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A B S T R A C T

The processes and mechanisms of human learning are central to inquiries in a number of fields including psy-
chology, cognitive science, development, education, and artificial intelligence. Arguments, debates, and con-
troversies linger over the questions of human learning with one of the most contentious being whether simple
associative processes could explain human children's prodigious learning, and in doing so, could lead to artificial
intelligence that parallels human learning. One phenomenon at the center of these debates concerns a form of far
generalization, sometimes referred to as “generative learning”, because the learner's behavior seems to reflect
more than co-occurrences among specifically experienced instances and to be based on principles through which
new instances may be generated. In two experimental studies (N = 148) of preschool children's learning of how
multi-digit number names map to their written forms and in a computational modeling experiment using a deep
learning neural network, we show that data sets with a suite of inter-correlated imperfect predictive components
yield far and systematic generalizations that accord with generative principles and do so despite limited ex-
amples and exceptions in the training data. Implications for human cognition, cognitive development, education,
and machine learning are discussed.

1. Introduction

There are two different stories that one can tell about human
learning (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010;
McClelland et al., 2010). In some tasks, learning is slow with general-
ization requiring extensive experience with many examples, and even
then, generalization may be limited and error-prone (Bion, Borovsky, &
Fernald, 2013; Fuson & Briars, 1990; Gentner, 2010; McMurray, Horst,
& Samuelson, 2012). Many categories of school learning including early
reading and mathematics seem to fit this description (Chi, Kristensen, &
Roscoe, 2012; Siegler & Lortie-Forgues, 2017). However, in other
contexts, human learning appears much less data-hungry and can be
characterized as showing extensive generalization from limited ex-
perience with a small portion of possible instances (Aslin, 2017; Carey
& Bartlett, 1978; Casler & Kelemen, 2005). Generalization from a few
examples is sometimes known as “few-shot learning” and has been
documented in domains such as object recognition (Krizhevsky,
Sutskever, & Hinton, 2012), letter recognition (Lake, Salakhutdinov, &
Tenenbaum, 2015), and word learning by children (Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002; F. Xu & Tenenbaum,
2007). For example, typically-developing 2.5-year-old children

appropriately extend a newly-heard object name to new instances of the
category given experience with just one named object from that cate-
gory (Landau, Smith, & Jones, 1988; Smith et al., 2002; Smith, Jones, &
Landau, 1996).

Rapid and far generalization has also been characterized as a form
of “generative learning” because the learner seems not to just learn
about specifically experienced instances but rather to learn principles
through which new instances may be generated (Lake, Linzen, & Baroni,
2019; Son, Smith, & Goldstone, 2012). For example, typically-devel-
oping preschool children learning English can generate the regular
plural form for a seemingly unlimited number of nouns, needing only
one exposure to the singular form of the noun to do so (Berko, 1958;
Brown, 1973; Mervis & Johnson, 1991; Treiman, 1993). Given that
human learning often seems slowly incremental and limited in gen-
eralizability, these cases of principled far generalization have attracted
considerable research attention in domains as diverse as cognitive de-
velopment and machine learning (Fe-Fei, Fergus, & Perona, 2003; Imai,
Gentner, & Uchida, 1994; Kemp, Perfors, & Tenenbaum, 2007; Lake
et al., 2019; Smith & Samuelson, 2006).

Current theoretical debates are focused on the learning mechanisms.
By most accounts, the critical factor is prior knowledge of the principles
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for representing instances within the to-be-learned domain (Fe-Fei
et al., 2003; Griffiths et al., 2010; Lake et al., 2015; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011). These prior principles could be domain-
specific and part of human core (and innate) knowledge systems
(Gopnik & Bonawitz, 2015; Spelke, 2016), making rapid generalization
a specialization for only some core domains. Others have suggested that
these generative principles can be discovered through more general
learning mechanisms and in many different domains. By some accounts,
associative learning mechanisms may be sufficient (e.g., Botvinick &
Plaut, 2004; Colunga & Smith, 2005; Elman, 1990; McClelland et al.,
2010; Rogers & McClelland, 2004) but others have argued that asso-
ciative mechanisms—even in their most currently advanced forms such
as deep learning neural networks—are fundamentally limited, requiring
extensive training and even then can only approximate the learning of
generative principles (Griffiths et al., 2010; Tenenbaum et al., 2011). By
these accounts, more powerful statistical learning mechanisms and
computations are required to discover generative principles from lim-
ited training data (Kemp, Goodman, & Tenenbaum, 2008; Kemp,
Perfors, & Tenenbaum, 2007; Rule, Dechter, & Tenenbaum, 2015; F. Xu
& Tenenbaum, 2007).

In these debates and the related experimental and theoretical stu-
dies, there has been little consideration of the properties of data
structures that support principled and far generalization from limited
training experiences. However, debates about learning mechanisms
cannot be divorced from the data structures on which those mechan-
isms operate as all learning depends on the learning mechanisms, the
statistical structure of the experiences on which they operate, and the
match between the two (Dupoux, 2018). The real-world cases (e.g.,
novel object name generalization, regular plural forms of English
nouns) used to document human propensity for principled far gen-
eralization have data structures different from those used in most la-
boratory studies (but see, Billman, 1989, 1993; Billman & Knutson,
1996). They are characterized by multiple inter-predictive features that
are redundant, degenerate, overlapping, imperfect, and that offer mul-
tiple pathways to generalization (Bloom et al., 2006; Colunga & Smith,
2005; MacWhinney, Leinbach, Taraban, & McDonald, 1989; Yoshida &
Smith, 2003). By hypothesis, a suite of inter-correlated imperfect pre-
dictive components can give rise to generalizations that accord with
generative principles and can do so despite limited training data, ex-
ceptions, and idiosyncratic individual experiences.

Here we provide initial evidence for this hypothesis by showing that
preschool children and a general-purpose deep-learning neural network
trained on a limited data set with a multiple inter-predictive structure
show principled extensive generalization. The domain we use to make

this initial case is the human-invented symbol system through which we
name and write multi-digit numbers. We chose this domain for five
reasons. First, it is a real-world system but, as a relatively recent human
invention, it is a knowledge domain without specifically evolved core
mechanisms. Second, it is well documented that the base-10 notational
system—and the multiplicative hierarchical structures that underlie
it—are difficult for school-aged children to master (Fuson, 1988; Mann,
Moeller, Pixner, Kaufmann, & Nuerk, 2012; Ross, 1995). Third, there is
suggestive evidence that at least some preschool children know how to
map never-before-encountered multi-digit number names to their
written forms, despite likely minimal experience with the names and
written forms of multi-digit numbers (Mix, Prather, Smith, & Stockton,
2014; Yuan, Prather, Mix, & Smith, 2019). Fourth, and as we expand
below, spoken and written number names have a data structure of co-
predicting surface features that are redundant, overlapping, and im-
perfect, but provide multiple paths to correct generalization. Fifth, this
case provides a grounding for consideration of the distinction (and
potential relation) between generalization that is consistent with gen-
erative principles versus the explicit representation of those principles
(Lake, Ullman, Tenenbaum, & Gershman, 2016; Wu, Yildirim, Lim,
Freeman, & Tenenbaum, 2015).

Informal experiences of hearing the spoken names for written multi-
digit numbers and seeing their corresponding written forms—for ex-
ample hearing “seven hundred sixty-two” while seeing “762”—com-
prise a data set of potential interest for learning about place value
(Grossberg & Repin, 2003; Rule et al., 2015). Fig. 1 illustrates—for a
very small set of possible numbers—the many redundant and over-
lapping mappings (represented by the edges) among the surface structure
of written numbers and their spoken names (represented by the nodes).
For example, in the written form “535” there are two “5”s, one on the
far left and one on the far right, and in the spoken name “five hundred
and thirty-five,” “five” occurs twice, in the first position and in the last.
The written form “3” systematically co-occurs with “three,” “thirty,”
and “three hundred.” “Thirty” and “sixty” both end in “-ty,” and in their
co-occurring written forms, the digits named with a “-ty” appear just
before the last (rightmost) position in the string of digits. “Eighty” and
“ninety” (but not “eleven” nor “twenty”) contain the name most
strongly associated with the written form of a single digit (8 and 9).
These patterns provide a hodgepodge of paths to mapping a heard
multi-digit name to its written form. As we consider in the General
Discussion, they also may provide a path to a deeper understanding of
the generative principles that are the source of these exploitable surface
properties.

