Thermal Atomic Layer Etching of Microelectronic Materials Steven M. George Department of Chemistry, University of Colorado, Boulder, Colorado, 80309, Steven.George@Colorado.edu ## **Abstract** Atomic layer control of microelectronic processing is required as critical dimensions are reduced below the 10 nm scale. Thermal atomic layer etching (ALE) has developed over the last 5 years to meet etching challenges. This paper will define thermal ALE in terms of sequential, self-limiting surface reactions. Thermal ALE can be viewed as the reverse of atomic layer deposition (ALD). Various microelectronic materials will be used to demonstrate thermal ALE including Ga₂O₃, Si, and Si₃N₄. (Keywords: atomic layer etching, atomic layer processing, Ga₂O₃, Si, Si₃N₄) #### Introduction Thermal ALE is based on a binary reaction sequence [1]. The first surface modification reaction is able to alter the surface layer. The second volatile release reaction produces volatile etch products from the altered surface layer. An illustration of thermal ALE is shown in Figure 1. Ideally, both the surface modification and volatile release reactions are self-limiting. Thermal ALE is similar to the reverse of ALD. Figure 1. Schematic of thermal ALE process. There are many mechanisms for thermal ALE [1]. Fluorination and ligand-exchange is one mechanism that is useful for the etching of metal oxides such as Ga₂O₃ [2]. The etching of silicon-based materials utilize oxidation mechanisms where the silicon material is oxidized to SiO₂ [3,4]. The etching of SiO₂ is then performed using a conversion mechanism where SiO₂ is converted to Al₂O₃ by trimethylaluminum [5]. This presentation will review the thermal ALE of Ga₂O₃, Si, and Si₃N₄. ## **Results and Discussion** ## A. Ga₂O₃ ALE Gallium oxide is a transparent semiconducting oxide that has applications in power electronics and optoelectronics. The thermal ALE of Ga₂O₃ can be achieved using fluorination and ligand-exchange [2]. Ga₂O₃ is first fluorinated to GaF₃ using HF. The GaF₃ can then be removed by ligand-exchange using BCl₃. An illustration of these two sequential surface reactions is shown in Figure 2. Figure 2. Schematic for Ga₂O₃ ALE using HF and BCl₃ as the reactants. The thermal ALE of Ga₂O₃ can be monitored using in situ spectroscopic ellipsometry [2]. Results for Ga₂O₃ thermal ALE at 200°C are shown in Figure 3 [2]. The Ga₂O₃ film is removed with an etch rate of 1.38 Å/cycle. Additional experiments also reveal that the etch rate is self-limiting versus HF and BCl₃ pressure at constant exposure time [2]. Figure 3. Ga₂O₃ film thickness versus number of cycles of Ga₂O₃ ALE using HF and BCl₃ as the reactants. Other experiments revealed that a number of precursors could etch Ga₂O₃ after fluorination using HF [2]. These precursors were AlCl(CH₃)₂, Al(CH₃)₃, TiCl₄ and Ga(N(CH₃)₂)₃. Some of these precursors, such as TiCl₄, are believed to etch Ga₂O₃ through a conversion mechanism. The TiCl₄ can convert Ga₂O₃ to TiO₂ prior to the spontaneous etch of TiO₂ by HF [2]. #### B. Si ALE Silicon is one of most ubiqutious semiconductor materials in microelectronics. Si thermal ALE can be performed using oxidation, fluorination, ligand-exchange and conversion [3]. Silicon is initial oxidized to SiO₂ using O₂. Subsequently, trimethylaluminum (TMA) is able to convert SiO₂ to Al₂O₃. After fluorination of Al₂O₃ to AlF₃ by HF, TMA can volatilize the AlF₃ by ligand-exchange. The reaction sequence for Si thermal ALE is displayed in Figure 4 [3]. Figure 4. Schematic of Si ALE using O_2 , HF and Al(CH₃)₃ as the reactants. Si thermal ALE is dependent on the conversion of SiO_2 to Al_2O_3 . SiO_2 by itself is not etched by HF and TMA when these reactants are at low pressure of < 100 mTorr [6]. However, at higher TMA pressures of > 1 Torr, the TMA is able to convert SiO_2 to Al_2O_3 [5] This conversion to Al_2O_3 provides a pathway for Al_2O_3 to be etched using HF and TMA [7]. In situ spectroscopic ellipsometry was employed to monitor the Si film thickness during Si thermal ALE. The ellipsometry could simultaneously monitor the thicknesses of both the SiO₂ layer on top of the Si film and the Si film itself. Ellipsometry results for Si