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Weshow that it is possible to successfully predict subsequentmemory performance based on single-trial EEG ac-
tivity before and during item presentation in the study phase. Two-class classification was conducted to predict
subsequently remembered vs. forgotten trials based on subjects' responses in the recognition phase. The overall
accuracy across 18 subjects was 59.6% by combining pre- and during-stimulus information. The single-trial clas-
sification analysis provides a dimensionality reduction method to project the high-dimensional EEG data onto a
discriminative space. These projections revealed novelfindings in the pre- andduring-stimulus periods related to
levels of encoding. It was observed that the pre-stimulus information (specifically oscillatory activity between 25
and 35 Hz) −300 to 0 ms before stimulus presentation and during-stimulus alpha (7–12 Hz) information be-
tween 1000 and 1400 ms after stimulus onset distinguished between recollection and familiarity while the
during-stimulus alpha information and temporal information between 400 and 800 ms after stimulus onset
mapped these two states to similar values.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Many studies have shown evidence of differences in the electroen-
cephalography (EEG) signals during learning of pictures or words that
will later be remembered compared to items that will be forgotten
(Paller andWagner, 2002; Sanquist et al., 1980). In addition to brain ac-
tivity during learning, many studies have found evidence that anticipa-
tory activity preceding the onset of a stimulus can contribute to
subsequent episodic memory encoding (Fell et al., 2011; Guderian
et al., 2009; Otten et al., 2006, 2010; Park and Rugg, 2010). These differ-
ences in brain activity between the subsequently remembered and for-
gotten trials before or during stimulus presentation are often referred to
as subsequent memory effects or SMEs.

The difference in event-related potential (ERP) to presentation of the
subsequently remembered and forgotten trials is known as difference
due tomemory (Dm) (Paller et al., 1987). It is typicallymeasured as a pos-
terior positivity between 400 and 800 ms in the study phase of amemory
task (Paller andWagner, 2002). However, the size and timing of the effect
vary depending on the paradigm of the experiment (Johnson, 1995).

Several studies have successfully demonstrated that brain oscilla-
tions in multiple EEG frequency bands during encoding can distinguish
between remembered and forgotten trials (see (Hanslmayr and
Staudigl, 2013) for a review). It was found that power increases for
the remembered items (positive spectral SMEs) typically occurred in
the theta and high gamma bands (Klimesch et al., 1996a; Sederberg
ghts reserved.
et al., 2003; Staudigl and Hanslmayr, 2013) and power decreases for
the remembered items (negative spectral SMEs) typically occurred in
the alpha and low beta bands (Hanslmayr et al., 2009, 2012; Klimesch
et al., 1996b) of the EEG signal.

It has been recently shown that successful encoding also depends on
anticipatory brain activity before encoding elicited by presenting cues be-
fore each study item. Using an incidental memory paradigm, Otten et al.
(2006, 2010) showed that there is a significant difference in the ERPs to
cue presentation during the pre-stimulus period of the study phase be-
tween the subsequently remembered and forgottenwords. In a function-
al magnetic resonance imaging (fMRI) study, Park and Rugg (2010)
found significant differences in the level of hippocampal BOLD activity
during the cue-item interval between words with subsequent memory
contrasts. It has also been reported that anticipatory brain activity is not
only related to memory formation but reward anticipation, where differ-
ences in ERP and theta power were only observed for words following
high reward cues (Gruber and Otten, 2010; Gruber et al., 2013).

A number of studies have shown that subsequent memory can be
predicted from pre-stimulus spectral (oscillatory) activity without in-
formative cues. This was identified by analyzing power in different fre-
quency bands of the pre-stimulus brain activity (Fell et al., 2011;
Guderian et al., 2009). For instance, Guderian et al. (2009) used MEG
to show that later recalled words, as compared to later forgotten
items, are associated with stronger pre-stimulus increases in theta
power (3–8 Hz) starting 200 ms before study item presentation (a fix-
ation cross was presented 500 ms before each stimulus). In an intracra-
nial EEG study, Fell et al. (2011) found that the rhinal cortex and
hippocampus show enhancement of pre-stimulus theta power during
the jittered inter-stimulus interval (ISI) for successful memory
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Fig. 1. Timing of the visualmemory task. The two shaded areas of the study phase noted as
(A) and (B) are the pre- and during-stimulus periods considered in our analysis (colored
in blue and red respectively). The goal of the classifier is to predict whether the subject re-
members a given stimulus using the pre- and during-stimulus EEG of each presentation in
the study phase.
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formation. It was also found that this pre-stimulus effect extends from
theta all the way up to the beta range (up to 34 Hz) within the rhinal
cortex.

The studies discussed above averaged over multiple trials to reveal
the underlying SMEs. However, pattern classification approaches on
fMRI data have been successful in predicting subsequent memory in sin-
gle trials. A single-trial prediction of subsequent recognition performance
has been demonstrated using multivoxel pattern analysis (MVPA) of
fMRI data during encoding of phonogram stimuli (Watanabe et al.,
2011). Watanabe et al. (2011) found that activity in the MTL (medial
temporal lobe) acquired during encoding is predictive of subsequent rec-
ognition performance. In a very recent fMRI study, Yoo et al. (2012)mon-
itored the activation in parahippocampal cortex (PHC) in real-time and
presented study items when subjects entered good or bad brain states
for learning of novel scenes. The brain states were determined by com-
puting the pre-stimulus difference between the BOLD signal activations
in the parahippocampal place area (PPA) and reference ROI (region of in-
terest). They found that subsequent recognitionmemorywasmore accu-
rate for items presented when PPA activation was lower than the
reference ROI activation by a subject-specific threshold. The good/bad
brain states defined by Yoo et al. (2012) are unlikely to reflect a general
encoding-related state but rather a context specific encoding-related
state (good/bad brain state for encoding scenes in this case).

While single-trial classification results using fMRI are encouraging,
there has not been any research on single-trial analysis of SME using a
more mobile and affordable recording procedure such as EEG. Our
study aims to identify the characteristics of the various SMEs in pre-
and during-stimulus EEG on a single-trial basis. This can potentially be
developed as a practical system to predict preparedness for, and success
of, memory encoding which could be used to improve memory perfor-
mance. By presenting stimuli at predicted optimal memory encoding
times (and repeating presentations when the during-stimulus classifier
deems them not likely to be well encoded) users may be able to learn
material with fewer presentations. With prolonged use of the system,
users may become more aware of when they are in, and how to get
into, better states for remembering from the implicit feedback provided
by the timing and repetition of the presented items. This may eventually
improve thememory performance of the users evenwithout the system.