Both spoken and written forms have their origins in underlying

Fig. 1. An illustration of all possible partial mappings within
and between written number symbols and spoken number
names for four randomly chosen numbers 37, 65, 535 and
762. The nodes depict individual components of written
number symbols or spoken number names. The edges depict
co-occurrences and partial mappings among the nodes. As can
be seen, there are massive overlapping and redundant con-
nections among pairs of written symbols and their component
names that instantiate the to-be-learned generative principles.
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principles of the base-10 multiplicative hierarchy of places. Thus, “762”
and “seven hundred and sixty-two” each refer to the same decomposi-
tion of the quantity: to 7 sets of 100, 6 sets of 10, and 2 sets of 1 with
100 equal to 10 sets of 10, and 10 equal to 10 sets of 1. Ultimately,
children need to explicitly understand these principles if they are to
successfully calculate with multi-digit numbers. But, by hypothesis,
they do not need knowledge of the underlying multiplicative hierarchy
to map any heard number to its written form; all they need to do is
exploit the plethora of predictive surface properties to map number
names to written forms. These multiple predictive surface properties
linking names to written forms will not lead to perfect performance
(because they are imperfect and local predictors); but, by hypothesis,
they can lead to far generalizations at levels well above chance in
mapping newly encountered individual multi-digit number names to
their written forms.

In contrast to this characterization of possible early knowledge of
multi-digit numbers, the consensus view on the development of place
value concepts is that the mapping of number names to written multi-
digit numbers is hard and error-filled even for school age children and
tightly tied to understanding the underlying base-10 principles (Fuson
& Kwon, 1991, 1992; Geary, Bow-Thomas, Liu, & Siegler, 1996; Ho &
Fuson, 1998). For the most part, this conclusion derives from studies of
school-age children's understanding of the underlying base-10 princi-
ples, studies that find predictive errors in naming written forms and in
calculating with multi-digit numbers (Cooper & Tomayko, 2011; Fuson
& Kwon, 1991) and studies focused on children's difficulties with the
exceptions in the naming system (e.g., the teens, Miura & Okamoto,
1989; Saxton & Towse, 1998). The general conclusion is that explicit
formal training of the notational principles is essential to both under-
standing the notational system and to using it to calculate (Fuson, 1986;
Fuson & Briars, 1990). From these findings, the general view in the
education literature and education practice is that introducing multi-
digit numbers is best delayed until the start of formal teaching about
the base-10 system, typically first or second grade (Fuson, 1986;
Hanich, Jordan, Kaplan, & Dick, 2001; Kamii, 1986).

However, several recent studies indicate that at least some pre-
school children know how number names map to written digits, per-
forming well above chance when asked to pick the written version of
three- and four-digit numbers given the spoken name (Byrge, Smith, &
Mix, 2014; Mix et al., 2014; Yuan et al., 2019), for example, choosing
836 over 834 or 863, given the spoken name of “eight-hundred and
thirty-six.” Less clear is how these children learned whatever knowl-
edge allowed them to succeed in this task. Considerable evidence in-
dicates that number talk to preschool children is quite sparse and talk
about multi-digit numbers is exceedingly rare (Dehaene, 1992; Dehaene
& Mehler, 1992; Levine, Suriyakham, Rowe, Huttenlocher, &
Gunderson, 2010). By these estimates, then, the likelihood that the
preschool children showing early competence in mapping names to
multidigit numbers had encountered the name and written form of any
particular 3-digit number (e.g., 836) tested in these previous studies is
vanishingly small. We propose that the children who performed well
acquired the general ability to map heard names to written multi-digit
numbers from limited exposure through learning mechanisms that ex-
ploit the multiple correlated—albeit imperfect—regularities that link
number names and written forms.

We test this hypothesis in three studies. The first two are experi-
mental studies that show that preschool children show systematic
generalization in mapping the names to written forms given minimal
exposure to a small set of multi-digit numbers and their names. The
third study is a computational modeling experiment. The purpose of
this modeling experiment is not to provide a complete or accurate
model of children's internal learning mechanisms but rather to show
that an associative learning mechanism given a data set with imperfect,
redundant local predictors will exhibit far generalization. To this end,
we used a general-purpose deep neural network trained similarly to the
children in the two experiments. The modeling experiment provides

evidence for generalization consistent with generative principles
without explicit representation of those principles.

2. Study 1

2.1. Participants

The final sample consisted of forty preschool children (mean age:
4.5 years, range: 3.16–5.94 years) from a Midwestern town in the
United States. There were 18 females and 22 males. Families were
contacted about the study through a consented database or through
local preschools and day care centers that served families from a wide
range of economic circumstances. Informed consent was obtained from
each participant's legal guardian prior to the study. Each child parti-
cipated in five successive sessions (pre-test, 3 days of training, post-test)
on separate days of the week (i.e., Monday to Friday). If the child
missed one and only one session during the week, he or she participated
on the next available weekday. Five additional participants were ex-
cluded from the study due to missing one or more sessions during the
study. Forty children participated in the training condition; an addi-
tional seventeen children participated in a no-training control condition
included to check on test-retest effects. On pre-test and post-test days
(but not training days), some children also participated in other tasks
(including magnitude judgements) that were components of other ex-
periments being conducted in these same schools and daycares.

2.2. Stimuli and procedure

2.2.1. Training
The training was designed to present children with minimal training

and minimal experience with specific multi-digit numbers. The selec-
tion of training numbers was designed to mimic likely real-world ex-
periences of young children in which a few single- and double-digit
numbers were repeated with most 3- to 4-digit numbers encountered
only once (Dehaene, 1992; Levine et al., 2010). There were 18 trials on
each of the 3 training days for a total of 54 learning trials for the entire
study. Across the 3 days of training and total of 54 trials, children heard
the names and saw the written forms of 36 unique numbers that varied
from 1- to 4-digit numbers. Of the 36 unique numbers, 12 were re-
peated during training and each of the 24 other unique instances oc-
curred just once in training. Three-digit numbers were named with the
word “hundred” as in “three-hundred fifty-two” and 4-digit numbers
were pronounced with the word “thousand” as in “two-thousand five-
hundred twenty-one”.

Training was embedded in casual learning activities meant to mimic
possible everyday contexts through which preschool children might
encounter multi-digit numbers and their names. The contexts were
designed so that there was no explicit teaching or mention of the un-
derlying syntactic rules and no specific task with strictly defined right
or wrong responses from the children. Rather, children were simply
encouraged to follow along and have fun with two engaging activities:
storybook reading and making numbers with cards. We used two
training orders, one in which similar numbers (e.g., 223, 224) occurred
in close proximity (N = 20) and one in which the order was randomly
determined (N = 20). These different orders had no effects that ap-
proached statistical significance (see supplementary material) and are
not considered further. Table 1 shows all training numbers and Fig. 2
shows the training materials.

For the Storybook reading component of the training, three pic-
ture books (one for each training session) were created with each
containing four stories. Each page was printed on A4-sized horizontally
arranged paper. Most of the pages consisted of a cartoon caricature
(roughly 2 in. tall and 1 in. wide), some objects (roughly 2 in. tall and
1 in. wide) and printed multi-digit numbers (see Fig. 2 for an example).
The numbers were printed in 42-point Arial font. Each story had five
pages which were put into a clear sheet protector and stored in a
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binder. A sample story about saving money is illustrated on Fig. 2. The
experimenter first presented Page A and explained to the child, “Johnny
wants to save money to buy his favorite food and toys. Do you want to
see what Johnny wants to buy?” Then she presented Page B and said,
“He wants to buy a big cake.” Pointing to the written number, the ex-
perimenter asked, “Do you know how much it costs?” Children were not
expected to and typically did not respond to this rhetorical question but
regardless of the nature of any response, the experimenter immediately
said, “It costs forty (pointing to the digits sequence, i.e.,“4” followed by
“0”) dollars.” She then repeated the number once more, still pointing to
the written digits in sequence while saying, “The big cake costs forty
dollars.” She next presented Pages C and D in an identically structured
narrative with the only change being the object's name and the corre-
sponding numbers. On Page E, the experimenter asked the child, “Can
you tell me which thing costs the most money?” Regardless of the
child's response (or nonresponse), the experimenter immediately stated
the relation—“The cake costs forty dollars (while pointing to the digits
in the written numeral “40” in sequence); the bicycle costs sixty dollars
(pointing to the digits in the written numeral “60” in sequence); and the
toy car costs seventy dollars (pointing to the digits in the written nu-
meral “70” in sequence). So, the item that costs the most money is the
car (point to the toy car).” This mention of relative magnitudes was
included to encourage children to connect and compare the number
names and written forms for different quantities which has been shown
to highlight the common relational structures (Gentner, 1983; Gentner
et al., 2016; Kotovsky & Gentner, 1996; Yuan, Uttal, & Gentner, 2017),
and in this case the many predictive elements characterizing multi-digit
number names and their written forms.

