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Compositional symbol systems consist of a finite set of sym-
bols and a finite set of rules for combining symbols, also 
known as syntax, that work together to yield a potentially 
infinite set of represented meanings. Natural language is 
one such symbol system, and it is widely known that people 
can intuitively learn the syntax of natural language without 
explicit knowledge of the units, combinatorial rules and 
transformations without formal training. Mathematics is 
another compositional symbol system, for which children 
also often begin learning with partial, approximate or in-
tuitive understandings (e.g., Newcombe et al., 2015; Odic 
et al., 2016). However, unlike natural language, success in 
mathematics requires explicit knowledge of its representa-
tional syntax to perform advanced operations. A critical 
question is whether, and if so how, this early intuitive un-
derstanding of mathematical syntax might support later 
acquisition of explicit syntactic knowledge.

In the present study, we consider children's informal 
knowledge and formal learning about the symbol system 

for representing multidigit numbers. By one hypothesis, 
early approximate understandings of multidigit numbers 
could provide a foundation for later explicit understand-
ing of the underlying syntax. By an alternative hypothe-
sis, early approximate knowledge of multidigit numbers 
could be unrelated or even a hindrance to later learning. 
In this paper, we specifically examine whether early intui-
tive knowledge in kindergarten predicts successful initial 
learning about the representational system for multidigit 
numbers in first grade. Answering this question is more 
difficult than it might seem, however, because there are 
many ways to assess children's understanding of multi-
digit number meanings and these assessments may not 
all tap the same underlying understanding.

What does it mean to understand multidigit 
numbers?

Multidigit number names express quantities in terms 
of base- 10 units (ones, tens, hundreds, etc.) and counts 
of these units. To interpret number names and written 
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Abstract

Place value concepts were measured longitudinally from kindergarten (2017) to 

first grade (2018) in a diverse sample (n = 279; Mage = 5.76 years, SD = 0.55; 135 

females; 41% Black, 38% White, 8% Asian, 12% Latino). Children completed three 

syntactic tasks that required an explicit understanding of base- 10  symbols and 

three approximate tasks that could be completed without this explicit understand-

ing. Approximate performance was significantly better in both age groups. A fac-

tor analysis confirmed that syntactic and approximate tasks tapped separate latent 

variables in kindergarten, but not in first grade. Path analyses indicated that only 

kindergarten approximate performance predicted overall first- grade place value 

understanding. These findings suggest that explicit understanding of base- 10 prin-

ciples develops from implicit, partial knowledge of multidigit numbers.
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numerals, and eventually perform multidigit calculations, 
one needs to know how the units are related to each other 
and the equivalence transformations that those relations 
support, what we call count+unit syntax. We introduce 
this term to distinguish it from “place value knowledge,” 
which is a general term that could encompass many un-
derstandings, and from “base- 10,” which describes the 
numeration system we use (i.e., base- 10 vs. base- 2 or 
base- 5). In our use of the term, count+unit syntax refers 
specifically to the symbolic relations people must unpack 
to understand what written and spoken number names 
mean. The first step in that understanding, and the focus 
of the present study, is how the symbols denote counts of 
units. Unit counts are reflected in number names, such 
“three hundred,” which represents a count of three for 
units of 100, or the number name “five thousand,” which 
represents a count of five for units of 1000. Unit counts 
are also reflected in written numerals. That is, units are 
denoted by the spatial position in a multidigit numeral 
(or place), such that ones are to the right, hundreds are 
just left of ones, thousands are just left of hundreds, and 
so forth, and the counts of each unit are denoted by the 
numeral in each place. Thus, the written numeral “532” 
stands for a count of five units of 100, three units of 10, 
and two units of 1 (e.g., 532 = [5 × 100] + [3 × 10] + [2 × 1] ). It 
is possible to deconstruct the syntax of a multidigit num-
ber into units and counts, much like one can deconstruct 
a sentence into nouns, verbs, and other parts of speech. 
A later step, and not the current focus, is understanding 
the multiplicative relations among the counted units and 
the transformations they license. By preschool age, most 
children know how to count, but in the case of multidigit 
numbers, the challenge is likely knowing what is being 
counted (i.e., base- 10 units).

Considerable evidence suggests that this first step 
in learning count+unit syntax is notoriously diffi-
cult for school- aged children to master and misunder-
standings are common (Fuson, 1988; Mann et al., 2012; 
Ross & Sunflower, 1995). However, the combinatorial 
structure— counts of units— form the essence of rules of 
equivalence transformations. Thus, children who are un-
able to decode count+unit representational pattern are 
likely to experience poor performance in mathematics 
that can persist well into the upper elementary grades 
(e.g., Carpenter et al., 1997; Raghubar et al., 2009).

Other evidence, however, indicates that many preschool 
children— some as young as 3  years of age— have infor-
mally acquired ideas about multidigit numbers that make 
them at least appear to know something about count+unit 
syntax (Yuan, Prather, et al., 2019). Many children map mul-
tidigit number names to written digits at above chance lev-
els, correctly judging that “five hundred thirty- two” maps 
onto “532” and not “325” (Mix et al., 2014). They also, at 
above chance levels, correctly judge relative magnitudes 
just given the written digits, knowing the “532” is more 
than “486” (Cheung & Ansari, 2021; Mix et al., 2014). These 
skills improve across the 3-  to 6- year age range, extending 

to increasingly difficult comparisons and mappings, and 
larger multidigit numbers. Interestingly, preschool children 
also fare better on these symbolic comparisons than they do 
making the same judgments of discrete objects, suggesting 
that children abstract these relational structures from the 
symbols themselves (Yuan, Prather, et al., 2019). Preschool 
children also maintain the order (but not the interval dis-
tance) of multidigit numbers up to 1000 reasonably well on 
the number line estimation task (Yuan, Prather, et al., 2020). 
Many children can write multidigit numerals from dictation 
by 6 years of age, and of those who fail to write the conven-
tional form, many produce overregularized errors that re-
veal perhaps beginning knowledge of the underlying syntax, 
starting at 4 years of age. For example, when asked to write 
the numeral for "six hundred and forty- two," some children 
write “600402” (Byrge et al., 2014; Power & Dal Martello, 
1990; Seron & Fayol, 1994). As these authors have argued, the 
partial understandings observed in preschool are not equiv-
alent to knowing count+unit syntax, but it is striking to see 
how many of the statistical regularities in base- 10 symbols 
young children have picked up informally and can exploit. 
An important question is whether these early approxima-
tions contribute to children's mastery of count+unit princi-
ples when they are formally introduced to them in school.

