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Abstract

Localization of odors is essential to animal survival, and thus animals are adept at odor navigation. In natural
conditions animals encounter odor sources in which odor is carried by air flow varying in complexity. We sought
to identify potential minimalist strategies that can effectively be used for odor-based navigation and asses their
performance in an increasingly chaotic environment. To do so, we compared mouse, in silico model, and
Arduino-based robot odor-localization behavior in a standardized odor landscape. Mouse performance remains
robust in the presence of increased complexity, showing a shift in strategy towards faster movement with
increased environmental complexity. Implementing simple binaral and temporal models of tropotaxis and
klinotaxis, an in silico model and Arduino robot, in the same environment as the mice, are equally successful in
locating the odor source within a plume of low complexity. However, performance of these algorithms significantly
drops when the chaotic nature of the plume is increased. Additionally, both algorithm-driven systems show more
successful performance when using a strictly binaral model at a larger sensor separation distance and more
successful performance when using a temporal and binaral model when using a smaller sensor separation
distance. This suggests that with an increasingly chaotic odor environment, mice rely on complex strategies that
allow for robust odor localization that cannot be resolved by minimal algorithms that display robust performance
at low levels of complexity. Thus, highlighting that an animal’s ability to modulate behavior with environmental
complexity is beneficial for odor localization.
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A promising body of work has been devoted to designing robots and algorithms that address the strategies
used by animals during odor-based navigation. One method to do so is by designing models that account
for complex navigational tactics implemented by a particular species. How do these models directly
compare to animal behavior in the same environment? We addressed this question by comparing odor-
localization performance of minimal spatial and temporal algorithms in silico and in a robot to the strategies
and performance of mice in the same odor environment. Through implementing this unique comparison, we
revealed that mouse behavior remains robust with an increase in odor plume complexity, whereas simple
\algorithm behavior (although high performing at low plume complexity) does not. j
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Introduction

Odor-based navigation is critical to animal survival as
animals depend on olfactory cues to locate food sources,
find mates, and avoid predators. Odors in nature are often
carried by chaotic air or water flow, producing plumes
with complex spatiotemporal structure. In large naturalis-
tic environments, odor plumes become characterized by
odor fluctuations, providing animals with a dynamic odor
environment to navigate (Crimaldi et al., 2002; Connor
et al., 2018).

Animals display a variety of behavioral strategies when
navigating odor landscapes. Mammals exhibit zig-
zagging casting behavior when tracking odor trails (Porter
et al., 2007; Khan et al., 2012; Jones and Urban, 2018; Liu
et al., 2019) and similarly, insects display casting behavior
when traveling through airborne odor plumes (Willis and
Avondet, 2005; Gomez-Marin et al., 2011). For both in-
sects and crustaceans, odor plume complexity can affect
odor-source localization (Mafra-Neto and Cardé, 1994;
Keller and Weissburg, 2004). Moths exhibit a decrease in
casting behavior and increase in fast, straight upwind
paths in the presence of increased complexity, suggest-
ing that complexity can be beneficial for odor tracking in
some species. Although insect and crustacean behavior
within odor landscapes has been studied for decades, a
small but growing body of literature is focusing on the
behavioral strategies used by mammals, specifically ro-
dents, for airborne odor source localization. When rodents
are tested on odor source localization in small flow-
chambers where odor is released from a set of predictable
locations, they ultimately predominantly use a habitual
strategy relying on spatial memory to find odor ports
(Bhattacharyya and Bhalla, 2015; Gire et al., 2016). Addi-
tionally, these studies suggest that rodents do not exhibit
casting behavior during odor localization within airborne
plumes, an interesting contrast to the casting observed
during trail following.

To systematically determine the strategies that may
account for animal odor-based navigation, scientists have
turned to robotics. Several robotics-based approaches to
odor localization have focused on replicating well-studied
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moth navigational strategies. These studies employed al-
gorithms combining odor and wind-sensing to mimic
casting behavior (Ishida et al., 1996; Harvey et al., 2008;
Lochmatter et al., 2008; Lochmatter and Martinoli, 2009).
Successful robotics strategies have implemented fans to
actively draw air into sensors, similar to the beating of a
moth’s wings, showing that fanning action causes a
greater difference in perceived concentration between
two sensors (Nakamoto et al., 1996). Although implement-
ing robotic algorithms inspired by animal trajectories is
useful when developing robust odor-source localization
strategies, it is critical that the efficacy of these algorithms
is tested through direct comparison with animals. Studies
aimed at bridging the gap between simulations and real
animal behavior have used insect antennas to replace
sensors as well as used a robot to generate lobster an-
tenna movements to study the resulting changes to the
odor environment (Kuwana and Shimoyama, 1998; Koehl
et al., 2001). Stereo smell is beneficial for odor localization
in invertebrates and mammals alike (Porter et al., 2007;
Catania, 2013; Jones and Urban, 2018). With unilateral
naris occlusion, mouse odor localization accuracy drops
and when input to one antenna is blocked, Drosophila fail
to orient toward airborne odor plumes (Rajan et al., 2006;
Duistermars et al., 2009). Thus, when developing algo-
rithms to compare to animal odor-navigation behavior, it
is essential to consider stereo smell. When tested in
identical physical conditions to the milieu of a lobster, a
RobolLobster implementing minimal algorithms based on
a difference in concentration between two chemical sen-
sors, displays paths that are both more tortuous and less
successful when compared to an actual lobster (Grasso
et al., 2000). This suggests that lobster odor-navigation
strategy is more complex than a simple comparison be-
tween concentrations at two sensors.

Here, we directly compare the behavior of mice, mini-
mal in silico odor-localization models, and an Arduino
robot implementing these models (tropotaxis and klino-
taxis) in the presence of two levels of odor plume com-
plexity. The use of in silico models allows for flexibility of
testing a variety of navigation strategies, supports the
quantification of effects of varied sensor parameters and
enables the measurement of instantaneous concentration
during odor navigation. To the best of our knowledge, our
study is the first to directly test airborne odor-navigation
algorithms, designed in silico, implemented in a robot and
real rodent behavior within the same flow chamber. We
find that mouse odor localization remains robust in a
plume which is increasingly chaotic, and that complexity
may benefit the efficiency of navigation. Additionally, we
find that when tested in the same environment as the
mouse, an Arduino robot shows decreased performance
with increased odor plume complexity, highlighting the
robustness of mouse navigation behavior.

Materials and Methods

Standard odor landscape (SOL)

A SOL arena was built as described in Connor et al.
(2018), barring a few adjustments related to the behavioral
assay. The core of the flow chamber had dimensions of
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100 cm wide, 100 cm long (in flow direction), and 30 cm
tall. The chamber was flanked by honeycomb flow-
straighteners (Plascore PC2-125-W-2 polycarbonate 1/8-
inch cell, 2 inches thick, 1 X 0.3 m) and the air inlet had a
turbulence grid (2.5 X 2.5 cm spacing, steel grid wire
3-mm OD) 20 cm downstream of the inlet honeycomb
(Fig. 1A). Airflow of 5 cm/s was established using a vac-
uum attached to the outlet of the flow chamber. The inlet
side of the flow chamber tapered from a surface area of
1.2 m? to the 0.3 m? of the main arena (where the inlet
honeycomb was placed). Isoamyl acetate (IAA; 3% in
mineral oil, Sigma-Aldrich) was released, also at 5 cm/s,
through one of three odor tubes magnetically clipped on
to and extending 10 cm in front of the turbulence grid.
Each odor tube was an 18-cm-long 3-D printed horn
linearly expanding from an inner diameter of 3-10 mm and
its lower edge raised 15 mm above the floor (horn center
at 20 mm off the floor). Odor tubes were located at midline
and 25 cm lateral to midline. An air-dilution olfactometer
was built to deliver odor by bubbling air through an odor
vial containing 3% IAA in mineral oil. Each odor tube
isokinetically delivered either air or odor at 236 ml/min.
Above each odor port was a lick spout associated with
that port. In the case of robot testing, LED lights were
attached on top of each odor port in place of the lick
spouts. All sides of the flow chamber were constructed
from white acrylic and the top of the flow chamber was
constructed from clear acrylic to allow for imaging during
the behavioral task. A 2-inch diameter hole was cut in the
base of the flow chamber directly in front of the outlet
honeycomb (center at 7.5 cm) along the midline (from
downstream to upstream) of the chamber. This hole
served as the insertion point for animals at the beginning
of every trial and was immediately sealed after animal
entry using a magnetic disk that was flush with the base of
the flow chamber.

To increase lateral variation in the flow which in turn
increases the chaotic mixing (Mehta and Bradshaw, 1979)
in the SOL, we removed the inlet honeycomb, allowing
ambient room air flow to add complexity in addition to the
static turbulence grid (Fig. 1A; Extended Data Fig 1-1). To
evaluate the effectiveness thereof, we measured odor
concentration time series along the midline of the SOL at
10, 30, 50, and 60 cm downstream from the odor tube.
Three series of 120 s (50 samples/s) were taken at each
location with the inlet honeycomb, after which the honey-
comb was removed and the measurements were re-
peated. This entire sequence was repeated once for a
total of six-time series per location per condition (Ex-
tended Data Fig. 1-1). Measurements were taken with a
miniPID (Aurora Scientific) set to low gain and slow pump
speed. The odor used was 50% ethanol evaporated via a
stainless-steel bubbler and released isokinetically (flow
conditions were identical to the experimental conditions
described above). To minimally interfere with the non-
turbulent chaotic airflow and ensure measurement con-
sistency, the midline and upstream edges of the miniPID
sensor body were located 15 cm lateral from midline and
5 cm downstream from the inlet tip of a 1/8-inch OD
Teflon tube bent gradually at 90° to suck in air in down-
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stream direction. A 22-gauge needle pierced the tube
vertically, 2 cm from the tube’s tip, and assured a consis-
tent sampling height of 20 mm. The miniPID output was
directly digitized using a Syscomp 11-bit A/D board
(CGM-101) and streamed to disk. The final 6000 samples
of each data file were saved as MATLAB data files
(https://doi.org/10.5061/dryad.zgmsbcc71) and used for
analysis of complexity (MATLAB code file, available on
DataDryad, https://doi.org/10.5061/dryad.zgmsbcc71).
Small DC-offsets were removed. Intermittency was calcu-
lated as the fraction of time the time series was above
4.4% of the maximum average signal at 10 cm from the
odor tube.