In the Make-a-number game, two identical sets of number cards

were created to be used by the experimenter and the participant. The
cards were made from 1-inch by 2-inch foam sheet and number stickers.
Each card depicted just one digit that had the dimension of roughly 1
(width) by 2 (height) inch. During the training, the experimenter first
made a number using her set of digit cards. For example, she first told
the child what number they were going to make: “We are going to make
two hundred thirty-five. Watch me, I am going to make two hundred
thirty-five.” She then picked up the card “2” and said, “I need a 2 for
two hundred” while putting it down on the table. She then picked up
the card “3” and said, “I need a 3 for thirty” while putting it on the right
of the card “2”. Lastly, she picked up the card “5” and said, “I need a 5
for five” while putting it on the right of the card “3”. She then invited
the child to make the same number by saying “Can you make two
hundred thirty-five?” This task only required the child to copy the just-
preceding behavior of the experimenter and the still-in-view example. If
the child had trouble doing so, the experimenter coached the child to
make the correct number in a naturalist way, such as reminding the
child that “We need a 2 for two hundred.” After the child finished
making the number, the experimenter asked, “What number did you
just make?” Regardless of the child's response, the experimenter re-
peated the name of the number one more time by saying, “Good job.
You just made two hundred thirty-five.” Again, the goal of training was
only to expose children to corresponding names and numbers and in an
engaging and active way.

2.2.2. Pre- and posttests
The Which-is-N test (Mix et al., 2014; Yuan et al., 2019) is a com-

monly-used measure of children's ability to map spoken names to
written numbers. The structure of the task, a two-alternative forced
choice between two written forms given a spoken name, differs from
the casual structure of storybook reading and the make-a-number game.
There were 16 test items: 8-vs-2, 15-vs-5, 12-vs-22, 11-vs-24, 85-vs-
850, 105-vs-125, 201-vs-21, 206-vs-260, 36-vs-306, 350-vs-305, 402-
vs-42, 64-vs-604, 670-vs-67, 807-vs-78, 1000-vs-100, 1002-vs-1020. All
test pairs included at least one number never seen in training. For half
the test items, one (but not both) of the choice numbers (but not ne-
cessarily the target) was presented during training; for the remining test
items, both choice numbers were novel. In this way, the test is a strong
measure of generalization. Single digit numbers were included to pro-
vide children with some easy trials and avoid floor effects. The choice
items were presented on an A4-sized page in a binder. The numbers
were printed in 42-point Arial font and were arranged horizontally
across the center of the page. Two sets of orders (Set A, Set B) were
created and counterbalanced across subjects.

Each child completed five sessions (pre-test, three training sessions,
post-test), and each lasted 10 to 18 min, appropriate to the attentional
abilities of preschool children. 30% of participants (we substantially
increased this proportion in Study 2) were blind tested by an experi-
menter who was not aware of the conditional assignment of the parti-
cipant. There was no significant difference in the learning outcome
between children who were blind tested and those who were tested and
trained by the same experimenter (see supplemental materials).

2.2.3. Baseline measures of improvement
Although unlikely, children could, in principle, show improved

performance at post-test because of a test-retest effect or because of
increasing comfort with experimenters. Accordingly, an additional
group of children (n = 17) participated in an identical training to the
main experimental condition, but instead of spoken number names and
written forms, their training involved spoken words and their written
forms. For example, in the storybook reading activity shown in Fig. 2,
the experimenter said, “Johnny wants to buy a big cake.” She then
pointed to the letter “C,” and asked, “What letter is this?” Regardless of
the child's response, the experimenter would say, “It is C. C for cake.
Johnny wants to buy a big cake.” Later, the experimenter asked, “So
what does Johnny want to buy? C (point to the letter C) for cake, B

Table 1
All training activities and numbers used in Study 1.

Activity Order Trial Training
day 1

Training
day 2

Training
day 3

Total
subjects

Storybook Grouped 1 2 2 14 20
Storybook Grouped 2 3 3 15 20
Storybook Grouped 3 4 4 16 20
Storybook Grouped 4 223 125 515 20
Storybook Grouped 5 224 135 525 20
Storybook Grouped 6 225 145 535 20
Storybook Grouped 7 40 14 2 20
Storybook Grouped 8 60 15 3 20
Storybook Grouped 9 70 16 4 20
Storybook Grouped 10 402 250 2520 20
Storybook Grouped 11 502 350 3520 20
Storybook Grouped 12 602 450 4520 20
Make-a-number Grouped 13 14 1000 21 20
Make-a-number Grouped 14 15 2000 121 20
Make-a-number Grouped 15 16 3000 221 20
Make-a-number Grouped 16 470 21 40 20
Make-a-number Grouped 17 570 121 60 20
Make-a-number Grouped 18 670 221 70 20
Storybook Random 1 502 3 525 20
Storybook Random 2 2 135 3 20
Storybook Random 3 60 250 4520 20
Storybook Random 4 14 16 21 20
Storybook Random 5 402 1000 16 20
Storybook Random 6 670 21 40 20
Storybook Random 7 224 2 515 20
Storybook Random 8 570 145 2 20
Storybook Random 9 602 450 3520 20
Storybook Random 10 470 15 121 20
Storybook Random 11 70 3000 15 20
Storybook Random 12 3 221 60 20
Make-a-number Random 13 40 4 535 20
Make-a-number Random 14 15 125 4 20
Make-a-number Random 15 225 350 2520 20
Make-a-number Random 16 4 14 221 20
Make-a-number Random 17 223 2000 14 20
Make-a-number Random 18 16 121 70 20
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(point to the letter B) for bike, and C (point to the letter C) for car.” The
Make-a-word game was the same as the Make-a-number game except
that the child and experimenter spelled words using letter cards. For a
sample of the words used, see Supplemental Materials. Children were
tested in the same number pretest and post-tests tasks as the children in
the main experiment. There was also no significant difference in the
ages or pretest scores between participants in the training condition and
those in the baseline measures condition (see supplemental materials).
Children in the baseline measures condition showed no increase in
performance on post-test relative to pretest. A Linear Mixed Effect
Model was conducted in which time was entered as a fixed effect and
participant was entered as a random effect. The model failed to find a
main effect of time, F (1, 16) = 0.08, p = .79. Accuracy at pre-test
(M = 0.60, SE = 0.03) and at post-test (M = 0.59, SE = 0.03), t
(16) = 0.27, p = .79, d = 0.07, did not differ. Thus, pre- and post-test
effects or similar experiences with the experimenter appear at best
minimal.

2.3. Results and discussion

Children from the main Training Experiment showed modest above
chance performance at pretest, t (39) = 4.49, p < .0001, M = 0.61,
SE = 0.03, d = 0.71, consistent with previous studies showing that
some preschool children have early multi-digit number knowledge (Mix
et al., 2014; Yuan et al., 2019). As can be seen in Fig. 3, these children
improved significantly from pretest (M = 0.61, SE = 0.02) to posttest
(M = 0.69, SE = 0.02), t (39) = 3.69, p < .001, d = 0.58. This
training effect was also confirmed by a Linear Mixed Effect model
(LMM) conducted in the R environment (Team, 2017) using the lme4
package (Bates et al., 2015). Significance values were obtained using
the Afex package (Singmann, Bolker, Westfall, & Aust, 2015) with the
KR method, which uses the Kenward-Roger's approximation to calculate

the p values (Luke, 2017). Time (pre- or post-test) was entered as a fixed
effect and participant was entered as a random effect. There was a
significant main effect of time, F (1, 39) = 13.64, p < .001, again
indicating an effect of training.

