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Particle in a Box applied to Quantum Dots 
 
 
Useful constants and conversions: 
1 eV = 1.60*10-19 J 
h = 6.626*10-34 Js 
c = 3.00*108 ms-1 
 
Quantum dots are small particles of semiconductors such as CdSe, CdS, etc. These particles 
usually have diameters of < 10 nm, and each particle has on the order of 1,000-10,000 atoms. 
You can think of them as giant spherical molecules, such as the one in the picture on the left. 
The exciting thing about quantum dots is that fluorescence emission wavelength depends on 
the particle size, as shown on the figure on the right for CdSe. This is called the quantum size 
effect. The physical model used to predict the emission and absorption wavelength is essentially 
a particle in a spherical box model. The goal of this problem-solving session is to investigate 
how the particle in a spherical box model is applied to quantum dots and examine the behavior 
of wave functions and energies. 
 

 
 
When a quantum dot absorbs a photon, an electron is excited into a specific orbital and it leaves 
behind a positive charge, called a hole. When the semiconductor particle is “large”, the electron 
and the hole have energies defined by the semiconductor composition, and the difference in the 
energies is called the band gap (Eg). For CdSe, Eg is 1.75 eV. However, when the particle is 
“small”, both the electron and the hole are confined in a spherical box, and their energies 
increase compared to energies in a “large” particle. This increase is called the confinement 
energy.    
 
The potential inside the quantum dot is not zero because there are nuclei and electrons exerting 
electrostatic forces on each other. To account for the non-zero potential, we introduce the 
concept of effective mass, expressed in units of mass of an electron (m0). The electron and the 
hole often have different effective masses, abbreviated as me and mh respectively. The concept 
of effective mass is extremely useful because it allows us to use the simple equations derived 
when the potential is zero inside the box by only changing the mass of the particle. 
 
Use the Mathematica file called “Quantum Dots” to answer the questions below (read the 
instructions on the top of the notebook first). The TISE for the particle in a sphere has been 
solved (wavefunctions and energies determined) already, and your job is to investigate how 
those wavefunctions and energies behave as you change parameters. To simplify further, you 
will only consider the lowest energy (equivalent of n=1) wavefunctions for the electron and the 

diameter 2 nm 7 nm 
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hole. Due to the spherical symmetry of the particle, it is convenient to plot the wavefunctions in 
the radial direction. 
 

 
1.  Infinite potential outside the box 
 
 First, let’s assume the potential outside the quantum dot is infinite, just like we have 
done for the other PIB problems. The confinement energy is given as: 

  

   

Ee,h =
p 2 2

2me,hrQD
2
 

Effective masses for the electron and the hole for CdSe are already in the Mathematica 
notebook. Note that confinement energies for electron and hole are different because they have 
different masses. 
 
(a) What is the particle diameter at which the confinement effects become important, meaning 
that total confinement energy (Ee + Eh) is on the order of 10% of the band gap energy (Eg)? You 
can figure this out by varying the radius of the quantum dot (rQD) in the Mathematica notebook 
and examining the resulting confinement energies.    
 
(b) What is the value of the wavefunction at the surface of the dot (r = rQD)? Does this make 
sense and why? 
 
2.  Finite potential outside the box 
 
 As you can see in the figure above, quantum dots usually have organic molecules on 
their surfaces to make them soluble in organic solvents. We can ask whether the organic 
molecules present an infinite potential barrier, or whether a finite one is more appropriate. When 
finite barrier is introduced, the math becomes a lot more cumbersome, and is hidden in the 
Mathematica file. In Part 2 of the notebook, you can plot electron and hole wavefunctions and 
calculate confinement energies for a finite barrier case, but you have to enter the value of the 
potential in the “constants and parameters” section.  
 
(a) What are the values of confinement energies for the essentially infinite (V=1000 eV) 
potential outside the box with rQD = 2.5 nm?  How do these values compare to the ones 
obtained using an infinite potential? 
 
(b) Repeat (a), but use a potential outside the sphere that is more representative of the organic 
molecules on the surface (V=3 eV).  
 
(c) Take a look at the electron and hole wave functions with the outside potential of 3 eV. How 
do the wave functions behave near r=rQD? What do you think is going on? 
 
(d) Compare the electron and hole wave functions near r=rQD. Describe any difference you 
notice and propose/guess a reason for the difference. Explain your reasoning.  
 
3.  Comparison of the particle in a spherical box model with experimental data 
 
 The lowest energy of photons emitted by quantum dots is a sum of the Eg of a “large” 
semiconductor particle (1.75 eV for CdSe) and the confinement energies of the electron and the 
hole.     
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Eemission
(QD) = Eg

(large) + Ee + Eh 
 
(a) Using this equation and your results from parts 1 and 2, calculate the emission wavelength 
of CdSe quantum dots with radius of 2.5 nm to complete the table below.   

 Infinite potential outside (Part 1) 3 eV potential outside (Part 2) 

Calculated emission 
wavelength (nm) 

  

 
(b) An emission spectrum of CdSe quantum dots with radius of 2.5 nm is shown below. The 
emission peak is centered at 550 nm. Compare your predictions with this experimental value 
and comment on which model (infinite potential outside or finite potential outside) is more 
appropriate and whether the difference is sufficiently large to notice.  
 

 