The problem is there are many ways to measure un-
derstanding of multidigit numbers, and it is possible to 
perform well on some tasks, such as mapping number 
names to written forms, magnitude comparison, and 
number line estimation, without having an explicit un-
derstanding of the count+unit bases of the symbolic 
representations. Children could know, for example, 
that “five hundred and thirty- two” names the numeral 
“532” and not “325” solely because they know if the word 
“five” is uttered first, there is likely a “5” in the leftmost 
position. Likewise, children may infer that “532” signi-
fies more than “53” because they have deduced that 3- 
digit numerals represent larger quantities than 2- digit 
numerals, as Cheung and Ansari (2021) have demon-
strated. Performance based on approximations such as 
these are very different from deconstructing multidigit 
numbers into units and counts. In support of this notion, 
analyses of children's errors in tasks that permit approx-
imate responding also suggest that their seeming knowl-
edge might be less than it appears (Yuan, Xiang, et al., 
2020). For example, many preschoolers can point out the 
number “100” when the alternative choice is “101,” but 
not when the alternative choice is “1000.” If children had 
explicit understanding of count+unit syntax, it seems 
likely they would recognize “one hundred” across mul-
tiple comparisons. Examinations of item difficulty have 
also shown that young children fare better on items that 
allow approximate responses (Cheung & Ansari, 2021; 
Mix et al., 2014). For example, kindergarteners perform 
better when asked to compare two numerals with a dif-
ferent number of digits (e.g., 402 vs. 42) than they do 
when comparing two numerals with the same number of 
digits (e.g., 402 vs. 316).
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An important developmental question is whether the 
accumulating partial knowledge that is demonstrated 
in these preschool studies is a conceptual detour that 
actually distracts children from achieving explicit un-
derstanding of count+unit syntax, or a critical stepping 
stone that contributes to it. There is currently evidence to 
support both hypotheses. On one hand, as noted above, 
the evidence indicates that children acquire count+unit 
syntax slowly and with much difficulty. We know that 
this difficulty impedes learning because children who 
lack explicit understanding of count+unit syntax are at 
greatest risk for low mathematics achievement as they 
progress through the elementary grades (Chan et al., 
2014; Moeller et al., 2011; Ross, 1986). For example, 
children who make positional errors on a multi- digit 
number dictation task in first grade tend to earn worse 
mathematics grades in third grade, as well as exhibiting 
more frequent place value errors in regrouping problems 
(Moeller et al., 2011). Positional errors reflect a poor un-
derstanding of the representational components, so the 
fact that children who lack this understanding go on to 
worse mathematics performance suggests that whatever 
approximate knowledge they have is not adequate to sup-
port later mathematics achievement on its own and may 
be limited in what it can contribute. Moreover, it stands 
to reason that if children have shortcuts that allow them 
to solve most tasks involving multidigit numbers, they 
would use these less effortful strategies rather than put 
forth the extra effort needed to decode the syntax of 
multidigit numbers, and if they are particularly skilled 
at these shortcuts, may prefer using them for some time. 
In the same sense that Piaget noted children prefer to as-
similate new knowledge to their existing schemas (Piaget, 
1952), children who are skilled at approximating multi-
digit number meanings may also tend to persist, thereby 
delaying the acquisition of more explicit understandings. 
In this case, eventual mastery of count+unit syntax may 
be predicted better by emergent syntactic knowledge 
than it is by early approximate knowledge, even if better 
approximate knowledge supports better overall base- 10 
performance at this age.

On the other hand, approximate knowledge of 
count+unit syntax, though limited, may nonetheless 
benefit performance in tasks that require explicit knowl-
edge. Approximate tasks have been widely used in 
studies showing that early number skills of children in 
preschool, kindergarten, first grade, and second grade 
predict later mathematics achievement (Bodovski & 
Farkas, 2007; Bugden & Ansari, 2011; Duncan et al., 
2007; Gersten et al., 2005; Holloway & Ansari, 2009; 
Jordan et al., 2009; Krajewski & Schneider, 2009a, 2009b; 
Mazzocco & Thompson, 2005; Mazzocco et al., 2003; 
Morgan et al., 2009). For example, first graders’ arithme-
tic skills predicted their later mathematical achievement 
on a standardized assessment in fourth grade (Krajewski 
& Schneider, 2009a). These findings may reflect one of 
three things. One possibility is that, unlike preschoolers, 

children in this age range have acquired an explicit un-
derstanding of count+unit syntax that is reflected in 
their performance on these tasks, even though the tasks 
do not require it. A second possibility is that children in 
this age range are mixed in their understanding of base- 
10 symbols, with some doing well because they have ex-
plicit knowledge of count+unit syntax and others using 
approximate strategies. A third possibility is that per-
formance on these tasks reflects something other than 
the explicit understanding of count+unit syntax, and it 
is those approximate understandings themselves that 
contribute to later mathematics achievement. In order to 
disentangle these possibilities, an important next step is 
to assess the same children at the same ages using mea-
sures that either permit approximate responding or in-
stead, require explicit knowledge of count+unit syntax. 
If these measures tap different latent constructs, this 
finding would indicate there are distinct approaches to 
base- 10 tasks at this age.

The measurement problem

Measures of children's understanding of numbers tend 
to be significantly inter- correlated suggesting they tap 
the same underlying construct (e.g., Mix et al., 2016); 
however, in the case of base- 10 symbols, not all measures 
appear on their face to require the same understand-
ings. For example, when deciding which of two written 
numerals represents a larger quantity, it likely helps to 
understand count+unit syntax, but one can also gener-
ate correct answers based on a rough understanding of 
large number meanings. Tasks such as these are the same 
ones preschool children appear to solve via piecemeal 
knowledge and thus may not be good indicators of the 
emerging understanding of count+unit syntax. In con-
trast, other tasks directly query count+unit syntax, such 
as telling which digit in a multidigit numeral represents 
the tens place (Kamii, 1986). Tasks such as these are the 
same ones elementary students tend to fail and also are 
highly predictive of later mathematics achievement. To 
make progress, we selected on a priori grounds, three 
tasks that by hypothesis can be solved with approximate 
knowledge and three tasks that require knowledge of the 
compositional components— that is, counts and base- 10 
units— that are the foundation for syntactic knowledge, 
with the goal of examining their factor structure and un-
derlying relations.

