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The number-line task has been extensively used to study the mental representation of numbers in children.
However, studies suggest that proportional reasoning provides a better account of children’s performance.
Ninety 4- to 6-year-olds were given a number-line task with symbolic numbers, with clustered dot arrays that
resembled a perceptual scaling task, or with spread-out dot arrays that involved numerical estimation. Chil-
dren performed well with clustered dot arrays, but poorly with symbolic numbers and spread-out dot arrays.
Performances with symbolic numbers and spread-out dot arrays were highly correlated and were related to
counting skill; neither was true for clustered dot arrays. Overall, results provide evidence for the role of men-
tal representation of numbers in the symbolic number-line task.

Humans use space to organize and represent many
concepts, namely time (Boroditsky, 2000), relations
(Gentner & Colhoun, 2010; Gick & Holyoak, 1983),
emotion (Meier & Robinson, 2004), social power
(Schubert, 2005) etc. Numbers are not exception. It
has been suggested that adults organize symbolic
numbers along a mental number line (e.g., Dehaene,
Dupoux, & Mehler, 1990; Gallistel & Gelman, 1992;
Restle, 1970), leading to a signature set of behaviors
in number-related tasks. Adults, for example,
respond faster to small numbers if they are on the
left side than the right side of a screen, but
respond faster to big numbers if they are on the
right side than the left side (Dehaene et al., 1990).
However, the structure of the mental number line
varies according to one’s culture (G€obel, Shaki, &
Fischer, 2011; N�u~nez, Cooperrider, & Wassmann,
2012), familiarity with the numbers (Hurst, Leigh
Monahan, Heller, & Cordes, 2014), and—particu-
larly—age (e.g., Booth & Siegler, 2006; Seron &
Fayol, 1994; Siegler & Opfer, 2003).

To study the development of the mental number
line, the number-line estimation task is commonly
used. In this task, participants are shown an Arabic
number and are asked to indicate where the

number would go on a continuous number line
with marked endpoints such as 0 and 100 (Booth &
Siegler, 2006). Performance on this task has been
considered as an indication of the individual’s men-
tal representation of numbers, and there is a strong
predictive relation between performance in this task
and general mathematical competency in children.
Recent studies, however, have seriously questioned
this assumption (Barth & Paladino, 2011; Cohen &
Sarnecka, 2014). Since the number-line task repre-
sents a case of number-to-space mapping, develop-
ments in either or both of the two domains—
knowledge of the to-be-mapped numbers, and/or
the spatial representation of the number line and
the ability to map any magnitude dimension, not
just number, proportionally to space—could drive
performance. Both number representation and pro-
portional reasoning are highly relevant to mathe-
matics (Booth & Siegler, 2006; Boyer & Levine,
2015; Mix, Levine, & Newcombe, 2016; Newcombe,
Levine, & Mix, 2015; Sasanguie, De Smedt, Defever,
& Reynvoet, 2012), but it is important to know the
core competency that the number-line task mea-
sures. Answers to this question are not only impor-
tant for addressing the concerns about using the
number-line estimation task as a measure of sym-
bolic number understanding, but they also poten-
tially change the explanations for a host of
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important findings on the development of number
concepts and mathematical skills.

Performance on the number-line task has been
traditionally interpreted as reflecting the underlying
mental representations of numbers (e.g., Berteletti,
Lucangeli, Piazza, & Zorzi, 2010; Booth & Siegler,
2006; Dehaene, Izard, Spelke, & Pica, 2008; Geary,
2007; Laski & Siegler, 2007; Opfer, Thompson, &
Kim, 2016; Siegler & Opfer, 2003). Adults from an
indigenous Amazonian culture who have a reduced
number lexicon and little or no formal training
show a logarithmic estimation on the number-line
task, in which small numbers are systematically
overestimated while large numbers are underesti-
mated (Dehaene et al., 2008). Prior to formal
instruction on the full range of numbers on the
number-line task, young children from Western
societies also showed a similar logarithmic estima-
tion, for example, the number 20 may be estimated
to be halfway between 1 and 100 on the number
line where 50 should be. With learning and devel-
opment, older children’s and adults’ performance
resemble a linear function where the estimated loca-
tions and the true locations are highly correlated.
This change in development has been theorized as
a “representational shift” in which the mental rep-
resentation of numbers undergoes a change from
logarithmic to linear (Siegler & Opfer, 2003), driven
by the acquisition of a number symbol system
(Hurst et al., 2014) with corresponding changes in
the neural tuning curves for the individual numbers
(Prather, 2012). The view that performance in the
number-line task is closely linked to an individual’s
mental representations of numbers is further sup-
ported by the strong predictive relation between
performance on the number-line task and general
mathematical abilities, and by training studies
showing that training on the number-line task led
to significant improvement in children’s mathemat-
ics skills (Kucian et al., 2011; Link, Moeller, Huber,
Fischer, & Nuerk, 2013; Ramani & Siegler, 2008,
2011; Siegler & Ramani, 2009). Although it has been
suggested that both strategy use (White & Szucs,
2012) and general attentional skills (Anobile, Cic-
chini, & Burr, 2012) are related to number-line esti-
mation, it is widely believed that the number-line
task measures children’s developing mental repre-
sentations of symbolic numbers.

