layer. The FTIR studies observed the absorbance loss of B–O vibrations from B_2O_3 for larger BCl₃ exposures. The QMS investigations also monitored ion intensities for $B_3O_3Cl_3^+$ from trichloroboroxin during BCl₃ exposures. BCl₃ plays the unique role of first producing B_2O_3 from the conversion of Al_2O_3 . Subsequently, the BCl₃ can etch the B_2O_3 conversion product. Additional QMS studies confirmed that BCl₃ could etch initial B_2O_3 substrates through the formation of $B_3O_3Cl_3$ boroxine ring products.

During the HF and BCl₃ exposures for thermal Al₂O₃ ALE in steady state, the FTIR difference spectra indicated that Al₂O₃ ALE proceeded mostly by a reaction pathway where HF fluorinates the Al₂O₃ to AlF₃ and then BCl₃ removes the AlF₃ layer by a ligand-exchange reaction. There was also evidence for some conversion of Al₂O₃ to a B₂O₃ layer during the BCl₃ exposures and then removal of the B₂O₃ layer by the HF exposures. In support of the ligand-exchange mechanism, the QMS measurements observed ion intensities for BFCl₂⁺ and AlCl₂⁺ during the BCl₃ exposures in steady state. Small ion intensities for B₃O₃Cl₃⁺ were also detected that were consistent with some conversion of Al₂O₃ to B₂O₃ and the subsequent etching of B₂O₃ by BCl₃. The QMS measurements also monitored ion intensities for $\mathrm{H_2O^+}$ and $\mathrm{HCl^+}$ during the HF exposures.

Spectroscopic ellipsometry (SE) measurements also measured the etch rates during thermal Al_2O_3 ALE. The etch rates increased progressively at higher temperatures. The etch rates were 0.03 Å/cycle at 230 °C, 0.31 Å/cycle at 255 °C, 0.65 Å/ cycle at 280 °C, and 0.92 Å/cycle at 290 °C. Thermal Al_2O_3 ALE using sequential HF and BCl₃ exposures occurs by a combination of ligand-exchange and conversion mechanisms and provides another pathway for thermal Al_2O_3 ALE. This new pathway should be useful to define area selective etching procedures for Al_2O_3 and other materials.

AUTHOR INFORMATION

Corresponding Author

Steven M. George – Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States;
orcid.org/0000-0003-0253-9184;
Email: Steven.George@Colorado.edu

Authors

 Austin M. Cano – Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
 Jonathan L. Partridge – Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States;
 orcid.org/0000-0002-0071-9854

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chemmater.2c01120

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The FTIR and SE studies were funded by Intel through a member specific research grant from the Semiconductor Research Corporation (SRC). Funding for the QMS reactor and the QMS investigations was provided by Lam Research.

REFERENCES

(1) George, S. M. Mechanisms of Thermal Atomic Layer Etching. *Acc. Chem. Res.* 2020, *53*, 1151–1160.

(2) Kanarik, K. J.; Lill, T.; Hudson, E. A.; Sriraman, S.; Tan, S.; Marks, J.; Vahedi, V.; Gottscho, R. A. Overview of Atomic Layer Etching in the Semiconductor Industry. *J. Vac. Sci. Technol., A* **2015**, 33, No. 020802.

(3) Fischer, A.; Routzahn, A.; George, S. M.; Lill, T. Thermal Atomic Layer Etching: A Review. J. Vac. Sci. Technol., A 2021, 39, No. 030801.

(4) George, S. M.; Lee, Y. Prospects for Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions. *ACS Nano* **2016**, *10*, 4889–4894.

(5) Gertsch, J. C.; Cano, A. M.; Bright, V. M.; George, S. M. SF₄ as the Fluorination Reactant for Al_2O_3 and VO_2 Thermal Atomic Layer Etching. *Chem. Mater.* **2019**, *31*, 3624–3635.

(6) Johnson, N. R.; Hite, J. K.; Mastro, M. A.; Eddy, C. R.; George, S. M. Thermal Atomic Layer Etching of Crystalline GaN Using Sequential Exposures of XeF_2 and BCl_3 . *Appl. Phys. Lett.* **2019**, *114*, 243103.

(7) Lee, Y.; DuMont, J. W.; George, S. M. Trimethylaluminum as the Metal Precursor for the Atomic Layer Etching of Al_2O_3 Using Sequential Self-Limiting Thermal Reactions. *Chem. Mater.* **2016**, *28*, 2994–3003.

