Thermal atomic layer etching of VO₂ using sequential BCl₃ and SF₄ exposures: Observation of conversion, ligand-exchange, and oxidation state changes

Cite as: J. Vac. Sci. Technol. A 41, 012603 (2023); doi: 10.1116/6.0002149
Submitted: 8 August 2022 · Accepted: 1 December 2022 ·
Published Online: 3 January 2023

Jonas C. Gertsch,¹ 💿 Jonathan L. Partridge,¹ 💿 Austin M. Cano,¹ Joel W. Clancey,¹ Victor M. Bright,² 💿 and Steven M. George¹ 😳

AFFILIATIONS

¹Department of Chemistry, University of Colorado, Boulder, Colorado 80309 ²Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

Note: This paper is part of the 2023 Special Topic Collection on Atomic Layer Etching (ALE).

ABSTRACT

The thermal atomic layer etching (ALE) of VO₂ was demonstrated using sequential exposures of BCl₃ and SF₄. The VO₂ etch rate measured by quartz crystal microbalance investigations at 250 °C was 2.3 Å/cycle. The mass losses during individual BCl₃ and SF₄ reactions were nearly self-limiting versus BCl₃ and SF₄ exposures. The VO₂ etch rates were also dependent on temperature and varied from 0.05 Å/cycle at 150 °C to 2.3 Å/cycle at 250 °C. Fourier transform infrared (FTIR) spectroscopy studies observed VO₂ etching by monitoring the decrease in absorbance from V-O stretching vibrations in the VO₂ film. The FTIR spectra during the initial BCl₃ exposures on the VO₂ film observed the growth of absorbance from B–O stretching vibrations from B₂O₃ and the concurrent loss of V=O vibrational features. These changes were consistent with BCl₃ converting VO₂ to B₂O₃. The FTIR difference spectra during subsequent SF₄ and BCl₃ reactions also observed the growth and loss of absorbance features that were attributed to $F_3V = 0$ and V = F stretching vibrations, respectively. These changes indicate that SF_4 fluorinates VO_2 to form a VOF_3 surface layer and then BCl_3 undergoes ligand-exchange with VOF_3 to volatilize the VOF_3 surface layer as VOCl₃. There was also evidence for conversion of VO₂ to B_2O_3 during BCl₃ exposures and then removal of B_2O_3 by SF₄ exposures. In addition, quadrupole mass spectrometry (QMS) measurements observed that the SF4 exposures produced ion intensities for SOxFyClz products in oxidation states greater than 4+. These $SO_xF_vCl_z$ products indicate that SF_4 is being oxidized and acting as a deoxyfluorination reactant. Concurrently, the QMS analysis also monitored ion intensity for S⁺₈, S⁺₇, S⁺₆, S⁺₅, and S⁺₄. These S₈ electron impact ionization products argue that SF₄ oxidation occurs concurrently with SF₄ reduction. The QMS also observed ion intensities corresponding to VCl⁺₄ and VOCl⁺₃. The presence of VOCl₃⁺ indicates that the oxidation state of vanadium has increased to 5+ in some of the volatile etch products. The QMS also detected trichloroboroxin (B₃O₃Cl₃) during BCl₃ exposures. B₃O₃Cl₃ is a known etch product of B₂O₃ during BCl₃ exposures. BCl₃ can convert VO₂ to B₂O₃ and then proceed to etch the converted B₂O₃. Thermal VO₂ ALE using BCl₃ and SF₄ reveals the rich complexity of surface etching reactions that can proceed by multiple pathways including conversion, ligand-exchange, and oxidation state changes.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0002149

I. INTRODUCTION

Atomic layer etching (ALE) is a highly controllable etch process that uses sequential and self-limiting surface reactions.^{1,2} The first reaction typically modifies the surface. The second reaction then volatilizes the modified surface layer. ALE can be accomplished using either plasma or thermal methods.^{1,2} Plasma ALE utilizes ions to remove the modified surface layer and can achieve directional anisotropic etching.¹ Plasma ALE has been demonstrated for numerous materials, such as Si,^{3,4} SiO₂,⁵ HfO₂,⁶ Al₂O₃,⁷ InP,⁸ W,⁹ graphene,¹⁰ and MoS₂.¹¹ Thermal ALE uses molecular precursors to volatilize the modified surface layer and leads to conformal isotropic etching.^{12,13} Thermal ALE has been reported for many materials including Al_2O_3 , ¹³⁻¹⁷ HfO₂, ¹⁸⁻²⁰ Ga₂O₃, ²¹ AlN, ^{22,23} TiN,²⁴ SiO₂,²⁵ Si,²⁶ W,²⁷ and Ni.²⁸

ARTICLE

Various mechanisms have been reported for thermal ALE.¹² Many metal oxides and metal nitrides have been shown to undergo thermal ALE based on the fluorination and ligand-exchange mechanism.^{12,17,29} The thermal ALE of other metal oxides is based on the initial conversion of the oxide surface to a different material followed by the removal of the conversion layer.^{12,27} Elemental metals are also known to undergo thermal ALE based on initial oxidation or chlorination to change the initial oxidation state of the metal.^{12,28,30} The oxidized metal can then be volatilized based on ligand-substitution or ligand-addition reactions.^{28,30}

BCl₃ is a versatile reactant that can undergo ligand-exchange with metal fluorides to volatilize the metal fluoride by producing metal chlorides. BCl₃ was employed as a ligand-exchange precursor during AlN ALE using HF or XeF₂ for fluorination and BCl₃ for ligand-exchange.²² BCl₃ was also employed as a ligand-exchange precursor during GaN ALE using XeF₂ for fluorination and BCl₃ for ligand-exchange.³¹ In addition, BCl₃ has been utilized as a ligand-exchange precursor during TiO₂ ALE using WF₆ for fluorination and BCl₃ for ligand-exchange.³²

BCl₃ is also able to convert the surface of many metal oxides to a B_2O_3 layer. This conversion reaction is thermodynamically favorable because B_2O_3 is more stable than many other metal oxides. The B_2O_3 conversion layer can then be spontaneously etched by HF to produce BF₃ and H₂O.³³ BCl₃ was used to convert WO₃ to B_2O_3 during WO₃ ALE.²⁷ B_2O_3 was then removed by spontaneous etching resulting from HF exposures. Recent results for Al₂O₃ ALE using BCl₃ and HF also revealed that Al₂O₃ ALE occurred by both fluorination and ligand-exchange together with conversion and spontaneous etching.¹⁴

