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Knowledge in mathematics and science is built incre-
mentally, beginning piecemeal but becoming an inte-
grated system capable of generating new insights. 
Unschooled concepts have been characterized both  
as foundational (Carey, 2001) and as impediments 
(McCloskey, 2014) to advanced learning. Here, we 
examined how early approximate and rudimentary 
knowledge may support and be transformed by formal 
instruction. Theories of knowledge change often use 
network analyses to characterize and measure how 
components are integrated into a single system (see 
Baronchelli et  al., 2013; Siew, 2020). Here, we used 
network analyses to understand how children’s early 
piecemeal knowledge transforms into a more integrated 
understanding of place value.

Place value is a compositional system consisting of 
a small set of symbols (the digits 0 to 9) and syntactic 

principles that generate and relate representations for 
an infinite set of quantities. The syntax expresses base-
10 relations in terms of units arranged hierarchically in 
multiples of 10 from right to left, with counts of each 
unit represented by the specific digit in each place. For 
example, “532” stands for [5 × 100] + [3 × 10] + [2 × 1]. 
This count + unit syntax is difficult for many, but not 
all, children to master (e.g., Chan et al., 2014; Fuson, 
1990), and incomplete understanding is associated with 
persistent difficulties in syntax-based operations such 
as multidigit calculation (Moeller et al., 2011; Raghubar 
et al., 2009).
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Abstract
Examining how informal knowledge systems change after formal instruction is imperative to understanding learning 
processes and conceptual development and to implementing effective educational practices. We used network analyses 
to determine how the organization of informal knowledge about multidigit numbers in kindergartners (N = 279; mean 
age = 5.76 years, SD = 0.55; 135 females) supports and is transformed by a year of in-school formal instruction. The 
results show that in kindergarten, piecemeal knowledge about the surface properties of reading and writing multidigit 
numbers and the use of base-10 units to determine large quantities are strongly associated with each other and 
connected in a stringlike manner to other emerging skills. After a year of instruction, each skill becomes connected 
to the “hub” abilities of reading and writing multidigit numbers, which also become strongly connected to more 
advanced knowledge of base-10 principles. These findings provide new insights into how partial knowledge provides 
the backbone on which explicit principles are learned.
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Children begin forming ideas about multidigit num-
bers, and specifically about how number names map 
to written forms, well before the start of school (Mix 
et al., 2014; Yuan et al., 2019). At levels above chance, 
children as young as 3 and 4 years of age map number 
names to written forms, correctly judging, for example, 
that “five hundred thirty-two” maps onto “532” instead 
of “325” (Mix et  al., 2014; Yuan et  al., 2019). They 
sometimes make errors and are more likely to do so 
when target and foils are transpositions or differ only 
in the presence of a zero—errors that show that their 
knowledge is at best incomplete (Yuan et  al., 2020). 
Many preschool children also correctly write the mul-
tidigit number in a dictation task when given the spo-
ken number name (Byrge et  al., 2014). Preschool 
children also make interesting errors in this task that 
indicate a not-quite-right understanding. For example, 
they may write “six hundred and forty-two” as “600402” 
(Byrge et al., 2014; Zuber et al., 2009). Growing evi-
dence indicates that early knowledge about number 
names and their corresponding written forms emerges 
from incidental experiences with the names and forms 
(Byrge et al., 2014; Mix et al., 2014; Yuan et al., 2019, 
2020). Reading and writing multidigit numbers, even 
imperfectly, would seem a useful first step for learning 
about place value. However, these transcoding skills, as 
they are often referred to in the mathematics-cognition 
literature (e.g., Zuber et al., 2009), can be accomplished 
with no knowledge of count + unit syntax (Yuan et al., 
2019, 2020). All English speakers need to know is that 
the names of the digits and the temporal order of the 
spoken names (with the exceptions of the teens) align, 
from first mentioned to last mentioned, with the left-
to-right order of the written numbers.

However, preschool children who map spoken 
names to written forms with reasonable accuracy also 
make relative magnitude judgments when given only 
the written forms (Yuan et al., 2019), for example, judg-
ing “352” to be more than “235.” Computational models 
of statistical learning (Grossberg & Repin, 2003; Yuan 
et al., 2020) indicate that magnitude comparison can 
emerge solely from knowing how multidigit number 
names map to written forms. In these models, the regu-
larities across spoken name, spatial positions, and ver-
bal markers (e.g., “hundred,” the syllable “-ty”) yield 
latent knowledge of places as markers of different mag-
nitudes, that is, to the insight that there are places that 
signify quantities that decrease in magnitude from left 
to right in the written form. Thus, early knowledge 
about reading and writing multidigit numbers appears 
to yield approximate knowledge about places and their 
relative magnitudes. Finally, this early approximate and 
incomplete knowledge about multidigit numbers has 
been shown to predict later success in learning count + 
unit syntax in school (Mix et al., 2022).

