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We used pattern classifiers to extract features related to recognition memory retrieval
from the temporal information in single-trial electroencephalography (EEG) data during
attempted memory retrieval. Two-class classification was conducted on correctly
remembered trials with accurate context (or source) judgments vs. correctly rejected
trials. The average accuracy for datasets recorded in a single session was 61% while
the average accuracy for datasets recorded in two separate sessions was 56%. To
further understand the basis of the classifier’s performance, two other pattern classifiers
were trained on different pairs of behavioral conditions. The first of these was designed
to use information related to remembering the item and the second to use information
related to remembering the contextual information (or source) about the item. Mollison
and Curran (2012) had earlier shown that subjects’ familiarity judgments contributed
to improved memory of spatial contextual information but not of extrinsic associated
color information. These behavioral results were similarly reflected in the event-related
potential (ERP) known as the FN400 (an early frontal effect relating to familiarity)
which revealed differences between correct and incorrect context memories in the
spatial but not color conditions. In our analyses we show that a classifier designed
to distinguish between correct and incorrect context memories, more strongly involves
early activity (400–500 ms) over the frontal channels for the location distinctions, than for
the extrinsic color associations. In contrast, the classifier designed to classify memory
for the item (without memory for the context), had more frontal channel involvement
for the color associated experiments than for the spatial experiments. Taken together
these results argue that location may be bound more tightly with the item than an
extrinsic color association. The multivariate classification approach also showed that
trial-by-trial variation in EEG corresponding to these ERP components were predictive
of subjects’ behavioral responses. Additionally, the multivariate classification approach
enabled analysis of error conditions that did not have sufficient trials for standard ERP
analyses. These results suggested that false alarms were primarily attributable to item
memory (as opposed to memory of associated context), as commonly predicted, but
with little previous corroborating EEG evidence.
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INTRODUCTION

Previous recognition memory studies have used
electroencephalography (EEG) to identify neural substrates
of recognition memory. The ‘parietal old/new effect’ is a positive-
going event-related potential (ERP) typically observed in the
parietal electrodes between 500 and 800 ms and typically
left lateralized. It shows greater amplitude for the correctly
recognized old (hits) compared to the new (correct rejections)
test items. It has been found that this effect correlates with
the amount of information retrieved from the study episode
(Wilding and Rugg, 1996; Curran, 2000; Wilding, 2000; Rugg
and Curran, 2007; Tsivilis et al., 2015); hence, it is understood
as a neural correlate of recollection. The ‘frontal old/new effect’
(or the FN400) is a frontally distributed and negative-going ERP
which peaks earlier around 400 ms. The FN400 is interpreted as
a neural correlate of familiarity since it shows a more negative
peak for less familiar items while it typically does not vary for
different amounts of recollected context information (Curran,
2000; Rugg and Curran, 2007; Tsivilis et al., 2015).

Pattern classification methods have been recently applied to
EEG data to reveal novel findings during encoding of episodic
memory (Jafarpour et al., 2014; Noh et al., 2014a; Anderson et al.,
2015; Ratcliff et al., 2016). In Noh et al. (2014a), the classifier
was used as a discriminative dimensionality reduction method
to project the high-dimensional EEG data onto a discriminative
space. These projections revealed neural correlates of levels of
encoding in the pre- and during-stimulus periods of the study
phase. This multivariate analysis directly controls for the multiple
comparison problem (MCP) by effectively reducing the number
of test variables. A major advantage of this approach is that
it is possible to compare the brain activity across conditions
even when the trial count is low, provided that a sufficient
number of classifier training trials are used to establish the initial
hyperplane(s) (Noh and de Sa, 2014). Hence conditions that
divide subtle behavioral differences can be readily compared. In
ERP studies, these data are usually ignored or combined with
other conditions to acquire reasonable ERPs for analysis. This
may result in losing the ability to reveal the neural mechanisms
underlying subtle behavioral differences.