In this paper, BCl₃ is demonstrated as a precursor for thermal VO₂ ALE together with SF₄ as the fluorination reactant. Earlier studies of VO₂ ALE utilized SF₄ for fluorination and Sn(acac)₂ for ligand-exchange.³⁴ SF₄ is a stronger fluorination reactant than HF. SF₄ was initially thought to be necessary for VO₂ fluorination because the ΔG^0 value for VO₂ fluorination to VF₄ using HF is positive.³⁴ However, experiments revealed that both SF₄ and HF could fluorinate VO₂ and subsequently etch the VO₂ film using Sn(acac)₂ as the ligand-exchange precursor.³⁴ Etch rates of 0.30 and 0.11 Å/cycle were measured for VO₂ ALE at 200 °C using SF₄ and HF, respectively, together with Sn(acac)₂.³⁴

Because $Sn(acac)_2$ has low vapor pressure and poor thermal stability, the use of other ligand-exchange precursors for VO₂ ALE is desirable. BCl₃ has high vapor pressure and good thermal stability. However, BCl₃ has the possible complication of converting VO₂ to B₂O₃. The conversion reaction of VO₂ to B₂O₃ is as follows:

$$1.5VO_2 + 2BCl_3(g) \rightarrow B_2O_3 + 1.5VCl_4(g).$$
 (1)

This reaction is thermochemically favorable with a standard free energy change of $\Delta G^0 = -37.5$ kcal/mol at 250 °C.³⁵ Consequently, the BCl₃ reaction during VO₂ ALE could lead to either ligand-exchange or conversion.

 VO_2 is a technologically important material. VO_2 is a semiconductor at room temperature and has a metal-insulator transition around 68 °C that leads to a pronounced change in resistivity and optical transmittance.^{36,37} As a result, VO_2 is useful for many devices, such as bolometers³⁸ and smart windows.^{37,39} Thermal VO_2 ALE may be important to obtain thin VO_2 films with low thermal mass for sensitive thermal sensors. Thin VO_2 films are also less susceptible to fracture resulting from temperature cycling through the metal-insulator transition. High-quality, ultrathin, and continuous VO_2 films could be fabricated using VO_2 deposition followed by VO_2 etchback to overcome the problems of VO_2 nucleation on the underlying substrate.⁴⁰

II. EXPERIMENT

A. Reaction conditions for VO₂ ALD and VO₂ ALE

The VO₂ films were deposited and etched in a custom-built, stainless-steel, viscous-flow reactor.³⁴ A total N₂ flow of 160 SCCM was used as both a purge and inert carrier gas. The reactor pressure was ~1 Torr. The chamber was equipped with an *in situ* quartz crystal microbalance (QCM). An SC-cut quartz crystal (Maxtek SC-101 gold coated, 6 MHz) was used to monitor film growth and etch. A description of the reactor and QCM setup has been presented earlier.³⁴

Vanadium (IV) oxide (VO₂) films were deposited in an ALD process at 150 °C using tetrakis(ethylmethylamino) vanadium(IV) (TEMAV, 98%, STREM) and DI H₂O as reactants.^{34,41} The H₂O was kept at room temperature. The stainless-steel bubbler containing the TEMAV was heated to 60–65 °C and also used a N₂ flow-over of ~20 SCCM to increase precursor transport into the reactor chamber. TEMAV and H₂O yield amorphous VO₂ ALD films when deposited at 150 °C.^{41,42} As-deposited films were previously characterized to confirm VO₂ with a vanadium oxidation state of primarily 4+ using x-ray photoelectron spectroscopy (XPS).³⁴

The VO₂ ALD films were then etched using boron trichloride (BCl₃, 99.9%, Sigma-Aldrich) and sulfur tetrafluoride (SF₄, >98.5%, SynQuest Laboratories). The VO₂ ALE was conducted at temperatures ranging from 150 to 250 °C. Both etching precursors were kept at room temperature. The pressures during BCl₃ and SF₄ exposures were 200 and 500 mTorr, respectively.

B. Reactor for *in situ* Fourier transform infrared spectroscopy measurements

VO₂ ALE was also studied using *in situ* Fourier transform infrared (FTIR) spectroscopy. The reactor and *in situ* FTIR spectrometer have been described previously.⁴³ The FTIR experiments employed high surface area silicon nanoparticles (>98%, U.S. Research Nanomaterials) with an average diameter of 30–50 nm. The Si nanoparticles were mechanically pressed into a tungsten grid support to facilitate the transmission FTIR measurements.⁴³ VO₂ ALD films were grown on the Si nanoparticles.

The tungsten grid was 2×3 cm², $50 \,\mu$ m thick, with 100 grid lines per inch. The tungsten grid was resistively heated using a DC power supply (6268B, 20 V/ 40 A, Hewlett-Packard). The voltage output of the power supply was controlled by a PID temperature controller (Love Controls 16B, Dwyer Instruments). A K-type thermocouple was attached at the bottom of the tungsten grid with epoxy (Ceramabond 571, Aremco). The epoxy also electrically isolated the thermocouple from the tungsten grid.

C. Quadrupole mass spectrometry

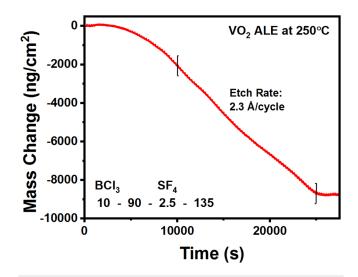
Quadrupole mass spectrometry (QMS) was performed in a previously described reactor.⁴⁴ In this reactor, a mixture of N_2 carrier gas and precursor gas was used to form a molecular beam. This molecular beam was defined by gas expansion through an aperture on the sample chamber into vacuum. The beam then passed through a skimmer. The skimmer aperture diameter was 300 μ m. The skimmer was positioned 33.4 mm from the sample aperture.

The beam then traveled into a differentially pumped region for the QMS analysis. Each QMS spectrum monitored mass intensities from 2 to 300 amu and had a 1 s scan time. An average of 20 scans was used to maximize the signal to noise in the spectra. An electron ionization energy of 70 eV was used for these experiments.

The QMS experiments were conducted on VO₂ and V₂O₅ powders placed in the sample holder. The powders were vanadium (IV) oxide (VO₂, >99% trace metals basis, Sigma-Aldrich) and vanadium (V) oxide (V₂O₅, >99% trace metals basis, Sigma-Aldrich). The mass of the VO₂ and V₂O₅ powders was measured before and after the etching experiments.