Recently, however, the view that the number-line
estimation task reflects the mental representations
of numbers has been questioned in research with
both adults (Cohen & Blanc-Goldhammer, 2011;
Cohen & Sarnecka, 2014) and children (Barth & Pal-
adino, 2011; Rouder & Geary, 2014; Slusser,

Santiago, & Barth, 2013). These studies have sug-
gested that the use of task-specific strategies pro-
vides a better explanation for how number-line
estimation develops. In particular, it has been
argued that proportional reasoning may underlie
adults’ and children’s performance in the number-
line task (Barth & Paladino, 2011; Slusser et al.,
2013). For example, when asked where the number
45 would go on the number line, a participant may
divide the number line into two parts, for example,
0–50 and 50–100, and use the midline boundary to
calibrate their estimations, for example, 45 should
be slightly left of 50. The number line can be fur-
ther divided into four quadrants to provide even
more precise calibration, for example, 28 should be
slightly right of 25 (the first quadrant of the number
line). Consistent with this line of reasoning, several
studies report that computational models based on
proportional judgment better predict children’s esti-
mates in the number-line task compared to either
the logarithmic or the linear function (Barth & Pal-
adino, 2011; Cohen & Sarnecka, 2014; Slusser et al.,
2013). Other studies have used the unbounded
number-line task in which participants were shown
on a computer screen a line with the unit of 1 and
were asked to drag the line with a mouse to pro-
duce a particular number (e.g., 20). Under this con-
dition, adults’ performance was better described by
models that incorporate biases based on propor-
tional reasoning. Thus, adults may indeed approach
the number-line task like a proportional reasoning
task (Cohen & Blanc-Goldhammer, 2011), which
may also be true for older children who already
have a good grasp of the number symbol system. It
is less clear what drives young children’s behavior
in this task: are their poor performances in the
number-line task primarily due to their poor pro-
portional reasoning skills or to developing numeri-
cal representations?

Research on the development of proportional
reasoning or scaling ability has shown strong early
competence, with young children, and even infants
in some cases, showing early scaling ability (Boyer
& Levine, 2015; Frick & Newcombe, 2012; Hutten-
locher, Newcombe, & Vasilyeva, 1999). In one
study (Huttenlocher, Newcombe, & Sandberg, 1994;
Huttenlocher, Vasilyeva, Newcombe, & Duffy,
2008), 3- and 4-year-olds were given a one-
dimensional map indicating the location of a hid-
den disk. They were asked to find the disk buried
in a long rectangle sandbox that was 7.5 times lar-
ger than the map. Although there was a systematic
bias toward the midline of the sandbox, even 3-
year-olds searched in places that followed a linear
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function of the true locations. Based on this and
other evidence that demonstrates early scaling abil-
ity, a form of proportional reasoning (Frick & New-
combe, 2012; Huttenlocher et al., 1999), it is
reasonable to expect that young children have suffi-
cient proportional reasoning skill to allow them to
perform competently in the number-line task, if
proportional reasoning is the only or most signifi-
cant competency involved in this task. Furthermore,
the scaling task resembles the number-line estima-
tion task in that it requires the child to map from
one dimension (a small-scale map; the magnitude
of numbers) to another dimension (a large-scale
space; a number line). The difference is this: in the
case of the scaling task, no estimation of the first
dimension (or the target location on the map) was
required since the map was always presented in
front of the participants during the experiment
(Huttenlocher et al., 1994, 2008); thus, this task pri-
marily measures proportional mapping ability. In
contrast, in the case of the number-line task, it is
possible that the mental representation of the num-
bers in young children may be imprecise and exhi-
bit a different overall function from that found in
older children and adults, resulting in a different
location estimation pattern on the number line.

To weigh in with the debate between the mental
number representation account and the propor-
tional reasoning account in children’s performance
on the number-line task, the majority of past
research has used computational modeling (Barth &
Paladino, 2011; Cohen & Sarnecka, 2014; Opfer,
Siegler, & Young, 2011). Here, we took an experi-
mental approach in which we contrasted the perfor-
mance on the traditional symbolic number-line
estimation task with a nonsymbolic version of the
number-line task that resembles a scaling task. As
shown in Figure 1A, in the symbolic number condi-
tion, 4- to 6-year-olds were shown a symbolic num-
ber and were asked where the number would go
on the number line, marked with 1 and 1,000.
Based on past research, we expected that most 4- to
6-year-olds would produce a logarithmic estimation
for a number line of this scale. In the clustered dots
condition, children were shown an array with clus-
tered dots in which the contour area (or convex
hull) of the array is a linear function of the number
of dots such that a smaller array would have a
smaller contour area. Children were asked to indi-
cate where the array would go on a number line
marked with pictures of 1 dot and 1,000 clustered
dots. This design not only allows children to use a
number of perceptual features (e.g., contour area,
accumulative area, density) in solving the task, but

also resembles a scaling task in which the partici-
pants can directly map the area of a dot array to
the possible range of areas on the line. If propor-
tional reasoning is the main determining factor in
young children’s performance in the number-line
estimation task, we should see similar patterns of
responses in these two conditions. In contrast, if
number representation matters in the number-line
task and children at this age are fairly competent
proportional mappers, but lack sophisticated num-
ber knowledge, we would see better performance
in the clustered dots condition than in the symbolic
number condition.