Mouse: behavioral training

Four adult male C57BI/6 mice aged 24-26 weeks were
used. Mice were handled for 20 min each day for one
week before habituation in the flow chamber. Following a
week of handling with the experimenter, animals were
allowed to explore the flow chamber for 30 min/d for 5 d.
Subsequently, animals were water regulated (body weight
closely monitored and maintained at 85% of original
weight) and trained to associate the lick spouts with
sucrose water (100 mM) delivery. Water was dispensed
free-flowing from each of the three lick spouts and ani-
mals were lick-trained until they licked from all three
lick-spouts. Once lick-trained, animals were trained on a
simple version of the navigation task. At the beginning of
every trial, an odor plume was established from odor port
1 for 30 s, and then the animal was inserted into the arena
through the 2-inch hole at the outlet end of the flow
chamber. Animals were given 45 s to navigate to port 1
and were trained on this task for 6 d. Animals were group
housed in an environment of controlled humidity (40%)
and temperature (22°C) with a 12/12 h inverted dark/light
cycle with lights off at 9 A.M. Animals were tested during
their dark cycle under red light. All experimental protocols
were performed in accordance with protocols approved
by Pierce Animal Care and Use Committee. The John B
Pierce Laboratory is AAALAC accredited. These proce-
dures are in agreement with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals
(8th edition).

Mouse: odor navigation task

On each ftrial odor was released from one of three
possible odor ports and isokinetic clean air was released
from the other two ports. Thirty seconds was allotted for
the odor plume to be established before inserting the
animal. On entering the flow chamber through the 2-inch
hole at the outlet end, the animal was given 45 s to
navigate to the odor source. If the animal reached the
correct odor source, an 8-kHz tone was played, and the
animal was required to remain within the reward zone for
100 ms before a sucrose water reward (100 mM) was
delivered for 500 ms. After sucrose water delivery, the
animal was removed from the arena. If the animal ap-
proached an incorrect odor port or failed to reach the
reward zone within the 45-s duration, a 1-kHz tone was
played and the animal was removed from the arena. In
between trials odor was turned off and the animal was
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placed in an enrichment cage for 45 s. This amount of
time was sufficient to clear any residual odor from the flow
chamber. Animals were tested on 30—40 randomized trials per
day with equal representation of each odor port. Animals were
tested using the honeycomb condition for 14 d and subse-
quently without the honeycomb for 5 d. Lastly, animals were
tested on a no odor control paradigm.

Model: geometry

We developed in silico simulations of odor navigation in
static and dynamic plumes. We refer to these simulations
interchangeably as a model and simulated robot. The
simulated robot makes temporally discrete sample-to-
sample comparisons of odor concentration at its left and
right sensors as it moves through space. It consists of a
virtual chassis with coordinates centered at (x, y) and
moves through space along a heading 6 at a velocity v:

Xpiar = X; + v Atcos 6 (1)

Yeear = Y T v Atsin 6, @)

where At represents the update rate of the model, here
100 ms. Velocity v is 4 cm/s. The agent has a chassis
radius of £; = 8 cm. Sensors are located at the front of the
chassis with a variable intersensor distance of €,. The two
sensors are separated by an angle y = arctan({, / 2¢,).
Sensor positions are given as:

€\2

Xp =X+ €2+ (5) cos (6 = ) (3)
€s\2

Yr =Y+ €3+ (E) sin (0 = ), (4)

where (x;, y,) is the left sensor and (xg, yg) is the right
sensor. The agent geometry is shown in Figure 3A.

The simulated robot engages in hierarchical navigation
algorithms which begin with (1) baseline acquisition, fol-
lowed by iterative (2) wall avoidance, and then (3) odor-
driven navigation. Both baseline acquisition and odor-
driven navigation require transduction of the underlying
odorant concentration into a sensor signal.

Model: odor signal simulation

Odor signals at each sensor are simulated as

SL/R = _kdecayS + Cx,y,t' (5)

Here, Kgyecay iS @ rate constant set to In(2)/0.8s on ex-
perimental sensor half-life data (Extended Data Fig. 4-1C).
C,..+ represents the instantaneous concentration sampled at
time t from the plume dataset at the pixel position (point source)
corresponding to either the left or right sensor.

Using this simple model for sensor odor signal, we may
define the model’s baseline acquisition and odor-driven
navigation.

Baseline acquisition
Baseline acquisition is identical for both simulated al-
gorithms. First, the simulated robot remains stationary for
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10 s to allow its sensors to equilibrate according to Equa-
tion 5.

After equilibration, the model remains stationary and
samples from the left sensor four times over the following
second. These sensor values are averaged to generate
S| paseiine- OVer the subsequent second model performs
the same procedure at the right sensor to generate
SR,base/ine'

Finally, the two baselines are averaged to obtain
Sbase/ine = (SL,baseline + SFf,base/ine)/z! a value which will be
used in odor-driven navigation.

Wall avoidance

In each loop of the simulated robot program, the model
first uses its IR sensors to determine whether it must take
corrective action to avoid an arena wall. If the simulated
robot’s center (x, y) approaches within distance deshoid
= 10 cm of a wall, it takes the following corrective actions.

If the model approaches a wall from its left-hand side
(i.e., if the wall is in the left IR detection radius in Fig. 3A,
orange arc), it first turns right for 100 ms, corresponding to
a change in heading of ~30° to the right:

Oriae = 0; — % Q)

It then moves forward for 200 ms according to Equa-
tions 1, 2.

If the model approaches a wall from its right-hand side
(i.e., if the wall is in the right IR detection radius in Fig. 3A,
green arc), it first turns left for 100 ms, corresponding to a
change in heading of ~30° to the left:

Ouse = 6, + G- @)

It then moves forward for 200 ms according to Equa-
tions 1, 2.

If the model approaches a wall head on (i.e., if the wall
is in the center IR detection radius in Fig. 3A, blue arc), it
first turns right for 100 ms, corresponding to a change in
heading of ~30° to the right (Eq. 6). It then backs up for
200 ms according to Equations 1, 2 (v = -4 cm/s to
reverse course).

Following any of the above scenarios, the model re-
mains stationary for 300 ms to allow the sensors to equil-
ibrate.

Model: odor-driven navigation

If no wall is encountered in a loop of the robot code, it
engages in odor-driven navigation. Here, model behavior
varies depending on whether algorithm A or B is imple-
mented.

In algorithm A, the sensors are queried and one of three
alternatives is selected based on current sensor values in
order of precedence:

1. If the value (SL'SbaseIine) - (SR'Sbaseline) > Sthreshold:
(Sthreshola = 0.03), the model turns left for 100 ms
according to Equation 7. It then moves forward for
200 ms according to Equations 1, 2.

2. If the value (Sg-Spaseine) = (SL-Spaseline) > Strresholds
the model turns right for 100 ms according to Equa-
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tion 6. It then moves forward for 200 ms according to
Equations 1, 2.

3. If neither 1 nor 2 occur, the model goes straight for
200 ms according to Equations 1, 2.

Following any of the above three scenarios, the model
remains stationary for 300 ms to allow the sensors to
equilibrate.

In algorithm B, memory of the previous average odor
sample is retained. The sensors are queried and the tem-
poral difference in average concentration values is com-
puted:

= 1
AC = §[((SL — Sinrestoid) T (Sp = Strreshod))e — ((SL —
Sthreshold) + (SR - Sthresho/d))z—m]- (8)

Using this value and the sensor values, one of four
alternatives is selected based on current sensor values in
order of precedence:

1. If AC> Sieshoid’4, the model goes straight for 200
ms according to Equations 1, 2.

2. If the value (SL_SbaseIine) - (SR_Sbaseline) > Sthres.hold/2v
the model turns left for 100 ms according to Equation
7. It then moves forward for 200 ms according to
Equations 1, 2.

3. If the value (SR'SbaseIine) - (SL'Sbaseline) > Sthreshold/zs
the model turns right for 100 ms according to Equa-
tion 6. It then moves forward for 200 ms according to
Equations 1, 2.

4. If none of the above are true, the model proceeds
forward for 200 ms according to Equations 1, 2.

Following any of the above three scenarios, the model
remains stationary for 300 ms to allow the sensors to
equilibrate. For algorithm A and B, the simulated robots
are allotted 75 s to find the odor source.

Model: plume data

Four minutes of near-surface acetone planar laser-
induced fluorescence (PLIF) plume data from Connor
et al. (2018) was used as input for these models
(11282017_10cms_bounded.h5,/dataset7).The above
models are deterministic. If they are synchronized with the
first frame of the plume dataset, they will always generate
the same trajectory. To simulate “random” complexity,
each model evaluation initialized the plume dataset at a
randomly chosen frame between 1 and 3600; the 4-min
dataset was then allowed to loop continuously until the
simulation concluded (Movie 1, Movie 2).

To study the effect of a non-turbulent low chaos envi-
ronment on model performance, we took the time average
of the 4 min of plume data to generate a smooth static
environment (Fig. 3C).

Robot: design

We purchased and modified an Arduino robot (Ex-
tended Data Fig. 4-1A; Arduino robot, code: A000078,
Arduino was purchased from Robotshop). The Arduino
robot comes equipped with a control board (on top) with
a control pad to turn ON/OFF the robot, an LCD screen to
read the sensory data, a compass, a processor, and
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Movie 1. In silico dynamic plume released from corner port.
Video played at 10 Hz (first 10 s shown). [View online]

analog/digital inputs to attach a variety of sensors. Addi-
tionally, the robot contains a motor board (on bottom) with
two wheels for movement, a processor, ON/OFF switch, a
power jack (9 V), an interboard connector, a reset button
for troubleshooting and a USB port to connect the robot
with any device or computer. The robot can be pro-
grammed using Arduino software (Arduino Software IDE,
1.8.5 version). The same bare robot platform was also
used for gas source localization by Ali Yeon et al. (2018).