The QMS experiments were performed at 250 °C with a background N₂ pressure of 3.3 Torr defined by a N₂ flow of 2.0 SCCM through the sample chamber. Both BCl₃ and SF₄ were added to separate reservoirs to obtain a pressure of 8.0 Torr. During BCl₃ and SF₄ exposures, the BCl₃ and SF₄ reactants were added to the sample chamber. Each gas precursor dose was 120 s long, with 300 s purges between doses. During the BCl₃ and SF₄ exposures, the pressure in the sample chamber rose to 6.8 Torr. A partial pressure of 3.5 Torr was used for each precursor gas.

D. Transmission electron microscopy


Ex situ analysis of VO₂ film thickness and uniformity on particles before and after VO₂ ALE was performed using an FEI Tecnai T12, 20–120 V transmission electron microscope (TEM). The TEM was operated at 100 kV in the bright-field mode. W/WO₃ powder was chosen as the substrate material to provide enhanced contrast between the VO₂ ALD film and the substrate.

The VO₂ films to be analyzed with TEM were deposited at 150 °C using VO₂ ALD with TEMAV and H₂O as the reactants.^{34,41} The VO₂ ALD films were etched at 250 °C using VO₂ ALE with BCl₃ and SF₄ as the reactants. This VO₂ ALE process was performed using static exposures in a separate reaction chamber that has been described previously.⁴⁵ The TEM samples were prepared by placing the VO₂ ALD-coated tungsten powder on a formvar/ carbon-coated copper TEM grid (300 mesh, Electron Microscopy Sciences).

III. RESULTS AND DISCUSSION

A. QCM studies

VO₂ ALD films were first grown on the QCM sensor. The VO₂ ALD films were then etched using VO₂ ALE. Figure 1 shows QCM data of 115 cycles of VO₂ ALE using BCl₃ and SF₄ at 250 °C with BCl₃ exposures of 10 s and SF₄ exposures of 2.5 s. N₂ purge times were 90 s after BCl₃ doses and 135 s after SF₄ doses. This reaction sequence is designated as 10–90–2.5–135.

FIG. 1. Mass change vs time for 115 VO₂ ALE cycles using sequential BCl₃ and SF₄ exposures at 250 °C. Mass change per cycle yields an etch rate of 2.3 Å/cycle during the linear region designated by brackets.

An initial etch delay was observed with very slow etching during the first ~30 cycles. This etch delay is not well understood at this time. The etch delay may result from a slow oxidation state change from V⁴⁺ to V⁵⁺ for vanadium surface species during initial BCl₃ and SF₄ exposures. Etching of V⁵⁺ species may be preferred as discussed later. After the delay, a linear etch regime is reached, and the average mass change per cycle (MCPC) is $-101.2 \text{ ng/(cm^2 cycle)}$. Assuming a VO₂ density of 4.36 g/cm³ as measured by x-ray reflectivity (XRR), this MCPC corresponds to an etch rate of

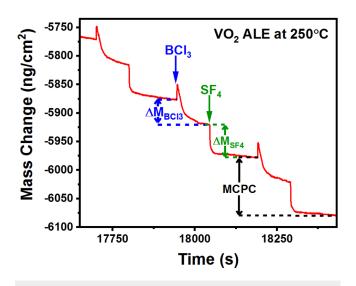
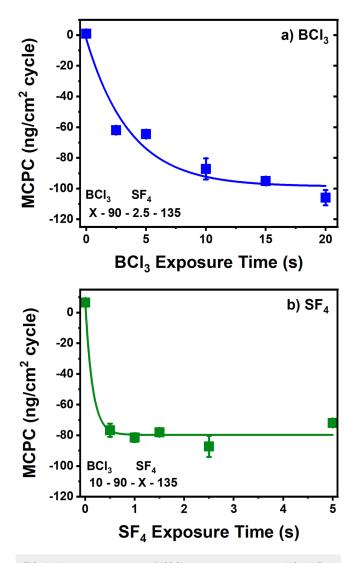



FIG. 2. Expanded view of three VO_2 ALE cycles from Fig. 2 in the linear region showing mass loss during both BCI₃ and SF₄ exposures.

2.3 Å/cycle. No etching occurs during the last several cycles as shown in Fig. 2 because the initial VO_2 ALD film has been removed completely from the QCM sensor.

An expanded view of three VO₂ ALE cycles at 250 °C from the linear regime in Fig. 1 is shown in Fig. 2. The BCl₃ exposure leads to a mass loss of $\Delta M_{BCl3} = -44.3 \text{ mg/cm}^2$. The mass spike observed at the beginning of BCl₃ exposures may be attributed to initial BCl₃ adsorption on the surface that then undergoes ligand-exchange to produce volatile VOCl₃. Further mass loss occurs as extended BCl₃ exposure converts the underlying VO₂

FIG. 3. Mass change per cycle (MCPC) vs exposure time during VO₂ ALE at 250 °C. (a) Varying exposure time, X, of BCl₃ with constant SF₄ exposure time of 2.5 s. (b) Varying exposure time, X, of SF₄ with constant BCl₃ exposure time of 10 s. Purge times were 90 and 135 s after BCl₃ and SF₄ exposures, respectively.

surface to $B_2O_3.$ Chlorinated species, such as $BO_xCl_y,$ are also expected to remain on the surface after the BCl_3 exposure.

The SF₄ exposure leads to another mass loss of $\Delta M_{SF4} = -56.9 \text{ ng/cm}^2$. This mass loss is attributed to the removal of BO_xCl_y and B₂O₃ surface layers. Fluorination of the underlying VO₂ then forms a VOF₃ surface. During this fluorination, the vanadium is oxidized from a 4+ to a 5+ oxidation state. Sulfur is also believed to be reduced during this oxidation process.

Figure 3 explores the self-limiting nature of BCl₃ and SF₄ reactions at 250 °C. Each point represents the average mass change over 15 reaction cycles. In Fig. 3(a), the SF₄ exposure time was held constant at 2.5 s as the BCl₃ exposure time was varied from 0 to 20 s. The reactant pulse sequence is designated as X–90–2.5–135. The BCl₃ exposure exhibits a soft saturation behavior, where the mass change per cycle (MCPC) continues to decrease slightly with increasing exposure time. This slow decrease is likely due to slow spontaneous etching of the newly formed B₂O₃ surface by BCl₃ that forms volatile B₃O₃Cl₃ species.