We also included an additional condition—the
spread-out dots condition, in which children were
shown an array with spread-out dots such that the
contour areas of the arrays were comparable across
trials—and they were asked to indicate where the
array would go on a number line marked with pic-
tures of 1 dot and 1,000 spread-out dots. Thus,

Figure 1. Schematic illustrations of the experimental conditions:
(A) The symbolic numbers condition, (B) the clustered dot array
condition, and (C) the spread-out dot array condition.
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contour area was not available as a directly per-
ceived dimension that could be potentially scaled to
the spatial array. However, other dimensions that
vary with set size, for example, the accumulative
area, density and numerosity of the dots, were all
available and could, in principle, be used. However,
prior research has linked the magnitude estimation
of spread-out dot arrays to individual’s numerical
competency and specifically the perception of dis-
crete quantity (Libertus, Feigenson, & Halberda,
2013; Mazzocco, Feigenson, & Halberda, 2011).
Thus, we suspected that this task would tap into
numerical estimation and, thus, would likely be
more similar to performance in the symbolic num-
ber condition.

In brief, if the number-line task measures propor-
tional reasoning skills, uninfluenced by children’s
abilities to represent discrete quantities, then perfor-
mance should be similar across all three conditions.
In contrast, if the number-line task reflects emerg-
ing numerical representations, performance in the
clustered dots condition should be superior to that
in the symbolic number condition (and also, likely,
the spread-out dots condition). Furthermore, indi-
vidual children who participated in the symbolic
number condition and clustered dots condition
should show no correlation between their perfor-
mance in the two tasks because performance in the
first requires (by hypothesis) numerical representa-
tions whereas the second may be solved by per-
ceived area. However, if the symbolic number task
and the spread-out dots task both tap into numeri-
cal representations, children who participated in
both tasks should show significantly correlated per-
formance. Finally, to link performance in the num-
ber-line task to numerical knowledge, we assessed
children’s counting skill with the prediction being
that counting should be linked to performance in
the symbolic number-line task (and likely the
spread-out dots task), if numerical knowledge mat-
ters to performance in the traditional number-line
estimation task. And this should not be the case in
the clustered dots condition which is hypothesized
to primarily involve proportional reasoning with
respect to two directly perceived dimensions (area
of clustered dots and space on the number line
itself).

Method

Participants

Ninety (42 females and 48 males) 4- to 6-year-
olds participated in the study. Their ages ranged

from 47 to 79 months, with a median age of
64 months. Families were contacted about the
study through a consented database or through
local preschools and day-care centers that serve
families from a wide range of socioeconomic back-
grounds in Monroe County, Indiana. The sample of
children was broadly representative of the local
population: 84% European American, 5% African
American, 5% Asian American, 2% Latino, 4%
Other) and consisted of predominantly working-
and middle-class families. Eighteen percent of the
children attended day cares or lived in neighbor-
hoods served by schools with over a 50% participa-
tion in the free-lunch program. Informed consents
were obtained from the participants’ legal guardian
prior to the study. All participants completed the
traditional symbolic number-line task. Fifty partici-
pants also completed the spread-out dot array task
and forty participants completed the clustered dot
array task.

Materials and Apparatus

The number line was a physical line of 1 m in
length. It was made from a 1-m length rule (partici-
pants only saw the back of it and thus could not
see any of the marks on the rule). Using this large
physical number line rather than a one printed on a
piece of paper allowed us to measure children’s
estimation with more precision. The number line
was pasted on the top of a wooden board (1 m
wide and 0.5 m tall) that was displayed on a table
in front of the participant. The number line was
covered with Velcro, and a marker with Velcro was
given to the participants to put on the number line
to indicate their responses.

For the symbolic number task, the endpoints of the
number line were labeled “1” and “1,000.” Eighteen
5 9 3 in. cards were made to display the following
numbers: 3, 871, 206, 7, 245, 36, 10, 344, 526, 98,
739, 610, 150, 64, 814, 437, 952, 291. Numbers were
printed in Arial and font size of 30.

For the nonsymbolic dot array tasks, the end-
points of the number line were labeled with a pic-
ture of 1 dot and a picture of 1,000 clustered dots
or 1,000 spread-out dots (for the clustered dot array
task and the spread-out dot array task respectively).
Eighteen 5 9 3 in. cards were made to display dot
arrays that represented the same set of numbers as
in the symbolic number-line task. Figure 2 shows
sample stimuli cards and the perceptual properties
—including cumulative area, contour area (or con-
vex hull) and density—of the stimuli used in the
two dot array tasks. For both tasks, the stimuli
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cards were created using same-sized dots. Thus,
multiple perceptual magnitudes were correlated
with the set sizes of the arrays. For both the clus-
tered dot array task and the spread-out dot array
task, the cumulative area of the arrays and their
set sizes were highly correlated. However, the
clustered dot array task provided a more salient
and reliable convex hull cue to the set size of the
arrays. Given the strong influence of contour area
on magnitude judgment for both children and
adults (Clayton, Gilmore, & Inglis, 2015; Leibovich,
Katzin, Harel, & Henik, 2017; Leroux et al., 2009),
there is good reason to expect that children can
encode contour area and may map it directly to
spaces on the number line, resulting in a superior
performance among all the tasks—an expectation
that was confirmed by the results as reported
later.