The selected approximate measures are all ones that 
preschool children, before any formal introduction to base- 
10 symbols, show some competence: magnitude compari-
son, transcoding, and number line estimation. As noted 
above, magnitude comparison (“Which is more, 532 or 
356?”) may be solved by approximate knowledge; knowing 
only, for example, the relative magnitudes of the digits 1– 9 
and additionally that the leftmost digit gets more atten-
tion when determining magnitude. Transcoding measures 
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the mapping of number names to written forms through 
reading and writing and also can be solved through par-
tial knowledge, such as linking the temporal order of spo-
ken words to the left- to- right order of written symbols 
(Byrge et al., 2014). In the number line estimation tasks 
(e.g., Siegler & Opfer, 2003; Yuan, Prather et al., 2020), 
children are asked to place various numerals on a number 
line that is anchored different ways (0– 100, 0– 1000, etc.), 
but children can place multidigit numbers in roughly cor-
rect positions without knowing that digits in the decades 
place stand for a certain number of tens (Krajewski & 
Schneider, 2009b). Note that by our hypothesis, the un-
derlying processes that permit good performance on these 
approximate tasks may be a combination of various heu-
ristics and rough approximations, and our goal is not to 
distinguish among these. Rather, we group these tasks ac-
cording to what they do not require— namely, an explicit 
understanding of count+unit syntax.

In contrast, the selected syntactic tasks directly probe 
children's understanding of units and counts. This selec-
tion criterion does prevent children with partial knowledge 
from potentially devising strategies to respond correctly 
without actually knowing count+unit syntax; however, 
the tasks at least query units and counts explicitly, and the 
foils were chosen to limit the use of alternative strategies 
to the extent possible. Furthermore, although these tasks 
have been used less frequently than the approximate tasks, 
when they have been used, they are more likely to reveal 
poor performance and conceptual weaknesses, suggesting 
that they may prevent responding based on partial or ap-
proximate knowledge. Critically, the present study is the 
first to compare individual children's developing abilities 
in these syntactic and approximate tasks. The Base- 10 
counting task directly assesses the count+unit structure 
(e.g., Chan et al., 2014; Fuson, 1990; Kamii, 1986) by ask-
ing children to count sets grouped into base- 10 units, to 
count, for example, 1 set of 100, 3 sets of ten, and 2 sets of 1. 
Chan et al. (2014) found that counting behavior and accu-
racy in determining the total number were both predictive 
of later mathematical achievement. Expanded notation 
directly assesses the underlying place values of written 
notation and asks children to match written numerals to 
their expanded notation forms (e.g., “324” = 300 + 20 + 4, 
Barrouillet et al., 2004; Mix et al., 2016). Finally, the 
“Which N has __?” task asks children directly about the 
count of base- 10 units, as in “Which number has 3 tens?” 
Foils were chosen to limit heuristics- based reasoning, (e.g., 
providing options such as “34,” “243,” and “342” for the 
question, “Which number has 3  hundreds?”). Thus, un-
like the approximate tasks, the three syntactic tasks all di-
rectly asked children about base- 10 units and their counts.

Current study

Children were first assessed in the spring of kindergar-
ten, an age at which children have exhibited early but 

partial understanding of base- 10  symbols in previous 
work (e.g., Byrge et al., 2014; Mix et al., 2014; Yuan, Smith 
et al., 2019). The children were assessed a second time in 
the spring of first grade, at an age when they typically 
have been exposed to base- 10 symbols in school instruc-
tion, and also at the age when previous research tells 
us both that (1) children vary in their syntactic knowl-
edge and (2) this variability is highly predictive of later 
mathematics performance (e.g., Moeller et al., 2011). At 
both timepoints, children were assessed with the three 
approximate and three syntactic tasks. In first grade, 
children were also given a measure of general cognitive 
ability (Matrix Reasoning, WISC- V).

If these tasks, as we have grouped them, reflect differ-
ent underlying knowledge structures, then we should see 
evidence for separate latent constructs in our factor anal-
ysis. Furthermore, if early approximate knowledge pre-
pares children in some way for learning about count+unit 
syntax, then kindergarten children who perform well on 
approximate tasks should learn more about count+unit 
syntax in first grade and perform better on syntactic 
tasks than children who performed less well on approx-
imate tasks. If approximate knowledge can hide deficits 
in emerging knowledge of count+unit syntax, then there 
should be children at the end of first grade with strong ap-
proximate knowledge— and who if we used these tasks as 
measures would be assessed as competent— yet nonethe-
less have a poor understanding of count+unit syntax.

M ETHOD

Participants

At the first test session, conducted between March and 
June of 2017, a total of 279 kindergartners (135 females; 
144 males) with a mean age of 5.76 years (SD = 0.55) par-
ticipated. At the second test session, conducted between 
March and June of 2018, when the children were students 
in first grade, 232 of them were assessed. The remaining 47 
children had moved away from the participating schools 
and could not be located. Our target sample size was 120 
children, based on the recommendation of including 20 
children per measure for a confirmatory factor analysis 
(CFA; MacCallum et al., 1999; Raykov & Marcoulides, 
2010), and six measures total. A sample size of 120 is also 
adequate to detect a medium effect in the multiple regres-
sion models (i.e., Cohen's f2 =  .11, Cohen, 1988), accord-
ing to a sensitivity test conducted in G*Power with alpha 
of .05; power of .80; sample size of 120; and 6 predictors 
(Faul et al., 2009). Thus, with 232 participants, the study 
had more than adequate power. Note that we also carried 
out a latent variable path analysis, and though this analy-
sis was not included in our a priori sample size planning, 
the analysis is comparable to multiple regression with 
manifest variables and tends to require fewer subjects than 
its corresponding regression model(s) to detect specific 
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effects, so we are confident that our final sample size was 
adequate for this analysis as well.

Children were recruited from the Midwest and Mid- 
Atlantic regions of the United States. There were 40 chil-
dren from Indiana, 186 children from Maryland, and 53 
children from Michigan. We obtained written consent 
for children's participation from parents at all but one 
site where families were provided with an opt- out con-
sent form at the school's request. Overall, 46% of the 
sample reported demographic data— the missing parent- 
report data were primarily from one site due to the use of 
an opt- out consent process. To account for this missing 
parent- report data, we used school- wide demographic 
information for three schools within this site. The fourth 
school within this site, however, did not have available 
school- wide demographic information and instead, we 
used this school's 2017 neighborhood census data. Once 
we had data for each site and school, we computed over-
all, weighted sample descriptive statistics, indicating that 
the sample was drawn from an ethnically diverse (41% 
Black, 38% White, 8% Asian; 12% Latino) population, 
and primarily middle socioeconomic status (average me-
dian family income range = $75,000– $99,999).