In Fig. 3(b), the BCl₃ exposure was held constant at 10 s as the SF₄ exposure was varied from 0 to 5 s. This reactant pulse sequence is designated as 10–90–X–135. Figure 3(b) shows that the mass change per cycle decreases rapidly versus the SF₄ exposure. Saturation behavior is reached more quickly than for the BCl₃ exposure observed in Fig. 3(a). The SF₄ can readily remove the converted B_2O_3 surface layer and fluorinate the VO₂ surface.

The temperature dependence of VO₂ ALE is explored in Fig. 4. The temperatures ranged from 150 to 250 °C. The etch rates increased at higher temperatures. The etch rates were 0.05, 0.15, 0.20, 1.7, and 2.3 Å/cycle at 150, 175, 200, 225, and 250 °C, respectively. Using an Arrhenius plot to calculate an activation energy from the temperature-dependent linear etch regimes yields $E_a = 74.0$ kJ/mol. An etch delay was observed at temperatures

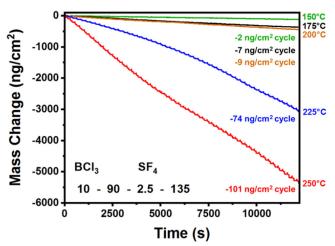


FIG. 4. Mass change vs time for VO₂ ALE using sequential BCl₃ and SF₄ exposures showing temperature dependence. Etch rates varied from 0.05 Å/cycle at 150 °C to 2.3 Å/cycle at 250 °C. Initial etch delays at 225 and 250 °C were removed to allow for better comparison between temperatures.

>200 °C. These initial etch delays are not shown for 225 or 250 °C to allow for better comparisons. The etch delays were \sim 6000 s (25 etch cycles) and \sim 7000 s (30 etch cycles) for etching at 225 and 250 °C, respectively.

B. FTIR studies

Absolute infrared absorbance spectra showing the loss of absorbance of V—O stretching vibration from VO₂ are displayed in Fig. 5. Spectra are shown for 30 VO₂ ALE cycles using BCl₃ and SF₄ as the reactants at 250 °C. The black line indicates the spectrum for the as-deposited VO₂ ALD film referenced to the FTIR spectrum of the Si nanoparticle substrate. Spectra were recorded after every 5 VO₂ ALE cycles following the SF₄ exposures. The spectra are also referenced to the spectrum of the Si nanoparticle substrate.

The decreasing absorbance in the region of 400–850 cm⁻¹ in Fig. 5 during VO₂ ALE is consistent with a loss of V—O stretching vibrations.^{46,47} The absorbance loss from 980 to 1055 cm⁻¹ during VO₂ ALE is attributed to V=O surface vibrations.^{46,47} The initial increase in absorbance during first several etching cycles can be explained by the creation of vanadium fluoride stretching vibrations.^{48,49} A decrease in absorbance is also observed at 925 cm⁻¹ and is attributed to the loss of Si-O–V vibrations.⁵⁰ The Si-Ovibration observed at 1215 cm⁻¹ is due to oxidation of the underlying Si nanoparticle substrate during the VO₂ ALD growth.

Figure 6 explores initial BCl₃ exposures on a newly grown VO₂ ALD surface at 250 °C. The FTIR spectra show the result of eight BCl₃ exposures for 1 s. Progressive exposures are indicated by an increasing line darkness between the individual spectra. Figure 6 shows that there is a pronounced increase in absorbance at

 1350 cm^{-1} . This absorbance is assigned to a B—O stretching vibration.⁵¹ This increase in absorbance is attributed to the conversion of the surface of the VO₂ ALD film to a B₂O₃ surface layer.

There is also a distinct loss of absorbance at 1016 cm^{-1} in Fig. 6. This feature is assigned to a V=O surface species that is removed during the conversion of VO₂ to B₂O₃.^{46,47} The growth of absorbance for the B–O stretching vibration and loss of absorbance for the V=O surface species is consistent with the conversion of VO₂ to B₂O₃ by BCl₃ according to the reaction given in Eq. (1). Some of the additional absorbance peaks in Fig. 6 below 1000 cm⁻¹ can be attributed to B–Cl vibrations.⁵²

FTIR difference spectra in the steady-state regime during the 20th cycle of sequential BCl₃ and SF₄ exposures during VO₂ ALE are shown in Fig. 7. The difference spectra recorded after BCl₃ and SF₄ exposures were referenced to spectra after previous SF₄ and BCl₃ exposures, respectively. The large increases in absorbance at 1051 and 650 cm⁻¹ in Fig. 7(a) are attributed to F₃V=O and V-F stretching vibrations.^{48,49} These vibrational features are formed by the fluorination of VO₂ during SF₄ exposures. Figure 7(b) shows that these vibrational features are removed during subsequent BCl₃ exposure.

Small absorbance changes in the region of B–O stretching vibration around 1350 cm⁻¹ are also observed in Fig. 7 during VO₂ ALE. A small peak corresponding to a B–O stretching vibration is observed in Fig. 7(b) after BCl₃ exposures. This slight peak is then removed in Fig. 7(a) during the subsequent SF₄ exposure. Similar behavior was also observed during Al₂O₃ ALE using BCl₃ and HF as reactants.¹⁴ The BCl₃ exposures were also converting Al₂O₃ to B₂O₃. The HF exposures then spontaneously removed the B₂O₃ conversion layer.³³

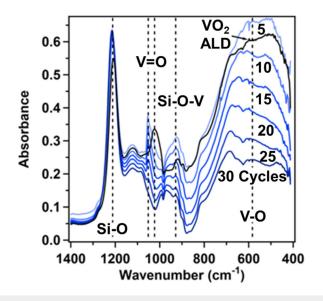
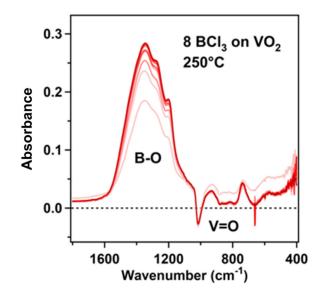
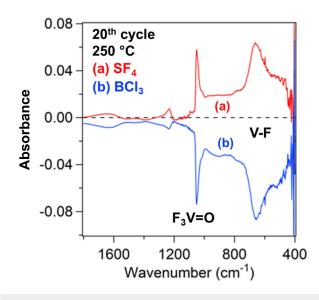




FIG. 5. Absolute FTIR absorbance spectra showing loss of V—O stretching vibrations during 30 cycles of VO₂ ALE using sequential BCl₃ and SF₄ exposures at 250 °C. Initial FTIR spectrum of the VO₂ ALD film is referenced to initial Si nanoparticles and given by the black spectrum.