In this study, we focused not on prediction from 
early knowledge to latter success but on the organiza-
tion of children’s early knowledge and how that early 
knowledge may reorganize as the result of classroom 
instruction. Figure 1 shows the six tasks we used and 
the minimal knowledge required to succeed in each 
task. The six tasks have been individually used in many 
prior studies and all correlate with other measures of 
early mathematics abilities (Byrge et  al., 2014; Mix 
et al., 2014, 2016, 2017; Yuan et al., 2019). For a full list 
of references for the external validity of each measure 
predicting later mathematics achievement, see the Sup-
plemental Material available online. We chose these 
tasks, however, not for their measurement properties 
with respect to predicting later success but because of 
the components of emerging knowledge that they 
require. Three of the tasks measured approximate 
knowledge about places: (a) the bidirectional mapping 
of multidigit number names and written forms (e.g., 
Byrge et al., 2014), (b) the relative magnitude of two 
written forms (e.g., Durand et al., 2005), and (c) the 
position of written numbers on a number line (Siegler 
& Opfer, 2003). Three additional tasks measured more 
precise knowledge of the counts and units that are the 
foundation of the syntactic principles of place value: 
(a) the units counted at each place (e.g., Hanich et al., 
2001), (b) the quantity of any set of objects that can be 
determined by counting and adding together base-10 
units (Chan et al., 2014), and (c) the equivalence of a 
multidigit number to the sum of the quantities indicated 
by each place (Mix et al., 2017).

Statement of Relevance

Learning starts early, continues for a lifetime, and 
takes place both inside and outside of schools. 
Determining how early informal knowledge is 
connected to later formal learning is essential to 
effective education. Using network analyses, we 
found that reading and writing numbers is a 
central skill that integrates pieces of knowledge 
about places with base-10 principles. The findings 
show how early imprecise knowledge about 
multidigit numbers—as evidenced in reading and 
writing numbers—sets the stage for and then is 
transformed by a year of in-school formal 
instruction. The findings have direct implications 
for measuring and teaching place value. The 
findings also have broader implications for 
understanding many forms of knowledge growth 
that are initially piecemeal but depend on 
principled integration for mastery.
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Fig. 1.  Description of the six place-value tasks. For each of the three approximate measures and the three syntactic measures, the figure 
shows the instructions (left column), an example trial (middle column), and the minimal knowledge required to answer the question cor-
rectly (right column).

Approximate Measures

Reading and Writing

Given a written number, say the name.
Given a spoken name, write the number.

What is this number? 154

Write two hundred forty-seven

Knowledge required: The order of spoken 
digit names aligns with a left-to-right order of 
written digits

Magnitude Comparison

Given two written numbers, choose the one that 
signifies more.

Which is more?

119      191

Knowledge required: The relative magnitudes 
of single digits and the relative magnitudes 
of places 

Number-Line Estimation

Indicate the position of a written number on a 
number line from 1 to 100.

Mark where you think the number at  
the top should go on the line

Knowledge required: The relative magnitudes 
of single digits, the relative magnitudes 
of places, and the global magnitudes of 
individual multidigit numbers relative to all 
other numbers 1 to 100

Syntactic Measures

Digit-Place Correspondence

Count the units for a single place. Which number has two thousands?

    2,513             25           5,123

Knowledge required: The unit counted for 
each place

Base-10 Counting

Determine quantity by counting base-10 units. How many small squares are there? Knowledge required: The represented 
quantity is the sum of the count of units of 
100, units of 10, and units of 1

Expanded Notation

Recognize the equivalence of an expanded 
representation of quantity.

Which of these add up to be  
equal to this number?

Knowledge required: The quantity signified by 
a multidigit number can be decomposed into 
the sum of the quantities of each place
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Method

This secondary data analysis used previously published 
data from a study that tracked performance on a range 
of place-value measures from kindergarten to first grade 
(full details of the data collection are available in the 
article by Mix et al., 2022). Children were tested late in 
the spring in kindergarten and first grade.