Classification was conducted on remembered vs. forgotten trials by
combining the pre- and during-stimulus information in the EEG signal.
Three separate classifiers were trained to learn the spectral features of
the pre-stimulus SME, temporal features of the during-stimulus SME,
and spectral features of the during-stimulus SME. The results from the
individual classifiers were then combined to predict subsequent mem-
ory in single trials. The single-trial classification analysis can be consid-
ered as a non-linear dimensionality reduction method to effectively
project the high-dimensional EEG data onto a discriminative space.
These projections further revealed novel findings in the pre- and
during-stimulus period related to levels of encoding which would
have been difficult to find by simply averaging over the high-
dimensional EEG data. The classifier scores (i.e. projections of the EEG
signals onto the discriminative space defined by the classifier) were
grouped by the different response options given in the recognition
phase to examine the relationship between the classifier scores and
levels of encoding represented by subjects' recognition confidence. In
order to better understand the brain activity underlying SMEs utilized
by the classifiers, temporal and spectral analyses were conducted on
the EEG signals.

Materials and methods

EEG for the present study was previously recorded in 61 healthy
right-handed males (consisting of car experts and novices) during a vi-
sual memory task (Herzmann and Curran, 2011). In the study phases,
subjects memorized pictures of birds and cars (in separate blocks). In
the recognition phases, participants had to discriminate these study
items from random distractors using a rating scale with 5 options
(recollect, definitely familiar, maybe familiar, maybe unfamiliar, and
definitely unfamiliar). Timings of trials in the study and recognition
phases are given in Fig. 1.

Participants

The subjects were right-handedmales (age 18–29) who volunteered
for paid participation in the experiment. Out of the 61 subjects, 30 were
self-reported car experts while none were bird experts based on a self-
report questionnaire. For the classification study, 18 subjects were pre-
selected from the group based on the criteria given below. Inclusion
criteriawere set up to acquire a datasetwith 1) a sufficient number of re-
membered/forgotten trials for classifier training; 2) subjects who were
attentive during the experiment based on their performance in the
memory task. The subjects who did not meet these criteria were exclud-
ed in a stepwise manner. As a result, 18 subjects were pre-selected for
analysis (10 subjects were car experts).

Subject's behavioral performance
10 subjectswhowere not effectively participating in the givenmem-

ory task were discarded from further analysis. These subjects who had
behavioral performance lower than 56.3% (50% chance performance)
were excluded. A response was considered correct if they responded
with old (recollect, definitely familiar, and maybe familiar) to a target
item or new (maybe unfamiliar, definitely unfamiliar) to a distractor.
Note that the threshold 56.3% was calculated by subtracting the stan-
dard deviation from the average of the behavioral accuracies of all 61
subjects.

Number of trials after rejection of trials with artifacts
33 subjects were excluded due to insufficient number of trials to

train a reliable classifier. Subjects that had less than 64 trials within
each of the two classes after trial rejection were excluded from further
analysis to ensure the number of trials available was equal to the num-
ber of electrodes in the worst case.

Stimulus presentation and EEG recording

The experiment was divided into 8 blocks consisting of a study and
recognition phase. The stimuli consisted of color photographs of cars
and birds where cars were given in the odd blocks and birds in the



Fig. 2. The 73 GSN electrode locations used for the single-trial analysis are highlighted in
black. These electrode locations are an approximate equivalent of the 10–20 system. The
four channel groups are regions of interest used by the temporal during–stimulus classi-
fier. CM centro medial, LPS left posterior superior, RPS right posterior superior, PM
posterior-medial.
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even blocks. The pictures were presented on a 17-inch flat-panel LCD
monitor (Apple Studio Display SP110, refresh rate 59 Hz) at a viewing
distance of 1 m.

During the study phase, the subjects were instructed to memorize
forty target pictures. A fixation cross appeared for 200 ms then a
study item was shown for 2 s. The ISI between the items in the study
phase was 800 ms. After approximately 10 min, the subjects were
given a recognition test. In the recognition phase, targets learned in
the study phase had to be discriminated from forty new, unfamiliar
distractors. A fixation cross appeared for 200 ms then a study or
distractor itemwas shown for1.5 s. All itemswere presented in random
order. The participants had to decidewithout time limit if they had seen
the picture in the study phase or not using a rating scale with 5 options
(recollect, definitely familiar, maybe familiar, maybe unfamiliar, and defi-
nitely unfamiliar). The subjects were asked to select recollect if they
had a conscious recollection of learning the picture in the study phase.
If they did not recollect the stimulus, theywere asked to give familiarity
ratings for it by pressing one of the keys that corresponded to one of the
four options from the rating scale. The order of stimuli and assignment
of response buttons was kept constant for all participants to ensure
comparability of task demands.

EEG was recorded with a 128-channel Geodesic Sensor NetTM
(HydroCel GSN 128 1.0, Tucker, 1993) using an AC-coupled 128-
channel, high-input impedance amplifier (200 MΩ, Net AmpsTM, Elec-
trical Geodesics Inc., Eugene, OR). Amplified analog voltages (0.1–
100 Hz bandpass) were digitized at 250 Hz. Initial common reference
was the vertex channel (Cz). Individual sensor impedanceswere adjust-
ed until the levels were lower than 50 kΩ.

Pre-processing

EEG epochs from the study phase of the experiment were extracted
and recalculated to average reference. Trials that included high noise
were automatically discarded using the rejkurt function in EEGLAB
(Delorme and Makeig, 2004) which rejects trials based on the kurtosis
of each trial. Then each trial was manually inspected to exclude trials
which showed eyemovement ormuscle artifacts. An average of 40 trials
was rejected for each subject. To further remove eye movement arti-
facts, independent component analysis (infomax ICA) (Hyvärinen
et al., 2001; Makeig et al., 1996) was performed to identify and remove
them. The degrees of freedom of the EEG signal are reduced after re-
moving the eye movement components. A subset of 73 electrodes
which is an approximate equivalent of the 10–20 system was selected
for further analysis in order to reduce the dimensionality of the data
set and ensure a full rank covariance matrix for eigenvalue decomposi-
tion (for common spatial patterns) even after removing the indepen-
dent components. The locations of the selected electrodes are given in
Fig. 2.