Our study aims to create classifiers to discriminate between
the correctly identified old/new trials during the recognition
phase of episodic memory experiments on a single trial basis.
We also utilize pattern classifiers as multivariate analysis tools
to analyze the brain activity during retrieval of recognition
memory using the time domain information of the EEG data.
The EEG data were collected from three separate visual memory
task experiments with extrinsic source information. Two types
of source information were considered in these experiments.
Spatial information (the location of the item) was of interest in
Experiment 1 and extrinsic color information (the color of an
external frame) was of interest in Experiment 2. In Experiment
3, both source types were considered. Data collected from
these experiments were used to conduct multivariate analysis
via pattern classifiers. The data used were previously collected
by Mollison and Curran (2012). In the experiments, subjects
were asked to remember items as well as the contextual source

information (side of the screen, or color of outlined box). In
the test phase they were asked to indicate whether they believe
they have seen the item before, and if so to give the associated
source information as well as their confidence in that judgment
by specifying whether they remember the source information,
any other information, or whether the item is just familiar.
Mollison and Curran (2012) found that even familiar judgments
were associated with above chance source judgments and that
the FN400 distinguished between the source-correct and source-
incorrect responses only for the location-source information
but not the box-color source information. In this work, we
specifically train separate classifiers to extract information related
to item memory (without correct source memory) and source
memory (for correctly remembered items) to observe any source-
dependent differences that the classifiers extract between the
experiments with different source types.

The average projection values (or classifier scores) of the
different source retrieval conditions and different subjective
rating conditions are also compared to reveal the relationship
between the different conditions and memory retrieval strength.
Furthermore, data from the error conditions (incorrectly
identified new trials, incorrectly rejected old trials) are projected
onto the discriminative vector characterized by the different
classifiers. The average projection values of these error trials are
compared to those given by the other conditions and across the
different projection directions.

MATERIALS AND METHODS

Electroencephalography for the current study was previously
recorded in three separate visual memory task experiments
(Mollison and Curran, 2012). All procedures were approved by
the Institutional Review Board at the University of Colorado
Boulder and were conducted in accordance with this approval.
All participants gave written informed consent before the
experiment.

Experiment 1
Participants
The subjects were right-handed University of Colorado
undergraduate students (ages 18–28, mean = 21.4) who
volunteered for paid participation ($15 per hour) or course credit
(17 male, 13 female). All subjects were native English speakers
and had normal or corrected- to-normal vision.

Experimental Paradigm and EEG Acquisition
The experiment was divided into four blocks consisting of a
study and recognition phase. The stimuli were color images of
physical objects, animals, and people. A total of 1297 images were
selected from http://www.clipart.com, the stimuli set by Brady
et al. (2008), and image search on the Internet. All images were
resized to 240 pixels × 240 pixels and presented on a square
white background. For each subject, a total of 416 images were
randomly selected as the study items (104 items per block). The
test lists consisted of 100 old items from the preceding study list
with 50 foil items given in random order. The first and last two
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stimuli in the study list were excluded from the test list to reduce
primacy and recency effects.

During the study phase, the study items were presented on
either the left or right side of the fixation cross. The subjects
were instructed to memorize the side of the screen on which
each study item was given. The spatial location of the item
was considered as the source information in this experiment.
A study item was shown for 1000 ms followed by an inter-
stimulus interval with varying lengths (uniformly distributed
within 625 ± 125 ms). A visual Gaussian noise image was shown
at the locations of study item presentations whenever an item
was not being presented to prevent after-image effects from the
stimulus. The area containing the possible study image locations
subtended a visual angle of 11.4◦ wide × 5.6◦ high.

In the recognition phase, a fixation cross appeared on the
center of the screen for 750 ms. A test item was shown for
750 ms on top of the fixation cross followed by a 1500 ms
long fixation cross. The visual angle of each test probe image
was 4.3◦ wide × 4.3◦ high. Then the subjects were given two
consecutive questions where the second question type depended
on the subject’s answer on the first one. An inter-stimulus interval
of 625 ± 125 ms followed each response. In the first question,
subjects were asked to make a source/new judgment where
source was the location of the item in the study phase. The
first question had three options: left, right (given as L and R,
respectively) and a new judgment (given as N). If the subjects
responded with L or R in the first question, they were asked to
give a modified R-K judgment in the second question. The R-K
judgment question had three options: remember side (given as
RS), remember other (given as RO), and familiar (given as F).
Subjects were instructed to respond with RS if they remembered
the source information, RO if they remembered something other
than the source information, and F if they could not remember
any details of learning the item but it looked familiar. If the
subjects responded with new in the first question, they were asked
to give a confidence of that response: sure (given as S) or maybe
(given as M) based on how confident they were about it being
a new item. See Figure 1A for an illustration of the study and
test tasks in the experiment. The keys for left responses were
assigned to the left hand (z or x key), the keys for right responses
were assigned to the right hand (. or / key), and the keys for
new responses were assigned to one of the outermost keys (z
or / key). For the confidence judgments, the keys were set up
from left to right to follow memory strength in either descending
or ascending order. The familiar (F) responses and remember
(RS/RO) responses were always assigned to different hands. The
key assignment was fixed for a given subject, but all possible key
combinations were distributed to an equal number of subjects.