Participants

A total of 279 kindergartners from the United States were 
tested (135 females, 144 males; mean age = 5.76 years, 
SD = 0.55). One year later in first grade, 232 of these 
same children were retested (47 children had left the 
school district). Children were recruited from eight ele-
mentary schools across two different states. For the third 
state where data collection took place, children were 
recruited from the community and tested in the univer-
sity’s laboratory. These children were from 34 different 
schools. The participating communities included sub-
urbs of a major metropolitan area on the East Coast, 
suburbs of a medium-size city in the Midwest, and a 
mixture of suburban and rural communities surrounding 
a small city in the Midwest. We obtained demographic 
data from 46% of the total sample. Not all families were 
given the demographic questionnaire because their 
schools used an opt-out consent process, and other 
families did not return the questionnaire after receiving 
it. For these families, we used school-wide information 
to estimate racial- and ethnic-identity distributions, and 
we used 2017 neighborhood census data to estimate 
median income. Weighted descriptive statistics indicated 
that the sample was racially diverse (42% Black, 37% 
White, 8% Asian, 13% Latino) and primarily of middle 
socioeconomic status (average median family-income 
range = $75,000 to $99,999).

The large sample from many different kinds of com-
munities was expected to tap the variety of skills that 
children bring to formal schooling and the variety of 
classroom approaches to teaching place value. Given 
the state education guidelines and Common Core State 
Standards, place-value instruction does not begin until 
first grade, although curricula in kindergarten often 
include counting to 100 and introduction to the teens 
(National Governors Association Center for Best Prac-
tices, Council of Chief State School Officers, 2010). 
However, the curricula of participating classrooms were 
not directly measured and likely varied. Preschool 
experiences were also likely variable.

A sensitivity test was conducted in G*Power (Version 
3.1; Faul et  al., 2009) before data collection for the 
larger study to determine what sample size would be 
adequate to detect a medium effect based on regression 

models (Mix et al., 2022). The results indicated that a 
sample size of 120 was adequate to detect a medium 
effect (i.e., Cohen’s f 2 = .11; Cohen, 1988) with the  
following parameters: an α of .05, power of .80, a 
sample size of 120, and six predictors. Consequently, 
the sample had more than adequate power for the 
larger study. The stability of the network’s centrality 
indices was analyzed (for further detail, see the Analysis 
Plan section).

Procedure and materials

Testing sessions for most children took place in a quiet 
area outside the classroom; some children were tested 
in the laboratories of the participating researchers. Test-
ing lasted approximately 60 min per child. The six tasks 
(Fig. 1) were administered individually in two random 
orders, counterbalanced across children. Reliabilities 
were calculated at both time points using Cronbach’s α.

Approximate measures.  In the reading and writing 
task—hereinafter referred to as “reading/writing” (e.g., 
Byrge et al., 2014)—children bidirectionally mapped spo-
ken multidigit names and written notation. On reading 
trials, children saw a stimulus number (e.g., “423”) and 
said its name aloud (e.g., “four hundred and twenty-
three”). If the child said the entire name correctly, the 
trial received a score of 1. If any part of the name was 
incorrect, the trial received a score of 0. On writing trials, 
children wrote numerals after being given the spoken 
name. If the child wrote the entire numeral correctly, the 
trial received a score of 1. If any part of the numeral was 
incorrect, the trial received a score of 0. The 12 test trials 
probed two-, three-, and four-digit numbers (maximum 
score = 12; kindergarten: α = .87, first grade: α = .87).

In the magnitude-comparison task (Mix et al., 2014), 
children were asked which of two written numerals 
represented the larger quantity (e.g., 461 vs. 614). There 
were 25 trials composed of one- to four-digit numerals 
(maximum score = 25, chance = 12.5; kindergarten: α = 
.72, first grade: α = .79).

In the number-line-estimation task (Siegler & Opfer, 
2003), children were presented with a blank number 
line ranging from 0 to 100 and were told to indicate 
where a number (e.g., 36) should be located using a 
vertical hash mark. Following one practice trial with 
feedback, children completed 15 test trials. We coded 
test trials for percentage of absolute error by measuring 
the distance from the hash mark made by the child 
to the correct location and then dividing by the scale 
of the number line (i.e., 100; Booth & Siegler, 2006). 
Scores were then transformed into percentages, and 
each score was subtracted from 100%, so that higher 
scores indicated better performance. The total score 
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was the percentage of accurate responses averaged 
across the 15 test trials (range = 0–100%, even-odd reli-
ability r at kindergarten = .76 and at first grade = .74).

Syntactic measures. The digit-place-correspondence task  
was a multiple-choice adaptation of the digit-correspon-
dence task (e.g., Hanich et  al., 2001). Children were 
shown three written numerals (e.g., 2, 20, and 10) and 
asked a place-value question such as, “Which number 
has two tens?” The six test trials probed tens, hundreds, 
and thousands (maximum score = 6, chance = 2; kinder-
garten: α = .53, first grade: α = .59).