Classification problem

The classification problem was set up as follows. First, trials that
were presented in the study phase were labeled according to the results
of the recognition phase. There were two labels: remembered (class 1)
and forgotten (class 2). The remembered class consisted of trials where
the subjects pressed the button recollect and the forgotten class
consisted of trials where the subjects pressed the buttons maybe
unfamiliar and definitely unfamiliar. Trials with definitely familiar or
maybe familiar responses were not included in the remembered class
to maximize the difference in encoding strength between the classes
(trials with maybe unfamiliar were considered forgotten trials due to
the limited number of trials with definitely unfamiliar responses), but
they were used to compare the classifier scores and the subjects' re-
sponses in the recognition phase (see the Classifier scores for all rating
scale responses section). Sets of labeled examples were acquired from
the shaded areas (A) (−300 to 0 ms before stimulus presentation)
and (B) (400–800 and 1000–1400 ms after stimulus onset) of each
trial in Fig. 1. Note that separate classification analysis on item type
(car/bird) was omitted since the number of car/bird items was insuffi-
cient to build a reliable classifier for most of the subjects.

Classifier performance was evaluated based on the number of trials
considered for classification. Chance level in a simple 2-class classifica-
tion problem is not exactly 50%, but 50% with a confidence interval for
a given p value depending on the number of trials. These intervals
were calculated usingWald intervals with adjustments for a small sam-
ple size (Agresti and Caffo, 2000; Müller-Putz et al., 2008). This gives a
much more accurate interval for small samples compared to the ordi-
nary Wald interval. The Wald interval is the normal approximation of
the binomial confidence interval.
Classification

Based on previous findings on pre-stimulus spectral SME that found
power differences between the remembered and forgotten items rang-
ing from theta to the beta bands (Fell et al., 2011), linear classifiers were
designed to learn thepower differences between the two classes inmul-
tiple subbands ranging from theta to low gamma of the pre-stimulus
EEG data. Common spatial patterns (CSPs)were used to learn spatial fil-
ters which maximize the power difference between the two classes
(Blankertz et al., 2008). The CSP algorithm is designed to increase the
discriminability by finding spatial filters that maximize the power of
the filtered signal whileminimizing for the other class. The 300 ms sub-
sequence preceding the to-be-learned stimulus (portion noted as (A) in
Fig. 1) was extracted from each trial before any pre-processing was
performed to prevent any temporal smearing from the signal during ac-
tual encoding. We used a total of 9 bandpass filters with pre-selected
subbands to account for the wide range of frequency bands associated
with pre-stimulus SME. The subbands were selected based on well
known rhythmic activities of EEG signals between 4 and 40 Hz and
overlapping frequencies in between. The passband for each filter was
4–7 Hz (theta band), 6–10 Hz, 7–12 Hz (alpha band), 10–15 Hz, 12–

image of Fig.�2
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19 Hz (low beta band), 15–25 Hz, 19–30 Hz (high beta band), 25–
35 Hz, 30–40 Hz (low gamma band). The overlapping frequencies
were used to compensate for individual differences in the EEG subbands
(Doppelmayr et al., 1998) and timing of the pre-stimulus SME.
Subbands with informative patterns for subsequentmemory prediction
were identified from the training set and only the classifiers corre-
sponding to those informative subbands were used to classify the vali-
dation set. The output of the pre-stimulus classifier (denoted as
0 ≤ pA ≤ 1) can be interpreted as the pre-stimulus classifier score
of how good the classifier deems the brain state for remembering
pictures.

Two separate classifiers were designed to extract the temporal
and spectral characteristics of the during-stimulus period of the
remembered/forgotten trials. Temporal features were learned by
exploiting the ERP differences (namely the Dm effect) between the
two classes in the spatio-temporal domain. The during-stimulus tempo-
ral classifierwas trained to learn these features of the EEG data between
400 and 800 ms after stimulus presentation from four channel groups
(CM centro medial, LPS left posterior superior, RPS right posterior supe-
rior, and PM posterior-medial as given in Fig. 2) where the Dm effect is
known to be prominent (Paller andWagner, 2002). Significant spectral
SME in the alpha band (7–12 Hz) has been robustly observed in various
memory experiments (Hanslmayr et al., 2009, 2012; Klimesch et al.,
1996b), hence spectral features were extracted (using the CSP algo-
rithm) by learning the spatial patterns that best distinguish the alpha
power difference between the two classes. The data suggested that
the early and late alpha SMEs showed considerably different patterns.
Hence the during-stimulus spectral classifier learned the power differ-
ence between the remembered and forgotten trials by combining the
information from the two separate time windows (400–800 ms and
1000–1400 ms after stimulus presentation). The during-stimulus tem-
poral and spectral classifier results were averaged to determine the
final output of the during-stimulus classifier (denoted as 0 ≤ pB ≤ 1)
for a given test trial. This value can be interpreted as the during-
stimulus classifier score on the success of the encoding process.

The scores pA and pB from the pre- and during-stimulus classifiers
were averaged and compared to the average score of the training set
to determine the final label for a given test trial. A given trial was classi-
fied as remembered if (pA + pB) / 2 ≥ (mA + mB) / 2 and forgotten if
(pA + pB) / 2 b (mA + mB) / 2 where mA and mB are the mean pre-
and during-stimulus classifier scores of the training set respectively.
The classification accuracies for the pre- and during-classifiers were
Table 1
Average classification accuracy from the pre-stimulus, during-stimulus, and pre-during combin
sification) are givenwith their corresponding p-values. The last columngives the number of tria
forgotten). Car experts and novices are noted as (E) and (N), respectively. Overall accuracies g

Subject Pre- (%) During- (%)

S03 (E) 58.85(p = 0.010) 59.81(p = 0.0
S06 (E) 58.06(p = 0.011) 56.05
S10 (E) 55.82 52.21
S15 (N) 58.29(p = 0.022) 53.48
S16 (N) 52.00 60.00(p = 0.0
S17 (E) 58.86(p = 0.018) 55.43
S20 (E) 57.25 57.97
S22 (N) 57.05 63.46(p = 7
S24 (N) 55.80 60.14(p = 0.0
S26 (E) 51.88 54.89
S40 (N) 52.66 51.21
S51 (E) 62.14(p = 2 × 10−4) 63.79(p = 2
S52 (N) 57.80(p = 0.038) 63.58(p = 4
S56 (E) 59.11(p = 0.009) 65.02(p = 2
S57 (N) 61.96(p = 0.002) 55.83
S59 (E) 62.24(p = 2 × 10−4) 57.68(p = 0.0
S61 (N) 56.47 53.53
S62 (E) 50.44 58.41(p = 0.0
Overall 57.16 57.88
evaluated by comparing pA tomA and pB tomB respectively.More details
on the classifier design can be found in Appendix A.1.