FIG. 6. Absolute FTIR absorbance spectra showing growth of B—O stretching vibrations and loss of V—O stretching vibrations during eight successive BCl₃ exposures on the initial VO₂ ALD film at 250 °C.

FIG. 7. FTIR difference spectra for 20th cycle of sequential BCl₃ and SF₄ exposures at 250 °C. (a) Difference spectrum after SF₄ exposure defined by referencing spectrum to spectrum after previous BCl₃ exposure. (b) Difference spectrum after BCl₃ exposure defined by referencing spectrum to spectrum after previous SF₄ exposure.

The absorbance increase for the B—O stretching vibration in Fig. 6 after BCl₃ exposure on a freshly deposited VO₂ ALD surface is much larger than the absorbance increase for the B—O stretching vibration in Fig. 7 after BCl₃ exposure during sequential SF₄ and BCl₃ exposures. This contrast is attributed to the difference

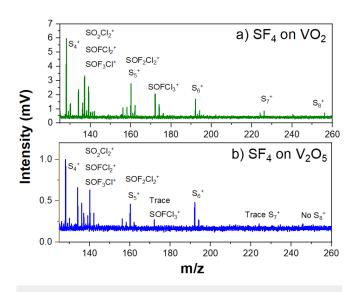


FIG. 8. QMS spectra recorded for 6th SF₄ exposure during sequential BCl₃ and SF₄ exposures on (a) VO₂ powder and (b) V₂O₅ powder at 250 °C.

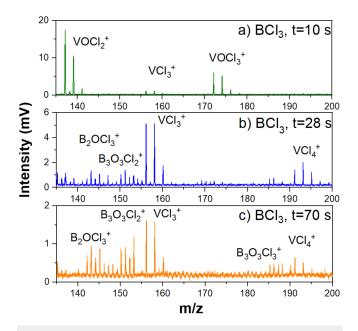
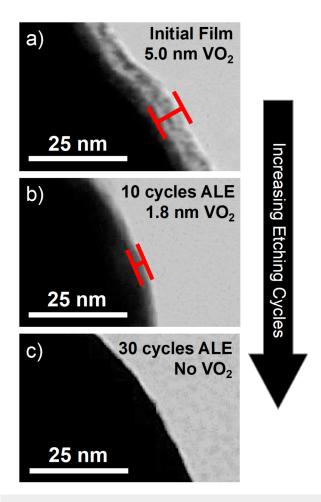


FIG. 9. QMS spectra recorded for third BCl₃ exposure during sequential BCl₃ and SF₄ exposures on V₂O₅ powder at 250 °C after exposure times of (a) 10, (b) 28, and (c) 70 s.

between the two VO₂ surfaces. The VO₂ surface in Fig. 6 is the initial surface after VO₂ ALD. The VO₂ surface in Fig. 7 has been fluorinated by SF₄. The differences between Figs. 6 and 7 indicate that BCl₃ is not as effective converting the fluorinated VO₂ surface to B_2O_3 .

C. QMS studies

QMS measurements at 250 °C for the 6th SF₄ exposure during sequential exposures of SF₄ and BCl₃ are shown in Fig. 8(a) for VO₂ powder and in Fig. 8(b) for V₂O₅ powder. The mass spectra cover m/z values from 110 to 260. Both oxidized and reduced sulfur species are observed compared with the parent SF₄ reactant. A variety of ion intensities are detected for SO_xF_yCl_z products in oxidation states greater than 4+. These SO_xF_yCl_z products indicate that SF₄ is being oxidized and acting as a deoxyfluorination reactant.


Ion intensities are also detected for S_8^+ and its electron impact cracking fragments including ion intensities for S_7^+ , S_6^+ , S_5^+ , and S_4^+ . These species are consistent with the reduction in the SF₄ reactant. A comparison of Figs. 8(a) and 8(b) reveals that the ion intensities for S₈ products are more intense on the VO₂ surface. The reduction in the SF₄ reactant is believed to coincide with the need for vanadium in VO₂ to oxidize from 4+ to 5+. This oxidization is required to produce stable volatile vanadium etch products in the 5+ oxidation state, such as VOCl₃. The predecessor to VOCl₃ in the gas phase is VOF₃ in the thin film.

The production of S_8 products is much less on the V_2O_5 surface. Vanadium in V_2O_5 is already in the 5+ oxidation state and

can directly produce volatile 5+ oxidation state etch products. Consequently, oxidation of V_2O_5 is not necessary and less reduction of SF₄ to S₈ is required for etching V_2O_5 . The V_2O_5 also etched much more rapidly than VO₂. After exposure to six cycles of BCl₃ and SF₄ at 250 °C, the VO₂ powder mass was reduced from 53.8 to 46.6 mg for a 13% mass loss. In comparison, after exposure to five cycles of BCl₃ and SF₄ at 250 °C, the V₂O₅ powder mass was reduced from 23.5 to 1.1 mg for a 95% mass loss. The oxidation state change required for VO₂ etching to produce volatile vanadium etch products in the 5+ oxidation state must limit the rate of VO₂ etching.

Time-resolved QMS results for the volatile etch products during a BCl₃ exposure on V_2O_5 are shown in Fig. 9. V_2O_5 is shown instead of VO_2 because the vanadium etch products are more intense from vanadium in the 5+ oxidation state. However, similar products are also observed for VO_2 . Early during the BCl₃ exposure at t = 10 s, Fig. 9(a) shows the ion intensity for $VOCl_3^+$

FIG. 10. TEM images of VO₂ ALD films on W particles showing (a) initial VO₂ film with thickness of 5 nm, (b) VO₂ film after 10 VO₂ ALE cycles with a thickness of 1.8 nm, and (c) no remaining VO₂ film after 30 VO₂ ALE cycles.

from the VOCl₃ volatile etch product. The electron impact ionization of VOCl₃ also leads to VOCl₂⁺ and VCl₃⁺ fragment ion signals.⁵³

As the BCl₃ exposure continues at t = 28 s, Fig. 9(b) reveals that the ion intensities for VCl₄⁺ and VCl₃⁺ become the most significant species. These ion intensities result from electron impact ionization of VCl₄. The appearance of VCl₄ is expected from the conversion of VO₂ to B₂O₃ given by Eq. (1). Later in the exposure at t = 70 s, Fig. 9(c) shows that trichloroboroxin (B₃O₃Cl₃) rings become prominent as BCl₃ interacts with the converted B₂O₃ surface. Trichloroboroxin has been observed earlier during etching of B₂O₃ by BCl₃.³³ Small signals for trichloroboroxin were also detected earlier in Fig. 9(b).