In the base-10 counting task (Chan et  al., 2014), 
children were asked to determine the quantity indicated 
by line drawings of base-10 blocks that represented 
two- and three-digit numbers (see Fig. 1). Counting 
large quantities by counting the individual “ones” units 
(e.g., 1, 2, 3, . . . , 89, 90, 91, 92) not only is inefficient 
but also leads to errors (e.g., skipping a unit). However, 
counting the base-10 units and then correctly combin-
ing them readily leads to accurate determination of the 
exact quantity represented (e.g., 10, 20, 30, . . ., 80, 90, 
91, 92). The 10 trials were coded as correct if the count, 
however achieved, matched the correct total (maximum 
score = 10; kindergarten: α = .85, first grade: α = .82).

In the expanded-notation task (e.g., as used by Mix 
et al., 2017), children were shown a written numeral 
(e.g., 11) and asked to select the correct expanded ver-
sion from among three options (e.g., 10 + 1, 10 + 10, 
or 1 + 1). The six test trials probed two-digit, three-digit, 
and four-digit numbers (maximum score = 6, chance = 
2; kindergarten: α = .66, first grade: α = .70).

Analysis plan

Because our goal was to describe the structure of 
knowledge at the two points in learning, networks of 
associations among the six tasks were created sepa-
rately for kindergarten and first-grade performance. The 
six nodes of each network represented the tasks, and 
edges represented statistical associations between per-
formance on those tasks (Epskamp et al., 2018). Because 
the data were continuous and followed a multivariate 
normal density, the appropriate pairwise Markov random-
field model was the Gaussian graphical model (Epskamp 
et al., 2018). A Gaussian graphical model estimates the 
network structure by computing edge weights that 
reflect partial Pearson correlation coefficients between 
two nodes after controlling for all other variables in the 
network. Figure 2 illustrates our analysis approach 
using three hypothetical networks.

We used two global connectivity measures. The first 
is network density, which is the number of observed 
edges relative to the total number of possible (nondi-
rectional) edges (e.g., 15 total possible edges for a 

Network A

Network B

Network C

Fig. 2.  Example network visualizations. Edge strength is illustrated by 
the thickness of the edges (i.e., lines connecting each node); thicker 
edges indicate greater edge strength. These example network visu-
alizations demonstrate a few of the possible structures that could 
be estimated in both the early and later knowledge networks. First, 
one possible change is that early and later knowledge systems could 
differ in connectivity: Early knowledge, for example, could be more 
piecemeal or diffuse, with the components less strongly connected 
to each other (network A), and later knowledge could be more inte-
grated and closely connected (network C). Another possibility is that 
approximate and syntactic knowledge could form separate clusters 
of knowledge characterizing both early and later knowledge systems 
(networks A and C). Alternatively, knowledge across tasks—at one 
point in learning or the other—could be more equal contributors to 
a single system (network B). The knowledge systems could also be 
characterized by central or “hub” nodes (Baronchelli et al., 2013) that 
connect all the components of knowledge (e.g., networks A and C 
with two center nodes). A central hub node implies a focal component 
that is critical to integrating other components into a system and in the 
present case would implicate a component of knowledge that may be 
needed to hold the whole knowledge system together. Evidence for 
a developmentally stable hub connecting approximate and syntactic 
knowledge would have not only important theoretical implications for 
the emergence and integration of a coherent knowledge structure of 
multidigit understanding but also practical implications for informal 
and formal educational experiences.
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six-node network). A network in which every node is 
directly connected to every other node is more con-
nected but less structured than one in which only some 
of the possible paths between nodes are realized. The 
second measure is average absolute edge strength, 
which is the mean network weight of all estimated edge 
weights (Burger et al., 2022). A highly structured net-
work might be expected to have few edges that are 
strong and thus a high mean edge strength. In Figure 
2, network A has weak global connectivity: There are 
relatively few edges, and they are not strong. Network 
B is highly connected, Individual nodes have connec-
tions to many other nodes, but the individual edges are 
generally weak. Network C is strongly connected but 
in a different way; there are fewer connections, and 
some edges are much stronger than others. Network B 
would indicate strong connections among all the tasks. 
Network C would implicate a potentially more interest-
ing structural pattern in which some nodes may be 
more important than others in controlling the relations 
in the network.

Centrality measures are used to determine whether 
some nodes are more central than others (serving as 
“hubs” in the paths among nodes; Baronchelli et al., 
2013). A central hub node implies a focal component 
that is critical to integrating other components into a 
system and in the present case would implicate a com-
ponent of knowledge that may be needed to hold the 
whole knowledge system together. We previously 
hypothesized that reading and writing multidigit num-
bers is a key entry point for approximate knowledge 
and might be expected to be the central node before 
instruction (Yuan et al., 2020). If instruction transforms 
that knowledge, the first-grade network could show a 
different structure, in which tasks involving count + 
unit syntax perhaps are more central.