Procedures

Number-Line Estimation

Participants completed two versions of the
number-line estimation task: (a) with symbolic
digits and (b) with nonsymbolic objects (either
with the clustered dot arrays or the spread-out
dot arrays). Thus, all the participants completed
the symbolic version of the number-line task. Fifty
participants completed the spread-out dot arrays
task and forty completed the clustered dot array
task.

The order of the tasks was counterbalanced. For
all conditions, the experimenter placed the number-
line board on a table. The child sat on a chair facing
the middle of the number-line board. The experi-
menter sat behind the board and presented the
stimulus card by holding it above the center of the

Figure 2. Sample stimuli and perceptual properties of all stimuli used in the two dot arrays tasks. Rows 1–5: sample stimuli in the
spread-out dot array task and in the clustered dot array task. Rows 6–9: the cumulative area, convex hull, and density statistics (i.e.,
mean, min, max values, and correlation to set size) for the spread-out dot array task and the clustered dots array task. The cumulative
area was quantified by the sum of the areas of all dots. The convex hull (or contour area) was quantified by the area of the smallest
polygon containing all items. The density was quantified by dividing the cumulative area by the convex hull. All statistics were propor-
tional to the total area of the stimuli cards. Cor to SS = correlation to set size.
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board. Children indicated their estimations by plac-
ing the marker on the number line. Since both the
marker and the number line had Velcro attached to
one side as described earlier, they could stick
together via the Velcro. The marker was removed
after each trial. No feedback was given and there
was no time limit.

The experimenter first introduced the task to the
child,

Today we are going to play a game. In this
game, we are going to figure out where numbers
go on our number line. See this white line here?
This is our number line. There are numbers that
go all along this line. We have these little men
(show them the markers) and we are going to
put them on the line anywhere we think the
number goes.

The experimenter stressed that the numbers can
go anywhere on the line. She then demonstrated
that the number “1” (or 1 dot) goes to the leftmost
point and the number “1,000” (or 1,000 dots) goes
to the rightmost point. The experimenter also
demonstrated where the number “2” (or 2 dots)
and “999” (or 999 dots) goes on the number line to
make sure that the child understood the task. There
were 18 trials in total and demonstrations (with the
numbers or dots 1, 1,000, 2, and 999) were given
every six trials to ensure that participants under-
stood the task. We chose to use the 1–1,000 range
of the number-line task because it is a challenging
task for 4- to 6-year-olds based on prior studies and
thus may better discriminate performance in the
three stimulus conditions (Cohen & Sarnecka, 2014;
Reeve, Paul, & Butterworth, 2015; Siegler & Opfer,
2003).

Counting

Participants were prompted to count to 100 and
were coded as either successful or unsuccessful.
The experimenter provided a prompt if the partici-
pant paused, for example, “what’s after 21?” Partic-
ipants who made three or fewer mistakes in
counting to 100 were coded as counters. By this
measure, roughly half of the participants were
coded as counters while the other half were coded
as noncounters. Specifically, there were 41 counters
and 45 noncounters in the symbolic number
condition, 21 counters and 18 noncounters in the
clustered dot array condition, and 20 counters and
30 noncounters in the spread-out dot array
condition.

Results

We first report analyses in which we fit partici-
pants’ number-line estimations to known functions
of the target locations both on a group-level and on
an individual-level. We then quantified the preci-
sion of each individual’s estimations using two
established measures. Within each child, we also
examined the relation between the estimation preci-
sion in the symbolic number-line task and that in
the nonsymbolic number-line tasks. Finally, we
report results on the various effects of counting on
the different types of the number-line task
performance.

The Function Fitting of the Estimations

The traditional data-analytic approach in the
number-line task fits the estimated locations to
both a logarithmic function and a linear function
of the true locations (Booth & Siegler, 2006; Siegler
& Opfer, 2003). Later studies have suggested alter-
native functions for fitting number-line estimation
data (Barth & Paladino, 2011; Dackermann, Huber,
Bahnmueller, Nuerk, & Moeller, 2015; Ebersbach,
Luwel, Frick, Onghena, & Verschaffel, 2008). Our
goal was not to identify the best fitting model but
rather to investigate how responses differ among
the experimental conditions. Accordingly, we fit
the data to the traditional linear and logarithmic
functions as well as a mixed logarithm–linear func-
tion, a method for quantifying performance that
may be characterized by the combination of the
logarithmic and the linear functions (Anobile et al.,
2012; Cicchini, Anobile, & Burr, 2014; Kim &
Opfer, 2017; Opfer et al., 2016). We also fit the data
to proportional reasoning models (i.e., cyclic power
models), which did not provide a good fit for the
current data and are not discussed further; see
Supporting Information for all the modeling results
and all of the functions used in the following anal-
yses.