Not shown in Fig. 9 are the ion intensities for BFCl₂ and BF₂Cl ligand exchange products in the low mass region. The ion intensities for BFCl₂⁺ and BF₂Cl⁺ reach their maximum intensities simultaneously with the maximum intensity for VOCl₃⁺ in Fig. 9(a). The maximum intensities are 120 mV for BFCl₂⁺ at m/z 102 and 37 mV for BF₂Cl⁺ at m/z 84.

D. TEM studies

TEM was used to visualize VO₂ ALE on VO₂ ALD films on W particles (10 μ m tungsten powder, >99.99%, Sigma-Aldrich). For these experiments, a VO₂ ALD film with a thickness of 5 nm was deposited at 150 °C using 200 VO₂ ALD cycles with TEMAV and H₂O as reactants. The W powders were covered with a native WO₃ surface. The initial quantity of W powder was 1 g. After VO₂ ALD, the sample was removed for the TEM analysis and then placed back into the reactor for VO₂ ALE.

The initial TEM image shown in Fig. 10(a) reveals that the VO₂ ALD film is uniform and conformal on the W particle. The VO₂-coated W powder was then etched using VO₂ ALE at 250 °C. This etching was performed under static etching conditions with 60 s hold times at constant pressure and a purge sequence consisting of 120 s static purging, 240 s viscous N₂ purging, followed by a final 120 s static purge. Reactant pressures were 5 Torr for both BCl₃ and SF₄ exposures. A TEM image was then recorded after 10 VO₂ ALE cycles as displayed in Fig. 10(b). Another TEM image was recorded after 20 additional VO₂ ALE cycles (30 cycles total) as shown in Fig. 10(c).

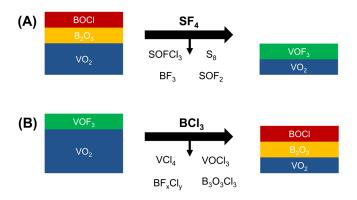


FIG. 11. Schematic of the proposed reaction process for VO_2 ALE showing (a) SF_4 exposure and (b) BCI_3 exposure.

TEM analysis shows that the VO₂ ALD film is progressively removed by VO₂ ALE. The etch rate estimated from the TEM images is ~3.2 Å/cycle at 250 °C. This etch rate is higher than the etch rate of 2.3 Å/cycle at 250 °C measured for the VO₂ ALD films on the QCM sensor. The higher etch rate on the particles is attributed to the static exposures and the lower gas conductance in the VO₂-coated W powder. Similar results are observed during ALD on particles when the ALD growth rates are larger than the growth rates observed on flat surfaces.^{54,55}

E. VO₂ ALE reaction mechanism

A proposed reaction mechanism for VO₂ ALE with BCl₃ and SF₄ as reactants is given in Fig. 11. This proposed mechanism attempts to explain all the observations from the QCM, FTIR, and QMS experiments. The key observations were as follows: (1) mass losses observed on both BCl₃ and SF₄ exposures; (2) BCl₃ leading to both conversion of VO₂ to B₂O₃ and BCl₃ acting as a ligand-exchange precursor; (3) sulfur in SF₄ yielding both higher oxidation states in SO_xCl_y volatile species and lower oxidation states in S₈ volatile species; (4) volatile vanadium etch products appearing in both the 4+ oxidation state (VCl₄) and the 5+ oxidation state (VOCl₃); and (5) etching of B₂O₃ by BCl₃ to produce B₃O₃Cl₃.

Initial reaction equations were written to agree with the surface and volatile species as observed by FTIR and QMS. Mathematica (Wolfram Mathematica 13.0.0.0) was then used to solve the system of many reaction equations to obtain reaction coefficients that agreed with observed QCM mass changes. The balanced reaction equations that are consistent with all the experimental results are given below. In these equations, the * denotes a surface species, the | separates different surface species, and the (g) indicates a gas species.

SF₄ reactions:

$$\begin{array}{ll} (a_1) & x_1 \bigg\{ {\rm BOCl}^* + \frac{7}{6} \, {\rm SF}_4(g) \to {\rm BF}_3(g) \\ & & + \frac{2}{3} \, {\rm SOF}_2(g) + \frac{1}{48} \, {\rm S}_8(g) + \frac{1}{3} \, {\rm SOFCl}_3(g) \bigg\}, \eqno(2) \end{array}$$

$$(a_2) \quad x_1 \Big\{ B_2 O_3^* + 3SF_4(g) \to 2BF_3(g) + 3SOF_2(g) \Big\}, \qquad (3)$$

(a₃)
$$x_3 \left\{ VO_2^* + \frac{5}{4}SF_4(g) \rightarrow VOF_3^* + \frac{1}{32}S_8(g) + SOF_2(g) \right\}.$$
 (4)

BCl₃ reactions:

$$(b_1) \quad x_3 \Big\{ \operatorname{VOF}_3^* + 2\operatorname{BCl}_3(g) \to \operatorname{VOCl}_3(g) + \operatorname{BF}_2\operatorname{Cl}(g) + \operatorname{BFCl}_2(g) \Big\},$$

$$(5)$$

$$(b_2) \quad x_1 \Big\{ 2VO_2^* + 3BCl_3(g) \rightarrow B_2O_3 |BOCl^* + 2VCl_4(g) \Big\}, \quad (6)$$

(c₁)
$$B_2O_3^* + BCl_3(g) \to B_3O_3Cl_3(g).$$
 (7)

The sum of reactions a_1 , a_2 , and a_3 in Eqs. (2)–(4) presents the overall reaction during the SF₄ exposure. Reaction a_1 in Eq. (2)

presents the removal of BOCl* surface species to produce BF₃, SOF₂, and SOFCl₃. Reaction a_2 in Eq. (3) describes the removal of $B_2O_3^*$ surface species to produce BF₃ and SOF₂. Reaction a_3 in Eq. (4) presents the oxidation of VO₂* to VOF₃* and the subsequent reduction of SF₄ to S₈. S₈ is produced during reaction a_3 when VO₂ is oxidized to form VOF₃*. In addition, some S₈ is also produced during reaction a_1 when SF₄ is oxidized to SOFCl₃.