EEG was recorded with a 128-channel Geodesic Sensor NetTM

[HydroCel GSN 200, v.2.1; Tucker (1993)] at 250 Hz sampling
rate using an AC-coupled 128-channel, high-input impedance
amplifier (300 M�, Net AmpsTM; Electrical Geodesics Inc.,
Eugene, OR, United States) with a 0.1–100 Hz bandpass
filter. Initial common reference was the vertex channel (Cz)
and the individual electrodes were adjusted until impedance
measurements were lower than 40 k�. Figure 2 shows the
locations of the electrodes.

Experiment 2
Participants
The subjects were right-handed University of Colorado
undergraduate students (ages 18–27, mean = 21.2) who
volunteered for paid participation ($15 per hour) or course credit
(17 male, 13 female). All subjects were native English speakers
and had normal or corrected- to-normal vision.

Experimental Paradigm and EEG Acquisition
The stimuli set used in Experiment 1 was used in Experiment 2.
In the study phase, the study items were presented with a 48-pixel
wide color frame with eight possible colors (purple, green, blue,
pink, red, orange, yellow, and brown). The color of the frame was
considered as the source information in this experiment. Two
of the four study lists used six colors and the two other study
lists used the two remaining colors. Half of the subjects received
the two-color condition in the even blocks and the other half of
the subjects received the two-color condition in the odd blocks.
All colors were randomly and evenly distributed over the study
items.

During the study phase, the subjects were instructed to
memorize the frame color with each of the presented study
items. A study item was shown for 1500 ms followed by an
inter-stimulus interval with varying lengths (625 ± 125 ms).
A visual Gaussian noise image was given at the location
of study item presentation whenever an item was not
being presented to prevent after-image effects from the
stimulus.

In the recognition phase, a fixation cross appeared for 750 ms
with a preview of the two colors the subject would be choosing
from immediately following the test item presentation. The
number of preview colors were set to two for both six- and
two-color conditions. If the test item was old (i.e., given in the
preceding study list), its corresponding frame color was given
in the preview. After the color preview, a test item was shown
for 750 ms followed by a 1500 ms long fixation cross. Then
the subjects were given two consecutive questions where the
second question type depended on the subjects’ answer on the
first one. In the first question, subjects were asked to make a
source/new judgment where source was the frame color given
with the item in the study phase. The first question had three
options: two colors (given as solid color squares) and a new
judgment (given as N). If the subjects responded with a color
in the first question, they were asked to give a modified R-K
judgment in the second question. The R-K judgment question
had three options: remember color (given as RC), remember
other (given as RO), and familiar (given as F). Subjects were
instructed to respond with RC if they remembered the source
information, RO if they remembered something other than the
source information, and F if they could not remember any
details of learning the item but it looked familiar. If the subjects
responded with new in the first question, they were asked to give
a confidence of that response: sure (given as S) or maybe (given
as M) based on how confident they were about it being a new
item. See Figure 1B for an illustration of the study and test tasks
in the experiment.

EEG was recorded as for Experiment 1.
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FIGURE 1 | An illustration of the study and test tasks used in (A) Experiment 1 and (B) Experiment 2 as given in Mollison and Curran (2012).

FIGURE 2 | The GSN electrode locations used to record the EEG and the six channel groups on which classification analysis was conducted. LAS left anterior
superior, RAS right anterior superior, CM central medial, LPS left posterior superior, RPS right posterior superior, and PM posterior medial.