We first report model fitting results for the linear
function and the logarithmic function. Following
past research, the analysis was done both on a
group-level and on an individual-level. For the
group-level analysis, for each number, we calcu-
lated the median estimation from the group and fit
these estimations to both a logarithmic and a linear
function of the true locations. As in all model fitting
to this type of data, multiple models fit reasonably
well and multiple criterion can be used to quantify
the best model (Dackermann et al., 2015). Following
past research (Booth & Siegler, 2006; Cohen &
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Blanc-Goldhammer, 2011), we used the amount of
variance explained by the model (or R2) and the
Akaike information criterion (AIC) goodness-of-fit
measure to quantify model fitting. As shown in Fig-
ure 3A, estimations in the symbolic number-line
condition were better fit by a logarithmic function
(F(1, 16) = 605, p < .001, R2 = .97, AIC = 188) as
opposed to a linear function (F(1, 16) = 24, p < .001,
R2 = .60, AIC = 236). In contrast, estimations in the
clustered dot array condition were better fit by a
linear function (F(1, 16) = 169, p < .001, R2 = .91,
AIC = 220) than a logarithmic function (F(1,
16) = 88, p < .001, R2 = .85, AIC = 230). Similar to
the symbolic number-line condition, estimations in
the spread-out dot array condition were better fit
by a logarithmic function (F(1, 16) = 805, p < .001,
R2 = .98, AIC = 190) as opposed to a linear function
(F(1, 16) = 44, p < .001, R2 = .73, AIC = 238).

This pattern of results was also reflected in an
individual-level analysis. For each child, we fit the
estimations by both a linear function and a logarith-
mic function of the true locations and calculated
which one was the better fit for the child based on

the AIC scores. We then calculated for all condi-
tions the proportion of children whose estimations
were better fit by a logarithmic function or by a lin-
ear function. A chi-squared test of independence
was calculated comparing the better fit function in
the symbolic number condition and that in the clus-
tered dot array condition; a significant interaction
was found, v2(1) = 32.49, p < .001. As shown in Fig-
ure 3B, in the symbolic number condition, more
children whose estimations were better character-
ized by the logarithmic function as opposed to the
linear function (87% vs. 12%). In contrast, in the
clustered dot array condition, more children whose
estimations were better characterized by the linear
as opposed to the logarithmic function (63% vs.
37%). In the spread-out dot array condition, similar
to the symbolic number condition, more children
whose estimations were better fit by the logarithmic
function as opposed to the linear function (90% vs.
10%).

Fitting data to the mixed logarithm–linear func-
tion corroborates the above results. The mixed
model combines the linear and algorithmic func-
tions to capture the data that might be a combina-
tion of both (see Supporting Information for the
corresponding mathematical function). The degree of
logarithmic compression is quantified by the k
value (set to be between 0 and 1) with higher val-
ues indicating more compression (Anobile et al.,
2012; Cicchini et al., 2014; Kim & Opfer, 2017;
Opfer et al., 2016). As shown in Figure 4A, the
mixed logarithm–linear function fits well with the
median estimations from the groups. And consis-
tent with the previous results, the k value was
highest in the symbolic number-line condition
(k = 1) and lowest in the clustered dot array condi-
tion (k = .37) with the value in the spread-out dot
array condition in the middle (k = .77). Fitting the
mixed logarithmic–linear function to individual
children’s data revealed a similar pattern. Figure 4B
shows the k values for all children in the three con-
ditions. As can be seen, the k values in both the
symbolic number-line condition and the spread-out
dot array condition were significantly skewed with
most of the values being close to the upper limit 1.
In contrast, k values in the clustered dot array con-
dition were more evenly distributed between 0 and
1 with some children having very little evidence of
logarithmic compression in their estimation while
others showing more logarithmic biases.

Overall, the model fits at the group-level and
individual-level data provide converging and
robust evidence that young children’s performance
in the symbolic number-line condition shows more

Figure 3. Results from fitting the data to the linear or the loga-
rithmic functions. (A) The better fit function (i.e., linear or loga-
rithmic) for the group median estimate in each condition. (B) The
proportion of children whose estimations were better fit by either
the linear or the logarithmic function by condition.
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logarithmic compression than their performance in
the clustered dot array condition.

The Precision of the Estimations

Proportion of absolute error (PAE) has been com-
monly used to measure the precision of the num-
ber-line task performance for individual children
(Booth & Siegler, 2006; Sasanguie et al., 2012). As
shown further down, it is computed by averaging
the deviations of the estimations from the true val-
ues and then dividing it by the scale of the number
line. However, this approach is particularly sensi-
tive to extreme values; a large deviation on a single
trial can significantly influence the overall score.

PAE ¼ 1
Number of trialsX Estimated location� True locationj j

Number line range
:

Another way to quantify the precision of num-
ber-line estimations is to calculate the correlation
between the estimated locations and the true loca-
tions (Dehaene et al., 2008). As shown further
down, this method essentially calculates the z

scores for the estimated locations and the true loca-
tions and provides a quantification of their similar-
ity.

r ¼ 1
Number of trials�1

P Estimation�Mean of stimations
Standard deviation of estimations

� �

� Target�Mean of targets
Standard deviation of targets

� �
:

Based on these considerations, we calculated both
a PAE score and a correlation score for each child.
For the PAE score analysis, a linear mixed effect
model was conducted using the lme4 package
(Bates, Maechler, Bolker, & Walker, 2015) in the R
environment (R Development Core Team, 2007).
Significant values were obtained using the afex
package (Singmann, Bolker, Westfall, & Aust, 2015)
with the likelihood ratio test method, which per-
forms a likelihood ratio test using the Kenward-
Roger approximation. Condition was entered as a
fixed factor and subject was entered as a random
factor (Pinheiro & Bates, 2000). As shown in Fig-
ure 5A, there was a significant main effect of condi-
tion, v2(2) = 41.53, p < .001. Post hoc tests correcting
for multiple comparisons using the emmeans pack-
age (Lenth, Singmann, Love, Buerkner, & Herve,
2019) showed that: deviations in the symbolic num-
ber condition (M = .3, SD = .08) were significantly
greater than those in the clustered dot array condi-
tion (M = .21, SD = .07), t(115) = 6.91, p < .001; in
contrast, there was no significant difference between
the deviations in symbolic number condition and
those in the spread-out dot array condition (M = .3,
SD = .08), t(108) = �0.67, p = .78. The difference
between the two dot array condition was also statis-
tically significant, t(149) = 6.05, p < .001.