The sum of reactions b_1 , b_2 , and c_1 in Eqs. (5)–(7) gives the overall reaction during the BCl₃ exposure. Reaction b_1 in Eq. (5) describes VOF₃ undergoing a ligand-exchange process with BCl₃ to form volatile VOCl₃ and mixed-halogen boron species. Reaction b_2 in Eq. (6) presents the conversion of V₂O₄ (or 2VO₂) to B₂O₃ and VCl₄. Finally, reaction c_1 in Eq. (7) represents etching of the B₂O₃-converted surface layer during extended BCl₃ exposures to produce trichloroboroxin.

The coefficient values needed to balance the equations and agree with observed QCM mass changes were calculated by Mathematica. See supplementary material⁵⁶ for a description of the Mathematica calculations. Mass loss from c_1 was not considered when calculating the reaction coefficients. The Mathematica calculations established that Eqs. (2)–(6) yield the correct ratio of mass changes during SF₄ and BCl₃ exposures with the reaction coefficients $x_1 = 0.82$ and $x_3 = 0.36$.

In addition, the Mathematica calculations determined that the sum of reactions a_1 , a_2 , and a_3 and the sum of reactions b_1 and b_2 both yield mass losses during SF₄ and BCl₃ exposures, respectively. Mass losses of $\Delta m_{BCl3} = -44.3$ and $\Delta m_{SF4} = -56.9$ ng/cm² were measured by QCM at 250 °C for the individual BCl₃ and SF₄ exposures, respectively. The experimental ratio of the mass changes was $\Delta m_{BCl3}/\Delta m_{SF4} = 0.78$. The coefficients x_1 and x_3 for the reaction mechanism given by Eqs. (2)–(6) also produced a ratio of the mass changes of $\Delta m_{BCl3}/\Delta m_{SF4} = 0.78$.

IV. CONCLUSIONS

VO₂ thermal ALE was accomplished using sequential exposures of BCl₃ and SF₄. The etch rates, surface species during etching, and volatile etch products were measured by employing various techniques including QCM, FTIR, and QMS. Using QCM measurements, the VO₂ etch rates varied from 0.05 Å/cycle at 150 °C to 2.3 Å/cycle at 250 °C. Mass losses were observed during both BCl₃ and SF₄ exposures. The mass losses versus BCl₃ and SF₄ exposures were also nearly self-limiting versus BCl₃ and SF₄ exposures. VO₂ ALE was also visualized using TEM studies that observed the removal of VO₂ ALD films on W particles.

FTIR studies were able to observe the surface species and the loss of the VO₂ film during VO₂ thermal ALE. The initial BCl₃ exposures on the VO₂ film were observed to convert the VO₂ to B₂O₃. The subsequent SF₄/BCl₃ reactions led to the growth/loss of absorbance at 1051 and 650 cm⁻¹. These absorbance features were attributed to F₃V=O and V-F stretching vibrations, respectively. SF₄ fluorinates VO₂ to form a VOF₃ surface layer and then BCl₃ reacts with VOF₃ by ligand-exchange to volatilize the VOF₃ surface layer as VOCl₃. Likewise, BCl₃ also converts some VO₂ to B₂O₃ and then the SF₄ exposure removes the B₂O₃ conversion layer.

The QMS measurements revealed that there were many changes in the oxidation state during VO_2 ALE. SF₄ was oxidized

during SF₄ exposures and various SO_xF_vCl_z products were observed in oxidation states greater than 4+. SF4 was also reduced all the way to elemental S₈. VCl₄ and VOCl₃ were observed as the main vanadium-containing etch products. VOCl₃ requires the oxidation of vanadium to the 5+ oxidation state. This oxidation may be coupled with the reduction in SF4 to produce S8 species. Trichloroboroxin (B₃O₃Cl₃) was also observed during the BCl₃ exposures. B₃O₃Cl₃ can be produced after BCl₃ converts VO₂ to B_2O_3 and then proceeds to etch the converted B_2O_3 .

Thermal VO₂ ALE using sequential BCl₃ and SF₄ exposures illustrates the variety of surface reactions that can define a thermal ALE process. VO₂ ALE proceeded by many pathways including conversion, ligand-exchange, and oxidation state changes. One factor that adds to the complexity of VO2 ALE is the potential of BCl₃ for conversion reactions. Another factor is stable and volatile vanadium etch products in the 5+ oxidation state that require oxidation state changes from 4+ in VO₂ to 5+ in VOCl₃.

ACKNOWLEDGMENTS

This research was funded by the U.S. Army Research Laboratory and the U.S. Army Research Office under Contract No. W911NF-14-C-0007. The FTIR studies were funded by Intel through a member-specific research grant from the Semiconductor Research Corporation (SRC). Funding for the QMS reactor and the QMS investigations was provided by Lam Research.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Jonas C. Gertsch: Data curation (lead); Formal analysis (lead); Investigation (lead); Writing - original draft (lead); Writing review & editing (equal). Jonathan L. Partridge: Data curation (supporting); Investigation (supporting). Austin M. Cano: Data curation (supporting); Investigation (supporting). Joel W. Clancey: Data curation (supporting); Investigation (supporting). Victor M. Bright: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Supervision (equal); Writing review & editing (supporting). Steven М. George: Conceptualization (equal); Funding acquisition (equal); Methodology (lead); Project administration (equal); Supervision (equal); Writing - review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available within the article.

REFERENCES

- ¹K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. Gottscho, J. Vac. Sci. Technol. A 33, 020802 (2015).
- ²A. Fischer, A. Routzahn, S. M. George, and T. Lill, J. Vac. Sci. Technol. A 39, 030801 (2021).
- ³S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. B 14, 3702 (1996).