Simulated Port 1

“ I
409
|
o8
e 0s
0 0s
Sa 04
»
40
0 10 Py 30 0 © ~

Movie 2. In silico dynamic plume released from center port.
Video played at 10 Hz (first 10 s shown). [View online]
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To power the hardware, we mounted three step-down
buck DC-DC converters (DROK, 3A) connected to three
dual lithium ion battery (Samsung 18650, 3.6 V, 3000
mAh) holders connected in parallel, providing 3.0 V (fans),
5.0 V (robot), and 6.5 V (gas sensors). Two (left and right)
gas sensors [DFRobot, Analog Gas Sensor, MQ-2 (DFRO-
BOT) an Arduino package based on MQ-2 gas sensor by
the Hanwei Electronics Co. (hwsensor)] with a high sen-
sitivity to detecting alcohol (and a variety of volatile or-
ganic compounds such as LPG, methane, hydrogen and
smoke) were installed on the robot (Extended Data Fig.
4-1A). The gas sensor’s tin oxide layer on the aluminum
oxide ceramic tube is heated by a nickel-chromium alloy
coil and has an odor concentration-dependent resistance,
suitable to detect a range of concentrations of gasses at
constant temperature and humidity. To increase the re-
sponse speed (Extended Data Fig. 4-1C), both gas sen-
sors were modified by drilling a hole in the PC-board
behind the sensor and attaching a gas sensor fan (10 X 10
X 5 mm, UF3A5-100, Sunon, run at 3.0 V, 0.9 I/min) to
suck in air from the front to back, and removing the front
of the perforated metal grid. The sensors were powered at
6.5V instead of the standard 5 V. Also, we designed a pair
of 3-D printed holders, rods and clamps, to incorporate
the gas sensors at the top of the robot to allow adjustment
of the distance between them and their angle in the
horizontal plane. In addition, we added an analog ambient
light sensor (DFRobot, V2, SKU:DFR0026) mounted at the
front of the robot at the base of a frontally oriented
cone and three IR-based proximity sensors (Sharp,
GP2Y0A41SKOF; Extended Data Fig. 4-1A) at the center,
left and right sides on the top board. Codes run on the
Arduino robot are in accordance with the algorithm A and
B described for the in silico model. These algorithms have
been made available DataDryad (https://doi.org/10.5061/
dryad.zgmsbcc71).

Response dynamics of the gas sensors were evaluated
with a custom Arduino code reading the sensor voltage
100 times per second. Sensors were stimulated by rapidly
manually passing an alcohol-saturated cotton swab from
left to right at 0.5 inches from the frontal plane of the
sensors ~15.2 s after starting a trial. The baseline reading
(mean of first 100 samples) was subtracted and response
maxima were normalized to 1. Individual responses were
time-aligned to the peak and smoothed with a three-
sample running average. Reported data are averages of
2-10 trials, ignoring several trials with more than one peak
and/or non-exponential decay.

Robot: odor navigation task

As in the mouse odor navigation task, at the beginning
of every trial, odor was released from one of three odor
ports and isokinetic air flow was released from remaining
two ports. Odor plume was established for 10 s before the
beginning of the trial. The real robot, as opposed to the
simulated in silico robot described above, was allotted 75
s to navigate to the odor source. The robot was tested on
odor navigation to all three odor ports from varying start
angles from a center start position along the midline of the
outlet end of the flow chamber. For odor port 1 (right-most
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odor port), the robot was tested at start angles of 90°,
135°, and 180°, for odor port 2 (center odor port), the
robot was tested at start angles of 135°, 180°, and 225°,
for odor port 3 (left-most odor port) the robot was tested
at start angles of 180°, 225°, and 270° (Fig. 4A). For each
of these start angles, the robot was tested once with
sensor angles of 0" and 45” as well as with sensor dis-
tances of 8 and 16 cm. Both Code A and Code B were
tested in the presence of the honeycomb and Code B was
tested without the honeycomb. The robot was also tested
from a corner start position where it was located at a 270°
angle at the right-most corner of the outlet end of the flow
chamber. This start position was tested using active odor
port 2. For this start position the robot was tested once
with sensor angles of 0° and 45° as well as with sensor
distances of 8 and 16 cm. Both Code A and Code B were
tested with and without the honeycomb for this start
position. The robot was tested for 10 trials for every
condition.

Code accessibility

All codes have been made available on DataDryad (https://
doi.org/10.5061/dryad.zgmsbcc71). Additionally, all codes are
in Extended Data 1. Included are MATLAB and Arduino
codes to generate the center and corner odor plumes (file
names: odorFun_plume_center.m, odorFun-
_plume_corner.m), test the in silico-simulated robot using
Code A and Code B (filenames: SimRobot_test_A.m, Sim-
Robot_test_B.m), and to test the in silico model with
replicates (flenames: run_model_A_replicates.m, run-
_model_B_replicates.m). Additionally, this folder contains
two Arduino codes for robot navigation (file names: Ro-
bot_CodeA.ino, Robot_CodeB.ino). These files were run
on Windows 10.

Behavioral tracking and data analysis

All behavioral tracking, for both the mouse and robot,
was conducted using Noldus behavioral tracking system
(EthoVision XT, version 10.1, Noldus Information Technol-
ogy) and trajectories were further analyzed using MATLAB
(R2018a, The MathWorks). GraphPad Prism (version 7;
GraphPad Software, Inc.) was used to generate graphs
and conduct statistical analyses. For all group compari-
sons, statistical tests were corrected for multiple compar-
ison using a Bonferroni correction when appropriate
(Table 1). Mouse data represents the average for each
mouse across all days for the given condition. Robot data
represents the average across 10 trials per condition.
Model data represents the average across 20 simulations.
All data are represented as mean = SEM.

Results

Mice successfully locate odor source within a non-
turbulent chaotic flow chamber

To test mouse navigation within an airborne odor
plume, we built a1 X 1 X 0.3 m flow chamber behavioral
arena based on that used by Connor et al. (2018). We
introduced two honeycombs on either end to laminarize
the airflow established by a vacuum at the outlet end. To
generate a controlled complex odor plume within this flow
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Figure 1. Mouse odor-navigation task. A, Flow chamber used to conduct behavioral assay. Chamber is flanked by two honeycombs
and on the inlet side, a turbulence grid 10 cm in front of the honeycomb. Three odor ports and lick spouts are spaced along inlet side
and vacuum is used to establish air flow (5 cm/s). B, Mouse is rewarded for navigating to the port releasing odor (port two) and trial
is terminated early if animal navigates to incorrect port (left). Trial structure includes a 30-s period to establish plume before animal
enters chamber and given 45 s to navigate (right). C, miniPID readings of odor concentration from odor ports 1 and 2 (time averaged
and normalized to maximum reading which occurs at the odor source). D, Performance (% successful trials in a given session) of mice
over testing days. Performance is broken up into an early phase (first 7 d) and a late phase (last 7 d). Plot shows mean performance
+ SEM, n = 4 mice. E, Percentage of time spent hugging the chamber wall, defined as within 5 cm of behavioral arena wall, over

testing days. Plot shows mean % time spent wall hugging = SEM, n = 4 mice. See also Extended Data Figure 1-1. xp < 0.05.

chamber, we inserted a turbulence grid in front of the
honeycomb at the inlet end (Fig. 1A). A flow rate of 5 cm/s
was established within the flow chamber. For the pur-
poses of this study, we refer to this flow chamber as a
SOL. Three odor ports at the inlet end of the flow chamber
released odor, generating plumes. We measured the time
averaged concentration of odor across the flow chamber
within each of the three plumes using a miniature photo-
ionization detector, miniPID (Fig. 1C).

We trained a group of mice on a task to navigate to the
source of these airborne odor plumes within the SOL. On
any given trial, an odor plume was established from one of
the three odor ports for 30 s before the insertion of the
animal into the behavioral arena. The task structure re-
quired water-regulated mice to locate an odor port releas-
ing IAA (3% in mineral oil) within 45 s to receive a sucrose
water reward from an adjacent lick spout (Fig. 1B; Movie
3). Other studies aimed at understanding rodent naviga-
tion within airborne odor plumes have found that with
experience animals preferentially use a localization strat-
egy in which they serially explore all possible odor source
locations, showing a shift away from using solely odor-
based cues (Bhattacharyya and Bhalla, 2015; Gire et al.,
2016). To ensure that the mice in this study relied only on
odor information, we terminated trials when the mouse
reached one of three odor ports, providing water reward
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only if the odor-releasing port (i.e., not the two clean
air-releasing ports) was reached. This behavioral design
incentivizes mice to make a decision regarding odor
source location, rather than testing all possible sources.

Before being tested on this task, animals were trained
to associate the localization of an odor port releasing odor
with delivery of a sucrose water reward. Animals were
able to learn the task following a 6 d of this training and
performed consistently above chance starting the eight
day of testing (Fig. 1D; one-tailed two-sample t test with
Holm-Sidak correction for multiple comparisons, p =

Movie 3. Mouse navigation to airborne odor source. In first trial
animal, odor port 3 is releasing odor. In second trial, odor port 2
is releasing odor. Video recorded and played back at 15 Hz.
[View online]
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0.047 for day 6, p = 0.047 for day 8, p = 0.0026 for day
9, p = 0.0013 for day 10, p = 0.018 for day 11, p = 0.033
for day 12, p = 0.0026 for day 13, p = 0.047 for day 14,
n = 4 mice). Thus, the testing days were classified into
two phases of 7 d each, the early phase and the late
phase. Thigmotaxis (wall-hugging) behavior indicates an
anxiety-like state in mice. Mice decreased the percentage
of the 45-s trial spent engaging in wall-hugging behavior
over time (Fig. 1E; paired one-tailed t test, late phase vs
early phase difference: —-27.03 + 2.79, p = 0.0012,n = 4
mice?).