To measure these possibilities, we used three central-
ity indices: node strength, node closeness, and node 
betweenness. Node strength estimates how tightly indi-
vidual nodes are directly connected to other nodes by 
computing the sum of absolute partial-correlation coef-
ficients (i.e., path lengths) between each node and all 
other nodes. A node that is strongly connected to many 
other nodes is considered more central. Node closeness 
estimates connection strength as the inverse of the sum 
of the shortest path lengths from each node to every 
other node. The shorter the path from a node to all 
other nodes, the stronger the associations of that node 
to all other nodes. Node betweenness measures the 
number of times each node connects two other nodes 
as measured by the shortest path between those nodes 
(Epskamp et al., 2018). Nodes that participate in more 
of the shortest paths between other nodes play a stron-
ger role in the relational structure. In the three 

examples in Figure 2, networks A and C have two nodes 
that are more central than other nodes in the network: 
These two nodes are more strongly connected than 
other nodes, they are connected by shorter paths  
to other nodes, and they must be travelled through for 
other nodes to connect to each other. By hypothesis, 
reading and writing numbers may be an early skill that 
is central to connecting emerging abilities; if so, the 
node representing reading and writing multidigit num-
bers should be more central to performance in other 
tasks in kindergarten. However, this hub structure could 
change after first-grade classroom instruction in count + 
unit syntax.

To determine the stability of the centrality indices, 
we used case-dropping subset bootstrapping that rees-
timated the network with smaller sample sizes and 
quantified the stability of the indices using correlation-
stability (CS) coefficients with 1,000 bootstrap iterations 
(see the Appendix). We interpreted only the results for 
CS coefficients that exceeded a .50 threshold (Epskamp 
et al., 2018). We assessed the accuracy of the estimated 
edge weights using 95% bootstrapped confidence inter-
vals (CIs) for both node strength and edge-weight 
strength, and we compared relative weights using the 
bootstrapped difference test in the bootnet R package 
(Version 1.5; Epskamp et  al., 2018) with an α of .05 
based on 2,500 bootstrap iterations. Missing data were 
excluded from the network analysis, including using 
pairwise deletion for the network-comparison test.

Cluster measures determined whether the tasks par-
titioned into separate constructs. For example, early 
preinstruction knowledge could have divided into two 
categories aligning with our prior distinction between 
approximate and syntactic knowledge, but these clus-
ters could have reorganized or disappeared if formal 
instruction transformed the whole system of knowledge 
rather than merely adding new content. For the cluster 
analyses, we used the spinglass community-detection 
algorithm. This algorithm assumes that edges should 
connect nodes of the same spin state (i.e., community) 
and that nodes with different states or communities 
should be disconnected. The igraph spinglass algorithm 
was selected because it is well suited to smaller net-
works (Yang et al., 2016). We conducted 1,000 iterations 
and reported the median number of clusters.

Finally, for the analyses and data visualization, we 
used the conservative “least absolute shrinkage and 
selection operator” (LASSO; Tibshirani, 1996), suitable 
for networks with a small number of nodes and edges. 
We used the qgraph package in R (Version 1.9; Epskamp 
et al., 2012) and the graphical LASSO (glasso; Friedman 
et al., 2008) algorithm to estimate a range of networks, 
after which we used LASSO regularization (using a 
tuning-parameter γ set to 0.5) to select a network with 
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the best model fit. We used multidimensional scaling 
(MDS) with the smacof R package (Version 2.1-1; de 
Leeuw & Mair, 2009) to visualize the estimated net-
works (see Jones et al., 2018, for a tutorial), represent-
ing nodes with stronger connections as closer in the 
visualization. The accuracy of the MDS layout was 
assessed using reported stress-1 values of the MDS fit 
(Mair et al., 2016).

Results

We first report on children’s accuracies in the six tasks 
and their improvement from kindergarten to first grade. 
We then turn to the main questions about the organiza-
tion of children’s knowledge. Because the six tasks have 
very different measurement properties (number of tri-
als, magnitude of the numbers queried, and chance), 
we computed task-specific z scores combining the kin-
dergarten and first-grade performances. In this way, we 
measured degree of growth (Table 1) from kindergarten 
to the end of first grade relative to the distributions of 
performances in each task across the two testing times. 
As shown in Figure 3, density plots illustrate that the 
distributions consistently move rightward, showing 
increased accuracy on all tasks from kindergarten to 
first grade. The three approximate tasks all show a 
broad range of performances at the first test, but in first 
grade, there was less variation, with the mode near the 
top of the range of performance for all children. How-
ever, a significant number of first-grade children’s 
scores still fell below the mean of kindergarten perfor-
mance on these tasks. Indeed, scores of 68 first graders 
(29%) fell below the overall mean performance (indi-
cated by 0 on the x-axis) in the hypothesized entry task 
of reading and writing multidigit numbers.