Temporal and spectral analyses

Temporal and spectral analyses were conducted in order to better
understand the brain activity differences that are available for use by
the three classifiers. Even though some channels were excluded
from classification, all channels were considered here to reveal any sig-
nificant SME across subjects. Significant SMEs were identified by
conducting a non-parametric randomization test using cluster-based
correction for multiple comparisons (Maris and Oostenveld, 2007).
First, the test statistic between the remembered and forgotten trials
was calculated for each sample (each time point for temporal analysis,
each electrode position for spatial analysis). Clusters were then identi-
fied by finding adjacent samples with significant difference between
the two conditions (p b 0.05). The cluster-level statistic was calculated
by summing up these differences for each cluster and selecting the
cluster with the maximum value. This result was compared to the
cluster-based statistic of the permutation distribution generated from
10,000 random within-subject permutations of trial labels (Maris and
Oostenveld, 2007). In order to adjust for multiple tests across frequency
bands in the pre-stimulus period, significant cluster-level statistics in
adjacent frequency bands were summed and compared to the corre-
sponding permutation distribution.

Results

Classification accuracy

Table 1 gives the classification accuracies for all 18 subjects. By com-
bining the pre- and during-stimulus classifiers, the overall classification
accuracy (calculated for all trials from the 18 subjects) achieved 59.64%
which is approximately a 2% increase from the individual pre- and
during-stimulus classifier results. The pre-stimulus and during-
stimulus classifiers each gave individual classification results signifi-
cantly over chance (significantly over 50% with p b .05) for 9 subjects
with none going significantly below 50%. By combining the two time
periods, we were able to achieve significantly over chance results for
13 subjects out of the 18 subjects. Significance level was calculated
based on the total number of trials in the cross-validation and left-out
ed classifiers. Results significantly over chance (based on the number of trials used for clas-
ls fromeach class before dividing into cross-validation and left-out sets (R: remembered/F:
iven in the last row are the accuracies over all trials considered for classification.

Combined (%) # trials
(R/F)

05) 61.72(p = 7 × 10−4) 144/65
58.87(p = 0.005) 117/131
59.04(p = 0.004) 104/145
57.75(p = 0.033) 125/62

05) 56.00 112/88
58.86(p = 0.018) 84/91
60.87(p = 0.010) 71/67

× 10−4) 56.41 94/62
16) 62.32(p = 0.004) 68/70

55.64 68/65
54.11 75/132

× 10−5) 66.26(p = 4 × 10−7) 122/121
× 10−4) 71.10(p = 2 × 10−8) 90/83
× 10−5) 61.08(p = 0.002) 121/82

64.42(p = 2 × 10−4) 94/69
16) 59.75(p = 0.003) 123/118

58.82(p = 0.020) 85/85
11) 51.77 154/72

59.64
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sets for each subject (Agresti and Caffo, 2000; Müller-Putz et al., 2008)
as described in Section 2.4.

Out of the 13 subjects with significantly over chance results, 8 sub-
jects were self-reported car experts. However, there were no significant
differences in accuracy for any of the classifiers between the two groups
based on the Kruskal–Wallis test (pre-: p = 0.33, during-: p = 0.79,
combined: p = 0.92), which should not be surprising since memory
for both birds and cars was included in all analyses.
Temporal and spectral SME

Subsequent memory effects in the pre- and during-stimulus periods
were identified using methods given in the Classifier scores for all rating
scale responses section. Oscillatory power in the pre-stimulus period
was examined separately on 5 non-overlapping subbands (theta,
alpha, low beta, high beta, and low gamma). For a given subband,
within-subject averages of the power difference between the remem-
bered and forgotten trials were calculated on all electrode positions.
Afterwards, electrode positions with significantly large power differ-
ence for a given subband were identified by conducting a paired-
sample t-test. This effect was adjusted for multiple comparisons using
the cluster-based correction explained in the Classifier scores for all
rating scale responses section. The pre-stimulus period showed consis-
tent positive spectral SME across subjects in the high beta (19–30 Hz)
and low gamma (30–40 Hz) bands in the parietal electrodes as given
in Fig. 3.
Fig. 3. (a): Difference in high beta power between the remembered and forgotten trials betwee
but masked by the spatial pattern of the most significant cluster resulting from cluster-based a
membered and forgotten trials between −300 and 0 ms before stimulus presentation. (d): Sa
resulting from cluster-based analysis across all subjects (p b 0.05).
The temporal during-stimulus classifier performance depends on the
size of the Dm in channel groups CM, LPS, RPS, and PM within 400–
800 ms. Time segments with significant Dm effect across subjects were
identified based on the cluster-based analysis. Subject-specific ERPs
were calculated for the two classes on all channel groups. Time points
with significantly large Dm were identified by conducting a paired-
sample t-test on the ERPs (p b 0.05). Cluster-based correction was used
to adjust for multiplecomparison. Channel groups LPS, RPS, and PM had
significant Dm effects within this time segment as given in Fig. 4.

Differences in alpha power between the remembered and forgotten
trials were analyzed separately in the two time windows used for the
during-stimulus spectral classifier (400–800 and 1000–1400 ms after
stimulus onset). For each time window, the alpha event-related
desynchronization (ERD) (Pfurtscheller and Lopes da Silva, 1999) mea-
surements for the remembered and forgotten trials were calculated
using EEG power relative to the average power during the baseline pe-
riod. Alpha power difference between the remembered and forgotten
trials was defined as the difference of the ERD measurements between
the two classes. For each subject, the average alpha power difference be-
tween the remembered and forgotten trials was calculated on all elec-
trode positions. These values were used in the same manner as the
pre-stimulus analysis to reveal clusters of channels that showed signif-
icant difference between the two classes. The two time windows gave
significantly different scalp patterns as given in Fig. 5. There was signif-
icantly stronger alpha desynchronization for the forgotten trials com-
pared to the remembered trials (positive spectral SME) in the left
central area during the 400–800 ms window (p b 0.05); while there
n−300 and 0 ms before stimulus presentation (log (μV2)). (b): Same topography as in (a)
nalysis across all subjects (p b 0.05). (c): Difference in low gamma power between the re-
me topography as in (c) but masked by thespatial pattern of the most significant cluster

image of Fig.�3


Fig. 4.Mean amplitudes for remembered/forgotten trials across channels groups CM, LPS, RPS, and PM. Portionswith significant effects resulting from cluster-based analysis are shaded in
gray (p b 0.01).