Mouse performance remains robust with increased
complexity but shows a shift in strategy

To test the effect of increased complexity on odor
localization performance, we removed the honeycomb at
the inlet side of the flow chamber (Extended Data Fig.
1-1). This allows for the introduction of ambient air com-
plexity into the behavioral arena in addition to that caused
by the turbulence grid. We refer to this odor environment
as “non-turbulent chaotic” as well as “complex.” When
comparing the two environments, we refer to the honey-
comb condition interchangeably with “low-complexity”
and the no honeycomb condition with “high-complexity”
environments. The SD s of the 2-min odor concentration
time series at each midline downstream location (six re-
peats each) were all significantly increased by roughly
two- to four-fold (3.9, 2.3, 1.8, and 2.1 times the SD with
inlet honeycomb at 10, 30, 50, and 60 cm downstream
from the odor tube, respectively). The SD normalized by
mean odor concentration was also significantly increased
at 10 and 30 cm from the odor tube by 4.0- and 1.9-fold,
respectively. Note that instrument noise contribution to
the SD was negligible.

Animals perform at a significantly higher % success in
the late phase when compared to the early phase and
show no change in performance between the late phase
and no honeycomb condition (Fig. 2A; paired t test one-
tailed, late phase vs early phase difference = 11.65 *=
3.1%, p = 0.016°, paired t test two-tailed, no honeycomb
vs late phase difference = -1.92 = 2.74%, p = 0.53°, n =
4 mice). This shows a significant improvement of perfor-
mance over time in the same odor environment and that
with increased odor plume complexity animals show con-
sistent task performance. Additionally, no difference in
performance is seen across ports between the late phase
and the no honeycomb condition, although there was a
small effect of port number (Extended Data Fig. 2-1A;
two-way ANOVA, main effect of plume complexity, p =
0.8, main effect of port = 0.039, n = 4 mice). This effect
of port number may be because the animals were lick-
trained on odor port 1 (although post hoc t tests with
Bonferroni correction for multiple comparisons do not
reveal a significant difference between ports, port 1 vs
port 2 difference: 26.2 = 10.23%, p = 0.09179, port 1 vs
port 3 difference: 28.35 = 10.23%, p = 0.065°, port 2 vs
port 3 difference: 37.67 = 10.23%, p > 0.99, n = 4 mice).
To ensure that animals were using odor information for
this task, we tested them on a set of ~30 trials without
odor between the late phase and no honeycomb condi-
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tion. Animals performed at chance levels without odor and
their performance was significantly lower than that during
the late phase or no honeycomb phase (Fig. 2A; paired t
test one-tailed, no odor vs late phase difference: -31.32 =
6.24, p = 0.00769, no odor vs no honeycomb difference:
—29.4 * 522, p = 0.0055", n = 4 mice).

We recorded behavior during trials using a camera
placed above the flow chamber and imaged through the
transparent lid of the behavioral arena. We found that on
successful trials, the distance and time to the target odor
port decreases between the early and late phase (Fig.
2B-D; paired t test two-tailed, distance to target of late
phase vs early phase difference: -60.79 = 16.8 cm, p =
0.036', time to target of early phase vs late phase differ-
ence: -4.6 = 0.73 s, p = 0.008), n = 4 mice), showing that
animals are taking shorter and faster routes to the correct
odor port over time. Additionally, the early phase shows a
significant negative linear trend of time to correct odor
port over time, whereas the late phase does not show a
significant decline. Thus, their behavior has stabilized
when entering into the late phase (Fig. 2D; linear regres-
sion, R? = 0.62 early phase, p = 0.0357, R? = 0.006 late
phase, p = 0.71, n = 4 mice).

We measured several parameters associated with the
animals’ behavior during the ftrial, as the level of odor
plume complexity could affect the path taken and param-
eters modulated during the animals’ trajectories. We
found that when the honeycomb was removed and com-
plexity was increased, the distance to the target on suc-
cessful trials remained the same as the late phase, but the
time to the target significantly decreased (Fig. 2B,C;
paired t test two-tailed, distance to target no honeycomb
vs late phase difference: -3.52 = 7.05cm, p = 0.65%, time
to target no honeycomb vs late phase difference: =1.99 =
0.57 s, p = 0.039', n = 4 mice). Additionally, the animals
traveled at a higher velocity when navigating a more
chaotic plume (Fig. 2E,G; paired t test two-tailed, no
honeycomb vs late phase difference: 8.044 + 2.37 cm/s,
p = 0.043™, n = 4 mice).

Casting involving lateral full-body or head movement
during odor-based navigation is a behavioral strategy that
has been extensively characterized and found to be con-
served across several species (Vickers, 2000; Grasso,
2001). Invertebrates including moths, flies, and cock-
roaches implement this zig-zagging behavior when local-
izing odor within an airborne odor plume, particularly
when attempting to reacquire the odor stream (David
et al., 1983; Kennedy, 1983; Baker and Haynes, 1987;
Kuenen and Cardé, 1994; Grasso, 2001; Cardé and Willis,
2008; Gomez-Marin et al., 2011; van Breugel and Dickin-
son, 2014). Additionally, mammals, including both rodents
and humans, display lateral head movements when track-
ing odor trails (Porter et al., 2007; Khan et al., 2012;
Catania, 2013). Here we measured “casting” using two
parameters. The first is the path curvature as measured by
the absolute total sum of turning angles during a trial.
Animals did not display any difference in turning behavior
between the late phase and no honeycomb condition (Fig.
2F; Extended Data Fig. 2-1B; paired t test two-tailed, no
honeycomb vs late phase difference: -27.19 + 13.39°, p
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Figure 2. Mice change navigation behavior with increased experience and odor environment complexity. A, Performance (average %
successful trials over sessions) across testing phases. Mice are tested on a no-odor condition in addition to the phases with a
honeycomb and condition without a honeycomb. Chance level performance is 25% as animals have three ports as options and are
not required to choose an odor port on trials. B, Pathlength to target odor port on successful trials. C, Time to target odor port on
successful trials. D, Time to target on successful trials over testing days. E, Example traces of successful navigation from the late
phase and no honeycomb phase. Traces are color scaled based on velocity. F, Total angle sum of trajectories of late phase and no
honeycomb condition. Total angle sum is calculated by using the total sum of angles on turns from frame-to-frame. G, Velocity on
successful trials of late phase and honeycomb condition (left). Velocity over the course of successful trajectories resampled to 675
frames (right). H, Change in nose angle per frame (15 Hz) over the course of successful trajectories resampled to 675 frames (left).
Change in nose angle on successful trials of late phase and no honeycomb condition (right). /, Ratio of path distance based on nose
to path distance based on center of body (left). Example trajectories with ratios of 1.35 (top) and 1.08 (bottom). All plots show mean

+ SEM, n = 4 mice. See also Extended Data Figure 2-1. *p < 0.05, #xp < 0.01.

= 0.14", two-way ANOVA, total angle sum main effect of
plume complexity, p = 0.92, total angle sum main effect
of port number, p = 0.63; n = 4 mice). Average total sum
of turning angles for both conditions are below 360°, and
thus mouse turning behavior remains below a full rotation
during navigation, suggesting minimal full-body casting.
This lack of casting behavior is in alignment with previous
observations in rodents navigating in odor plumes (Bhat-
tacharyya and Bhalla, 2015; Gire et al., 2016). The second
form of casting measured was the change in nose angle,
thereby measuring sweeps in head movement during
odor localization. We found that mice show modest
changes in nose angle which are slightly higher when the
chaotic nature of the odor plume is increased (Fig. 2H;
paired t test two-tailed, no honeycomb vs late phase
difference: 2.94 = 0.83°, p = 0.04°, n = 4 mice). Addi-
tionally, the ratio of the trial pathlength as measured by
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the nose position to that measured by the body position
shows that nose pathlength is greater than body path-
length (Fig. 2/; one-sample t test, u = 1, late phase mean:
1.14 = 0.004, p < 0.0001", no honeycomb mean: 1.20 +
0.02, p = 0.00169 n = 4 mice). Thus, this suggests that
mice do not display lateral body movements, but do
exhibit sweeping movements with their head during odor
plume navigation. However, these head movements ap-
pear to be limited to the initial phase of olfactory search
behavior (Fig. 2H).

Interestingly, trajectories from one test session show
few differences between the late phase and no honey-
comb condition (Fig. 5A). Additionally, animals’ path lin-
earity, as measured by the fraction of distance of a
straight-line path to that of the actual path, did not vary
across rewarded ports, showing consistency across
tested plumes (Extended Data Fig. 2-1C; two-way
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ANOVA, linearity main effect of plume complexity, p =
0.81, linearity main effect of port number, p = 0.9, n = 4
mice). Overall, these results suggest that increased odor
plume complexity does not affect odor navigation perfor-
mance. However, animals do alter their strategy when
navigating a more chaotic plume, where a faster speed
may be beneficial for odor localization, whereas modulat-
ing parameters that affect trajectory structure may not be
as important.

Model-based odor navigation

To compare mouse odor navigation with simple odor
localization algorithms, we developed an in silico-
simulated robot. The simulated robot has two odor sen-
sors, with a separation distance that can be varied, and
can make comparisons between the odor signals at the
left and right sensor. It has a virtual frame and moves
through a virtual odor plume with a heading 6. If the
simulated robot approaches the wall of the virtual arena, it
will take corrective measures to reorient toward the open
arena (Fig. 3A). We tested this in silico model in a virtual
SOL with a center and corner port, analogous to that in
which we tested the mice (Fig. 3B). We tested the simu-
lated robot navigation starting at the center of the arena
with start angles varying from 90" to 270" at 3.6" incre-
ments. Acetone PLIF data were used as the odor plume
input for the virtual arena, obtained from Connor et al.
(2018). To assess the effect of odor plume complexity on
the behavior of our model, we tested the simulated robot
using either a static odor plume (i.e., the average of 4 min
of odor plume data) or using a dynamic odor plume with
real-time fluctuations (Fig. 3C).