Performance on the syntactic tasks showed a similar 
overall pattern, with a broad range of performance in 
kindergarten but with many children performing simi-
larly to kindergarten level after a year of instruction in 
first grade. This descriptive analysis of performance 
yields two critical points relative to interpretation of the 
network analyses: (a) Instruction is associated with 
improved performance in all tasks, with the mode in 
first grade approaching the high-performance limit, and 
(b) individual differences are nonetheless considerable 
at both grade levels, with children’s performance at 
each grade level spanning nearly the entire distribution 
of performance for the two grades combined.

Kindergarten network

We used a common visualization approach (Epskamp 
et al., 2012) in Figure 4 (top) that revealed the structure 
of component knowledge by successively removing 
weaker edges. The best-fitting network had an esti-
mated mean edge weight across all possible edges of 
.15 distributed over 13 of the 15 possible edges. Thus, 
overall, the network was diffusely connected with many 
weak edges, on average. However, some edges were 
much weaker than others. This was easily seen by 
removing all edges with strengths below .2. Using this 
imposed threshold, we found that only five tasks were 
connected via four edges forming a string structure of 
tasks. If we removed the weakest links in this string, 
imposing an edge-strength threshold of .4 for visualiza-
tion of an edge, only two tasks remained—reading/
writing and base-10 counting—with one edge connect-
ing them. Thus, the strongest regularized, partial- 
correlation link was between the hypothesized entry 
knowledge of reading and writing multidigit numbers 

Table 1.  Change in Task Performance From Kindergarten to First Grade

Kindergarten First grade

Task M (SE) M (SE) Difference Paired-samples t d

Reading and writing −0.41 (0.06) 0.49 (0.06) 0.89
[0.79, 0.99]

t(230) = 17.62, p < .001 1.01

Magnitude comparison −0.41 (0.06) 0.49 (0.05) 0.90
[0.78, 1.02]

t(227) = 14.65, p < .001 1.02

Number-line estimation −0.34 (0.06) 0.41 (0.06) 0.74
[0.63, 0.86]

t(230) = 12.75, p < .001 0.81

Digit-place correspondence −0.15 (0.06) 0.18 (0.07) 0.35
[0.20, 0.50]

t(227) = 4.66, p < .001 0.33

Base-10 counting −0.40 (0.05) 0.48 (0.06) 0.89
[0.79, 1.00]

t(230) = 16.66, p < .001 0.98

Expanded notation −0.44 (0.06) 0.52 (0.05) 0.98
[0.86, 1.11]

t(224) = 15.33, p < .001 1.10

Note: Values in brackets are 95% confidence intervals. For density plots, see Figure 3.
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and, unexpectedly, a measure of count + unit syntax 
that asked children to determine the quantity of large 
numbers (and offered base-10 physical groupings as a 
means of doing so).

The planned centrality measures confirmed that 
knowing how number names and written numbers map 
to each other (reading/writing) and determining the 
exact quantity of large (and not easily countable by 
ones) amounts (base-10 counting) are central knowl-
edge hubs within the kindergarten network. These two 
tasks had the highest node strengths, indicating stron-
ger connections to all of the other nodes (1.10 for 
base-10 counting and 1.00 for reading/writing; see Fig. 5), 
but the strengths did not differ from each other (95% 
CI = [−.388, .206], bootstrapped difference tests; see 
Fig. 6). Node closeness of both reading/writing (.04) 
and base-10 counting (.04) were significantly higher 
than the four other nodes and did not significantly  
differ from one another (95% CI = [−.009, .008], 

bootstrapped difference test). Finally, the edge weight 
between these two central nodes (edge weight = .40; 
see Figs. 6 and 7) was significantly higher than for most 
other edges except for the base-10 counting and 
expanded-notation edges (edge weight = .32; 95% CI = 
[−.230, .049])—the second-strongest edge.

As shown in Figure 4, the cluster analysis identified 
two communities in the stringlike structure that aligned 
with our a priori categories of approximate and syntac-
tic tasks. However, the most notable finding was a dif-
fuse network with just two strongly connected hub 
abilities: (a) reading/writing multidigit numbers, the 
entry and imperfect knowledge of how spoken number 
names map to written forms, and (b) base-10 counting, 
a task that uses base-10 units to determine the quantity 
of a large set of discrete entities and thus requires at 
least some knowledge of places that represent base-10 
units and how these combine to represent the entire 
quantity.
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First-grade network