Fig. 5. (a): Difference in alpha power between the remembered and forgotten trials between 400 and 800 ms after stimulus onset (log (μV2)). (b): Same topography as in (a) but masked
by the spatial pattern of the most significant cluster resulting from cluster-based analysis across all subjects (p b 0.05). (c): Difference in alpha power between the remembered and for-
gotten trials between 1000 and 1400 ms after stimulus onset. (d): Same topography as in (c) butmasked by the spatial pattern of themost significant cluster resulting from cluster-based
analysis across all subjects (p b 0.05).
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Table 2
The mean scores given by the pre-stimulus classifiers trained on the 9 separate bandpass
filtered data. Repeated measure ANOVA was conducted between recollect trials (given in
italics) and the 4 other response options. Significant p-values after Bonferroni adjustment
for multiple comparisons are given with * superscripts (⁎: p b 0.012, ⁎⁎: p b 0.005, ⁎⁎⁎:
p b 0.001, ⁎⁎⁎⁎: p b 0.0001).

Recollect Def fam Maybe fam Maybe unfam Def unfam

4–7 Hz 0.506 0.512 0.506 0.467⁎⁎ 0.459⁎⁎

6–10 Hz 0.506 0.500 0.493 0.466⁎⁎ 0.454⁎⁎⁎

7–12 Hz 0.505 0.498 0.492 0.468⁎⁎ 0.459⁎⁎

10–15 Hz 0.511 0.488 0.487 0.472⁎ 0.474⁎⁎

12–19 Hz 0.511 0.498 0.496 0.461⁎⁎⁎ 0.482
15–25 Hz 0.499 0.500 0.478 0.462⁎⁎ 0.471⁎

19–30 Hz 0.492 0.464 0.463 0.457⁎ 0.481
25–35 Hz 0.511 0.449⁎⁎⁎⁎ 0.460⁎⁎⁎ 0.463⁎⁎⁎⁎ 0.466⁎⁎⁎⁎

30–40 Hz 0.496 0.456 0.461 0.464 0.478
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was significantly stronger alpha desynchronization for the remembered
trials (negative spectral SME) in the posterior area during the 1000–
1400 ms window (p b 0.05).

Classifier scores for all rating scale responses

We also examined the relationship between subjects' responses and
classifier scores. Even though trials with maybe familiar and definitely
familiar responses were excluded from the previous analysis due to a
desire to maximize difference in encoding strength, we can acquire
the classifier scores for these trials using the same classification proce-
dure (see Appendix A.1 for details). The classifier score is a projection
of the high-dimensional EEG data onto a 1-dimensional hyperplane
which best discriminates between the remembered and forgotten clas-
ses. These hyperplanes (or projections) are defined by the features used
by the different classifiers. Hence, it is possible to efficiently reveal un-
derlying factors related to subsequentmemory from the EEGdata by ex-
amining the scores given from the different classifiers. This analysis was
conducted on the combined classifier scores aswell as the three individ-
ual classifier (pre-, during-temporal, and during-spectral) scores. Both
analysis of variance (ANOVA) and the Kruskal–Wallis test were used
to compare the classifier scores from the recollect trial to the 4 other re-
sponses. Since both tests gave similar results, we only report results
based on the repeated measure ANOVA with Bonferroni adjustment
for multiple comparisons on different responses and classifiers. The re-
sults are illustrated in Fig. 6.

For the combined classifier, recollect trials had a mean score
significantly different from all other responses (p b 2 × 10−4). For the
pre-stimulus classifier, trials with recollect responses also had a mean
score significantly different from all other responses (p b 9 × 10−4).
For the during-stimulus temporal classifier, trials with recollect re-
sponses had a mean score significantly different from maybe familiar
and all unfamiliar trials (p b 2 × 10−8). For theduring-stimulus spectral
Fig. 6. The estimatedmeans and the approximate 95% confidence intervals of the classifier score
m-unfam:maybe unfamiliar,m-famil:maybe familiar, d-famil: definitely familiar, recollect). Respon
corresponding p-values are given below thefigure. All results are based on the ANOVA testwith
m-unfam (p b 9 × 10−26); m-famil (p b 7 × 10−11); d-famil (p b 2 × 10−4). (b) Pre-stimu
(p b 9 × 10−4). (c) During-stimulus temporal: d-unfam (p b 2 × 10−8); m-unfam (p b 5 × 1
m-unfam (p b 2 × 10−10); m-famil (p b 4 × 10−5).
classifier, trials with recollect responses also had a mean score
significantly different from maybe familiar and all unfamiliar trials
(p b 4 × 10−5). These results indicate that the pre-stimulus classifier
gives significantly smaller scores to the definitely familiar trials com-
pared to the recollect group while the two during-stimulus classifiers
map the definitely familiar trials closer to the recollect trials.

Since the pre-stimulus classifier combines information from multi-
ple bands, each subbandhad to be isolated to examinehow the different
frequencies contributed to the difference in classifier scores between
the different responses. It was revealed that the recollect trials had sig-
nificantly larger mean score than the familiar trials between 25 and
35 Hz. This implies that the pre-stimulus classifier's ability to distin-
guish between recollect and definitely familiar trials is carried mostly
by information in the high beta and low gamma bands. All mean scores
and significant results from the ANOVA test are given in Table 2. Here,
we only adjusted for multiple comparisons across the 4 response op-
tions and not across the multiple frequencies since the goal was to
s (Hochberg and Tamhane, 1987) for all 5 response options (d-unfam: definitely unfamiliar,
seswith significantly differentmeans from the recollect trials are givenwith a star and the
Bonferroni adjustment formultiple comparisons. (a) Combined: d-unfam (p b 5 × 10−20);
lus: d-unfam (p b 8 × 10−11); m-unfam (p b 2 × 10−12); m-famil (p b 0.002); d-famil
0−12); m-famil (p b 6 × 10−11). (d) During-stimulus spectral: d-unfam (p b 2 × 10−7);

image of Fig.�6


Table 3
Themean scores given by the during-stimulus spectral classifiers trained on the individual
time windows. Repeated measure ANOVA was conducted between recollect trials (given
in italics) and the 4 other response options. Significant p-values after Bonferroni adjust-
ment for multiple comparisons are given with * superscripts (⁎: p b 10−3, ⁎⁎: p b 10−4,
***: p b 10−5).

Recollect Def fam Maybe fam Maybe unfam Def unfam

400–800 ms 0.543 0.527 0.492⁎ 0.480⁎⁎⁎ 0.475⁎⁎⁎

1000–1400 ms 0.524 0.473⁎ 0.449⁎⁎⁎ 0.475⁎⁎ 0.472⁎

Table 4
The mean definitely familiar scores (given in italics) given by the 4 different classifiers
were compared to the maybe familiar and unfamiliar scores using repeated measure
ANOVA. Significant p-values after Bonferroni adjustment for multiple comparisons are
given with * superscripts (⁎: p b 0.003, ⁎⁎: p b 10−3).