We created two navigational algorithms to test in silico
odor localization. These algorithms were designed to in-
corporate a minimal interpretation of stereo smell while, in
one case, also incorporating features to resolve the fluc-
tuating nature of our odor plume. For both algorithms a
baseline reading is collected for each sensor as the aver-
age of four readings over 1 s. These two baselines are
then averaged to be used for odor-based navigation. In
the first algorithm, which we refer to as Code A, if the
difference between the instantaneous sensor reading at
the left sensor and the right sensor, both corrected for the
baseline reading, is greater than the threshold (described
in Materials and Methods), the model turns left and moves
forward for a subsequent reading. If the difference be-
tween the right sensor and the left sensor reading, cor-
rected for the baseline, is greater than the threshold, the
model turns right and advances. If neither of these con-
ditions are true, the model moves forward.

The most basic model implemented in a robotics ap-
proach aimed at odor plume tracking is one in which the
robot with a pair of chemical sensors simply moves in the
direction of higher concentration. However, this approach
may be limited due to the previously described dynamic
nature of odor plumes in which the robot can at one
moment sense odor that quickly disappears while remain-
ing stationary (Sandini et al., 1993; Kazadi et al., 2000;
Lilienthal and Duckett, 2004; Ishida et al., 2012). Models
that rely on averaging several frames on odor intake
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before determining movement may be more successful at
determining concentration gradients (Ishida et al., 2001).
Using this logic, we created Code B. In this algorithm, if
the difference between the average (of the readings of the
two sensors) across two time points is greater than a
threshold, the model will move forward, as this indicates
the simulated robot is moving up the concentration gra-
dient. Otherwise, Code B defaults to the same rules de-
scribed for Code A.

In silico-simulated robot navigation is affected by
increased plume complexity

As previously mentioned, stereo smell is important for
odor navigation in both mammals and invertebrates. The
distance between olfactory sensors may play a role in the
ability of an animal to accurately detect an odor plume
and locate the source. We tested the simulated robot in
both the static and dynamic odor plumes with two sensor
separation distances, 16 and 8 cm. Model Code A per-
forms at a significantly lower success rate in the presence
of increased plume complexity at an 8-cm sensor sepa-
ration distance regardless of active odor port position
(Fig. 3D; Extended Data Fig. 3-6; two-tailed t test center
port Code A 8-cm static vs center port Code A 8-cm
dynamic difference: 8.37 = 1.1%, p < 0.0001", two-tailed
t test corner port Code A 8-cm static vs corner port Code
A 8-cm dynamic difference: 3.91 + 0.84%, p < 0.0001°,
n = 20 simulations). Additionally, Code A at 8 cm shows
a decrease in trajectory linearity as an average and across
starting angles when the plume complexity increases,
suggesting that with increased complexity, paths become
more winding (Fig. 3E; Extended Data Fig. 3-6; two-tailed
t test center port Code A 8-cm static vs center port Code
A 8-cm dynamic difference: 0.065 = 0.007, p < 0.0001%,
two-tailed t test corner port Code A 8-cm static vs corner
port Code A 8-cm dynamic difference: 0.023 + 0.0035, p
< 0.0001", n = 20 simulations). Model Code B shows a
significant decrease in performance with increased plume
complexity at a 16-cm sensor separation distance with a
center odor plume and an 8-cm sensor separation dis-
tance regardless of plume position (Fig. 3D; Extended
Data Fig. 3-6; two-tailed t test center port Code B 8-cm
static vs center port Code B 8-cm dynamic difference:
20.11 = 1.1%, p < 0.0001, center port Code B 16-cm
static vs center port Code B 16-cm dynamic difference:
3.70 = 1.1%, p = 0.011%, corner port Code B 8-cm static
vs corner port Code B 8-cm dynamic difference: 5.54 =+
0.84%, p < 0.0001%, n = 20 simulations). Data from both
codes show that at an 8-cm sensor separation distance,
algorithms are more susceptible to a decrease in perfor-
mance due to increased odor plume complexity.

Additionally, linearity as an average and across starting
angles for Code B decreases with increasing plume com-
plexity, indicating that with either sensor separation
distance, paths become less linear with increased com-
plexity (Fig. 3E; Extended Data Fig. 3-6; two-tailed t test
center port Code B 8-cm honeycomb vs center port Code
B 8-cm no honeycomb difference: 0.15 = 0.007, p <
0.0001Y, center port Code B 16-cm honeycomb vs center
port Code B 16-cm no honeycomb difference: 0.03 =+
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0.007, p = 0.0006%, corner port Code B 8-cm honeycomb
vs corner port Code B 8-cm no honeycomb difference:
0.042 + 0.003, p < 0.00012, n = 20 simulations). Trajec-
tories within the static odor plume are deterministic as
there is a fixed odor plume gradient to climb, whereas
there was variation in the paths within the dynamic plume,
as expected (Extended Data Figs. 3-1, 3-2, 3-3, 3-4, 3-6;
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Movies 4, 5, 6, 7, 8, 9, 10, and 11). Interestingly, both the
success and linearity of Code B at an 8-cm separation
distance in the dynamic plume shows periodicity where
the success and linearity decrease and rise every 30° of
starting angles (Extended Data Fig. 3-6). This periodicity
may be attributed to the 30° turn angle implemented in
silico and if the simulated robot is capable of rotating to
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Movie 4. In silico model navigation of static odor plume released
from corner odor port using Code A. Video recorded at 10 Hz
and played back at 60 Hz. [View online]
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Movie 5. In silico model navigation of static odor plume released
from center odor port using Code A. Video recorded at 10 Hz and
played back at 60 Hz. [View online]
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Movie 6. In silico model navigation of dynamic odor plume
released from corner odor port using Code A. Video recorded at
10 Hz and played back at 60 Hz. [View online]
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Movie 7. In silico model navigation of dynamic odor plume
released from center odor port using Code A. Video recorded at
10 Hz and played back at 60 Hz. [View online]
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Movie 8. In silico model navigation of static odor plume released
from corner odor port using code B. Video recorded at 10 Hz and
played back at 60 Hz. [View online]
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Movie 9. In silico model navigation of static odor plume released
from center odor port using code B. Video recorded at 10 Hz and
played back at 60 Hz. [View online]
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Movie 10. In silico model navigation of dynamic odor plume
released from corner odor port using code B. Video recorded at
10 Hz and played back at 60 Hz. [View online]
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Movie 11. In silico model navigation of dynamic odor plume
released from center odor port using code B. Video recorded at
10 Hz and played back at 60 Hz. [View online]
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180° (facing the odor source) using the increment, it will
ultimately be more successful and have a straighter path.

When comparing performance across codes, in the
static condition, Code A had a significantly lower % suc-
cess than Code B at an 8-cm sensor separation distance,
however Code B performed significantly worse than Code
A at a 16-cm sensor separation distance, showing the
interaction between code and sensor separation distance
(Fig. 3D; two-tailed t test center port Code A 8-cm static
vs Code B 8-cm static difference: -13.04 = 1.1%, p <
0.0001, center port Code A 16-cm static vs Code B 16-cm
static difference: 15.22 = 1.1%, p < 0.0001°°, n = 20
simulations). In the dynamic condition, just as in the static
condition, Code A performs significantly better than Code
B at a 16-cm sensor separation distance (Fig. 3D; Code A
16-cm turbulent vs Code B 16-cm turbulent difference:
21.63 = 1.1%, p < 0.0001°°, n = 20 simulations). To-
gether, these findings suggest that with a small sensor
separation distance Code B is more successful, however
at a larger sensor separation distance Code A is more
successful.

Difference in trajectories between static and dynamic
conditions can be observed in Figure 5C. Our simulated
robot was tested using data collected in the SOL at the
same starting position as the mice, therefore we can
directly compare performance between the two. Model
Code A overall performs with a higher % success than the
mice, but there is no significant difference between per-
formance of model code B and the mice [Extended Data
Fig. 5-1A, left; two-tailed t test low-complexity mouse vs
Code A difference: —25.68 + 8.74%, p = 0.043%, high-
complexity mouse vs Code A difference: -25.38 + 8.74%,
p = 0.048°¢, low-complexity mouse vs Code B difference:
-21.68 = 8.74%, p = 0.12" high-complexity mouse vs
Code B difference: —16.63 = 8.74%, p = 0.429, n = 4
mice, n = 4 sessions for each model condition (one
session for per combination of sensor distance and target
odor port)]. Additionally, mice locate the odor source on
successful trials significantly faster than both codes [Ex-
tended Data Fig. 5-1B, two-tailed t test low-complexity
mouse vs Code A difference: -33.75 = 3.63 s, p <
0.0001™", high-complexity mouse vs Code A difference:
-36.59 + 3.63 s, p < 0.0001", low-complexity mouse vs
Code B difference: -35.25 + 3.63, p < 0.0001}, high-
complexity mouse vs Code B difference: -39.01 = 3.63 s,
p < 0.0001%% n = 4 mice, n = 4 sessions for each model
condition (one session for per combination of sensor
distance and target odor port)]. These findings show that
although the Code A outperforms a mouse in terms of %
success for the low and high plume complexity condi-
tions, both codes show a decrease in within code perfor-
mance in the presence of increased complexity, a
behavioral shift not seen in mice.

Arduino-based robot shows decrease in
performance with increased odor plume complexity
To test how our in silico models perform in a real flow
chamber, we tested an Arduino-based robot using Code
A and Code B in the previously described SOL behavioral
arena. We modified the arena to replace lick spouts with
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LEDs associated with each odor port which were de-
tected by light sensors on the robot to identify if an odor
port had been approached. The Arduino-based robot was
equipped with optimized gas sensors attached to a fan
that actively sucked air through the sensors. In addition,
we attached proximity sensors to avoid contact with the
walls of the flow chamber. The gas sensors were opti-
mized for response speed by removing the front of steel
mesh cap surrounding the front of the sensor, drilling a
hole through the pc-board behind the sensor and fitting a
small fan on the back of the hole (Extended Data Fig.
4-1A). The responsiveness of the sensor was improved by
an order of magnitude: time from stimulus onset (i.e., the
first time the signal crosses 2% of peak amplitude) to
75% of peak (t75 O) was 0.67 s in the unmodified sensor
but reduced to 0.07 s when modified, being 1.13 s and
0.11 s (t100 O) to reach peak value, respectively (Ex-
tended Data Fig. 4-1C). Decay time from peak to 50% of
peak (150 off) was reduced from 2.41 to 0.47 s, and to
25% of peak (125 off) from 4.96 to 2.14 s, respectively.
The distance between these gas sensors could be varied,
as well as the angle at which they were oriented.