- ⁴S. D. Park, D. H. Lee, and G. Y. Yeom, Electrochem. Solid-State Lett. 8, C106 (2005).
- ⁵D. Metzler, R. L. Bruce, S. Engelmann, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci Technol A 32, 020603 (2014)
- ⁶S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom, Electrochem. Solid-State Lett. 11, H71 (2008).
- 7K. S. Min, S. H. Kang, J. K. Kim, Y. I. Jhon, M. S. Jhon, and G. Y. Yeom, Microelectron. Eng. 110, 457 (2013).
- ⁸S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim, J. I. Song, and J. H. Jang, Appl. Phys. Lett. 89, 043109 (2006).
- ⁹D. S. Kim, J. E. Kim, W. O. Lee, J. W. Park, Y. J. Gill, B. H. Jeong, and G. Y. Yeom, Plasma Processes Polym. 16, 1900081 (2019).
- ¹⁰W. S. Lim *et al.*, Carbon **50**, 429 (2012).
- ¹¹K. S. Kim et al., ACS Appl. Mater. Interfaces 9, 11967 (2017).
- ¹²S. M. George, Acc. Chem. Res. 53, 1151 (2020).
- ¹³D. R. Zywotko, J. Faguet, and S. M. George, J. Vac. Sci. Technol. A 36, 061508 (2018).
- ¹⁴A. M. Cano, J. L. Partridge, and S. M. George, Chem. Mater. 34, 6440 (2022).
- ¹⁵Y. Lee, J. W. DuMont, and S. M. George, Chem. Mater. 27, 3648 (2015).
- ¹⁶Y. Lee, J. W. DuMont, and S. M. George, Chem. Mater. 28, 2994 (2016).
- ¹⁷Y. Lee and S. M. George, ACS Nano 9, 2061 (2015).
- 18Y. Lee, J. W. DuMont, and S. M. George, ESC J. Solid State Sci. Technol. 4, N5013 (2015).
- ¹⁹Y. Lee and S. M. George, J. Vac. Sci. Technol. A 36, 061504 (2018).
- ²⁰J. A. Murdzek and S. M. George, J. Vac. Sci. Technol. A 38, 022608 (2020).
- ²¹Y. Lee, N. R. Johnson, and S. M. George, Chem. Mater. 32, 5937 (2020).
- 22A. M. Cano, A. Lii-Rosales, and S. M. George, J. Phys. Chem. C 126, 6990 (2022).
- 23N. R. Johnson, H. Sun, K. Sharma, and S. M. George, J. Vac. Sci. Technol. A 34, 050603 (2016).
- ²⁴Y. Lee and S. M. George, Chem. Mater. 29, 8202 (2017).
- ²⁵J. W. DuMont, A. E. Marquardt, A. M. Cano, and S. M. George, ACS Appl. Mater. Interfaces 9, 10296 (2017).
- ²⁶A. I. Abdulagatov and S. M. George, Chem. Mater. **30**, 8465 (2018).
- ²⁷N. R. Johnson and S. M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017).
- 28 J. A. Murdzek, A. Lii-Rosales, and S. M. George, Chem. Mater. 33, 9174 (2021).
- ²⁹S. M. George and Y. Lee, ACS Nano 10, 4889 (2016).
- 30 M. Konh, C. He, X. Lin, X. Guo, V. Pallem, R. L. Opila, A. V. Teplyakov, Z. Wang, and B. Yuan, J. Vac. Sci. Technol. A 37, 021004 (2019).
- ³¹N. R. Johnson, J. K. Hite, M. A. Mastro, C. R. Eddy, and S. M. George, Appl. Phys. Lett. 114, 243103 (2019).
- 32 P. C. Lemaire and G. N. Parsons, Chem. Mater. 29, 6653 (2017).
- 33A. M. Cano, S. K. Natarajan, J. L. Partridge, S. D. Elliott, and S. M. George, Vac. Sci. Technol. A 40, 022601 (2022).
- ³⁴J. C. Gertsch, A. M. Cano, V. M. Bright, and S. M. George, Chem. Mater. 31, 3624 (2019).
- ³⁵HSC Chemistry 9.9.2.3, Outokumpu Research Oy, Pori, Finland.
- ³⁶F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
- 37 M. Soltani, M. Chaker, E. Haddad, and R. V. Kruzelesky, J. Vac. Sci. Technol. A 24, 612 (2006).
- ³⁸C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators A: Phys. 90, 212 (2001). 39T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, and D. Vernardou, Chem. Mater. 16, 744 (2004).
- ⁴⁰J. C. Gertsch, E. Sortino, V. M. Bright, and S. M. George, J. Vac. Sci. Technol. A **39**, 062602 (2021). ⁴¹T. Blanquart *et al.*, RSC Adv. **3**, 1179 (2013).
- ⁴²G. Rampelberg, D. Deduytsche, B. De Schutter, P. A. Premkumar, M. Toeller, M. Schaekers, K. Martens, I. Radu, and C. Detavernier, Thin Solid Films 550, 59 (2014). ⁴³J. W. DuMont and S. M. George, J. Phys. Chem. C 119, 14603 (2015).
- 44A. Lii-Rosales, V. L. Johnson, S. Sharma, A. Fischer, T. Lill, and S. M. George, J. Phys. Chem. C 126, 8287 (2022).

⁴⁵J. W. Clancey, A. S. Cavanagh, J. E. T. Smith, S. Sharma, and S. M. George,

J. Phys. Chem. C 124, 287 (2020).
⁴⁶I. L. Botto, M. B. Vassallo, E. J. Baran, and G. Minelli, Mater. Chem. Phys. 50, 267 (1997).

⁴⁷I. R. Beattie and T. R. Gilson, J. Chem. Soc. A, 2322 (1969).

JVST

⁴⁸R. G. Cavell and H. C. Clark, Inorg. Chem. 3, 1789 (1964).

49H. Selig and H. H. Claassen, J. Chem. Phys. 44, 1404 (1966).

- 50 R. Rulkens, J. L. Male, K. W. Terry, B. Olthof, A. Khodakov, A. T. Bell,
- E. Iglesia, and T. D. Tilley, Chem. Mater. 11, 2966 (1999).
- ⁵¹D. Peak, G. W. Luther, and D. L. Sparks, Geochim. Cosmochim. Acta 67, 2551 (2003).
- ⁵²W. B. Maier and R. F. Holland, J. Chem. Phys. 72, 6661 (1980).

⁵³C. F. V. Mason and R. G. Behrens, J. Less-Common Met. 85, 21 (1982).

⁵⁴J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 371, 95 (2000).

55J. A. McCormick, K. P. Rice, D. F. Paul, A. W. Weimer, and S. M. George, Chem. Vap. Depos. 13, 491 (2007).

56See the supplementary material at https://www.scitation.org/doi/suppl/ 10.1116/6.0002149 for the calculations used to determine the reaction coefficients for the SF4 and BCl3 reactions during VO₂ thermal ALE.