Procedure and materials

Children were tested twice— once in the spring of kin-
dergarten and again in the spring of first grade. Testing 
sessions took place in a quiet area outside the classroom 
and lasted approximately 60  min per child. All meas-
ures were administered individually in one of two ran-
dom orders, pseudo- randomized and counterbalanced 
across children— see Supporting Information for details 
on these task orders, items for each task, and mean kin-
dergarten and first- grade performance for each item 
across all tasks. Reliabilities were calculated at both 
time points using Cronbach's α. Certain measures had 
low levels of internal consistency (i.e., reliabilities below 
.70), which might suggest multidimensionality within 
the task and weaken the strength and generalizability 
of the results in the current study. However, it has been 
argued that such measures may be retained if they pro-
vide important content coverage (Schmitt, 1996). As an 
added assurance, we computed an alternative reliability 
metric to assess replicability of the latent constructs— 
Coefficient H— that measures maximal reliability for 
an optimally weighted scale (Hancock & Mueller, 2001). 
These metrics indicate high construct replicability of the 
latent variables vis- à- vis their task indicators. The meas-
ures are described in detail below.

Approximate place value measures

In the magnitude comparison task (Mix et al., 2014), 
children were asked which of two written numerals 

represented the larger quantity (e.g., 461 vs. 614). The 
choice numerals were printed on the right and left sides 
of an 8 × 11- in. sheet of paper and trials were presented 
one by one by flipping pages in a binder. There were 
25 trials comprised of 1-  to 4- digit numerals (see Table 
S2). The comparisons were adapted from Mix et al. 
(2014). Correct responses received one point, for a total 
possible of 25 (chance = 12; α = .72 at Time 1 and .79 at 
Time 2).

In the number line estimation task (Siegler & Opfer, 
2003), children were presented with a blank 0– 100 number 
line and told to indicate where a number (e.g., 3) should 
be located using a vertical hash mark. There was one 
practice trial and 15 test trials. The test trials were coded 
for percentage of absolute error by measuring the dis-
tance from the hash mark to the correct location. Scores 
were then transformed by subtracting each score from 
100  so that higher scores indicate better performance. 
The total score was the percent accuracy averaged across 
the 15 test trials (see Table S2; range = 0%– 100%, even- 
odd reliability at Time 1: r = .76, and even- odd reliability 
at Time 2: r = .74).

In the transcoding task (e.g., Byrge et al., 2014), chil-
dren's understanding of the mapping between spoken 
multi- digit names and written notation was assessed in 
both reading and writing tasks. For the reading assess-
ment, children saw a stimulus number (e.g., “23”) and 
said its name aloud while the experimenter recorded 
their response (e.g., “twenty- three”). For the writing 
assessment, children listened to the experimenter say a 
multidigit number name and were told to write down the 
numeral they heard. Both the reading and writing as-
sessments were comprised of two 2- digit numbers; two 
3- digit numbers; and two 4- digit numbers, for a total of 
12 test trials across the two (see Table S2). Trials were 
coded as either correct or incorrect (maximum possible 
score = 12). Partially correct responses were not counted 
as correct (e.g., reading the numeral 239 as two hundred 
three- nine); however, full credit was given for written re-
sponses that involved numeral reversals (e.g., writing 3 
backwards; α = .87 at Time 1 and .87 at Time 2).

Syntactic place value measures

In the Base- 10 counting task (Chan et al., 2014), children 
were asked to count the number of squares in a simple 
line drawing of various quantities represented with base- 
10 blocks (see Figure 1). The critical question is whether 
children group the quantities by base- 10 units as an aid 
to counting. That is, do they count the squares by base- 
10 units (e.g., counting 42: 10– 20– 30– 40– 41– 42)? Or do 
they make errors such as treating all the units as ones 
(e.g., counting 42: 1– 2– 3– 4– 5– 6) or counting only the 
ones blocks and ignoring the rest? To encourage count-
ing by base- 10 units, Chan et al. chose quantities that 
were too high to be counted easily by ones, and presented 
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line drawings that were so small it would be difficult to 
tag each of the individual small squares accurately (see 
Tables S2 and S3). We found in pilot- testing that children 
became easily fatigued and frustrated if they were al-
lowed to attempt counting by ones, particularly at the 
kindergarten timepoint. Therefore, we took additional 
steps to discourage counting by ones, described below.

Prior to the test trials, children were first provided 
with a short 5- min introduction to three- dimensional 
base- 10 blocks to ensure they understood what objects 
were depicted in the line drawings. The experimenter 
displayed a tens block and demonstrated how ten of the 
“small squares” could be combined to make a tens block, 
counting the individual squares by ones. Next, the ex-
perimenter introduced the hundreds block, first showing 
how 100 small squares came together to make the larger 
hundreds block. Initially, the experimenter counted the 
small squares by ones, but then stopped, noting that 
counting “all those small squares would take a really 
long time,” showing instead how ten of the tens blocks 
could make the larger hundreds block, counting them by 
tens to illustrate. After this short introduction, children 
were presented with the first test trial— a line drawing 
of a physical representation of a quantity (e.g., 13 repre-
sented with base- 10 blocks) and told it was a picture of 
the same blocks. Children were then asked to tell the ex-
perimenter how many small squares were in the picture.

The ten trials were presented in numerical order from 
smallest to largest (see Table S2). Children were per-
mitted to count by ones on the first trial, but if they at-
tempted to do so on the second trial (for which the target 
number was 42), they were allowed to finish, and then 
reminded that these blocks could also be counted by 
tens. Children were then allowed to count again, and the 
better of the two trials was scored. A similar prompt was 
given if children attempted to count the first trial with 
hundreds blocks by ones, but children were reminded 
they could count by hundreds. To avoid fatigue, children 
were stopped after the first hundreds trial if they had 
failed to count by base- 10 units on previous tens items 
and continued to do so on the first hundreds item.