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2018 | Volume 12 | Article 258

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00258 July 6, 2018 Time: 17:33 # 5

Noh et al. Single-Trial EEG Predicts Memory Retrieval

Experiment 3
Participants
The subjects were right-handed University of Colorado
undergraduate students (ages 18–29, mean = 20.6) who
volunteered for paid participation ($15 per hour) or course credit
(21 male, 17 female). All subjects were native English speakers
and had normal or corrected- to-normal vision.

Experimental Paradigm and EEG Acquisition
The experiment was conducted in two separate sessions
occurring on separate days. Each session consisted of four
lists where two lists were the location source paradigm
(as in Experiment 1) and two lists were the color source
paradigm (as in Experiment 2). Only two frame colors (blue
and yellow) were used for the color condition to match
the number of location and color conditions across lists).
For the first session, half of the subjects received the color
condition in the even list numbers and the other half of the
subjects received the color condition in the odd list numbers.
The second session used the opposite order. The stimuli
used in the two previous experiments were used for this
experiment.

For both source conditions, a source indicator frame (color
condition: blue/yellow frame, location condition: white frame on
the left/right side of the screen) appeared on top of the visual
Gaussian noise image prior to each study item presentation for
500 ms. Then the study item was presented inside the source
indicator frame for 2000 ms followed by a slightly increased
inter-stimulus interval (1125 ± 125 ms).

The timing of the recognition phase was the same as the
previous experiments. However, a number of changes were made
to the procedures. No color preview was given prior to test item
presentation during the color condition lists. Also, the solid color
squares used as source cues (as in Experiment 2) were changed to
letters B and Y to better match the location conditions. Finally,
both of the source responses (B and Y/L and R) were assigned
to one hand and the new response (N) was assigned to the other
hand. The key assignments were counterbalanced across subjects.

Electroencephalography was recorded with the same
equipment as in the previous experiment except with a 500 Hz
sampling rate and without the 0.1 Hz hardware high-pass filter.

Pre-processing
Electroencephalography epochs from the recognition phase of
each experiment were extracted and recalculated to average
reference. In order to address any possible deficiencies in the
average reference method, a subset of analyses were repeated
using the reference electrode standardization technique (REST)
(Yao, 2001; Dong et al., 2017; Lei and Liao, 2017), which
uses reconstructed equivalent sources to re-reference electrode
signals relative to a reference at infinity. The lead field for using
REST had 3000 potential sources corresponding to the 128-
channel HydroCel Geodesic Sensor NetTM recording system used
(Mollison and Curran, 2012).

Each epoch was filtered between 0.1 and 50 Hz using a 40 tap
FIR filter and baseline corrected using data from −200−0 ms.
Data from Experiment 3 were down-sampled to 250 Hz after

the pre-processing procedure to match the sampling rate of
Experiments 1 and 2.

Classification Problem
Classification analysis was conducted separately on Experiment 1,
Experiment 2, location source blocks from Experiment 3
(denoted as Experiment 3-location or Exp 3-loc), and color
source blocks from Experiment 3 (denoted as Experiment 3-color
or Exp 3-col). The data from Experiment 3 were divided into
the different source conditions in order to reveal any potential
differences between the location and color conditions that may
correspond to ERP differences observed in Mollison and Curran
(2012). Before conducting classification, the trials were divided
into five conditions (SC: source correct, SI: source incorrect, CR:
correct rejection, M: miss, FA: false alarm) based on their source
judgments (1st response) as illustrated in Figure 3. Note that in
Figure 3 and for the rest of the paper, RS refers to remember
source which includes both remember side and remember color.

The classifiers were trained to find the projection function
onto the vector perpendicular to the decision boundary (we
sometimes refer to these vectors as planes) which is characterized
by the choice of the training conditions. The behavioral
conditions corresponding to correct item retrieval (SC and SI)
and correct item rejection (CR) were selected for training. As
a result, three different two-class binary classifiers (SC-CR, SI-
CR, and SC-SI) with probability outputs (0 ≤ p ≤ 1) were
trained to discriminate between pairs of behavioral conditions.
These probability outputs given by the classifiers are denoted
as classifier scores in this paper. The classifiers were trained on
each individual subject and only the subjects with a minimum
of 25 trials for each of the 2 trained conditions (SC, SI,
and CR) were included in the analysis. For each classification
problem, the classifier scores were also computed for the trials
which were not included in the training procedure (non-training
trials).