We tested the robot starting on the midline of the outlet
end of the flow chamber for direct comparison with
mouse and in silico model behavior. We used six different
starting angles with varying active odor ports based on
starting angle (Materials and Methods; Fig. 4A). At this
starting position, we tested the robot using Code A and
Code B with the honeycomb as well as Code B without
the honeycomb. Additionally, we recorded behavior at an
alternate start position, which cannot be directly com-
pared to the mouse behavior, in which the start angle of
the robot was 270° at the far-right corner of the outlet end
of the chamber. In this condition the center port was used
for plume generation (Extended Data Fig. 4-1D). At this
start position, we tested the robot using both Code A and
Code B with and without the honeycomb. At both starting
positions we tested the robot with sensor separation dis-
tances of 8 and 16 cm and sensor angles of 0°, parallel
with the front of the robot, and 45°. Additionally, we tested
the robot using 70% ethanol instead of IAA, used with
mice, to obtain robust odor readings from the robot’s gas
sensors. The task structure for the robot odor-based
navigation was nearly identical to that of the mouse;
however, the robot was allotted 75 s to reach the odor
source.

We studied how the behavior of the robot changed
when tested with the two algorithms in the presence of
increased complexity by removing the honeycomb at the
inlet side of the flow chamber, the exact conditions we
tested on the mice. Code A showed a decrease in perfor-
mance at the corner start position when the honeycomb
was removed and Code B show a significant decrease in
% success with increased complexity at both start posi-
tions (Fig. 4B, left, C; Extended Data Fig. 4-1E, left; paired
two-tailed t test, corner start Code A no honeycomb vs
Code A with honeycomb difference: -62.5 = 11.09%, p =
0.011", center start Code B no honeycomb vs Code B
with honeycomb difference: -19.64 * 2.43%, p =
0.004™™, corner start Code B no honeycomb vs Code B
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Figure 4. Arduino-based robot navigation varies based on start position and odor environment complexity. A, Robot odor navigation
flow chamber, modifications to the SOL. Solid arrows represent five starting angles. Odor ports were coupled to LED lights detected
by sensors on the robot (indicated by dotted red arrows). B, Performance (average % successful trials over 8 and 16 cm and 0° and
45° gas sensor distance and angles, respectively) across codes (left). Performance based on gas sensor distance and angle for the
honeycomb condition (right). C, Example trajectories from 180° (magenta) starting position in A for honeycomb and no honeycomb
condition. D, Performance (average % successful trials over 8 and 16 cm and 0° and 45° gas sensor distance and angles, respectively)
with the honeycomb based on starting angle and rewarded port for Code A (left) and Code B (right). Bars are color coded and labeled
according to the starting angles in A. E, Robot overall linearity score with honeycomb and without honeycomb using Code B. Plot
shows data combined over sensor angle and sensor distance for each odor environment condition (left). Linearity score across
starting angles and target ports with and without the honeycomb. All plots show mean += SEM, n = 4 sessions. See also Extended

Data Figure 4-1. #p < 0.05, #xp < 0.01.

with honeycomb difference: -47.5 = 6.29%, p =
0.0048™", n = 4 sessions). Additionally, when implement-
ing Code A with the honeycomb, the robot shows a higher
success rate at a greater sensor separation for both sen-
sor angles at a center start position and at a 0" sensor
angle at a corner start position (Fig. 4B, right; Extended
Data Fig. 4-1E, right). A larger sensor separation distance
may be beneficial for the robot navigation using Code A
because larger spatial differences in the concentration
gradient can be detected. This finding is in line with that of
the in silico model.

Performance of the robot also varies based on starting
angle. When the center port is active, the robot performs
at a higher % success when oriented directly toward the
source than when angled 45° away from the source (Fig.
4D, one-way ANOVA port 2, Code A effect of start angle,
p = 0.0021, two-tailed t test, Code A 180° vs Code A 135°
difference: 75 = 10.41%, p = 0.017°°, Code A 180° vs
Code A 225° difference: 55 + 12.58%, p = 0.067P°, Code
B effect of start angle, p = 0.0055, Code B 180° vs Code
B 135 difference: 72.5 + 12.5%, p = 0.03199, Code B
180° vs Code B 225° difference: 47.5 = 13.77%, p =
0.12", n = 4 sessions). Increased complexity in the odor
environment also caused a change in the path character-

January/February 2020, 7(1) ENEURO.0212-19.2019

istics of the robot. For Code B, the path linearity de-
creased for several start angles (Fig. 4E; two-tailed t test
port 1 135° with honeycomb vs port 1 135° no honey-
comb difference: 0.17 = 0.046, p = 0.0063°°, two-way
ANOVA port 2, interaction between starting angle and
plume complexity, p = 0.028, port 2 180° with honey-
comb vs port 2 180° without honeycomb difference: 0.18
+ 0.051, p = 0.0068", n = 4 simulations).

When compared to in silico paths, Arduino-tested Code
B trajectories are significantly more linear than in silico-
tested Code B trajectories in both low-complexity and
high-complexity environments (Extended Data Fig. 5-1D;
two-tailed t test low-complexity robot Code B vs model
Code B difference: 0.22 + 0.071, p = 0.031"", high-
complexity robot Code B vs model Code B difference:
0.25 = 0.071, p = 0.01%). This discrepancy maybe be due
to the wide range of starting angles tested for each odor
port using in silico algorithms. Additionally, there is no
significant difference between performance of Code B in
silico and in the real flow chamber using the Arduino robot
(Extended Data Fig. 5-1A, left; two-tailed t test low-
complexity robot Code B vs model Code B difference:
-11.07 = 8.74%, p > 0.99""%, high-complexity robot Code
B vs model Code B difference: -23.74 = 8.74%, p =

eNeuro.org


https://doi.org/10.1523/ENEURO.0212-19.2019.f4-1
https://doi.org/10.1523/ENEURO.0212-19.2019.f5-1
https://doi.org/10.1523/ENEURO.0212-19.2019.f5-1
https://doi.org/10.1523/ENEURO.0212-19.2019.f4-1

eMeuro

New Research 15 of 21

A mouse B robot C model
30
o o o )
£ o . 2 o
O e §
9 N = 0
> (&)
GC) start }:T, -
§- -
-40 -40 -30|
-40
30
&
E o 20
O = € 1
() 3
> [=%
D o o °
S €
£ = S
o < 20
C o " -30)
-40

I successful I unsuccessful

20 ) 20 40 60 0 10 20 30 40 50 60

Figure 5. Mouse, robot, and in silico navigation trajectories. A, Mouse trajectories show consistency with increased odor environment
complexity. B, Robot trajectories show decreased success on trials for the same testing conditions with increased odor plume
complexity, Code B, sensor distance: 8 cm, sensor angle: 0°. C, In silico trajectories (50 trials with start angles ranging from 90° to
270°) show increased unsuccessful trials for the same testing conditions with increased complexity, Code B, sensor distance: 8 cm.

See also Extended Data Figure 5-1.

0.07*, n = 4 sessions). When model performance is
determined selectively for the same start angles as tested
on the robot, there is no significant difference between
performance with low plume complexity between the ro-
bot and the model. Additionally, this subset of model data
shows that the robot and the model show similar de-
creases in performance when the honeycomb is removed
(Extended Data Fig. 5-1A, right; two-tailed t test low-
complexity robot Code B vs model Code B difference:
-34.16 = 10.18%, p = 0.091, high-complexity robot Code
B vs model Code B difference: —49.58 + 9.48%, p <
0.0001, one-tailed t test robot Code B high vs low-
complexity difference: -40.41 = 11.01%, p = 0.028,
one-tailed t test model Code B high vs low-complexity
difference: —-30.83 = 11.72%, p < 0.0001, n = 4 condi-
tions). Just as in the in silico model, the robot using Code
B takes a significantly longer amount of time to reach the
odor source on successful trials and has a significantly
lower velocity when compared to mice (Extended Data
Fig. 5-1B; two-tailed t test low-complexity mouse vs robot
Code B time to target difference: —-36.49 = 3.63 s, p <
0.0001¥Y, high-complexity mouse vs Code B time to target
difference: —-41.55 + 3.63 s, p < 0.0001%*, low-complexity
mouse vs robot Code B velocity difference: 20.93 * 1.44
cm/s, p < 0.0001%%, high-complexity mouse vs robot
Code B velocity difference: 29.06 + 1.44 cm/s, p <
0.0001°°° n = 4 mice, n = 4 sessions). Difference in
trajectories between static and dynamic conditions can
be observed in Figure 5B, Movies 12, 13, 14, 15, 16, 17,
18, and 19. Overall, our results show that when algorithms
selected using in silico testing are implemented in a real
flow chamber, our findings are comparable to those in
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silico. Additionally, just as in our in silico model, robot
navigation shows a dramatic decrease in performance
with increased odor plume complexity that is not ob-
served in mouse behavior.

Discussion

Information from highly dynamic airborne odor plumes
drives critical survival behaviors in animals. Variation in
properties of these plumes can cause significant changes
in odor-localization strategies (Mafra-Neto and Cardé,
1994; Keller and Weissburg, 2004). Here we compare the
differences in odor navigation performance with in-
creased plume complexity in mice, an in silico-simulated
model, and an Arduino-based robot. We found that all
three were able to successfully navigate to airborne odor
sources. However, mouse performance remained robust
when complexity within the plume was increased whereas
in silico model and robot performance dropped. Thus, the
simple binaral and temporal algorithms implemented in
the model and robot are sufficient for successful naviga-
tion in a low-complexity environment, but these strategies
are susceptible to declined performance when the plume
becomes more chaotic. If not directly compared to mam-
malian odor-localization performance, these shortcom-
ings in model performance may not have been effectively
identified. With the goal of identifying minimalist biologi-
cally plausible rules that can capture animal navigation
behavior, we highlight the importance of testing candidate
algorithms in the same odor environment as behaving
animals.