Chan et al. found that among first- grade students, ac-
curacy was a reliable proxy for counting by base- 10 units, 
so following their method, each of the 10 trials were 
coded as either correct or incorrect based on the child's 
final response of total number of blocks. Thus, each 
child's score was the total number of correct trials 

(maximum possible score was 10; α  =  .85 at Time 1 
and  .82 at Time 2).1

The Which N has __? task was a multiple- choice ad-
aptation of the digit correspondence task (e.g., Hanich 
et al., 2001; Kamii, 1989). Children were presented with 
three written numerals arranged in a horizontal line 
(e.g., 2, 20, and 10). The experimenter then asked the 
child to select the number that answered a place value 
question such as, “Which number has two tens?” Prior to 
the test trials, there were two practice trials where the ex-
perimenter provided the child with corrective feedback. 
The six test trials included two trials each probing tens, 
hundreds, and thousands (see Table S2). The position of 
the correct response was counterbalanced across trials. 
Test trials were coded as either correct or incorrect (max-
imum possible score = 6, chance = 2; α =  .53 at Time 1 
and  .59 at Time 2).

The expanded notation task is a commonly used multi-
ple choice task asks children to match written numerals 
to their expanded notation forms and has been used in 
previous research (e.g., Mix et al., 2016). Children were 
shown a written numeral (e.g., 11) and asked to select the 
correct expanded version from among three options (e.g., 
10+1, 10+10, or 1+1). The choices were arranged verti-
cally on the right side of the page, and the target number 
was presented in a larger font on the left side. Before the 
test trials, the experimenter explained that the plus sign 
means combining two numbers and illustrated this with 
a small set, such as 1 + 1 = 2. Then they asked, “Which of 
these (pointing to the equations) adds up to be this num-
ber (pointing to the target?).” The goal of the task was to 
select the two addends that when added together made 
the target number. Children completed two practice trials 
for which corrective feedback was offered. The six test tri-
als included two trials each probing 2- digit, 3- digit, and 
4- digit numbers (see Table S2). Test trials were coded as 
either correct or incorrect, for a maximum possible score 
of 6 (chance = 2; α = .66 at Time 1 and .70 at Time 2).

 1By this scoring method, it would be possible for children to obtain correct 
answers after counting by 1 s. An examination of our field notes revealed that 
this was the case on 7.92% of trials in kindergarten and 2.37% of trials in first 
grade. Most of these trials (61.59% in kindergarten and 81.48% in first grade) 
occurred on the first item which was also the lowest number queried (i.e., 
“13”). To ensure that these responses were not biasing our results, we repeated 
all analyses excluding trials where children were correct after counting by 1 s. 
The results in all cases were the same as when we used the original total 
correct variable, so we reported our original analyses and results in the main 
text.

F I G U R E  1  Sample item from Chan et al. (2014) base- 10 counting task
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General cognitive ability

To estimate general cognitive ability, we used children's 
scores on the Matrix Reasoning subtest from the Wechsler 
Intelligence Scale for Children, 5th edition (WISC– V; 
Wechsler, 2014). Matrix Reasoning was assessed at the 
second test session when children were in first grade. The 
subtest consists of two practice items and 32 test items in 
which children choose a figure that completes a repeat-
ing pattern or visual analogy. Based on the WISC– V test-
ing procedures, children completed items that increased 
in difficulty until they gave three consecutive incorrect 
responses. Age- based standardized scores were used as 
a covariate in all reported analyses. Reliability from the 
norming sample was high (α > .80).

Analysis approach

We first assessed our a priori characterization of the 
tasks as assessing separable classes of emerging knowl-
edge: approximate and syntactic. To this end, we con-
ducted separate independent CFAs at kindergarten and 
first grade, asking specifically whether the hypothesized 
2- factor solution was better than a 1- factor solution. For 
this and all remaining analyses, raw scores (i.e., total 
correct) for each task were used, however, reported es-
timates are from the standardized solutions. Chi- square 
tests were used to compare the fit between the two solu-
tions at each time point. A residualized dataset (n = 230) 
was created for these analyses by regressing scores from 
each task onto Matrix Reasoning performance, thereby 
controlling for performance in general cognitive abil-
ity. We also used a latent variable path analysis to as-
sess whether performance on one of the factors predicted 
performance on the other.

To investigate performance differences between ap-
proximate and syntactic measures, we carried out anal-
yses of covariance across timepoints (kindergarten and 
first grade), with Matrix Reasoning scores as the covari-
ate. We also examined group differences by dividing 
children into groups based on their performance on ap-
proximate tasks. To prepare the data for these analyses, 
we transformed children's raw scores on each of the six 
experimental tasks to proportions correct as follows. For 
transcoding and base- 10 counting, we used children's 
proportions correct. For number line estimation, propor-
tion correct was computed by dividing the reverse score 
of percent absolute error by 100. For the three forced- 
choice tasks (e.g., which number has __?, expanded 
notation; and magnitude comparison), chance- level re-
sponding or guessing was accounted for by subtracting 
the total number of incorrect items times 1/k − 1 (where 
k is the number of answer choices) from the total number 
of correct items. The corrected score was then divided by 
the total number of items to produce a corrected propor-
tion correct. For example, because expanded notation 

had six items with three answer choices, we subtracted 
the (number incorrect) × (1/(3 –  1)) from the total number 
correct. We then divided the corrected score by six to 
obtain a corrected proportion correct.

All reported factor and path analyses used maxi-
mum likelihood estimation with robust standard errors 
(i.e., MLR), which helps to protect against specification 
errors due to non- normal distributions (e.g., Chou & 
Bentler, 1995). For all analyses, models were assessed 
using data- model fit information, including the root 
mean square error of approximate (RMSEA) and com-
parative fit index (CFI) for models without a mean struc-
ture (e.g., CFAs). All analyses were conducted using 
Mplus software (Muthén & Muthén, 1998– 2017). In each 
model, full information maximum likelihood estimation 
was used to accommodate missing data with rescaling 
corrections to standard errors and fit indices to handle 
potential nonnormality in the data. Reported estimates 
are from the standardized solutions.

RESU LTS

Descriptive statistics

Children's mean performance on the six place value 
measures is presented in Table 1 and we provide visu-
alizations of the distributions of performance as violin 
plots in Figure 2. The violin plots illustrate the distribu-
tion of performance across all participants for each time 
point. Wider sections of the violin plot represent a higher 
probability that participants of the population will take 
on the given value whereas skinnier sections represent a 
lower probability. As shown in these plots, children gen-
erally improved their performance on all six tasks across 
the period of the study, with many children reaching 
ceiling performance in first grade.