The scientific significance of the improvement, even though its
absolute magnitude might seem small (an average increase of 8%),
arises from the minimal nature of the training (3 days, a total of 36
unique numbers with just a few repetitions) and was evident on novel
test items. A direct test of performance on partially novel and totally
novel test pairs, excluding items that may be solved by knowledge of
single-digit numbers alone (i.e., “8 vs 2”, “15 vs 5”), revealed no sig-
nificant difference, t (39) = 1.68, p = .10, d = 0.27, in post-test per-
formance on the two classes of test items, consistent with the predicted

Fig. 2. a) Sample book from the storybook reading activity in Study 1. Each book has 5 pages from P.1 to P.5. Materials were identical between the training condition
(top row) and the control condition (bottom row), with the only difference being that the training condition involved numbers, and the control condition involved
spelling. b) Sample materials for the making numbers (or words) with cards game in Study 1. The child and the experimenter each have a set of cards; the only
difference between the training and the control condition is the content on the cards—individual digits for the training and individual letters for the control
condition.

Fig. 3. Proportion of correct trials at pretest and posttest for all children and
children with different levels of early knowledge in Study 1 (defined as above or
below 65% accuracy at pretest). Error bars indicate standard errors.
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far generalization from minimal learning to novel items. This conclu-
sion is also supported by a comparison of pre- and post-test perfor-
mance on the test items in which both target and foil were novel. A
Linear Mixed Effect Model was conducted using only the trials in which
both the names and the written choices were novel; time was entered as
a fixed effect and participant was entered as a random effect. Results
showed a significant main effect of time, F (1, 39) = 7.32, p = .01. For
these totally novel test items, children's performance significantly im-
proved from pretest (M = 0.54, SE = 0.04) to posttest (M = 0.63,
SE = 0.03), t (39) = 2.71, p = .01, d = 0.43.

To further explore how overall learning was related to individual
factors, a multiple linear regression was conducted using age, gender
and pretest score to predict learning (defined as changes in scores from
pretest to posttest). Learning was not related to gender (b = −0.02,
p = .62), but modestly and positively related to continuous age
(b = 0.05, p = .03) with pretest score being the most predictable factor
in how much children learned from the training (b = −0.55,
p < .001). As can be seen in Fig. 3, children with the lowest pretest
scores increased the most from pre-test to post-test, a finding that also
supports the effectiveness of the limited training exposure to number
names and written multi-digit numbers.

The results of Experiment 1 provide initial support for the hypoth-
esis that—given the right data structure—minimal experience with a
relatively few instances from the entire domain (in the present case, all
numbers up to 9999) can lead to broad generalized knowledge to novel
instances sampled from that same domain. Moreover, the core of the
training was simply exposure to the corresponding spoken names and
written forms. There was no special teaching method or explicit ex-
planation of why or how multi-digit numbers work as they do.

3. Study 2

Study 2 tested the robustness of the training effect observed in Study
1 with four modifications. First, children received either the storybook
reading or the making numbers with cards training; in this way, the
experiment provides evidence for the idea that that exposure to corre-
sponding number names and written forms—not the particular activi-
ty—is the key factor in learning. Second, we generated an entirely new
set of training numbers to show that the effects of Study 1 were not
driven by the specific 36 unique training instances chosen for that
study. Third, to provide a more sensitive test of the effects of training,
we excluded children who performed above 85% correct on the pre-
test. Fourth, to provide a more sensitive test of the potential effect of
learning specific items, we also counterbalanced whether numbers that
appeared during the training were the target or the foil number during
testing (which was not done in Study 1).

3.1. Participants

The final sample (66 in the Main Experiment and 25 in the Control
measures) were recruited from the same general population as Study 1.
The mean age of the participants was 4.4 years (range: 2.89–5.99).
There were 49 males and 42 females. The experiment settings and
timelines were identical to Experiment 1. There were two training ac-
tivities (N = 30 and N = 36) as described below. Eight participants
were excluded from the study due to missing one or more sessions
during the study. An additional fifteen participants were excluded due
to pretest scores higher than 85% correct.

3.2. Stimuli and procedures

3.2.1. Main training experiment
As shown in Fig. 4, the procedures in the training conditions were

identical to Study 1 with two exceptions. First, a new set of training
numbers (shown in Table 2) was selected to follow the same distribu-
tional properties (e.g., numbers with 1- to 4-digits numbers, repetitions)

as Study 1 but differed in the specific multi-digit numbers used (which
were randomly selected from possible numbers fitting the distributional
constraints). Second, each participant received only one con-
dition—either the storybook reading activity (N = 36) or the making
numbers with cards activity (N = 30). As in Study 1, each participant
received 18 training trials on each day with 54 trials in total across
three training sessions. Pre- and post-tests. The pre- and posttest items
and the procedures for administering them were identical to Study 1
with the exception of the counter balanced designation as target or foil
of the 8 training items that were the post-test. 64% of participants were
blind tested by an experimenter who was not aware of the conditional
assignment of the participant. There was no significant difference in the
learning outcome between children who were blind tested and those
who were tested and trained by the same experimenter (see supple-
mental materials).

3.2.2. Baseline measures of improvement
Again, to rule out possible test-retest effects and exposure to the

experimenter, we again collected pre- and post-test data from children
who did not experience corresponding spoken names and written forms
of multi-digit numbers. For this pre- to post-test measure, a separate
group of children (N = 25) was exposed to just one stream of the
training information (i.e., either the auditory or visual stream) that was
used in the main training condition (see Fig. 4). These experiences are
near identical to the training experiences in the storybook training
condition but differ only in missing the training in mapping the heard
number name to the written form. The children who received only one
stream of information (either written numbers or spoken number
names) did not demonstrate learning. A Linear Mixed Effect Model was
conducted in which time was entered as a fixed effect and participant
was entered as a random effect. Results failed to find a significant main
effect of time, F (1, 24) = 1.08, p = .31. Children's performance at
pretest (M = 0.55, SE = 0.03) and at posttest (M = 0.59, SE = 0.04)
did not differ significantly, t (24) = 1.04, p = .31, d = 0.21. These
results again suggest minimal if any test-retest effects, minimal effects
of familiarity with the experimenters, or with one modality of the
training information but no association between names and numbers.
Further, there was no significant difference in the ages or pretest scores
between participants in the main training condition and those in the
baseline measures condition (see supplemental materials).

3.3. Results and discussion

Consistent with Study 1, children from the training condition
showed modest but above chance performance at pretest, t (65) = 4.89,
p < .001, d = 0.60, M = 0.58, SE = 0.02. To examine the training
effect, a Linear Mixed Effect model was conducted in which time (i.e.,
pretest or posttest) and training activity (i.e., storybook reading or
making numbers with cards) were entered as fixed effects and partici-
pant was entered as a random effect. Results showed a significant main
effect of time, F (1, 64) = 11.80, p < .001. Neither the effect of
training activity, F (1, 64) = 0.52, p = .47, nor the interaction between
time and training activity reached significance level, F (1, 64) = 0.16,
p = .69. Overall, as can be seen in Fig. 5, children who received
training improved significantly from pretest (M = 0.58, SE = 0.02) to
posttest (M = 0.65, SE = 0.02), t (65) = 3.5, p < .001, d = 0.43. The
lack of differences between the two training formats suggests that the
nature of the activity—listening to a story or actively building num-
bers—is not a key factor. What is similar across the two training ac-
tivities is exposure to co-occurring multi-digit number names and their
written forms.

A direct test of performance on partially novel and totally novel test
items, excluding items that may be solved by knowledge of single-digit
numbers alone (i.e., “8 vs 2”, “15 vs 5”), revealed no significance dif-
ference between these two classes of test items, t (65) = 1.18, p = .24,
d = 0.15. Focusing only on the trials in which both target and foil were

L. Yuan, et al. Cognition 200 (2020) 104243

6



novel, a Linear Mixed Effect Model (with time was entered as a fixed
effect and participant was entered as a random effect) revealed a sig-
nificant main effect of time, F (1, 65) = 15.41, p < .001. As shown in
Fig. 5, for these totally novel test items, children's performance sig-
nificantly improved from pretest (M = 0.53, SE = 0.02) to posttest
(M = 0.64, SE = 0.03), t (65) = 3.93, p < .001, d = 0.48, providing
unambiguous evidence for the generalizability of learning.