Figure 4 (bottom) represents the structure of knowl-
edge after classroom instruction in first grade. The best-
fitting network had an estimated mean edge weight 
(distributed across all possible 15 edges) of .17. When 
weaker edges (with strengths less than .20) were 

removed in the visualization, there was a clear structure 
of interconnection across the six tasks, with reading/
writing numbers and base-10 counting still forming a 
hub. However, the even distribution of connectivity 
among tasks was evident when the threshold for visual-
izing an edge is raised to .40; at this threshold, all edges 
disappear. As in the kindergarten network, reading/
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writing and base-10 counting had the highest node 
strengths (1.10 and .99, respectively) and did not sig-
nificantly differ from each other (95% CI = [−.167, .409], 
bootstrapped difference test). They also did not differ 
from magnitude comparison (strength = 0.91), a task 
that measures understanding of the way places repre-
sent relative magnitudes. The reading/writing task’s 
node strength was significantly greater than the node 
strength for expanded notation, number-line estimation, 
and digit-place correspondence (see Fig. 6), indicating 
that this hypothesized entry knowledge plays an orga-
nizing role in the first-grade network. The edge weight 
between reading/writing numbers and base-10 counting 
was significantly greater than the other six edges (see 
Figs. 6 and 7), indicating the continued centrality of 
this connection within the larger network. Because  
of low CS coefficients of node closeness and between-
ness (see Table 2), these indices will not be discussed 
or interpreted. Finally, the cluster analysis revealed a 

notable shift in communities of knowledge: The spin-
glass community detection located reading/writing  
with the syntactic tasks that measure precision-level 
knowledge of the units being counted at each place, 
separate from the two remaining approximate tasks—
magnitude comparison and number-line estimation—
that require only relative knowledge of how places 
differ in the magnitudes indicated.

Network change

We assessed changes in knowledge structure from kin-
dergarten to first grade in (a) global network structure, 
(b) global network strength (i.e., weighted absolute 
sum of all edges), and (c) specific edge weights between 
the early- and later-knowledge networks using the net-
work comparison test—a two-tailed permutation test—
for repeated paired measurements with 1,000 iterations 
(van Borkulo, 2019). The network comparison test 
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Table 2.  Network-Analysis Accuracy Metrics for Node 
Central Stability

Network Strength Closeness Betweenness

Kindergarten .67 .67 .28
First grade .52 .28 .00

Note: Correlation-stability coefficients are displayed for each of 
the three measures of node central stability. Values below .50 are 
considered low, and interpretation should be done lightly, whereas 
values below .25 should not be interpreted (Epskamp et al., 2018).

revealed that although the global network structure did 
not change across time points, p = .445, there was a 
significant increase in global network density from kin-
dergarten (strength = 2.31) to first grade (strength = 
2.57), S = 0.26, p = .001. This global effect was primarily 
due to the increase in the edge weight between read-
ing/writing numbers and expanded notation, which is 
the only edge with a significant weight increase from 
kindergarten to first grade, p = .031. This stronger con-
nection of reading/writing numbers to a syntactic task 
is consistent with the node’s overall shift toward the 
syntactic tasks revealed in the cluster analysis.

A visual comparison of the networks at different 
threshold levels (Fig. 4) indicates distinct structures at 
the .20 threshold—a level close to the mean edge weight 
of the first-grade network. Specifically, the number of 
estimated edges was higher in the first-grade network 
(seven) than it was in the kindergarten network (four). 
The degree of centrality (i.e., the number of connections 
with other nodes) of reading/writing numbers was twice 
as high in the first-grade network (four) as it was in the 
kindergarten network (two). Additionally, reading/ 
writing had a higher node strength (1.01) and closeness 
(23.44) in the first-grade network compared with the 
kindergarten network (0.68 and 19.97, respectively). 
Both metrics suggest that the strength of the reading/
writing edges as well as the global access of nodes with 
reading/writing are stronger in the first-grade network, 
confirming the strong hold that the reading and writing 
of multidigit numbers has in the acquisition of place-
value concepts from kindergarten to first grade.

Discussion

The main findings are these. Early knowledge about 
multidigit numbers is piecemeal. Performance in differ-
ent tasks is visually organized as a string with approxi-
mate tasks on one side and count + unit tasks on the 
other, and with both clusters connected in the middle 
by a strong link between reading and writing multidigit 
numbers and base-10 counting. After a year of in-school 
instruction, the string was folded in on itself. Perfor-
mance in each task was more strongly connected to 
every other task, with reading/writing and base-10 
counting forming a central hub. After instruction, reading/
writing was more strongly associated with tasks requir-
ing knowledge of count + unit syntax tasks than with 
tasks measuring knowledge of relative magnitudes. The 
overall pattern implicates two hub skills at the center 
of both pre- and early post-first-grade-instruction learn-
ing. The pattern also indicates a transformation in one 
of these hubs after instruction. We hypothesize that 
reading/writing becomes more strongly linked to the 
count + unit tasks because, with instruction, children 

interpret the reading/writing task explicitly in terms of 
counts of base-10 units rather than relying on piece-
meal understanding and heuristics.