Individual children's performance on the two hypothe-
sized factors (i.e., approximate and syntactic) at each time-
point is presented in Figure 3. As suggested by children's 
raw scores on individual tasks (Table 1), performance on 
the approximate tasks was better than performance on 
syntactic tasks at both timepoints, but there was consid-
erable growth in both factors from kindergarten to first 
grade. Still, children's scores on individual measures, as 
well as scores for the two hypothesized factors (i.e., approx-
imate and syntactic), were significantly intercorrelated (see 
Table 2), suggesting overlap in the competencies tapped, at 
least for some children. Note that the interfactor correla-
tions were lower in kindergarten than in first grade.

Are approximate and syntactic tasks really 
distinct?

The basic premise of the present study is that the un-
derstandings underlying performance on approximate 
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place value measures may differ from those underly-
ing performance on syntactic place value measures. 
To test this idea, we conducted two CFAs— one at kin-
dergarten and one at first grade— with the six tasks 
divided into two groups: (1) approximate tasks includ-
ing magnitude comparison, number line estimation, 
and transcoding, and (2) syntactic tasks including 
base- 10 counting, which number has__?, and expanded 
 notation. As before, children's place value scores were 
residualized to control for differences in general cogni-
tive ability, based on their Matrix Reasoning scores. 
The fit indices of the kindergarten 1- factor solution 
were CFI  =  .970 and RMSEA  =  .07, and the fit indi-
ces of the Grade 1- factor solution were CFI = .997 and 
RMSEA  =  .02. Additionally, the two- factor model 
fit was good when assessed separately for both kin-
dergarten (CFI =  .987; RMSEA =  .05) and first grade 
(CFI = .993; RMSEA = .04); see Table 3. Furthermore, 
the place value measures hypothesized to tap syntactic 
understanding loaded significantly onto one factor and 
the place value measures hypothesized to tap approxi-
mate understanding loaded significantly onto the other 
factor. To assess reliability of the latent constructs, 
we calculated Coefficient H that measures maximal 
reliability for an optimally weighted scale (Hancock 
& Mueller, 2001). In kindergarten, both the syntac-
tic and approximate factors’ construct replicability 
were acceptable: Hsyntactic  =  .72, 95% CI [.66, .94] and 
Happroximate = .72, 95% CI [.67, .80]. In first grade, both 
the syntactic and approximate factors’ construct repli-
cability were again acceptable: Hsyntactic =  .74, 95% CI 
[.68, .85] and Happroximate = .80, 95% CI [.75, .94]. These 
values indicate high construct replicability of the latent 
variables vis- à- vis their task indicators.

Chi- square tests revealed that the two- factor solution 
had statistically significantly better fit than the one- 
factor solution only in kindergarten (�2

diff
 = 8.97, p = .001). 

In first grade, there was no detectable difference 
(�2

diff = 0.00, p = .959). These findings suggest that approx-
imate measures and syntactic measures plausibly assess 
separate, albeit highly correlated, latent constructs 

among kindergarten students, but by first grade, all six 
tasks appear to measure the same underlying under-
standing. Thus, as predicted, approximate and syntactic 
understanding of place value appear to be distinct, but 
only in kindergarten.

Do early informal ideas support the 
acquisition of syntactic knowledge?

Knowing that the approximate and syntactic factors were 
separable in kindergarten, we next asked whether perfor-
mance on one or the other factor was more predictive of 
first- grade skill. One possibility is that early performance 
on syntactic tasks is the only significant predictor of first- 
grade performance on either approximate or syntactic 
tasks because decomposition skill contributes to both. On 
this account, early performance on approximate tasks may 
be a distraction that is unrelated to later performance if it 
is based on shortcuts and heuristics, such as guessing that 
longer numerals represent larger quantities. Alternatively, 
early approximate performance may be a significant pre-
dictor if it is based on partial knowledge that children can 
leverage to understand count+unit syntax (i.e., using the 
insight that longer numerals represent larger quantities 
to bootstrap into a more specific understanding of hun-
dreds vs. tens, for example). Because the chi- square dif-
ference test suggested a single place value factor in first 
grade, we first conducted a CFA that examined the fit of 
a two- factor solution in kindergarten and one- factor solu-
tion in first grade (i.e., 2 × 1 model). Results indicated ac-
ceptable fit (CFI = .923, RMSEA = .08). Between the two 
paths tested, only latent approximate scores in kindergar-
ten predicted place value understanding in first grade, 
β = 1.25, p = .005; syntactic scores in kindergarten did not, 
p = .279 (see Figure 4a). Thus, there is strong evidence that 
children's early heuristics and approximate understand-
ings contribute positively to the eventual acquisition of 
syntactic understanding.

One might argue that the previous finding was due 
to early approximate skill predicting later approximate 

TA B L E  1  Means (SDs) on place value measures in kindergarten and first grade

Assessment

Kindergarten
(n = 279)

First grade
(n = 231)

Mean number correct 
(SD)

Mean proportion correct 
(SD)

Mean number correct 
(SD)

Mean proportion 
correct (SD)

Magnitude comparison 19.07 (4.03) .53 (.32) 22.67 (2.92) .81 (.23)

Number line estimation 82.09 (8.75) .82 (.09) 88.65 (7.44) .89 (.07)

Transcoding 6.43 (3.08) .54 (.26) 9.42 (2.89) .78 (.24)

Base- 10 counting 3.71 (2.77) .37 (.28) 6.40 (2.68) .64 (.27)

Which number has __? 4.60 (1.17) .65 (.29) 5.01 (1.27) .75 (.32)

Expanded notation 3.01 (1.78) .25 (.45) 4.81 (1.48) .70 (.37)

Note: Mean proportion correct scores of expanded notation, Which number has __?, and magnitude comparison are adjusted for forced- choice responding. The 
mean number correct for number line estimation was derived from the percent absolute error (PAE) score by subtracting the PAE from 100. The mean proportion 
correct score for number line estimation was derived by dividing this reversed PAE score by 100.
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skill to such an extent that it appeared to predict both 
syntactic and approximate skill equally. To assess this 
possibility, we conducted a second path analysis that 

assumed both factors in both grades (i.e., a 2 × 2 model). 
The fit for this 2  ×  2  model was poor (CFI  =  .861, 
RMSEA = .11; Hu & Bentler, 1999). Interestingly, though 

F I G U R E  2  Violin plots for each task illustrate the distribution of performance across all participants for each time point. Wider sections of 
the violin plot represent a higher probability that participants of the population will take on the given value whereas skinnier sections represent 
a lower probability. The orange dot is the mean score for each time point
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kindergarten performance on approximate tasks sig-
nificantly predicted performance on both approximate, 
β = 1.23, p = .001, and syntactic tasks, β = 0.91, p = .013 in 
first grade, kindergarten performance on syntactic tasks 
predicted neither. These findings demonstrate that the 
predictive relations in the previous analysis were not lim-
ited to approximate tasks at first grade (see Figure 4b).