In sum, Study 2 in conjunction with Study 1 indicates that preschool
children can learn and generalize the patterns that link spoken names to
written multi-digit numbers. The key findings are: (1) generalization to
novel numbers—numbers not experienced in training and each in-
dividually quite rare in everyday child experience (Dehaene, 1992;
Gunderson & Levine, 2011; Levine et al., 2010)—is comparable or
better than performance on partially experienced items and (2) this
generalization did not require extensive experience with any individual
items, a large sample of potential instances, or explicit instruction. We

Fig. 4. Sample for the book reading activity for the two control conditions in Study 2. a) the visual only—no number words condition. Children saw pictures of
objects and written numbers on the pages, but the experimenter did not provide number names during the training. b) the number words only—no visual condition.
Children saw pictures of objects and heard number words from the experimenter's instruction, but never saw written numbers on the page.

Table 2
All training activities and numbers used in Experiment 2.

Sole Activity Order Trial Training
day 1

Training
day 2

Training
day 3

Total
subjects

Storybook Random 1 321 19 515 36
Storybook Random 2 261 305 124 36
Storybook Random 3 4 124 80 36
Storybook Random 4 30 4 2620 36
Storybook Random 5 421 125 4 36
Storybook Random 6 15 205 30 36
Storybook Random 7 570 405 14 36
Storybook Random 8 80 1002 324 36
Storybook Random 9 19 324 535 36
Storybook Random 10 2 3002 24 36
Storybook Random 11 470 6 3620 36
Storybook Random 12 262 105 525 36
Storybook Random 13 570 14 2 36
Storybook Random 14 14 205 60 36
Storybook Random 15 6 2 19 36
Storybook Random 16 260 145 15 36
Storybook Random 17 60 15 6 36
Storybook Random 18 521 2002 4620 36
Make-a-number Random 1 321 19 515 30
Make-a-number Random 2 261 305 124 30
Make-a-number Random 3 4 124 80 30
Make-a-number Random 4 30 4 2620 30
Make-a-number Random 5 421 125 4 30
Make-a-number Random 6 15 205 30 30
Make-a-number Random 7 570 405 14 30
Make-a-number Random 8 80 1002 324 30
Make-a-number Random 9 19 324 535 30
Make-a-number Random 10 2 3002 24 30
Make-a-number Random 11 470 6 3620 30
Make-a-number Random 12 262 105 525 30
Make-a-number Random 13 570 14 2 30
Make-a-number Random 14 14 205 60 30
Make-a-number Random 15 6 2 19 30
Make-a-number Random 16 260 145 15 30
Make-a-number Random 17 60 15 6 30
Make-a-number Random 18 521 2002 4620 30

Fig. 5. Proportion of correct trials at pretest and posttest in the training con-
dition (including both the story-book activity and the making numbers with
card activity) in Study 2, for all items and for items that involved completely
novel items. Error bars indicate standard errors.
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propose that this is because the many associations that emerge from the
surface structures of the multi-digit names and multi-digit numbers
support systematic seemingly principled generalization.

4. Study 3

Study 3 uses a computational model to provide evidence that far
generalization can result from associative learning given a data set of
multiple co-predicting features that provide many overlapping and re-
dundant pathways to the mapping between a number name and its
written form. We used a form of a deep recurrent network, a general
purpose associative learner, that is known to solve complex problems
by exploiting multiple predictive relations (Hasson, Nastase, &
Goldstein, 2019; Lecun, Bengio, & Hinton, 2015a), a fact that has led
them to be criticized as un-principled, un-interpretable, and not human-
like (Lake et al., 2016; Marcus, 2018). In using this general-purpose
model, we make no claims that the model operates or learns in the same
way as young children. Instead, the goal is to demonstrate the co-pre-
dictive properties between number names and their written forms, al-
beit imperfect and local predictors, are sufficient for an associative
learner that does not explicitly represent any rules or principles to make
far and systematic generalizations (see also, Bloom et al., 2006;
Colunga & Smith, 2005; MacWhinney et al., 1989; Yoshida & Smith,
2003).

4.1. The architecture

The learning task requires linking the structure of a series of words
(the number name) to the structure of an image (the written form).
Specifically, on each trial of the training phase in Study 1 & 2, children
were shown an image of a multi-digit number (e.g., “124”), and the
experimenter provided the sequence of number names verbally (e.g.,
“one hundred twenty four”) while drawing children's attention to the
corresponding written digits using gesture (e.g., saying “four” while
pointing to “4”). Accordingly, we used an image caption model (Lecun
et al., 2015a; Vinyals, Toshev, Bengio, & Erhan, 2015; K. Xu et al.,
2015) as the algorithmic-level implementation for the proposed
learning mechanism as these models are trained to generate lexical
descriptions of images. Typically, these models are used to generate
verbal descriptions of everyday photographs, for example, “The man in
the red shirt is throwing a ball,” from an image with that content. To do
this, the algorithm not only has to learn to recognize individual com-
ponents of the image—e.g., objects, attributes, actions—but also their
relational structure and how those relations relate to the relational
structure of the lexical components of the verbal description. The
computational problem is thus similar to our proposed account of how
generalized knowledge of multi-digit number names and written forms
might emerge. As shown in Fig. 6, we used an image caption model that
is a deep neural network and has an encoder-decoder architecture with
an attention mechanism (Xu et al., 2015). As described below, the en-
coder is used to construct a sequence of feature maps for an input image
(corresponding to the images that children saw during the training), the
decoder is used to generate the sequence of output words (corre-
sponding to the sequence of number words that children heard during
the training), and the attention mechanism allows the model to learn to
focus on the part of the image that is most relevant to the current output
word at each time step (corresponding to children's attention to in-
dividual written digits following the experimenter's gesture). All code,
training, testing materials and results are available at: https://github.
com/iucvl/Learning-generative-principles-of-a-symbol-system

4.1.1. Encoder
The encoder is a deep convolutional neural network (CNN) that

takes an image and passes it through multiple convolution, non-linear
activation, and subsampling stages. The main difference between CNNs
and traditional feed-forward neural networks is that instead of fully-

connected layers where each neuron is connected to all neurons in the
previous layer, the network includes convolutional layers where neu-
rons are connected to a local subset of the neurons in the previous layer.
This encourages them to learn convolutional filters (e.g., 3 × 3 ma-
trices) that extract local features (e.g., edges, textures). The sub-
sampling stages pool features from larger spatial neighborhoods, which
means that later layers of the network produce response maps that are
based on evidence from larger and larger areas of the original image. In
this work, we used Resnet101 (He, Zhang, Ren, & Sun, 2016), which is a
particular CNN architecture that has demonstrated performance in
various image classification tasks to extract features from input images.
This network consists of 101 convolution and pooling layers in total.
Each layer includes multiple levels of convolution followed by a non-
linear activation. A pooling layer is used to reduce the size of output
from the previous layers resulting in a collection of 2048 14 × 14
feature maps. These feature maps can be thought of as a mathematical
representation of the abstract content of the input image (i.e., written
multi-digit numbers). The network is trained using standard back pro-
pagation algorithm, in which the errors are propagated back from the
output of the decoder.

4.1.2. Attention mechanism
Because a sequence of words is generated by the model to describe

each visual image, the decoder needs an attention mechanism to focus
on different elements in the image at each time step. We use the “soft”
attention mechanism proposed by Bahdanau, Cho, and Bengio (2014):
each feature map, which is reshaped into a feature vector as input to the
LSTM network, is assigned a weight at each time step during decoding.
The weights, updated with forward and backward propagation, are
deterministic and represent the probabilities that each pixel is the place
to look to generate the next word. Further details are available at:
https://github.com/iucvl/Learning-generative-principles-of-a-symbol-
system

4.1.3. Decoder
The decoder is a long short-term memory network (LSTM) accom-

panied with attention mechanism described above. This LSTM network
takes a sequence, where at each time step inputs are all the feature
maps (extracted by the encoder) and attention mechanism is used to
decide which feature maps or parts of the feature maps are used to
generate the output—in our case number names such as “three,”
“hundred,” “thirty,” and “five” to describe the feature maps. LSTM is a
type of recurrent neural network (RNN) frequently used for tasks that
require sequence-to-sequence learning such as machine translation.
RNNs contain loops in their hidden layers such that previous outputs
can be used as input for the next training trial (Elman, 1990; Hochreiter
& Schmidhuber, 1997). Thus, they are capable of learning the long-term
dependencies among component names in a number word and the
myriad correlations across different number words. LSTM networks
have advantages over traditional RNNs in retaining memory of earlier
time steps (Hochreiter & Schmidhuber, 1997). The network is trained
with back propagation and is optimized by a loss function, which
computes the cross entropy between the predicted probability (a value
between 0 and 1) of the correct word and actual probability (1) for the
correct word at each time step.