An increase in the chaotic nature of an odor environ-
ment has varying effects on odor source localization from
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Movie 12. Arduino robot navigation to airborne odor source
with honeycomb using Code A with sensors at angle 0° and
distance 8 cm. Odor source is middle port (port 2) and start
angle is indicated in lower left corner (135°, 190°, and 225°).
Video recorded at 30 Hz and played back at 90 Hz. [View
online]

Movie 13. Arduino robot navigation to airborne odor source
with honeycomb using Code A with sensors at angle 45° and
distance 8 cm. Odor source is middle port (port 2) and start
angle is indicated in lower left corner (135°, 190°, and 225°).
Video recorded at 30 Hz and played back at 90 Hz. [View
online]

Movie 14. Arduino robot navigation to airborne odor source
with honeycomb using Code A with sensors at angle 0° and
distance 16 cm. Odor source is middle port (port 2) and start
angle is indicated in lower left corner (135°, 190°, and 225°).
Video recorded at 30 Hz and played back at 90 Hz. [View
online]

Movie 15. Arduino robot navigation to airborne odor source with
honeycomb using Code A with sensors at angle 45° and distance
16 cm. Odor source is middle port (port 2) and start angle is
indicated in lower left corner (135°, 190°, and 225°). Video re-
corded at 30 Hz and played back at 90 Hz. [View online]
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Movie 16. Arduino robot navigation to airborne odor source
using code B with sensors at angle 0° and distance 8 cm. Odor
source is middle port (port 2), start angle is indicated in lower left
corner (135°, 190°, and 225°), condition indicated in lower left
corner (honeycomb and no honeycomb). Video recorded at 30
Hz and played back at 90 Hz. [View online]

Movie 17. Arduino robot navigation to airborne odor source
using code B with sensors at angle 45° and distance 8 cm. Odor
source is middle port (port 2), start angle is indicated in lower left
corner (135°, 190°, and 225°), condition indicated in lower left
corner (honeycomb and no honeycomb). Video recorded at 30
Hz and played back at 90 Hz. [View online]

Movie 18. Arduino robot navigation to airborne odor source
using code B with sensors at angle 0° and distance 16 cm. Odor
source is middle port (port 2), start angle is indicated in lower left
corner (135°, 190°, and 225°), condition indicated in lower left
corner (honeycomb and no honeycomb). Video recorded at 30
Hz and played back at 90 Hz. [View online]

Movie 19. Arduino robot navigation to airborne odor source
using code B with sensors at angle 45° and distance 16 cm.
Odor source is middle port (port 2), start angle is indicated in
lower left corner (135°, 190°, and 225°), condition indicated in
lower left corner (honeycomb and no honeycomb). Video re-
corded at 30 Hz and played back at 90 Hz. [View online]
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species to species (Mafra-Neto and Cardé, 1994; Keller
and Weissburg, 2004; Ferner and Weissburg, 2005; Jack-
son et al., 2007; Bhattacharyya and Bhalla, 2015). Our
study shows that an increase in plume complexity does
not affect successful odor localization in mice (Fig. 2A), a
result that is in line with findings from Bhattacharyya and
Bhalla (2015). Additionally, we show that an increase in
plume complexity causes a significant decrease in time to
the odor source on successful trials and an increase in
speed throughout the trial (Fig. 2E,G). Speed and sniff rate
are positively correlated and this correlation peaks at a lag
where velocity precedes sniff frequency (Coronas-
Samano et al., 2016; Jones and Urban, 2018). We spec-
ulate that an animal’s increase in speed during odor
tracking when the odor environment becomes more cha-
otic, as measured by the increase in SD of concentration,
may drive sniffing at higher frequencies (although not
directly measured) to detect fluctuations in the odor
plume. This would suggest that to remain equally suc-
cessful at odor localization with increased plume com-
plexity, mice may have to implement a different innate
navigation strategy. To address this hypothesis, further
work needs to be done to explore changes in sampling
behavior with changes in odor plume properties. Our
finding of a shift to faster navigation in more chaotic
environment in mice is contrary to the decreased naviga-
tional speed with increased plume complexity observed
by Bhattacharyya and Bhalla (2015) in rats. The discrep-
ancy between these two findings may be due to task
design. We specifically designed our odor navigation task
to require mice to take direct paths to odor sources,
instead of serially checking all possible odor ports, unlike
previous studies (Bhattacharyya and Bhalla, 2015; Gire
et al., 2016). We did so by terminating trials after animals
reached any of the three ports. The nature of the odor-
localization task design could be critical to the observa-
tion of different navigational strategies.

Animals, both vertebrates and invertebrates alike, often
implement a “zig-zagging” strategy while navigating odor
environments, often to detect the boundary of odor pres-
ence (Vickers, 2000; Grasso, 2001; Porter et al., 2007;
Khan et al., 2012; Catania, 2013). However, recent studies
characterizing rodent navigation behavior within odor
plumes show a lack of casting while localizing airborne
odors (Bhattacharyya and Bhalla, 2015; Gire et al., 2016).
In line with these studies, we find that mice display paths
with little curvature while navigating an airborne odor
plume, on average turning less than a full rotation on a
given trial, although their navigation arena in our task was
nearly 1 m2. However, interestingly, and not contradictory
to previous observations, we find that mice do display a
significant amount of lateral nose movement during nav-
igation, predominantly early on in odor-tracking. As found
in previous studies showing casting behavior in mammals
while tracking odor trails, this early lateral nose move-
ment, although speculative, may be used to detect the
boundary of the odor plume (Fig. 2H,)).

Here, we explored the odor navigation performance of
two minimal algorithms: Code A relied solely on binaral
comparisons and movement in the direction of higher
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concentration, while Code B made temporal comparisons
between consecutive time points to determine direction of
concentration gradient before defaulting to Code A. Using
our in silico model, we found that Code A performed
better at a larger sensor separation distance than Code B
and Code B performed better at a smaller sensor sepa-
ration distance than Code A (Fig. 3D). With a smaller
sensor separation distance, the concentration readings at
both of the sensors were closer in value than those when
the sensors were at a larger separation distance (Ex-
tended Data Figs. 3-1-3-5). Code B relies on a compari-
son between an average of the two sensor readings at
sequential time points. These comparisons will be more
accurately representative of true odor gradient increases
when based on more correlated sensor readings. Further,
when the sensors are closer together, they are also closer
to the midline of the robot, and most related to the robot’s
trajectory. Thus, this may explain the lower success rate
of Code B in comparison to Code A at larger sensor
separation distances. However, at a shorter sensor dis-
tance, when sensors will have more similar readings, the
additional temporal strategy shows improved success.
Additionally, at an 8-cm separation distance, Code B
showed a spatial periodicity in performance and linearity
where the two parameters cycled every 30° of starting
angles (Extended Data Fig. 3-6). The model makes turns
at increments of 30° and an optimal performance is ob-
served when the model is able to achieve an angle of 180°
(directly facing the odor port) by turning. The complexities
of our algorithms are limited as the goal of the present
study was to address how well minimal, but biologically
plausible, algorithms can perform odor navigation in a real
plume and how it deviates from mammalian behavior.
Thus, future studies should explore how to best optimize
turning behavior to maximize successful start angles,
possibly trading off the coarseness of turning (and step
size and step frequency in general) for the speed of path
adjustment. In addition, further work is needed to probe
algorithm dependence on parameter adjustment, such as
implementation of corrective movement and altering sam-
pling speed. The ability to collect enough simulations to
make these comparisons highlights the benefit of testing
navigational algorithms in silico.

When we directly compared the performance and be-
havior of the mice to that of the in silico model and robot
in the same odor environment, we found that mouse
odor-localization success was more robust to changes in
plume complexity than that of the model or robot. Mice
are able to modulate their sampling behavior by altering
sniff frequency, thus sampling is dynamic throughout the
odor navigation process (Verhagen et al., 2007; Wesson
et al., 2008, 2009; Khan et al., 2012; Bhattacharyya and
Bhalla, 2015; Jones and Urban, 2018; Jordan et al., 2018;
Shusterman et al., 2018). Additionally, mice are able to
modulate their running speed, as our data show an in-
crease in speed during the middle of the trajectory and
slower speeds at the beginning and end (Fig. 2E,G). As
suggested previously, this modulation of speed may be
beneficial for controlling optimal sampling frequency
which may vary based on position in the odor plume.
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Location

a

b

Data structure
Paired % time spent wall-hugging (late phase vs early
phase), n = 4 mice
Paired % success (late phase vs early phase), n = 4
mice
Paired % success (no honeycomb condition vs late
phase), n = 4 mice
% success for honeycomb and no honeycomb
conditions per odor port

% success for honeycomb and no honeycomb
conditions per odor port

% success for honeycomb and no honeycomb
conditions per odor port

Paired % success (no odor vs late phase), n = 4
mice

Paired % success (no odor vs no honeycomb
condition), n = 4 mice

Paired distance to odor source on successful trials
(late phase vs early phase)

Paired time to odor source on successful trials (late
phase vs early phase)

Paired distance to odor source on successful trials
(no honeycomb vs late phase)

Paired time to odor source on successful trials (no
honeycomb vs late phase)

Paired average velocity during trial (no honeycomb vs
late phase)

Paired average angle sum during trial (no honeycomb
vs late phase)

Paired average A nose angle (no honeycomb vs late
phase)

Average nose/body distance ratio (late phase)
Average nose/ body distance ratio (no honeycomb)
% success for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

% success for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

Linearity for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

Linearity for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

% success for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

% success for static and dynamic across Code A and
Code B, sensor distance 8 and 16 cm

% success for static and dynamic across Code A and

Statistical test
Paired one-tailed t test

Paired one-tailed t test
Paired two-tailed t test

Two-way ANOVA on % success
(factors: port #, plume
complexity)

Two-way ANOVA on % success
(factors: port #, plume
complexity)

Two-way ANOVA on % success
(factors: port #, plume
complexity)

Paired one-tailed t test

Paired one-tailed t test
Paired two-tailed t test
Paired two-tailed t test
Paired two-tailed t test
Paired two-tailed t test
Paired two-tailed t test
Paired two-tailed t test
Paired two-tailed t test