(8) Lii-Rosales, A.; Cavanagh, A. S.; Fischer, A.; Lill, T.; George, S. M. Spontaneous Etching of Metal Fluorides Using Ligand-Exchange

Reactions: Landscape Revealed by Mass Spectrometry. *Chem. Mater.* **2021**, *33*, 7719–7730.

(9) DuMont, J. W.; Marquardt, A. E.; Cano, A. M.; George, S. M. Thermal Atomic Layer Etching of SiO_2 by a "Conversion-Etch" Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride. *ACS Appl. Mater. Interfaces* **2017**, *9*, 10296–10307.

(10) Johnson, N. R.; George, S. M. WO₃ and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms. *ACS Appl. Mater. Interfaces* **2017**, *9*, 34435–34447.

(11) Myers, T. J.; Cano, A. M.; Lancaster, D. K.; Clancey, J. W.; George, S. M. Conversion Reactions in Atomic Layer Processing with Emphasis on ZnO Conversion to Al_2O_3 by Trimethylaluminum. *J. Vac. Sci. Technol., A* **2021**, *39*, No. 021001.

(12) Zywotko, D. R.; George, S. M. Thermal Atomic Layer Etching of ZnO by a "Conversion-Etch" Mechanism Using Sequential Exposures of Hydrogen Fluoride and Trimethylaluminum. *Chem. Mater.* 2017, 29, 1183–1191.

(13) Abdulagatov, A. I.; George, S. M. Thermal Atomic Layer Etching of Silicon Using O_2 , HF, and Al(CH₃)₃ as the Reactants. *Chem. Mater.* **2018**, *30*, 8465–8475.

(14) Abdulagatov, A. I.; George, S. M. Thermal Atomic Layer Etching of Silicon Nitride Using an Oxidation and "Conversion Etch" Mechanism. *J. Vac. Sci. Technol., A* **2020**, *38*, No. 022607.

(15) Murdzek, J. A.; Lii-Rosales, A.; George, S. M. Thermal Atomic Layer Etching of Nickel Using Sequential Chlorination and Ligand-Addition Reactions. *Chem. Mater.* **2021**, *33*, 9174–9183.

(16) Mohimi, E.; Chu, X. Q. I.; Trinh, B. B.; Babar, S.; Girolami, G. S.; Abelson, J. R. Thermal Atomic Layer Etching of Copper by Sequential Steps Involving Oxidation and Exposure to Hexafluor-oacetylacetone. *ECS J. Solid State Sci. Technol.* **2018**, *7*, P491–P495.

(17) Konh, M.; He, C.; Lin, X.; Guo, X. Y.; Pallem, V.; Opila, R. L.; Teplyakov, A. V.; Wang, Z. J.; Yuan, B. Molecular Mechanisms of Atomic Layer Etching of Cobalt with Sequential Exposure to Molecular Chlorine and Diketones. *J. Vac. Sci. Technol., A* **2019**, 37, No. 021004.

(18) Lin, X.; Chen, M. X.; Janotti, A.; Opila, R. In situ XPS Study on Atomic Layer Etching of Fe Thin Film Using Cl_2 and Acetylacetone. *J. Vac. Sci. Technol., A* **2018**, *36*, No. 051401.

(19) Lee, Y.; George, S. M. Atomic Layer Etching of Al_2O_3 Using Sequential, Self-Limiting Thermal Reactions with $Sn(acac)_2$ and Hydrogen Fluoride. *ACS Nano* **2015**, *9*, 2061–2070.

(20) Lee, Y.; DuMont, J. W.; George, S. M. Mechanism of Thermal Al_2O_3 Atomic Layer Etching Using Sequential Reactions with $Sn(acac)_2$ and HF. *Chem. Mater.* **2015**, *27*, 3648–3657.

(21) Cano, A. M.; Marquardt, A. E.; DuMont, J. W.; George, S. M. Effect of HF Pressure on Thermal Al₂O₃ Atomic Layer Etch Rates and Al₂O₃ Fluorination. *J. Phys. Chem. C* **2019**, *123*, 10346–10355.

(22) DuMont, J. W.; George, S. M. Competition Between Al_2O_3 Atomic Layer Etching and AlF_3 Atomic Layer Deposition Using Sequential Exposures of Trimethylaluminum and Hydrogen Fluoride. *J. Chem. Phys.* **2017**, *146*, No. 052819.

(23) Fischer, A.; Routzahn, A.; Lee, Y.; Lill, T.; George, S. M. Thermal Etching of AlF_3 and Thermal Atomic Layer Etching of Al_2O_3 . J. Vac. Sci. Technol., A **2020**, 38, No. 022603.