4.2. Training procedures

Because there is good reason to assume that most preschool children
have experience with single-digit numbers, we trained the model with
all single-digit numbers, including the ones that were already in the
training set from Study 1 & 2. To prepare the training data for the
model, we combined the training sets from Study 1 & 2. Thus, the
model was given (and preliminary work showed required) more ex-
tensive training than the children (who might have had some experi-
ences with multidigit numbers prior to the experiment). At any rate, the
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final training data consisted of only 64 training trials with each trial
presenting one unique number. Although larger than what was pre-
sented to children, this data set is still a quite limited sample of all the
possible numbers from 1 to 9999.

The training material consisted of two streams of in-
formation—images of the written numbers and the names. For the vi-
sual information, 64 images were generated in Arial with the overall
image size being constant (240 × 240 pixels). Thus, the font size of the
numbers changed based on the total number of digits. This was done to
prevent the model from learning based on overall size of the image
(e.g., that 3-digit numbers are visually larger than 2-digit numbers).
The CNN model that we used for the encoder is scale invariant; thus,
changing the size of the individual digits poses no problem for this
model.

Weights were initialized following a uniform distribution in the
range of −0.1 to 0.1 for the decoder. The learning rate for the encoder
and decoder were set to be 1e-4 and 4e-4 respectively. A total of 100
epochs were repeated for each model with the dropout rate of 0.5. Also
following standard practice in the computer vision community, we pre-
trained this network on ImageNet (Russakovsky et al., 2015) images of
everyday scenes, so that the network began learning about digits with
network parameters that had some ability to represent general visual
features of objects (Krizhevsky et al., 2012; Simon, Rodner, & Denzler,
2016). We ran 100 models: 50 models that were trained on pairs of
input (equivalent to a post-test) and 50 models that were not trained to
provide a baseline control (equivalent to a pre-test).

4.3. Testing procedures

The name of a written form was presented to the network as a se-
quence in time, as in spoken number names. As with all recurrent
neural networks used for generating sequences of words, at each time
step, the model generates a probability for each token in a library of all
possible tokens. The library used in the current study included 29 to-
kens (see supplemental materials) that can be combined to label all
numbers in the 1–9999 range. The sequence of tokens with the highest
probability was taken as the number name generated by the model, and
the words were combined into a final label for each input image (e.g.,
“one hundred twenty five” for “125”).

The children in Study 1 & 2 were tested in a two-alternative forced-
choice task: given both a target number and a foil number, they needed
to choose the one that matched the name. Thus, to provide comparable
measures, the models were tested on all numbers in the 16 testing pairs
used in Study 1 & 2. Because there are fewer constraints on testing

automated models than on testing children (e.g., fatigue), and in an
effort to provide more accurate estimates of the models' performance,
we added 32 structurally-similar testing pairs for the model, yielding a
total of 48 testing pairs (see supplemental materials for all testing
items). Similar to Study 1 & 2, half of these pairs included one number
(as either foil or target) number that appeared during training; for the
other half of the pairs, both of the two numbers were completely novel.
As described below, we provide multiple converging measures of the
model's learning, from those similar to the children's forced choice task
to others that probe more deeply the nature and bases of the models'
performance.

4.4. Results and discussion

Measures of the accuracy of multi-component captions of images are
not straightforward (Callison-Burch, Osborne, & Koehn, 2006;
Papineni, Roukos, Ward, & Zhu, 2001; Vedantam, Zitnick, & Parikh,
2015). Accordingly, we used five measures that quantify performance
in different but complementary ways.

4.4.1. Edit distance measure
This measure resembled the two-alternative forced-choice nature of

the test, asking how similar the description provided by the model was
to each of the two alternatives, with model's choice taken as the item
most similar to the model's output description. We used the Edit distance
measure that quantifies the similarity between two strings by computing
the minimum number of operations required to transform one string to
the other (Levenshtein, 1966). For example, to convert “eight” to “five”,
we need to substitute “e” with “f,” delete “g,” “h,” and “t,” and insert
“v” and “e,” resulting in a total of 6 steps. Thus, a smaller edit distance
means the two strings are more similar to each other than a larger edit
distance. For the purpose of the current study, for each trial (composed
of a target image and a foil image), we calculate: a) the edit distance
between the true label of the target image and the model-generated
label based on the target image and b) the edit distance between the
true label of the target image and the model-generated label based on
the foil image. If either a) or b) is zero, meaning the model correctly
generated the label for either or both of the target image and foil image,
we scored the model as correct. If neither a) nor b) is zero, but a) < b),
we scored the model as correct. If neither a) or b) is zero, and a) > b),
we scored the model as incorrect.

Fig. 7 (a) shows the edit distance measure for the untrained models
(n = 50) and the trained models (n = 50) after 100 iterations. A linear
mixed effect model (LMM) was conducted in which time was entered as

Fig. 6. Illustration of the architecture
of the model, which has three basic
components: 1) A convolutional neural
network (CNN) as an encoder for ex-
tracting visual features from an input
image, 2) A Long short-term memory
(LSTM) recurrent neural network
(RNN) as an decoder for linking visual
input with a sequence of tokens, and 3)
An attention mechanism that learns to
align tokens with corresponding parts
in the visual input (the shaded region
represents the parts of the image that
are most relevant to the token in the
current time step).
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a fixed effect and model identity was entered as a random effect. Results
showed a significant main effect of training, F (1, 49) = 170.79,
p < .0001. The trained models performed significantly better
(M = 0.82, SE = 0.005) than the untrained models (M = 0.76,
SE = 0.005) in their ability to provide a label that was more similar to
the correct number name than to that of the foil, t (49) = 13,
p < .0001, d = 1.84. A separate linear mixed effect model (LMM) was
conducted—on only test items containing numbers that never occurred
in the training—with time as a fixed effect and model (trained versus
untrained) as a random effect yielded a significant main effect of
training, F (1,49) = 38.75, p < .0001. The trained models performed
significantly better (M = 0.77, SE = 0.01) than the untrained models
(M = 0.72, SE = 0.01) in their ability to choose a written untrained
number between two choices given a number name, t (49) = 6.20,
p < .0001, d = 0.88.

4.4.2. Probability measure
The model outputs a distribution of probabilities for all tokens (the

components of number names) in the library at each time step. We
computed the average probability for the correct tokens as follows.
Suppose the current trial includes two numbers “78” (the target) and
“260” (the foil), with the desired label being “seventy eight.” For the
target image, at time step 1, we took the model-generated probability of
the token “seventy” (P1) (regardless of whether that token had the
highest probability). At time step 2, we took the probability for the
token “eight” (P2) (regardless of whether that token had the highest
probability). The overall probability for the target image was then
computed by averaging P1 and P2. This number can be interpreted as
how probable the model thinks that the target image should be named
by the desired label. Similarly, for the foil image, at time step 1, we took
the model-generated probability of the token “seventy” (P3) and at time

step 2, we took the probability for the token “eight” (P4). The overall
probability for the foil image was then computed by averaging P3 and
P4, and can be interpreted as how probable the model thinks that the
foil image should be named by the desired label. If the overall prob-
ability of the target image was higher than that of the foil image, then
the current trial was scored as correct.

A linear mixed effect model (LMM) with time entered as a fixed
effect and model identity entered as a random effect yielded a sig-
nificant main effect of training, F (1, 49) = 771.05, p < .0001. As
shown in Fig. 7(b), the trained models performed significantly better
(M = 0.82, SE = 0.01) than the untrained models (M = 0.49,
SE = 0.01) in their ability to choose a written number between two
choices given a number name, t (49) = 28, p < .0001, d = 3.92.
Performance on test items that involved completely novel target and
foil numbers was examined in a Linear Mixed Effect model (LMM) with
time was entered as a fixed effect and model identity as a random effect
and yielded a significant main effect of training, F (1, 49) = 265.53,
p < .0001. The trained models performed significantly better
(M = 0.83, SE = 0.01) than the untrained models (M = 0.49,
SE = 0.02) as measured by a better matching output description for the
target than the foil, t (49) = 16, p < .0001, d = 2.3.