Classifier Def
fam

Maybe
fam

Maybe
unfam

Def
unfam

Group 1 During-temporal (400–800 ms) 0.520 0.468⁎ 0.460⁎⁎ 0.458⁎⁎

During-alpha (400–800 ms) 0.527 0.492 0.480⁎⁎ 0.475⁎⁎

Group 2 Pre-[25–35 Hz] (−300–0 ms) 0.449 0.460 0.463 0.466
During-alpha (1000–1400 ms) 0.473 0.449 0.475 0.472
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reveal underlying activities that may account for the effect found in the
pre-stimulus scores.

The during-stimulus spectral classifier combines information from
two distinct timewindows (400–800 and 1000–1400 ms after stimulus
onset). Hence, classifier scores were recomputed using classifiers
trained on individual windows. The classifier scores for the early win-
dow (400–800 ms) showed similar values for the recollect and definitely
familiar trials. However, the classifier scores for the later window
(1000–1400 ms) were significantly different between the two re-
sponses (p = 3 × 10−4). All mean scores and significant results from
the ANOVA test are given in Table 3.
Discussion

These results show that it is possible to successfully predict subse-
quent episodicmemory performance based on single-trial scalp EEG ac-
tivity recorded before and during item presentation. The prediction rate
improved by 2%, by combining information from the pre- and during-
stimulus periods. However, many factors can influence whether a sub-
ject will remember a stimulus, not all of which could be controlled in
our study including how intrinsically memorable the stimulus is and
the subject's brain state during the recognition phase. These factors
add noise to the trial labels which may lower classifier accuracy.

There has not been any study that combines information from the
pre- and during-stimulus periods of the data to predict subsequent
memory, but the two time periods have been used to predict subse-
quent memory separately in two different fMRI studies. Watanabe
et al. (2011) showed that it is possible to predict subsequent memory
with approximately 66% accuracy using fMRI data while subjects attend
to the stimuli. Since EEG has a lower spatial resolution compared to
fMRI a lower prediction rate might be expected (56.8% accuracy for
the during-stimulus classifier). Also, it is difficult to separate the brain
signal prior to and during encoding using fMRI due to the slowness of
the vascular response. Hence, the classifier may have incorporated in-
formation from the pre-stimulus as well as the during-stimulus period.
The proportion of subjects with significantly over chance results in our
study is comparable to that found by Watanabe et al. (2011) (6 out of
13 subjects1 for Watanabe et al. (2011) and 13 out of 18 subjects for
the current study).

Yoo et al. (2012) used the pre-stimulus period of the fMRI data to
predict good/bad brain states for learning novel scenes. Their predic-
tions gave 48.8% hit rate (percentage of remembered items) during
good brain states and 41.9% hit rate (percentage of forgotten items) dur-
ing bad brain states. Though it is difficult to directly compare the results
due to the differences in the experimental paradigm and other settings
such as recording technique, online/offline2 setting etc., the results from
the present study are numerically higher than the results from Yoo et al.
1 This was computed by averaging over the main and confirmatory results given in
Watanabe et al. (2011) with threshold for chance performance at 66.1% whichwas calcu-
lated using methods given in Agresti and Caffo (2000).

2 We refer to a system as onlinewhen it interprets the data and predicts the receptive-
ness of a subject to stimuli in real-time. An offline analysis uses data recorded frompast ex-
periments where subjects had no knowledge of the system's predictions.
(2012). The average hit rate during the good brain states (trials with pA
over 0.5) of the pre-stimulus classifier was 56.5%while the average hit
rate during the bad brain states (trials with pA below 0.5) was 42.0%.
The hit rate of a random selection of trials was 53.5% across all subjects.

Table 5 shows how often each bandwas chosen for the pre-stimulus
classifier. For example, the first value 0.82 in the table indicates that for
subject S03, frequency band 4–7 Hz gave better than chance training
error (and identified as informative) 82% of the time over all cross-
validation folds. There are individual differences in the frequency
bands utilized by the pre-stimulus classifiers (Table 5). Subjects S26,
S40 and S62 have no certain informative band that has better than
chance training error. This suggests that these subjects' EEG data could
be too noisy for the pre-stimulus classifier to work properly or the
pre-stimulus EEG does not contain any useful information (Nijholt
et al., 2008). Subjects S16, S20, S24, and S26 have at least one subband
that is selected 60% of the time, but the pre-stimulus accuracies are
not significantly over chance. This suggests that the training set does
not well represent the entire data set for these subjects. This may be
due to non-stationarity in the data which may result in non-optimal
CSP filters. A consistent cross-subject pre-stimulus spectral SME was
only observed in the high beta and low gamma bands (Fig. 3).

Our data did not show the significant theta power difference
observed in Guderian et al. (2009). This may be due to the difference
in timing of the pre-stimulus theta SME. Theta difference may occur
earlier in the current study due to difference in experiment set-up.
Fell et al. (2011) observed that power difference in the theta band oc-
curred earlier in time than the higher frequencies. Also, Fellner et al.
(2013) demonstrated that pre-stimulus theta SME occurred from −900
to −300 ms, but not immediately before stimulus onset. Hence if a
majority of the subjects showed theta enhancement in the remembered
trials prior to −300 ms before stimuli presentation, the data would not
show significant SME in the theta band and only in the higher bands.
The pre-stimulus SME observed in the higher frequencies supports this
hypothesis. One other possibility is that, due to the small number of
theta cycles possible in the300 mspre-stimuluswindow, thephase shifts
may be confusable with power differencesmaking the power differences
related to subsequent memory difficult to detect.