(1) SC-CR classifier
The SC-CR classifier (trained to discriminate between
SC and CR) was expected to find the projection which

FIGURE 3 | Categorization of the trials based on the subjects’ source
judgments (SC, source correct; SI, source incorrect; CR, correct rejection; M,
miss; FA, false alarm) and subjective ratings (RS, remember source; RO,
remember other; F, familiar; MN, maybe new; SN, sure new).
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maximizes the difference in the amount of information
retrieved from the study episode.

(2) SI-CR classifier
This classifier (trained to discriminate between SI and CR)
was designed to discriminate between correctly retrieved
old items (with incorrect source judgments) and the
correctly rejected new items.

(3) SC-SI classifier
The SC-SI classifier (trained to discriminate between SC
and SI) was designed to distinguish the correctly retrieved
old items with correct source judgments from those with
incorrect source judgments. Hence the classifier would
extract the information on source memory retrieval.

Classification
The spatio-temporal structure of the ERPs was extracted based
on previous findings on the old/new effect. Six channel groups
were selected for evaluation (LAS, RAS, CM, LPS, RPS, and PM)
as given in Figure 2. The average voltage for each channel group

TABLE 1A | Classification results for Experiment 1.

Subject SC-CR SI-CR SC-SI

102 0.5538 0.4702 0.4693

103 0.4857

104 0.6875 0.5572 0.6540

106 0.6720 0.5455 0.5358

108 0.6550 0.4891 0.4949

109 0.5593

110 0.5947 0.4712 0.5

112 0.4953

113 0.6667 0.328 0.6271

114 0.6746 0.5575 0.6442

115 0.5741 0.5269 0.5517

116 0.5251 0.5183 0.4839

117 0.5944 0.5148 0.5025

118 0.65 0.4762 0.5398

119 0.6154 0.5756 0.5

120 0.6172 0.5108 0.6090

121 0.5977 0.5057 0.5356

122 0.5255 0.6224 0.5420

123 0.6585 0.5603 0.5368

124 0.5649 0.5577 0.6104

125 0.6518 0.5571 0.4373

126 0.6955 0.4419 0.5981

127 0.6048 0.5530 0.5194

128 0.7474 0.4633 0.5302

129 0.5542 0.4328 0.4714

Overall 0.6231 0.5090 0.5383

Overall with 50 trials/class cutoff 0.6290 0.5368 0.5397

Overall accuracies given in the penultimate row are the accuracies over all trials
from the relevant classes for subjects with 25 or more trials per class. Overall
accuracies in the last row are computed over all trials from relevant classes for
subjects with 50 or more trials per class. Bolded entries are significantly better than
chance (p < 0.05). Results from subjects with less than 50 trials per condition are
italicized.

was computed and the data between 300 and 800 ms after test
item presentation were extracted to take advantage of the ERP
effects related to memory retrieval. The dimensionality of these
subsequences was reduced to 5 by averaging over 100 ms length
non-overlapping windows. The features from all six channel
groups were concatenated to build a 30-dimensional feature
vector for each trial. A binary classifier using linear discriminant
analysis (LDA) with automatic shrinkage (Ledoit and Wolf, 2004;
Schaefer and Strimmer, 2005) was trained to classify these feature
vectors (Lotte et al., 2007; Blankertz et al., 2011). In order
to avoid any overfitting to the training data, the projections
for the training conditions were computed using leave-two-out
(one from each class) cross-validation. In order to train with
balanced classes, trials from the majority class were randomly
discarded (from training) to have equal numbers of trials in
each class. These trials, however, were still used for evaluation
of the classifier (using a classifier trained on all the selected

TABLE 1B | Classification results for Experiment 2.