(24) Gertsch, J. C.; Sortino, E.; Bright, V. M.; George, S. M. Deposit and Etchback Approach for Ultrathin Al₂O₃ Films with Low Pinhole Density Using Atomic Layer Deposition and Atomic Layer Etching. *J. Vac. Sci. Technol., A* **2021**, *39*, No. 062602.

(25) Hennessy, J.; Jewell, A. D.; Jones, J. P.; Crouch, G. M.; Nikzad, S. Aluminum Precursor Interactions with Alkali Compounds in Thermal Atomic Layer Etching and Deposition Processes. *ACS Appl. Mater. Interfaces* **2021**, *13*, 4723–4730.

(26) Hennessy, J.; Moore, C. S.; Balasubramanian, K.; Jewell, A. D.; France, K.; Nikzad, S. Enhanced Atomic Layer Etching of Native Aluminum Oxide for Ultraviolet Optical Applications. *J. Vac. Sci. Technol., A* 2017, 35, No. 041512. (27) Lee, Y.; George, S. M. Thermal Atomic Layer Etching of Al_2O_3 , HfO_2 , and ZrO_2 Using Sequential Hydrogen Fluoride and Dimethylaluminum Chloride Exposures. J. Phys. Chem. C 2019, 123, 18455–18466.

(28) Murdzek, J. A.; Rajashekhar, A.; Makala, R. S.; George, S. M. Thermal Atomic Layer Etching of Amorphous and Crystalline Al_2O_3 films. *J. Vac. Sci. Technol., A* **2021**, *39*, No. 042602.

(29) Rahman, R.; Mattson, E. C.; Klesko, J. P.; Dangerfield, A.; Rivillon-Amy, S.; Smith, D. C.; Hausmann, D.; Chabal, Y. J. Thermal Atomic Layer Etching of Silica and Alumina Thin Films Using Trimethylaluminum with Hydrogen Fluoride or Fluoroform. *ACS Appl. Mater. Interfaces* **2018**, *10*, 31784–31794.

(30) Zywotko, D. R.; Faguet, J.; George, S. M. Rapid Atomic Layer Etching of Al_2O_3 Using Sequential Exposures of Hydrogen Fluoride and Trimethylaluminum with No Purging. *J. Vac. Sci. Technol., A* **2018**, *36*, No. 061508.

(31) Zywotko, D. R.; Zandi, O.; Faguet, J.; Abel, P. R.; George, S. M. ZrO₂ Monolayer as a Removable Etch Stop Layer for Thermal Al_2O_3 Atomic Layer Etching Using Hydrogen Fluoride and Trimethylaluminum. *Chem. Mater.* **2020**, *32*, 10055–10065.

(32) Clancey, J. W.; Cavanagh, A. S.; Smith, J. E. T.; Sharma, S.; George, S. M. Volatile Etch Species Produced during Thermal Al_2O_3 Atomic Layer Etching. *J. Phys. Chem. C* **2020**, *124*, 287–299.

(33) Sharma, V.; Elliott, S. D.; Blomberg, T.; Haukka, S.; Givens, M. E.; Tuominen, M.; Ritala, M. Thermal Atomic Layer Etching of Aluminum Oxide (Al_2O_3) Using Sequential Exposures of Niobium Pentafluoride (NbF_5) and Carbon Tetrachloride (CCl_4) : A Combined Experimental and Density Functional Theory Study of the Etch Mechanism. *Chem. Mater.* **2021**, *33*, 2883–2893.

(34) Chittock, N. J.; Vos, M. F. J.; Faraz, T.; Kessels, W. M. M.; Knoops, H. C. M.; Mackus, A. J. M. Isotropic Plasma Atomic Layer Etching of Al_2O_3 Using a Fluorine Containing Plasma and $Al(CH_3)_3$. *Appl. Phys. Lett.* **2020**, *117*, 162107.

(35) Lee, Y.; Huffman, C.; George, S. M. Selectivity in Thermal Atomic Layer Etching Using Sequential, Self Limiting Fluorination and Ligand-Exchange Reactions. *Chem. Mater.* **2016**, *28*, 7657–7665.

(36) Carver, C. T.; Plombon, J. J.; Romero, P. E.; Suri, S.; Tronic, T. A.; Turkot, R. B. Atomic Layer Etching: An Industry Perspective. *ECS J. Solid State Sci. Technol.* **2015**, *4*, N5005–N5009.