Extra post-hoc spectral analysis in the during-stimulus windowwas
conducted on additional frequencies to verify whether spectral SME
found in previous studies could be identified in the current dataset.
Analysis on the theta (4–7 Hz), low beta (12–19 Hz), and high gamma
(55–70 Hz) bands revealed that 1) the positive theta SME within the
posterior area in the 200–600 ms window and 2) the negative low
beta SME within the posterior area within the 800–1200 ms window
were significant (p b 0.05) as given in Fig. 7. These results agree with
findings in Hanslmayr et al. (2009, 2012). Single-trial analysis was
conducted on the theta (4–7 Hz), low beta (12–19 Hz) band features
to confirm whether information in those bands were classifiable. The
overall classification results were 49.3% for the theta band and 53.0%
for the low beta band. The during-stimulus theta classifier gave signifi-
cantly lower results than the two during-stimulus alpha classifiers
based on the rank sum test (p = 0.001) suggesting that the theta
band features were not appropriate for single-trial classification. The



Table 5
Proportion of the selected subbands from nested cross-validation. Results over 0.7 are highlighted in increasing shades of gray.
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during-stimulus low beta classifier gave slightly lower accuracy than
the two during-stimulus alpha classifiers but the resultswere not signif-
icantly different (p = 0.87). However, adding the low beta features to
the classifier gave an overall accuracy of 59.03% which did not improve
the overall classification results. The reason the theta SME did not give
useful features for single-trial analysis may be due to the early timing
of the effect (200–600 ms). The subjects' responses to the stimulus itself
may act as artifacts on a single-trial basis, whereas this aspect of the
brain activity may be diminished when the SME is computed on all
available trials. Also the single-trial phase shifts may add noise to the
power estimation in the 400 ms window. The low beta band features
may partially be present in the late alpha band features (1000–
1400 ms) due to the spectral/temporal proximity and spatial similarity
(negative spectral SME in the posterior area) of the two features. This
may explain why the overall classification does not improve by includ-
ing the beta band features in the during-stimulus spectral classifier.

The alpha SME during 400–800 ms gave considerably different pat-
terns from the alpha SME during 1000–1400 ms (given in Fig. 5). The
negative SME in the posterior area found between 1000 and 1400 ms is
consistent with previous studies (Hanslmayr et al., 2009, 2012;
Klimesch et al., 1996b). The early positive alpha SME may be related to
previous findings which showed that high alpha power over task-
irrelevant regions is important for the participants to perform optimally
in covert attention tasks (Haegens et al., 2012; Händel et al., 2011).
Thus, the early during-stimulus spectral classifier may be utilizing infor-
mation reflecting attention. The asymmetric alpha power difference be-
tween the remembered and forgotten trials may be due to increased
activity associated with the left hemisphere such as subvocal speech (or
internal thoughts) during the forgotten trials (Ehrlichman and Wiener,
1980) which could interfere with the visual encoding task.

The classifiers were originally trained to give high scores for the
recollected trials and low scores for the unfamiliar trials. However, the
different classifiers showed interesting trends on their classification of
the untrained definitely familiar trials. The during-stimulus temporal
Fig. 7. (a): Difference in theta power between the remembered and forgotten trials between 200
the spatial pattern of the most significant cluster resulting from cluster-based analysis across al
gotten trials between 800 and 1200 ms after stimulus onset. (d): Same topography as in (c) bu
analysis across all subjects (p b 0.05).
scores (Fig. 6(c)) and spectral scores from the 400 to 800 ms window
(1st row in Table 3) did not distinguish between the recollected and
definitely familiar trials while the pre-stimulus spectral scores between
25 and 35 Hz (8th row in Table 2) and the during-stimulus spectral
scores from the 1000 to 1400 mswindow (2nd row in Table 3) gave sig-
nificantly lower scores to the definitely familiar trials than the recollected
trials. Subsequent analyses showed that the definitely familiar scores
were significantly higher than the unfamiliar trials for the first group
of classifiers while there were no significant differences for the second
group as given in Table 4. Moreover, it was found that the definitely fa-
miliar scores given by the first group were significantly higher than
the second group (p b 10−7) (values in column 3 of Table 4). Thus,
the familiarity judgments revealed that the different classifiers are uti-
lizing distinct neural processes for their classification of subsequent
memory.

Recent research has raised doubts about the extent to which
remember/familiar judgments can be used to estimate separate
recollection and familiarity processes rather than merely reflecting
confidence differences attributable to a single continuously varying
memory signal (Dunn, 2004; Rotello et al., 2005; Wixted and Stretch,
2004). The scores from the first group of classifiers seem consistent
with the continuous confidence perspective because both of the high
confidence “old” responses (definitely familiar and recollect) gave
significantly higher scores than the unfamiliar trials, but there were no
significant differences between definitely familiar and recollect trials.
On the other hand, the second group of classifiers showed a pattern
that seems to differentiate only recollect responses from all other re-
sponses (without being sensitive to gradations in confidence between
the familiar and unfamiliar trials). Thus, EEG differences in the −300
to 0 ms window (specifically oscillatory activity between 25 and
35 Hz) and alpha activity between 1000 and 1400 ms appear to be dif-
ferentiating subsequent familiarity from recollection in amanner that is
not synonymous with confidence, so may reflect aspects of encoding
preparation and processes that would differentiate these responses.
and600 ms after stimulus onset (log (μV2)). (b): Same topography as in (a) butmaskedby
l subjects (p b 0.05). (c): Difference in low beta power between the remembered and for-
t masked by the spatial pattern of themost significant cluster resulting from cluster-based
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3 The soft margin SVM classifier for a two-class classification problem gives a pair of
scores (p1 and p2) corresponding to the probability of potential class membership where
p1 + p2 = 1. Here, we consider the output of the classifier to be p = p1 which represents
the probability an example is a remembered trial.
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For example, although contextual influences on familiarity have been
demonstrated (Addante et al., 2012; Elfman et al., 2008; Mollison and
Curran, 2012; Speer and Curran, 2007), contextual influences are wide-
ly regarded to be stronger on recollection than familiarity (Davachi
et al., 2001; Cansino et al., 2002; Ranganath et al., 2004; Duarte et al.,
2004; Summerfield and Mangels, 2005). Perhaps pre-stimulus activity
between 25 and 35 Hz is important for encoding contextual informa-
tion, which may include contextual information taken from the pre-
stimulus period itself (e.g., whatever the subject was thinking about
prior to encoding). Also, during stimulus presentation, the brain activity
may shift from encoding the stimulus early in the trial to also encoding
the contextual information in that period.

We cannot completely rule out the possibility that the pre-stimulus
classifiermay be using the brain activity of the evoked response to thefix-
ation cross rather than the ongoing pre-stimulus neural activities for clas-
sification. However the pre-stimulus ERP did not show any significant
difference between the remembered and forgotten trials. This decreases
the possibility that the evoked response from the fixation cross holds
any information that discriminates between the two classes. In a follow-
up study, the effects of these different signals on classification results
will be further investigated using an appropriate experiment paradigm.