Although many children prior to formal instruction 
perform well above chance on reading and writing 
multidigit numbers, they also make errors—with trans-
positions when zeros are present—that indicate a lack 
of understanding of the principles underlying base-10 
notation (e.g., Byrge et al., 2014). Some older children 
after multiple years of instruction make these same 
errors, and these children have difficulties in perform-
ing multidigit calculation (e.g., Cooper & Tomayko, 
2011). These facts have led to discussions within the 
education literature about when and how to introduce 
children to multidigit numbers and specifically whether 
multidigit numbers should be introduced in the context 
of explicit instruction about count + unit syntax (e.g., 
Baroody, 1990; Fuson, 1990; McGuire & Kinzie, 2013). 
The current results contribute to these discussions, sug-
gesting that early reading and writing of multidigit num-
bers, albeit imperfect, is nonetheless an entry point to 
base-10 principles. The difficulties of older children who 
still make preschool-like errors may be a signal that 
these children’s approximate understanding of how the 
symbols (i.e., number names and written forms) work 
was not transformed by formal instruction. Because the 
relational structure of spoken number names and writ-
ten forms varies across languages (Ho & Fuson, 1998), 
an important open question is whether the reorganiza-
tional patterns are language dependent and differ across 
different language communities.

Studies of statistical learning show that imperfect 
regularities in everyday language experiences lead to 
latent implicit knowledge of abstract syntactic categories 
of nouns and verbs (e.g., Colunga & Smith, 2005; Wells 
et al., 2009). One recent training study (Yuan et al., 2020) 
showed that preschool children could acquire general-
ized knowledge of how spoken multidigit number names 
map to written forms, given training on a very sparse 
sampling of name-form pairs from 1 to 1,000. Computa-
tional models (Grossberg & Repin, 2003; Yuan et  al., 
2020) have shown that learning of these correspon-
dences between names and written forms also leads to 
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latent approximate knowledge of places. We conjecture 
that this early latent knowledge constitutes an approxi-
mate anchor for learning explicit principles. Nouns in 
language, for example, do not refer to the common-sense 
notion of “people, places, and things” but are formally 
defined by the roles of words in sentences and the trans-
formations that relate one sentence to another. So too, 
places do not refer to different-sized units but are for-
mally defined by the base-10 multiplicative hierarchy 
that relates the component symbols within a represented 
number and the transformations that relate one multidigit 
number to any other. The explicit understanding of the 
syntax and the computational use of it—in both linguis-
tics and mathematics—appears to require formal instruc-
tion. The early, not-quite-right latent notions that are 
difficult to verbalize may be the internal anchors on 
which the success of formal instruction depends. From 
this perspective, the centrality of reading and writing 
multidigit numbers (i.e., mapping names with written 
forms) makes sense. Before formal instruction, encoun-
ters with the names and written forms provide the sta-
tistics from which the intuitive anchors emerge (Yuan 
et al., 2019).

Two hypotheses suggest themselves as to why some 
children still struggle to master place-value principles 
late in elementary school. First, these children may 
begin formal instruction with weak intuitive knowledge 
and thus lack the approximate semantic anchors on 
which successful instruction depends. Second, different 
properties of instruction may connect better with the 
hypothesized latent concepts. For example, instruction 

that explicitly reminds children of what they already 
know about the latent structure of number names and 
their written forms (perhaps skipping over the teens to 
focus on the regularities) may benefit learning. The 
centrality of reading/writing and base-10 counting also 
suggests the potential value of instruction that explicitly 
links reading, writing, and counting physical models of 
base-10 units. These are critical questions for future 
research.

Much research in education is focused on finding 
early predictors of later learning success, the idea being 
that strong predictors are likely also strong players in 
causation. However, considerable biomedical research 
has made clear that prediction accuracy, validity, and 
intervenable roles in causal pathways are often at best 
complexly related (e.g., Hussein et  al., 2018; Pearl, 
2019). Accordingly, we sought an approach different 
from and complementary to prediction, one focused on 
specific components of early and later knowledge and 
their role in creating an organized and multicomponent 
system of knowledge about place value. Expertise in 
mathematics and science is built incrementally: Early 
not-quite-right ideas may be essential steps on a path 
to full understanding. The question of how early incom-
plete components create the context for later learning 
and are transformed by education into explicit and 
exploitable principles is central to human cognitive 
achievement. Place value, one of the earliest sets of 
mathematic principles that children learn, is a rich and 
useful domain in which to understand processes of 
knowledge growth and change.
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