(37) Cano, A. M.; Lii-Rosales, A.; George, S. M. Thermal Atomic Layer Etching of Aluminum Nitride Using HF or XeF_2 for Fluorination and BCl₃ for Ligand Exchange. *J. Chem. Phys. C* **2022**, 126, 6990–6999.

(38) Lemaire, P. C.; Parsons, G. N. Thermal Selective Vapor Etching of TiO_2 : Chemical Vapor Etching via WF₆ and Self-Limiting Atomic Layer Etching Using WF₆ and BCl₃. *Chem. Mater.* **2017**, *29*, 6653–6665.

(39) Cano, A. M.; Natarajan, S. K.; Partridge, J. L.; Elliott, S. D.; George, S. M. Spontaneous Etching of B_2O_3 by HF Gas Studied Using Infrared Spectroscopy, Mass Spectrometry, and Density Functional Theory. J. Vac. Sci. Technol., A **2022**, 40, No. 022601.

(40) Mullins, R.; Natarajan, S. K.; Elliott, S. D.; Nolan, M. Self-Limiting Temperature Window for Thermal Atomic Layer Etching of HfO_2 and ZrO_2 Based on the Atomic-Scale Mechanism. *Chem. Mater.* **2020**, 32, 3414–3426.

(41) Natarajan, S. K.; Cano, A. M.; Partridge, J. L.; George, S. M.; Elliott, S. D. Prediction and Validation of the Process Window for Atomic Layer Etching: HF Exposure on TiO₂. *J. Phys. Chem. C* **2021**, *125*, 25589–25599.

(42) DuMont, J. W.; George, S. M. Pyrolysis of Alucone Molecular Layer Deposition Films Studied Using In Situ Transmission Fourier Transform Infrared Spectroscopy. J. Phys. Chem. C 2015, 119, 14603–14612.

(43) Ferguson, J. D.; Weimer, A. W.; George, S. M. Atomic Layer Deposition of Ultrathin and Conformal Al_2O_3 Films on BN Particles. *Thin Solid Films* **2000**, 371, 95–104.

(44) Ballinger, T. H.; Wong, J. C. S.; Yates, J. T. Transmission Infrared Spectroscopy of High Area Solid Surfaces - A Useful Method for Sample Preparation. *Langmuir* **1992**, *8*, 1676–1678. (45) Lee, Y.; DuMont, J. W.; George, S. M. Atomic Layer Etching of HfO_2 Using Sequential, Self-Limiting Thermal Reactions with $Sn(acac)_2$ and HF. ECS J. Solid State Sci. Technol. 2015, 4, N5013–N5022.

(46) Lee, Y.; Sun, H. X.; Young, M. J.; George, S. M. Atomic Layer Deposition of Metal Fluorides Using HF-Pyridine as the Fluorine Precursor. *Chem. Mater.* **2016**, *28*, 2022–2032.

(47) HSC Chemistry; HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.

(48) Deal, B. E.; Grove, A. S. General Relationship for Thermal Oxidation of Silicon. *J. Appl. Phys.* **1965**, *36*, 3770–3778.

(49) Gesenhues, U.; Wendt, H. True IE Mass Spectra of the Vapour Molecules of $AlCl_3$ and Al_2Cl_6 . *Int. J. Mass Spectrom. Ion Processes* **1986**, 70, 225–229.

Recommended by ACS

Thermal Atomic Layer Etching of Aluminum Oxide (Al₂O₃) Using Sequential Exposures of Niobium Pentafluoride (NbF₅) and Carbon Tetrachloride (CCl₄...

Varun Sharma, Mikko Ritala, *et al.* APRIL 09, 2021 CHEMISTRY OF MATERIALS

pubs.acs.org/cm

READ 🗹

Reaction Mechanisms of Non-hydrolytic Atomic Layer Deposition of Al₂O₃ with a Series of Alcohol Oxidants

Seunggi Seo, Bonggeun Shong, *et al.* AUGUST 16, 2021 THE JOURNAL OF PHYSICAL CHEMISTRY C

READ 🗹

AlO_x Thin Films Synthesized by Mist Chemical Vapor Deposition, Monitored by a Fast-Scanning Mobility Particle Analyzer, and Applied as a Gate Insulating...

Arifuzzaman Rajib, Hajime Shirai, *et al.* JANUARY 15, 2021 ACS APPLIED ELECTRONIC MATERIALS

READ 🗹

Formation Mechanism of Self-Formed Triangular Pyramidal Patterns on Sapphire Substrate

Wei-Han Lai, Cheng-Yi Liu, et al. JUNE 04, 2020 CRYSTAL GROWTH & DESIGN

READ 🗹

Get More Suggestions >