For the correlation score analysis, following past
research (Slusser et al., 2013), participants who pro-
duced negative correlations between their estima-
tion and the true location on the number line
(N = 5) were excluded from this and following
analyses using correlation scores as the dependent
measure but not on other measures (e.g., PAE). A
linear mixed effect model was conducted in which
the condition was entered as a fixed factor and sub-
ject was entered as a random factor. As shown in
Figure 5B, there was a significant main effect of
condition, v2(2) = 43.35, p < .001. Post hoc tests cor-
recting for multiple comparisons showed that: cor-
relations between the true values and the estimated
values in the symbolic number condition (M = .56,
SD = .26) were significantly lower than those in the
clustered dot array condition (M = .77, SD = .21), t
(114) = �6.99, p < .001. Correlations in the
symbolic number condition were also significantly

Figure 4. Results from fitting the data to the mixed logarithmic–
linear function. (A) The best fit function for the group median esti-
mate in each condition. (B) Boxplot of the lambda values for each
participants’ (shown as dots) best fitting function by condition.
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lower than those in the spread-out dot array condi-
tion (M = .70, SD = .17), t(105) = �3.60, p < .01.
The difference between the two dot array condition
was also statistically significant, t(150) = 3.12,
p < .01.

Overall, the main finding is that estimations
were less deviant from and more correlated to the
true locations in the clustered dots condition than
the symbolic number condition. These findings, in
conjunction with the fits of functions, strongly sug-
gest that for 4- to 6-year-old children, the number-
line tasks with clustered dots and with symbols are
not tapping into the same strategies and underlying
mental representations.

The Relation Among Variations of the Number-Line
Task Within Individual Children

To examine how performance in the symbolic
number-line task and the nonsymbolic number-line
tasks were related within individual children, we
calculated the correlation between performance in
the symbolic number condition and performance in
the clustered dots condition, as well as the correla-
tion between performance in the symbolic number
condition and performance in the spread-out dot
array condition. For the PAE scores, as shown in
Figure 6 (top panel), there was a large and signifi-
cant correlation between the symbolic number con-
dition and that in the spread-out dot array
condition within individual children, r = .51, t
(48) = 4.15, p < .001. In contrast, PAE scores in the
symbolic number condition and those in the clus-
tered dot array condition were only weakly corre-
lated, r = .35, t(38) = 2.26, p = .03. For the
correlation scores, as shown in Figure 6 (bottom
panel), there was a large and significant correlation
between the symbolic number condition and those
in the spread-out dot array condition, r = .45, t
(47) = 3.5, p = .001. In contrast, correlation scores in
the symbolic number condition and those in the
clustered dot array condition were not significantly
correlated, r = .23, t(35) = 1.39, p = .17.

Overall, the performance in the symbolic number
condition was highly related to the individual’s per-
formance in the spread-out dot array condition,
presumably because they both involved mapping
numerical magnitudes to space. In contrast, perfor-
mance in the symbolic number condition and that
in the clustered dot array condition were either not
significantly correlated or correlated but to a much
lesser degree, suggesting that these tasks might
involve the use of different skills.

The Role of Counting in Variations of the Number-Line
Task

If the hypothesis is correct that the symbolic
number-line condition measures mental representa-
tions of numbers while the nonsymbolic clustered
dot array condition mainly involves a proportional
mapping between two perceptual features, we
would expect counting to be related to performance
in the symbolic number-line condition but not in
the clustered dot arrays condition. To test this, we
separated participants into two groups—counters
and noncounters—and compared their PAE scores
and correlation scores across the conditions. Table 1
shows the results from both groups as well as the

Figure 5. Results from the precision of estimation analysis. (A)
Proportion of absolute error scores by condition. (B) Correlation
between the estimated locations and the true locations by condi-
tion. For both A and B, the bars indicate group average; the red
lines indicate the standard errors of the group; the black dots
indicate the performance from individual children.
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comparison between them across all conditions. As
shown in Figures 7A and 7B, counting skill was
strongly related to how well children performed in
the symbolic number condition—counters’ estima-
tions were significantly less deviant and more cor-
related with the true locations than those of
noncounters—but not in the clustered dot array
condition. Counting skill also appeared to predict
the performance in the spread-out dot array condi-
tion by the measure of correlation score.

Fitting the group median estimations to different
functions of the true locations showed a similar
trend as the above analyses. As shown in Figure 7C,
the tendency of overestimating smaller numbers
and underestimating large numbers was slightly
less potent in the counters than the noncounters in
the symbolic number condition (counters: k = .94,
noncounters: k = 1) and in the spread-out dot array
condition (counters: k = .76, noncounters: k = .78),
suggesting that both are related to number knowl-
edge. In contrast, in the clustered dot array

condition, the linear regression lines for the coun-
ters and noncounters essentially overlapped with
each other, indicating that the skill involved in this
task was independent from the participant’s num-
ber knowledge.