Does competence on approximate tasks mask 
deficiencies in count+unit understanding?

An inspection of children's mean performance on ap-
proximate and syntactic tasks (Figure 3) suggests their 
scores were lower on syntactic tasks. This posthoc ob-
served pattern was confirmed in an exploratory repeated 
measures analysis of covariance (ANCOVA) with grade 
(kindergarten vs. first grade) and task type (approximate 
vs. syntactic) as within- subject variables, and Matrix 
Reasoning scores as the covariate. Specifically, there 
was a statistically significant main effect of task type 
(F(1, 228) = 119.27, p <  .001, �2p =  .34), such that perfor-
mance on approximate tasks (M  =  0.73, SE  =  .01) was 
greater than on syntactic tasks (M = 0.56, SE = .01; see 
Figure 5). There also was a significant main effect of 
grade (F(1, 228) = 34.66, p < .001, �2

p
 = .13), such that scores 

on both task types improved from kindergarten to first 
grade; however, the interaction between grade and task 
type was not significant (p = .370). These findings relate 
to our hypothesis that children may appear to have more 

place value knowledge than they actually have, depend-
ing on how place value knowledge is measured. If chil-
dren perform significantly better on tasks that admit the 
use of partial knowledge, approximate quantification, or 
heuristics than they do on tasks that require analysis of 
count+unit syntax, they may appear to know more about 
place value than they actually do.

To further investigate this idea, we examined children's 
performance on syntactic tasks after dividing them into 
groups based on their performance on approximate tasks. 
The low approximate group performed at or below the 33rd 
percentile (n = 77), the high approximate group performed 
at or above the 66th percentile (n = 77), and the moderate ap-
proximate group had percentile scores in between (n = 77). 
The mean proportion correct on syntactic tasks for chil-
dren in each of these three groups is presented in Figure 6.

As one might expect, children in the high approxi-
mate group also performed relatively well on syntactic 
tasks and children who performed poorly on approxi-
mate tasks also performed relatively poorly on syntac-
tic tasks. However, children who performed moderately 
on approximate tasks in kindergarten also performed 
quite poorly on syntactic tasks. To assess this posthoc 
observed pattern, an exploratory repeated measures 
ANCOVA with approximate performance group as the 
between- subject factor, grade as the within- subject fac-
tor, and the syntactic proportion correct composite as 
the dependent variable revealed a statistically signifi-
cant interaction between approximate performance 
group and grade (F(2, 226) = 8.72, p < .001, �2

p
 = .07). A 

F I G U R E  3  Histograms of the syntactic and approximate factor scores using the residualized dataset (controlling for Matrix Reasoning) at 
each time point
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simple effects test suggests this is likely because the dif-
ference in syntactic scores in kindergarten was nonsig-
nificant between the low and moderate approximate 
groups (Mdiff = 0.06, SEdiff =  .03, p =  .052), whereas in 
first grade the difference between the low and moder-
ate groups was significant (Mdiff  =  0.15, SEdiff  =  .03, 
p < .001). This finding lends further support to our hy-
pothesis that children who show some understanding 
of place value on approximate tasks may nonetheless 
perform quite poorly on syntactic tasks. Thus, although 
early approximate understanding may be an important 
foundation for later syntactic understanding, the two 
understandings are not interchangeable, at least early 
in development.

DISCUSSION

This study addressed fundamental questions about how 
children build their understanding of complex represen-
tational systems. The basic challenge facing learners is 
how to discover the underlying structure of these sys-
tems based on the fragments, false starts, and rough ap-
proximations that likely characterize initial attempts at 
sense- making. Do these early but imperfect understand-
ings pave the way for later mastery? Or are they detours 
leading nowhere, perhaps even becoming obstacles to 
discovering relational structure? For the current study, 
we addressed these questions in the context of place 
value— a particularly challenging complex system for 

TA B L E  3  Latent factor loadings by grade

Assessment

Kindergarten First grade

Approximate Syntactic Approximate Syntactic

Magnitude comparison .612 .742

Number line estimation .623 .641

Transcoding .775 .810

B- 10 counting .864 .751

Which number has __? .394 .628

Expanded notation .620 .685

Note: All factor loadings are significant, p < .05. The estimates presented here are from the standardized solution, which is why loading constraints are not shown.

F I G U R E  4  Latent variable path analysis of kindergarten approximate and syntactic latent variables of place- value understanding 
predicting first- grade variables using the residualized dataset: (a) 2 × 1 factor structure and, (b) 2 × 2 factor structure. Standardized coefficients 
(β) are presented with p- values in parentheses. Although covariances between approximate and syntactic variables at both kindergarten (in a 
and b) and first grade (b only) were included in the model, they are not shown in this figure

(a)

(b)
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which early deficits in understanding are subsequently 
linked to poor mathematics outcomes (Chan et al., 2014; 
Moeller et al., 2011; Ross, 1986). Specifically, we assessed 
children's place value understanding using the same six 
measures (three approximate and three syntactic) at two 
timepoints (kindergarten and first grade), to see how 
performance on these tasks related across development.

Before we could address our developmental hypothe-
ses, we first had to confront a difficult measurement prob-
lem. Based on theory, we hypothesized that performance 

on place value tasks that require explicit understanding 
of count+unit syntax tap different latent constructs than 
tasks that allow for responses based on approximate 
understanding, and thus may contribute differentially 
to development. A CFA yielded support for this idea, 
demonstrating that approximate and syntactic place value 
understanding are distinct (albeit correlated) constructs 
in kindergarten. By first grade, these differences had dis-
appeared and performance on the six tasks converged. 
Perhaps as children acquire count+unit syntax, they apply 

F I G U R E  5  Bar graphs display estimated marginal means of proportion correct for both approximate and syntactic place value 
understanding by grade, controlling for general cognitive ability. Error bars indicate standard error

F I G U R E  6  The line graph displays estimated marginal means of the syntactic tasks’ composite proportion correct across time by 
approximate performance group, controlling for general cognitive ability. Error bars indicate standard error.
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this syntactic understanding to all place value tasks, lead-
ing to a convergence of the two systems (approximate and 
syntactic) by first grade. That said, syntactic tasks were 
more difficult than approximate tasks, and this difference 
in difficulty was still apparent in first grade, among chil-
dren at all levels of achievement. Thus, while there may be 
some conceptual convergence in this age range, it appears 
that children still perform better on the less syntactically 
demanding, approximate measures.