In summary, this study shows that pre- and during-stimulus EEG
can be used to predict subsequent memory performance. We discov-
ered that the pre-stimulus classifier (especially in frequencies around
25–35 Hz) using the −300–0 ms window and during-stimulus alpha
band classifier using the 1000–1400 mswindowdistinguished recollec-
tion from familiarity, whereas the during-stimulus temporal and alpha
band classifiers using the 400–800 ms time window did not. These re-
sults suggest that 1) the brain activity before item presentation contrib-
utes to how well context gets encoded with the upcoming item and 2)
the brain activity during item presentation initially focuses on item
encoding then shifts to also encoding the contextual information. Final-
ly, thesefindings could provide an inexpensive and non-invasiveway to
monitor learning preparedness to optimally determine the time to pres-
ent a stimulus and present the stimulus again at a later time point if the
encoding process is unsuccessful.
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Appendix A

Appendix A.1. Classifier training procedure

Depending on the performance (recollection rate) of each subject,
the difference between the number of trials for the remembered class
and the forgotten class ranged from 1 to 82. Rather than discarding sub-
jects with unbalanced classes (Watanabe et al., 2011), enough trials
from the larger class were set aside from training as the left-out set to
balance the number of trials per class in the cross-validation set. Trials
in the left-out set were evenly distributed over time (epochs and
blocks) to minimize the effect of drift or bias in the cross-validation
set. The cross-validation set was evaluated based on a balanced leave-
two-out cross-validation procedure where one example from each
class is randomly selected and left out of any training procedure as the
validation set (to ensure they were not used in any manner to train
the classifier) while the remaining trials are used as the training set
for each fold. The left-out set was evaluated using the classifier trained
from all trials in the cross-validation set. This procedure allowed us to
eliminate any effect from unbalanced classes during classifier training
while conducting classification on all available trials. The classifiers to
compute the classifier scores for trials with definitely familiar and
maybe familiar responseswere also trained for each subject using all tri-
als in the cross-validation set.

Appendix A.1.1. Pre-stimulus classifier
Zero-phase filtering was used to extract desired subband signals

while preserving the timing of the features from the pre-stimulus peri-
od. Since a non-causal filter was used, the 300 ms subsequence preced-
ing the to-be-learned stimulus was extracted before filtering to prevent
any temporal smearing from the signal during actual encoding. 25 extra
samples in the 100 ms period before the fixation crosswere included to
estimate a better covariance matrix for CSP analysis. 20 tap zero-phase
FIR filters were used to design the 9 bandpass filters (4–7 Hz, 6–10 Hz,
7–12 Hz, 10–15 Hz, 12–19 Hz, 15–25 Hz, 19–30 Hz, 25–35 Hz, and
30–40 Hz). Nine separate passband signals were generated for each
trial through this procedure.

Separate classifiers were constructed using the training sets of the 9
subbands. For each subband group, CSP filters were learned to extract
features that maximally discriminate between the remembered (class
1) and forgotten (class 2) trials. CSP is a supervised dimensionality re-
duction algorithm commonly used for EEG classification. CSP utilizes
the covariance matrices of the two classes (estimated from the
bandpass filtered EEG data) to find spatial filters that maximize the var-
iance of spatially filtered signals under one condition while minimizing
it for the other condition. The 73 channels of EEG data were used to es-
timate the spatial filters. Three spatial filters were selected from each
class resulting in 6 filtered signals as in Blankertz et al. (2008). The log
power was calculated by

Pi ¼
1
T
log

XT

t¼1

s2i;t ðA:1Þ

where si,t is the sample for time t from filtered signal i (i = 1,…, 6 and
t = 1,…, T where T is the number of samples within an example). This
resulted in a 6 dimensional vector P ¼ P1; :::; P6½ � for each trial.

The soft margin3 support vector classifier machine (v-SVM) (Chang
and Lin, 2001)with a linear kernel was used to classify the 6 dimension-
al vectors. LIBSVM (Chang and Lin, 2011)was utilized for this part of the
simulation. The parameter 0 ≤ v ≤ 1 can be interpreted as an upper
bound on the proportion of margin errors and the lower bound on
proportion of support vectors. v was selected based on a 4-fold cross-
validation on the set P

� �
acquired from the training set.

The training error for each subband group was calculated by
conducting a balanced cross-validation on the training set. Subband
groups that gave better than chance (with p b 0.10) training error were
identified as informative. If none of the subbands gave better than chance
training error, all 9 subbands were selected. The decision of the pre-
stimulus classifier for a given trial in the validation or left-out set (pA)
was determined by averaging over the scores given by SVM classifiers
from all informative subbands. This meta-classification approach was
used based on previous studies which found that meta-classification
strategies generally outperform single classifiers (Dornhege et al., 2004;
Hammon and de Sa, 2007).

Appendix A.2. During-stimulus classifier
Different bandpass filters and spatial filters were used to extract fea-

tures for the during-stimulus temporal and spectral classifiers.
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In order to learn the ERP patterns of the Dmeffect, the baselined sig-
nal (baseline offset corrected using −200 to 0 ms of each trial) was
bandpass filtered between 0.1 and 5 Hz using a 40 tap zero-phase FIR
filter. Based on previous research on the Dm, the 400–800 ms timewin-
dow and four channel groups were selected for evaluation (CM centro
medial, LPS left posterior superior, RPS right posterior superior, and PM
posterior-medial as given in Fig. 2). Mean amplitudes for each channel
group were calculated by averaging over the channels within each
group. For each channel group, a 5-dimensional template for
remembered/forgotten trials was calculated. First, the ERP of the train-
ing set was calculated for each class. The dimensionality of the ERP
was reduced to 5 by averaging over 80 ms length non-overlappingwin-
dows between 400 and 800 ms. Finally, templates from all channel
groups were concatenated to create a 20-dimensional template for
remembered/forgotten trials. A soft margin4 linear classifier using LDA
(linear discriminant analysis) was trained based on these templates and
the dispersion of the training examples. LDA is a simple classifier which
is commonly used to classify ERP components (Blankertz et al., 2011).

In order to isolate the alpha band of the EEG signal, the baselined sig-
nal (baseline offset corrected using −200 to 0 ms of each trial) was
bandpass filtered between 7 and 12 Hzwith a 40 tap zero-phase FIR fil-
ter. The data were divided into two timewindows (400–800 and 1000–
1400 ms after the cue). For each time window, 6 CSP filters (3 for each
class)were learned using the 73 channel EEG data and the log powers of
the spatially filtered signals were computed. The log power values were
combined to acquire a 12 dimensional feature vector for each trial. The
soft margin v-SVM with a linear kernel was used for classification. The
CSP procedure, log power calculation, and v parameter selection follow-
ed the procedures given in Appendix A.1.1.

The decision of the during-stimulus classifier (pB) was determined by
averaging over the scores given by the temporal and spectral classifiers.
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