Discussion

Research on human numerical cognition has shown
qualitative differences as a function of age in the
mental representation of numbers with correspond-
ing behavioral and neurological changes (Ansari,
Garcia, Lucas, Hamon, & Dhital, 2005; Brannon,
2002; Dehaene, 1992; Gallistel & Gelman, 1992;
Prather, 2012; Rivera, Reiss, Eckert, & Menon, 2005;
Rosenberg-Lee, Barth, & Menon, 2011; Watts, Dun-
can, Siegler, & Davis-Kean, 2014). Thus, develop-
mental changes in number representation are not in
question; what has been debated is whether perfor-
mance in the number-line task reflects these

Figure 6. Correlation between performance in the symbolic and nonsymbolic number-line tasks within individual children. Left panel:
the correlation between the symbolic numbers condition and the spread-out dot array condition. Right panel: the correlation between
the symbolic numbers condition and the clustered dot array condition. Top panel: proportion of absolute error (PAE) scores. Bottom
panel: correlation scores.
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representational changes (Barth & Paladino, 2011;
Cohen & Sarnecka, 2014; Opfer et al., 2011, 2016). If
proportional reasoning skill is the core competency
driving the developmental changes in the number-
line task as has been suggested (Barth & Paladino,
2011; Cohen & Sarnecka, 2014; Rouder & Geary,

2014; Slusser et al., 2013), then young children who
perform poorly in the number-line task should also
do so in a comparable task that mainly involves
basic proportional reasoning ability. On the con-
trary, the current study showed that 4- to 6-year-
olds were much more competent in the clustered

Table 1
Performance of Counters and Noncounters Across Conditions

Counters Noncounters t-tests

PAE score Symbolic numbers M = .28 (SD = .08) M = .3 (SD = .08) t(88) = �1.99, p = .049
Clustered dots M = .20 (SD = .07) M = .23 (SD = .06) t(38) = �1.64, p = .10
Spread-out dots M = .3 (SD = .06) M = .31 (SD = .09) t(48) = �0.29, p = .77

Correlation score Symbolic numbers M = .67 (SD = .15) M = .45 (SD = .29) t(84) = 3.90, p < .001
Clustered dots M = .82 (SD = .16) M = .71 (SD = .25) t(37) = 1.29, p = .20
Spread-out dots M = .77 (SD = .07) M = .65 (SD = .19) t(48) = 2.61, p = .01

Note. PAE = proportion of absolute error.

Figure 7. Results from the counting skills analysis. (A) Proportion of absolute error (PAE) scores for counters and noncounters by con-
dition. (B) Correlation scores for counters and noncounters by condition. (C) Better fit functions for the group median estimates from
the counters and noncounters by condition. Statistical significance was based on two sample t-test.
*p < .05. **p < .01.
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dot array task—readily solvable by basic propor-
tional reasoning skills—than in the symbol number-
line task, suggesting that proportional reasoning is
not the only or even the main contributing factor in
young children’s number-line task performance.
This empirical evidence goes beyond the modeling
approach that has been commonly used in the liter-
ature (Barth & Paladino, 2011; Opfer et al., 2011;
Slusser et al., 2013), and strongly suggests a role of
mental number representation in the number-line
task for young children.

Using a variety of different measures (e.g., func-
tion fitting, proportional of absolute errors, correla-
tion), the current study showed that: when asked to
map symbolic numbers to a symbolic number line
with endpoints marked “1” and “1,000,” 4- to 6-
year-olds produced less accurate and logarithmic
estimations, consistent with previous research on
children’s performance in the number-line task
(Booth & Siegler, 2006; Siegler & Opfer, 2003). In
contrast, when asked to map clustered dot arrays
to a nonsymbolic number line with endpoints
marked 1 dot and 1,000 clustered dots—a task that
resembled a scaling task—children produced more
accurate and linear estimations. When asked to
map spread-out dot arrays to a nonsymbolic num-
ber line with endpoints marked 1 dot and 1,000
spread-out dots—a task that likely required some
degree of numerical estimation—children per-
formed quite similar to the symbolic number-line
task. Furthermore, within individual children, per-
formance in the symbolic number-line task was
strongly correlated with the performance in the
spread-out dot array task, and both were related to
the child’s counting skill; neither of these was true
for the performance in the clustered dot array task.

The overall result is consistent with the “repre-
sentational shift” account of number-line develop-
ment (Booth & Siegler, 2006, 2008; Opfer et al.,
2016; Siegler & Opfer, 2003). For young children (4-
to 6-year-olds) who have limited knowledge on the
1 to 1,000 number range, their number-line estima-
tions followed a logarithmic function of the true
locations. However, these children performed sig-
nificantly better in the clustered dot array version
of the number-line task in which basic scaling abil-
ity sufficed. This result is also consistent with what
we know about the development of proportional
reasoning (Mix et al., 2016; Vasilyeva & Lourenco,
2012). Numerous studies have shown that very
young children, even infants in some cases, show
early sensitivity to scaling, and can proportionally
map the locations shown on a small-scale map to a
large-scale space (Huttenlocher et al., 1994, 1999,

2008). The unique contribution of the current study
is to show the critical dissociation between early
proportional reasoning ability and young children’s
performance in the number-line estimation task. We
demonstrate empirically that young children’s poor
performance in the number-line task is not due to
poor proportional reasoning ability; rather, the
mental representation of numbers seems to be the
major limiting factor in their number-line estima-
tion.