4.4.3. Correlation measure
The first two measures assess the relative similarity of the output

number name for the target versus the foil. But one can also ask how
well the generated name captures correct components of the target,
even if not totally correct. For example, if the model's output for the
numbers “256” and “147” are “two hundred fifty” and “one hundred
seven,” the model would seem to have partial knowledge of how names
map to written forms. At the very least, the outputs preserve the ordinal
relation between the numbers (256 > 147, “two hundred fifty”> “one
hundred seven”). One way to capture this is to compute the correlation
between the numerical values of the true labels and the numerical va-
lues of the generated labels (Yuan et al., 2019). We did this for all input
images, target and foil (n = 4800). The generated value and the true
value were highly correlated, Spearman correlation r = 0.83,
p < .0001.

4.4.4. Attention measure
Image caption models have to learn where to look in a scene. If the

models have learned how the temporal order of elements in the name
corresponds to the spatial elements of the written form, they should
show systematic biases in how the temporal sequences of tokens are
related to the attended spatial locations in the input image. That is, the
model should “inspect” the image from left-to-right while producing the
number words. Accordingly, we calculated the probability that the
model was “attending” to the left versus right side of the image, when
the first word versus the last word of the label was outputted by the
model. As expected, the models were more likely to attend to the left
side of the image when the first word was “spoken” (56% vs 44%), but
more likely to attend to the right side of the image when the last word
was “spoken” (31% vs 69%), excluding single digit numbers and
numbers composed of only one word (17% of total data).

4.4.5. Error patterns
To provide further evidence that it is the overlapping surface pre-

dictors that are the basis of the networks and the children's far gen-
eralization, we examined the kinds of item types on which models and
children (in Study 1 and Study 2) were most likely to make errors. If the
model and the children were generalizing on the basis of the same kinds
of partial local predictive relations, they should show a pattern of errors
predictable by overlapping predictors that match versus distinguish the
target from the foil. Past research (Yuan et al., 2019) on children's er-
rors classified the relation between target and foil into four mutually
exclusive categories: single digit numbers (S, e.g., 2 vs 8) which have no
overlapping predictors between the name and the form, multi-digit

Fig. 7. Model performance based on (a) the edit distance measure (b) the
probability measure after 0 epoch and 100 epochs. Error bars indicate standard
errors.

L. Yuan, et al. Cognition 200 (2020) 104243

10



numbers with different numbers of places (M-DP, e.g., 25 vs 405) which
can be discriminated by predictors such as “hundred” and “-ty” as well
as individual components, multi-digit numbers with the same number
of places but no transposition (M-SP-no-T, e.g., 608 vs 658) which can
be discriminated by at least one spoken name to digit (e.g., “fifty”
predicting 5), and multi-digit numbers with the same number of places
and transpositions (M-SP-T, e.g., 306 vs 360). Success on this last type
of items requires the simultaneous application of more predictive ele-
ments. For example, to solve items that are multi-digit numbers with
the same number of places and transpositions (e.g., 306 versus
360)—M-SP-T—the model or the child has to know the precise mapping
between place value terms and the individual digits in a number but
that the symbol “0” does not get named, that “hundred” signals the “3”
in “306”, and that the temporal sequence of number words corresponds
to the spatial location from left-to-right in the written form. Items in the
other categories may be solved with just one or several predictive
components. For example, to figure out which number is “twenty five”
in the pair of “25” and “405”, the child or the network may rely on any
of these associations—that “twenty” refers to numbers with a “2”, that
three-digit numbers must have the word “hundred” in its name, that “4”
corresponds to “four” in the name, and so on. If this analysis is correct,
then children and the networks should perform most poorly in the M-
SP-T category and better on M-DP and M-SP-no-T categories. Perfor-
mance on mapping number names to single digits (which is required
along with other associations on the other items) should yield the best
performance. We used both the edit distance and the probability mea-
sure to assess the networks' performances. As shown in Fig. 8, the
neural networks and children in Study 1 and 2 showed the same ordinal
pattern of errors, consistent with their use of the same kinds of in-
formation. Clearly, there are also differences suggesting that the chil-
dren and the model may weight different predictive factors differently
based on prior experience or that mechanisms at the response stage
influence children's behaviors.

Overall, the above five measures provide converging evidence that
(1) learned associations between a limited sampling of multi-digit
number names and written forms are sufficient to yield knowledge
about how number names in general map to written multi-digit num-
bers, and (2) that learning about multiple and local predictive relations
between surface properties of names and numbers leads to far gen-
eralization. These findings from the model provide additional support
for our main conclusion: Data sets with several local predictors and thus
many paths to generalization lead to rapid learning and systematic
generalization from just a few examples.

5. General discussion

Trained with just 36 unique numbers and their names and with just
one exposure for most of the numbers and names, preschool children
mapped multi-digit names to their written forms for instances not ex-
perienced in the training, instances that were also individually unlikely
to have been encountered in everyday experiences. Studies 1 and 2 used
two different randomly selected training sets, suggesting that the par-
ticular training items do not matter, and that many different samples of
numbers across the range 1 to 9999 would be effective. Studies 1 and 2
used two different training contexts—in combination and alo-
ne—yielding the same outcomes and suggesting that the particular
training context in which the names and written forms co-occur is also
not critical. Presented with a slightly larger training set (64 unique
items) and no repetitions, the model in Study 3 also performed well,
generating number names given images of untrained multi-digit num-
bers. Previous research indicates that preschool children have minimal
understanding of the actual meaning of places (Fuson, 1990; Mix,
Smith, & Crespo, 2019; Ross, 1995), and many school-aged children as
late as 5th grade (Ross, 1986; Ross & Sunflower, 1995) still struggle to
understand the multiplicative hierarchy that underlies base-10 nota-
tion. Thus, it is highly unlikely that the minimal training in Studies 1

and 2 taught the children the meaning of the places, for example, that
the “4” in “346” represents 4 sets of 10. Rather, children's general-
izations to novel instances likely reflect the acquisition and exploitation
of a myriad of predictive relations between names and written forms:
for example, that “two hundred fifty-six” as well as “forty-two” predict
a “2” somewhere in the written form, that “two hundred fifty-two”
predicts two “2's” with one in the left-most position, that “twenty” and

a) Models’ performance on the edit

distance measure after training

b) Models’ performance on the probability

measure after training

c) Children’s performance after training

in Study 1 and 2

Fig. 8. Error patterns across different types of testing items—S = single digit
numbers, M-DP = multi-digit numbers with different numbers of places, M-SP-
no-T = multi-digit numbers with the same number of places but no transpo-
sitions, M-SP-T = multi-digit numbers with the same number of places and
transpositions—for models' performance on the edit distance measure after
training (a), models' performance on the probability measure after training (b),
and children's performance after training in Study 1 and 2 (c). Error bars in-
dicate standard errors.
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“two” both predict a “2” in the written form, and so forth. There is good
reason to believe that the network models in Study 3 succeeded on a
similar basis (LeCun, Bengio, & Hinton, 2015b; Rumelhart, Hinton, &
Williams, 1985; Schmidhuber, 2015). Thus, the entire pattern of results
provides evidence for systematic and broad generalization from a re-
latively few training instances that is not dependent on the explicit
learning or representation of the underlying generative principles.

In her earlier work on this idea, Billman (Billman, 1989, 1993;
Billman & Knutson, 1996) used the term systematicity to refer to mul-
tiple inter-predictive features that offer multiple pathways to general-
ization. This kind of systematicity in a data set appears to be readily
exploitable by human learners and may characterize a variety of
knowledge domains shared by many individuals—not just the surface
properties of place value notation but also many aspects of language
(Bloom et al., 2006; Christiansen & Monaghan, 2010; MacWhinney
et al., 1989), as well as superordinate-level and basic-level object ca-
tegories (McMurray et al., 2012; Rogers & McClelland, 2004; Rosch,
1978; Samuelson, 2002). In these cases, individual learners can have
quite idiosyncratic experiences—specific to their personal history—and
yet generalize and generate patterns consistent with other learners. This
robustness, as well as the ability to generalize from relatively few ex-
periences, may emerge because such Billman-style systematicity builds
on many overlapping inter-predictive features with most encountered
instances (with some exceptions such as “eleven”) presenting at least
some of these many predictive features. Knowledge domains learned
and used by many individuals may evolve to increase local overlapping
predictive patterns precisely because human learners are sensitive to
and readily exploit them (Christiansen & Kirby, 2003; Kirby, Griffiths, &
Smith, 2014; Monaghan, Shillcock, Christiansen, & Kirby, 2014). Thus,
in many domains of human cognition, a hodgepodge of multiple inter-
predictive features may be sufficient to account for human general-
ization (Colunga & Smith, 2005; Hasson et al., 2019; MacWhinney
et al., 1989; Seidenberg & McClelland, 1989).