ALE at 290°C are shown in Figure 5 [3]. The SiO₂ layer thickness is approximately constant at 10 Å while the underlying Si film is etched at a rate of 0.4 Å/cycle [3]. Figure 5. Si thickness change and SiO₂ film thickness versus number of Si ALE cycles using O₂, HF and TMA as the reactants. Additional experiments explored the etching of ultrathin silicon films on SOI wafers. These silicon films had thicknesses <100 Å. These ultrathin silicon films were etched linearly from 100 Å until reaching the underlying SiO₂ film on the SOI wafer [3]. These experiments demonstrate that quantum confinement effects in silicon that are present at <100 Å do not influence the etching. ## C. Si₃N₄ ALE Silicon nitride is an important dielectric, barrier and spacer material in microelectronics. In similarity with Si thermal ALE, the thermal ALE of Si₃N₄ can be achieved using oxidation, fluorination, ligand-exchange and conversion [4]. Si₃N₄ is initial oxidized to SiO₂ using O₂ or O₃. Afterwards, TMA is able to convert SiO₂ to Al₂O₃. After fluorination of Al₂O₃ to AlF₃ by HF, TMA can volatilize the AlF₃ by ligand-exchange. The reaction sequence for Si₃N₄ thermal ALE is displayed in Figure 6 [4]. In situ spectroscopic ellipsometry was again used to monitor the Si₃N₄ film thickness during Si₃N₄ thermal ALE. Similar to the results in Figure 5, the ellipsometry could simultaneously monitor the thicknesses of both the SiO₂ layer on top of the Si₃N₄ film and the Si₃N₄ film itself. Ellipsometry results for Si ALE at 290°C are shown in Figure 7 [3]. The SiO_2 layer thickness is approximately constant at 9 Å while the underlying Si_3N_4 film is etched at a rate of 0.25 Å/cycle [3]. Figure 6. Schematic of Si_3N_4 ALE using O_2 or O_3 , HF and Al(CH₃)₃ as the reactants. Figure 7. Si_3N_4 thickness change and SiO_2 film thickness versus number of Si_3N_4 ALE cycles using O_2 , HF and TMA as the reactants. Si_3N_4 thermal ALE was also conducted using O_3 as the oxidation reactant. Under the same reaction conditions as the above Si_3N_4 ALE thermal process using O_2 , the O_3 produced a higher Si_3N_4 thermal ALE etch rate of 0.47 Å/cycle [4]. #### **Conclusions** Thermal ALE should be useful in the processing of microelectronic materials. Thermal ALE is a gas phase process analogous to the reverse of ALD. Thermal ALE should be able to etch isotropically and conformally. This paper has highlighted the thermal ALE of Ga₂O₃, Si and Si₃N₄. # Acknowledgments The author gratefully acknowledges the work performed by his research group members. Younghee Lee and Nicholas Johnson conducted the experiments for Ga₂O₃ ALE. Aziz Abdulagatov performed the experiments for Si and Si₃N₄ ALE. Funding for this work was provided by the Semiconductor Research Corporation (SRC), Intel Corporation through a grant from the SRC, and the Advanced Industries Accelerator Program from the State of Colorado. ## References - [1] Steven M. George, "Mechanisms of Thermal Atomic Layer Etching", *Acc. Chem. Res.* **53**, 1151 (2020). - [2] Younghee Lee, Nicholas R. Johnson and Steven M. George, "Thermal Atomic Layer Etching of Gallium Oxide Using Sequential Exposures of HF and Various Metal Precursors", *Chem. Mater.* **32**, 5937 (2020). - [3] Aziz I. Abdulagatov and Steven M. George, "Thermal Atomic Layer Etching of Silicon Using O₂, HF and Al(CH₃)₃ as the Reactants", *Chem. Mater.* **30**, 8465 (2018). - [4] Aziz I. Abdulagatov and Steven M. George "Thermal Atomic Layer Etching of Silicon Nitride Using an Oxidation and "Conversion Etch" Mechanism", *J. Vac. Sci. Technol. A.* **38**, 022607 (2020). - [5] Jaime W. DuMont, Amy E. Marquardt, Austin M. Cano and Steven M. George, "Thermal Atomic Layer Etching of SiO₂ by a "Conversion-Etch" Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride", *ACS Appl. Mater. & Interfaces* **9**, 10296 (2017). - [6] Younghee Lee, Craig Huffman and Steven M. George, "Selectivity in Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions", Chem. Mater. 28, 7657 (2016). - [7] Younghee Lee, Jaime W. DuMont and Steven M. George, "Trimethylaluminum as the Metal Precursor for the Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions", *Chem. Mater.* **28**, 2994 (2016).