The claim is not that proportional reasoning is
not important for the symbolic number-line task. To
perform competently in the number-line estimation
task, one needs to be able to: (a) accurately repre-
sent the magnitudes of the to-be-mapped symbolic
numbers, and (b) place these symbolic numbers
proportionally to the number line. Young children
who have very limited knowledge of the number
symbol system—who may not even know that the
middle between 1 and 1,000 is 500—are less likely
to be able to successfully deploy their proportional
reasoning skills to solve the symbolic number-line
estimation task, even though scaling ability
between two perceptual dimensions emerges quite
early (Huttenlocher et al., 1994, 1999, 2008). Propor-
tional reasoning is likely a significant contributing
factor in the number-line performance for older
children and adults who have more in-depth
knowledge about the number symbol system and
increased proportional reasoning skills both in the
ability to use categorical encoding (Plumert, Hund,
& Recker, 2007; Quinn, Norris, Pasko, Schmader, &
Mash, 1999; Sandberg, Huttenlocher, & Newcombe,
1996) and to calibrate targets according to category
boundaries (Jeong, Levine, & Huttenlocher, 2007;
Newcombe, Huttenlocher, & Learmonth, 1999; Plu-
mert et al., 2007). Once an individual develops
knowledge on the full scale of numbers on a num-
ber line, the number-line task indeed highly resem-
bles a proportional reasoning task. In fact, using an
unbounded number-line task, research has shown
that it is the approach that most adults take
(Cohen, Blanc-Goldhammer, & Quinlan, 2018).

Current understanding of the life-span develop-
ment in the number-line task can benefit from con-
sidering the dynamic influence of multiple factors
on an individual’s performance. Number knowl-
edge (Booth & Siegler, 2006; Siegler & Opfer, 2003),
proportional reasoning (Barth & Paladino, 2011;
Slusser et al., 2013), relational thinking (Rattermann
& Gentner, 1998; Thompson & Opfer, 2010), cate-
gorical language (Landy, Charlesworth, & Ottmar,
2016), awareness and adoption of strategies (White
& Szucs, 2012), as well as visual attention and

12 Yuan, Prather, Mix, and Smith



calibration skills (Anobile et al., 2012; Cicchini
et al., 2014) are all likely factors that determine an
individual’s performance in the number-line task.
The fact that even the same child or adult can have
different estimation patterns depending on the scale
of the number line (Landy, Charlesworth, & Ott-
mar, 2014; Landy et al., 2016; Siegler & Opfer, 2003;
Slusser et al., 2013) attests to the fluidity of this task
and to the influence of multiple factors on an indi-
vidual’s behavior. Number knowledge certainly
matters in the number-line task (Booth & Siegler,
2006, 2008), but so do the awareness and successful
deployment of strategies during online processing
of the task, which can be reflected by the individ-
ual’s eye movements (van’t Noordende, van Hoog-
moed, Schot, & Kroesbergen, 2016; Reinert, Huber,
Nuerk, & Moeller, 2015; Sullivan, Juhasz, Slattery,
& Barth, 2011).

Proportional reasoning skill itself undergoes sig-
nificant changes both in the complexity of categori-
cal encoding and the ability to calibrate the target
according to category boundaries (Plumert et al.,
2007; Quinn et al., 1999; Sandberg et al., 1996). Simi-
larly, number knowledge also continues to increase
with development (Ansari et al., 2005; Brannon,
2002; Dehaene, 1992; Gallistel & Gelman, 1992; Riv-
era et al., 2005), so does the ability to use relational
thinking to expand on the number scales that we
already know to the ones that are vastly beyond
human perception of quantities (e.g., 1 million,
1 trillion; Thompson & Opfer, 2010). All of these are
potential contributing factors for the number-line
task performance; however, all of these component
skills likely have distinct developmental trajectories
and may exert different degrees of the influence to
the number-line task for different age groups.

Limitations

Further research is needed to assess these larger
issues and we note here several limitations of the
present study. First, the current study only assessed
the children’s performance in the number-line task
during one session. A longitudinal design that
tracks individual children’s behavioral changes over
time as well as other direct measures of emerging
number skills would provide more insight into the
development of the number-line task and its rela-
tion to developing numerical representations. Sec-
ond, the current study assessed only a global
measure of numerical development (counting). To
better understand the processes that link develop-
ing number knowledge to performance, fine-
grained and converging measures of symbolic

number knowledge are required. Lastly, while chil-
dren’s final responses were the primary dependent
measures in the current study, incorporating other
methodologies such as eye-tracking would provide
more information on the real-time dynamic pro-
cesses involved in the task and potential differences
in strategy use. All of these factors should be taken
into consideration for a full understanding of an
individual’s ability to map numbers to space in the
number-line estimation task.

Conclusion

The main finding, and one critical to current
assessments and theories of developing number
knowledge, is this: the number-line task remains a
useful measure and predictor of young children’s
changing numerical representations (Schneider
et al., 2018).
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