Interestingly, whereas one might expect early under-
standing of count+unit syntax to predict later achieve-
ment, that was not the case. Path analyses showed that 
only performance on the approximate tasks in kinder-
garten significantly predicted first- grade place value per-
formance, including performance on syntactic measures. 
Based on these results, it appears approximate or partial 
understanding of place value symbols is an important pre-
cursor to the decomposition skill that has predicted later 
mathematics in previous studies. We speculated that chil-
dren can perform approximate tasks above chance using 
simple heuristics, such as knowing longer numerals are 
larger than shorter numerals in the magnitude compari-
son task, or rough mappings, such as mapping the tempo-
ral order of words and suffixes in spoken number names to 
the left- right order of written digits in the transcoding task. 
Perhaps, these early piecemeal or rough understandings of 
place value orient attention to places in written numerals 
and units in number names, eventually leading to a fine- 
tuning as more specific place meanings are discovered. 
Similar patterns have been demonstrated in the acquisi-
tion of small number meanings (e.g., Mix, 2009; Sarnecka 
& Carey, 2008) and acquisition of non- numeric symbols, 
such as color words (e.g., Sandhofer & Smith, 1999).

Despite the clear evidence of a key developmental role 
for approximate understanding, our results indicate that we 
cannot use approximate tasks to measure count+unit un-
derstanding, especially early in development, because these 
tasks measure different underlying competencies. We know 
from studies focused on measures that require knowledge of 
base- 10 syntax that children who fail to understand decom-
position in first and second grade have worse mathematics 
outcomes, and may have trouble understanding multidigit 
calculation and subsequent arithmetic operations (Chan 
et al., 2014; Moeller et al., 2011; Ross, 1986). Our results indi-
cate that such deficits in children's place value understand-
ing may be missed in kindergarten and first grade if only 
approximate tasks are used as measures.

It is interesting that, although children at all achieve-
ment levels showed significant growth in syntactic un-
derstanding across time, they neither reached ceiling 
nor fully converged by the end of first grade. Instead, all 
three performance groups showed improvement in both 
approximate understanding and syntactic understand-
ing, and remained distinct even as they were acquiring 
base- 10 understanding. A possible explanation for this 
developmental pattern is that children learn place value 
concepts via a stepwise bootstrapping process, perhaps 

one unit at a time. Previous research has suggested 
that 2- digit number meanings are acquired earlier and 
processed differently than 3- digit numbers as they are 
learned (Fuson, 1990; Kouba et al., 1988; Mann et al., 
2012). If these performance differences extended to the 
present tasks, the worse performance of kindergarten 
children in the lower of the approximate performance 
groups may be due to approximate understanding for all 
three places we tested (tens, hundreds, thousands), lead-
ing children to obtain significantly higher scores on ap-
proximate tasks versus the syntactic tasks. As children in 
this group progress to first grade, they may acquire syn-
tactic meanings for two- digit numbers first, leading to 
better (but not ceiling) performance on both the approx-
imate and syntactic measures, and perhaps contributing 
to a unitary latent construct in first grade even though 
performance on the larger numbers remains distinct.

Now consider the same mechanism playing out in the 
higher performing approximate group. These children 
may have already acquired syntactic meanings for two- 
digit numbers by kindergarten, so their starting scores 
would be higher on both approximate and syntactic tasks 
compared to the lower performing groups. However, chil-
dren in the higher performing group showed incremen-
tal growth similar to children in the lower performing 
group. On our stepwise interpretation, this pattern could 
be due to acquiring three- digit number meanings in first 
grade, but still not comprehending four- digit numbers 
or greater. Unfortunately, because many of the items on 
our tasks mixed the number of digits (e.g., comparing a 
two- digit number to a three- digit number, or choosing 
the expanded notation equivalent of a three- digit num-
ber from among choices that had various combinations 
of tens, hundreds, and thousands), it is not possible to 
test this interpretation directly in the present study, but 
this could be an interesting direction for future research.

In summary, our findings indicate that approximate 
and syntactic understandings of place value are distinct 
early in development, and eventually converge at the end 
of first grade, with a clear predictive relation from perfor-
mance on approximate place value tasks to performance 
on place value overall in first grade. Children at all abil-
ity levels performed better on approximate than syntactic 
tasks, suggesting that there is incremental growth in both 
understandings across this age period. Though the present 
study was not designed to test this notion, our findings 
are consistent with a stepwise developmental bootstrap-
ping process that could plausibly be based on learning one 
place (tens, hundreds, thousands, etc.) at a time.

These findings raise questions about the importance 
of approximate understanding of place value in devel-
oping these concepts and whether this understanding 
can be nurtured and perhaps leveraged by teachers. 
Indeed, little is known about children's informal expo-
sure to multidigit numbers and large sets at home or in 
preschool Understanding the natural sources of varia-
tion in this exposure is an important next step for future 
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research because this variation could explain why some 
children develop approximate skills earlier than others. 
Our findings also shed light on why children in the same 
classrooms vary in their eventual mastery of place value 
concepts. Clearly, children who exhibit strong perfor-
mance on approximate tasks early in development, go on 
to have a better grasp of count+unit syntax in first grade. 
Perhaps by identifying children with weak approximate 
skills in kindergarten and first grade, teachers could in-
tervene sooner to help them catch up.

However, some children (those in the low and mod-
erate approximate groups) appeared slower to learn 
count+unit syntax, a deficit that may be masked if only 
approximate skills are assessed. Thus, children may also 
benefit from direct instruction in multidigit number 
meanings earlier than it is typically provided. That is, 
rather than waiting until first grade, teachers might con-
sider introducing these concepts earlier, in kindergarten 
or even preschool. However, an important take- home 
message from our findings is that mastery of count+unit 
syntax in these early years need not be the goal. Rather, 
young children likely benefit from encouragement to 
first develop a rough or partial understanding, perhaps 
by simply increasing exposure to multidigit numbers or 
through activities that permit approximation, such as 
magnitude comparison or transcoding, building from 
rough to increasingly specific or nuanced comparisons.
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