One-sample two-tailed t test
One-sample two-tailed t test
Three-way ANOVA on %
success (factors: plume
complexity code, and sensor
separation distance)
Three-way ANOVA on %
success (factors: plume
complexity code, and sensor
separation distance)
Three-way ANOVA on linearity
(factors: plume complexity
code, and sensor separation
distance)

Three-way ANOVA on linearity
(factors: plume complexity
code, and sensor separation
distance)

Three-way ANOVA on %
success (factors: plume
complexity code, and sensor
separation distance)
Three-way ANOVA on %
success (factors: plume
complexity code, and sensor
separation distance)
Three-way ANOVA on %

95% confidence
Intervals
-35.91 to -18.15
-1.79 to -21.51
-10.64 to 6.81

Bonferroni correction:
-3.8 to 56.2

Bonferroni correction:
-1.65 to 58.35

Bonferroni correction:
-27.85 to 32.15

-51.18 to -11.46
-46.02 to -12.78
-114.2 to -7.34
-6.92 to -2.28
-25.94 to 18.91
-25.94 to 18.91
0.49 to 15.59
-69.8 to 15.41
0.008 to 0.12
1.13t0 1.15
1.14 to0 1.26

Bonferroni correction:
5.18 to 11.56

Bonferroni correction:
1.47 to 6.36

Bonferroni correction:
0.044 to 0.086

Bonferroni correction:
0.013 to 0.033

Bonferroni correction:
16.92 to 23.3

Bonferroni correction:
0.51 to 6.88

Bonferroni correction:

Code B, sensor distance 8 and 16 cm success (factors: plume 3.1t07.99
complexity code, and sensor
separation distance)
(Continued)
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95% confidence

Location Data structure Statistical test Intervals
y Linearity for static and dynamic across Code A and Three-way ANOVA on linearity Bonferroni correction:
Code B, sensor distance 8 and 16 cm (factors: plume complexity 0.13 to 0.17
code, and sensor separation
distance)
z Linearity for static and dynamic across Code A and Three-way ANOVA on linearity Bonferroni correction:
Code B, sensor distance 8 and 16 cm (factors: plume complexity 0.01 to 0.05
code, and sensor separation
distance)
aa Linearity for static and dynamic across Code A and Three-way ANOVA on linearity Bonferroni correction:
Code B, sensor distance 8 and 16 cm (factors: plume complexity 0.03 to 0.05
code, and sensor separation
distance)
bb % success for static and dynamic across Code A and Three-way ANOVA on % Bonferroni correction:
Code B, sensor distance 8 and 16 cm success (factors: plume -16.23 to -9.86
complexity code, and sensor
separation distance)
cc % success for static and dynamic across Code A and Three-way ANOVA on % Bonferroni correction:
Code B, sensor distance 8 and 16 cm success (factors: plume -4.49 to 1.88
complexity code, and sensor
separation distance)
dd % success for low complexity and high complexity Two-way ANOVA on % success Bonferroni correction:
across modalities (mouse, model Code A, model (factors: plume complexity and -46.6 to -10.68
Code B, and robot Code B) modality)
ee % success for low complexity and high complexity Two-way ANOVA on % success Bonferroni correction:
across modalities (mouse, model Code A, model (factors: plume complexity and -46.07 to -10.15
Code B, and robot Code B) modality)
ff % success for low complexity and high complexity Two-way ANOVA on % success Bonferroni correction:
across modalities (mouse, model Code A, model (factors: plume complexity and -42.8 to -6.87
Code B, and robot Code B) modality)
ag % success for low complexity and high complexity Two-way ANOVA on % success Bonferroni correction:
across modalities (mouse, model Code A, model (factors: plume complexity and -37.19 to -1.24
Code B, and robot Code B) modality)
hh Time to target for low complexity and high complexity Two-way ANOVA on time to Bonferroni correction:
across modalities (mouse, model Code A, model target (factors: plume -44.17 to -23.34
Code B, and robot Code B) complexity and modality)
ii Time to target for low complexity and high complexity Two-way ANOVA on time to Bonferroni correction:
across modalities (mouse, model Code A, model target (factors: plume -47.01 to -26.18
Code B, and robot Code B) complexity and modality)
i Time to target for low complexity and high complexity Two-way ANOVA on time to Bonferroni correction:
across modalities (mouse, model Code A, model target (factors: plume -45.67 to —24.84
Code B, and robot Code B) complexity and modality)
kk Time to target for low complexity and high complexity Two-way ANOVA on time to Bonferroni correction:
across modalities (mouse, model Code A, model target (factors: plume -49.43 to -28.18
Code B, and robot Code B) complexity and modality)
Il Paired % success (no honeycomb condition vs Paired two-tailed t test —97.78 to -27.22
honeycomb Code A), n = 4 sessions
mm Paired % success (no honeycomb condition vs Paired two-tailed t test —27.38 to -11.91
honeycomb Code B), n = 4 sessions
nn Paired % success (no honeycomb condition vs Paired two-tailed t test -67.52 to -27.48
honeycomb Code B), n = 4 sessions
00 % success for honeycomb condition per start angle One-way ANOVA (factor: start Bonferroni correction:
angle) 24.45 t0 125.5
pp % success for honeycomb condition per start angle One-way ANOVA (factor: start Bonferroni correction:
angle) -6.11 to 116.1
qq % success for honeycomb condition per start angle One-way ANOVA (factor: start Bonferroni correction:
angle) 11.79 to 133.2
rr % success for honeycomb condition per start angle One-way ANOVA (factor: start Bonferroni correction:
angle) -19.37 to 114.4
Ss Linearity for honeycomb and no honeycomb using Two-way ANOVA (factors: Bonferroni correction:
Code B across start angle plume complexity start angle) 0.051 to 0.29
tt Linearity for honeycomb and no honeycomb using Two-way ANOVA (factors: Bonferroni correction:
Code B across start angle plume complexity start angle) 0.047 to 0.32
(Continued)
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Location Data structure

uu Linearity score for low complexity and high
complexity across modalities (mouse, model Code A,
model Code B, and robot Code B)

v Linearity score for low complexity and high
complexity across modalities (mouse, model Code A,
model Code B, and robot Code B)

ww % success for low complexity and high complexity

across modalities (mouse, model Code A, model
Code B, and robot Code B)

XX % success for low complexity and high complexity
across modalities (mouse, model Code A, model
Code B, and robot Code B)

vy Time to target for low complexity and high complexity

across modalities (mouse, model Code A, model
Code B, and robot Code B)

zz Time to target for low complexity and high complexity

across modalities (mouse, model Code A, model
Code B, and robot Code B)

aaa Velocity for low complexity and high complexity
across modalities (mouse, model Code A, model
Code B, and robot Code B)

bbb Velocity for low complexity and high complexity

across modalities (mouse, model Code A, model
Code B, and robot Code B)

95% confidence

Statistical test Intervals
Two-way ANOVA on linearity Bonferroni correction:
score (factors: plume 0.014 to 0.42

complexity and modality)
Two-way ANOVA on linearity
score (factors: plume
complexity and modality)
Two-way ANOVA on % success
(factors: plume complexity and
modality)

Two-way ANOVA on % success
(factors: plume complexity and
modality)

Two-way ANOVA on time to
target (factors: plume
complexity and modality)
Two-way ANOVA on time to
target (factors: plume
complexity and modality)
Two-way ANOVA on time to
target (factors: plume
complexity and modality)
Two-way ANOVA on time to
target (factors: plume
complexity and modality)

Bonferroni correction:
0.046 to 0.45

Bonferroni correction:
-36.2 to 14.06

Bonferroni correction:
-48.87 to 1.39

Bonferroni correction:
-46.91 to -26.07

Bonferroni correction:
-51.97 to -31.13

Bonferroni correction:
16.77 to 25.09

Bonferroni correction:
24.9 to 33.22

Contrary to the mouse, the model and robot algorithms
we tested do not allow for sampling modulation. Due to
the complex and highly dynamic structure of odor plumes,
a fixed sampling frequency may result in a limited percep-
tion of odor presentation at a given point within the plume.
The ability to modulate behavior in real time during navi-
gation is likely an important factor contributing to consis-
tent performance with changes in odor plume properties.
In addition, although not measured in our study, whisking
behavior drives localization of wind direction in mice (Yu
et al., 2016). Wind direction is critical for odor source
localization in insects. Although the role of anemotaxis in
odor localization in rodents is understudied, whisking is
correlated with sniffing behavior (Shusterman et al., 2011;
Moore et al., 2013; Kleinfeld et al., 2014; Kurnikova et al.,
2017), and thus may be highly modulated during odor
navigation. Further work is needed to understand the role
of whisking behavior in odor localization and in tandem,
how adding anemometry to model and robot algorithms
affects navigation performance.

Our study reveals the benefit of comparing different
systems (i.e., animals, robots, and models) on odor-
localization behavior in the same environment. We were
able to address the question of to what degree minimal
spatial and temporal algorithms can account for mouse
navigation behavior. Our data show that simple spatial
and temporal algorithms can perform as well as mice in a
low-complexity odor environment, but poorer when odor
plumes become more dynamic. This suggests that mice
implement more complex strategies than our minimal
equivalent algorithms. Thus, for robust mouse-like behav-
ior, our minimal algorithms driving models or robots must
be made more complex. Additionally, as mentioned pre-
viously, animals may display different navigation be-

January/February 2020, 7(1) ENEURO.0212-19.2019

haviors based on the behavioral arena and task
structure. By testing all systems in the same environ-
ment and on the same task, we were able to reveal
differences that would not have been uncovered other-
wise. Future studies need to focus on testing simula-
tions in tandem with behaving animals in a naturalistic,
chaotic odor environment to best understand how odor-
localization algorithms perform compared to animal be-
havior. Through such studies, algorithms that incorporate
dynamic sampling and other sensory measurements in
addition to olfaction may show behavior equally robust to
that of animals. Such studies will serve to complement
more normative non-mechanistic models such as info-
taxis (Vergassola et al., 2007; Yang et al., 2018), which,
while providing optimal decisions on whether to explore
versus exploit in a “greedy” fashion, do not address ques-
tions about biological plausibility of navigation algorithms.
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