The children (and the model) in the present studies were purposely
given minimal training to make the point that this kind of systematicity
is easily found and generalized by learners. Although the findings show
clear evidence for this conclusion, performance was well below mas-
tery. There could be more dramatic generalizations given further ex-
periences with number names and their written forms. If one examines
the patterns of overlapping associations in Fig. 1, one can see that two
spoken elements form a hub, “-ty” and “hundred” which mark the
places and form categories of the digits that fall in them. If the example
network had included 4-digit numbers, “thousand” would also be part
of that hub. Given this structure, more experiences and a well-en-
trenched learning of the inter-predictive patterns for 1 to 9999, children
(and deep learning networks) might well show one-shot learning (ex-
trapolation) beyond that range: exposure to the name and written form
for just one novel number, such as 21,578, might be sufficient for the
learner to generate number names for any number from 1 to 99,999. The
learning and explicit representation of well-formed rules and principles
often seems to be the pinnacle of human learning (Lake et al., 2015;
Rule et al., 2015; Tenenbaum et al., 2011), but a great deal of human
intelligence could rest on exploiting a plethora of local, inter-predictive,
and imperfect surface features. This in-principle possibility is well-de-
monstrated in contemporary machine learning.

However, to succeed in the basics of arithmetic, young children
must go beyond the predictive patterns in the surface forms to under-
stand the meaning of places and the multiplicative hierarchy that
provides that meaning. How might learning about the inter-predictive
surface patterns be related to learning about the generative principles?
Many related variants of this question populate the literature in cog-
nitive science: implicit versus explicit learning (Reber, 1989), associa-
tive versus propositional representations (Chomsky, 1980; Fodor &
Pylyshyn, 1988), intuitive processes versus conscious rule interpreters
(Smolensky, 1988), intuitive and rational processing (Hinton, 1990),
associative versus rule-based reasoning (Sloman, 1996), connectionism

versus probabilistic reasoning (Griffiths et al., 2010; McClelland et al.,
2010), statistical learning versus hypothesis testing (Medina, Snedeker,
Trueswell, & Gleitman, 2011; Smith & Yu, 2008). We believe that
children's learning about base-10 notation provides a rich and well-
defined context within which to make progress on these inter-related
issues. With this larger goal in mind, we offer two hypotheses about
how learning the multiple predictive patterns in the surface structure of
number names and written forms may be related to learning the prin-
ciples underlying the multiplicative hierarchy of places.

One possibility is that these are fundamentally distinct forms of
knowledge. Nonetheless, the early learning of predictive patterns re-
lating number names and written multi-digit forms may support
learning the principles of base-10 notation by guiding in-the-moment
attentional processes during formal instruction (Yuan et al., 2019). A
large literature shows that known words automatically direct attention
to referents in crowded visual fields (Huettig & McQueen, 2007; Lupyan
& Ward, 2013; Spivey, Tyler, Eberhard, & Tanenhaus, 2001). Formal in-
school instruction about the multiplicative hierarchy often occurs in
highly cluttered contexts of number lines and number boards with
many written multi-digit numbers in view, heard number talk, and
grounding activities such as the bundling and unbundling of physical
sets of 10. To learn, children must look to relevant visual information at
the right moment. The modeling results of Study 3 show that the sur-
face regularities in number names and corresponding written forms are
sufficient for the internal components of spoken number names to direct
attention to the spatial regions within a multi-digit number. This facility
in looking behavior—acquired through learned associations between
the number names and written forms—may enable children to more
accurately attend to the components of a string of digits and enable
them to connect the relevant components to each other and to
grounding activities about sets of 10. In so doing, early learning of the
partial inter-predictive mappings between names and written forms
may prevent the formation of wrong ideas that characterize some
children's knowledge of the place value system even as late as 5th grade
(Gervasoni et al., 2011; Ross & Sunflower, 1995). This possibility has
direct and actionable implications for understanding why some chil-
dren falter in learning about the place value system while other chil-
dren—in the same classrooms—readily succeed (Yuan et al., 2019).

The second possibility is that that the key grounding for learning
about base-10 notation lies not in the world and concrete examples of
bundled sets of 10 sticks, but in the latent structure of many predictive
correlations within the symbol system itself, the latent knowledge ap-
parent in the hub at the center of network of surface-level associations
(Fig. 1). Advanced associative models can find higher-order correla-
tions that represent abstract categories such as nouns and verbs, or the
distinction between mass nouns and count nouns (Colunga & Smith,
2005; Landauer & Dumais, 1997; Rogers & McClelland, 2004). Image
captioning algorithms, like that used in Study 3, trained on visual
scenes and sentences describing those scenes have sufficient latent
knowledge to generate grammatically-correct sentences without any
training on syntactic categories (Datta et al., 2019; Xu et al., 2015).
Thus, children's learning of many overlapping inter-predictive features
between the surface properties of names and the written symbols may
form the internal knowledge of places that is made explicit with formal
training, just as training in grammar brings forward explicit knowledge
about nouns phrases and verb phrases. Ultimately, the understanding of
place value requires an understanding of the relational structure among
the places; forming latent categories of places may be essential for such
an explicit understanding of the multiplicative hierarchy. This idea that
meaning of places originates in the latent structure inherent in the
surfaces features of the symbol system may explain why fully gen-
erative principles can be approached but perhaps not fully realized for
human learners, as evident in the limits on many adults' understanding
of the base-10 notation when confronted with very large numbers (e.g.,
millions and billions, Landy, Charlesworth, & Ottmar, 2016; Landy,
Silbert, & Goldin, 2013).
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Each of these two possibilities—being facile with the symbols ben-
efits explicit learning about place value and early statistical learning
teaches the underlying relational structure—are not mutually exclusive
and both require more extensive empirical study. The contribution of
the present work to research on education is three-fold: First, it high-
lights a potential educational role for statistical learning from mere
experience—without tasks, explanations or feedback. Second, it offers
an origin for and potential solution to the problem of why some chil-
dren succeed and others falter from the same formal instruction about
place value. Some children may have discovered the statistical regula-
rities behind these mappings long before school; and finally, the results
suggest a new agenda for research on early mathematics education, one
that focuses less on grounding and explanation of abstract concepts and
more on how learners form latent knowledge about the symbol systems
that affects future learning.

In conclusion, learning depends on the internal mechanisms, the
structure of the learning domain, and the prior learning of the learner.
The study of children's learning about the place value system offers a
complex and tractable domain within which to make progress on how
all these components fit together. Critical to this progress is the study of
the data structures that characterize real world learning problems as
they naturally occur. Growing evidence suggests that the statistical
structure of everyday experience often differs fundamentally from the
kinds of data structures used in laboratory experiments of human
learning and those used to train machine learning models (Bambach,
Crandall, Smith, & Yu, 2018; Dupoux, 2018; Frankenhuis, Nettle, &
Dall, 2019; Smith & Slone, 2017). Current deep learning models are
commonly criticized as data hungry and as being able to learn only
local similarities—not general principles—despite all that data
(Feinman & Lake, 2018; Lake et al., 2016; Marcus, 2018). The present
findings suggest a more complete and unified understanding of all
forms of learning and their relation to each other might best begin by
studying natural real-world data sets for real world learning problems.

Note. The input to the LSTM network and on which the attention
mechanism operates was the series of localized feature maps extracted
by the CNN. But, for the ease of interpretation, the raw input image was
shown at the bottom to demonstrate the final learning outcome of the
attention mechanism where the network over time learned to prioritize
the most relevant part of the image for predicting the current compo-
nent word.
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