Subject SC-CR SI-CR SC-SI

201 0.5113 0.5581 0.5298

202 0.6860 0.5915 0.4713

203 0.5444 0.4805 0.4773

204 0.6018 0.48 0.5787

205 0.5766 0.4303 0.5126

206 0.5524 0.5816 0.4563

207 0.6204 0.4177 0.4912

208 0.6349 0.4643 0.5701

209 0.6222 0.5714 0.5344

210 0.6189 0.5356 0.5193

211 0.6 0.4851 0.5193

212 0.4964 0.5146 0.5723

213 0.5942 0.5922 0.5071

214 0.6553 0.5659 0.5211

215 0.6728 0.6554 0.5270

216 0.5475 0.5315 0.5571

217 0.5761 0.5484 0.52

219 0.5506 0.4859 0.4757

220 0.6174 0.6171 0.5436

221 0.5737 0.4826 0.5345

222 0.5504 0.4758 0.5780

223 0.55 0.4943 0.4775

224 0.5789 0.5822 0.6053

225 0.5538 0.5952 0.5431

227 0.6757 0.6 0.5410

228 0.5533 0.5784 0.5287

229 0.4588 0.4262 0.4456

230 0.5771 0.5805 0.5171

Overall 0.5904 0.5383 0.5263

Overall with 50 trials/class cutoff 0.5945 0.5416 0.5311

Overall accuracies given in the penultimate row are the accuracies over all trials
from the relevant classes for subjects with 25 or more trials per class. Overall
accuracies in the last row are computed over all trials from relevant classes for
subjects with 50 or more trials per class. Bolded entries are significantly better than
chance (p < 0.05). Results from subjects with less than 50 trials per condition are
italicized.
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TABLE 1C | Classification results for Experiment 3.

Subject SC-CR (loc) SC-CR (col) SI-CR (loc) SI-CR (col) SC-SI (loc) SC-SI (col)

310 0.5665 0.4833 0.4538 0.5 0.5289 0.5208

312 0.6422 0.6257 0.5380 0.5451 0.4591 0.5208

313 0.57 0.5766 0.5509 0.5498

315 0.5127 0.5949 0.5074 0.5505 0.5181 0.5064

317 0.6039 0.6101 0.5153 0.5 0.5019 0.4704

318 0.5327 0.5469 0.6026 0.5185 0.5315 0.5041

319 0.5550 0.4706 0.4581 0.5399 0.5444 0.4681

321 0.5613 0.6291 0.5985 0.5369 0.5076 0.5647

322 0.5252 0.4818 0.4811 0.5076 0.5170 0.4696

323 0.5615 0.5291 0.4538 0.5505 0.5519 0.5528

324 0.5244 0.5393 0.5407 0.5056 0.5430 0.5358

326 0.6181 0.5700 0.4928 0.4962 0.5516 0.4697

327 0.6111 0.5022 0.5586 0.5054

328 0.512 0.4971 0.5515 0.52 0.5426 0.5137

330 0.6348 0.5638 0.4462 0.4908 0.6035 0.4967

332 0.5710 0.5698 0.4632 0.4615

333 0.5593 0.5445 0.5724 0.5364

334 0.5370 0.4563 0.5149 0.5984 0.5195 0.4978

335 0.4963 0.5714 0.5 0.4701

336 0.6262 0.6313 0.4545 0.4527 0.5685 0.4963

337 0.5638 0.5481 0.5546 0.5037 0.5547 0.5

340 0.4875 0.6138 0.3663 0.4965 0.4785 0.5134

342 0.5980 0.5233 0.4710 0.5425 0.4651 0.4870

343 0.6667 0.5179 0.5652 0.5870 0.5059 0.4805

344 0.5682 0.5158 0.4930 0.4667 0.5081 0.4727

345 0.5101 0.4688 0.5429 0.5058 0.5587 0.5053

Overall 0.5736 0.5553 0.5049 0.5182 0.5261 0.5024

Overall with 50 trials/class cutoff 0.5789 0.5610 0.5153 0.5159 0.5286 0.5031

Overall accuracies given in the penultimate row are the accuracies over all trials from the relevant classes for subjects with 25 or more trials per class. Overall accuracies
in the last row are computed over all trials from relevant classes for subjects with 50 or more trials per class. Bolded entries are significantly better than chance (p < 0.05).
Results from subjects with less than 50 trials per condition are italicized.

balanced training data). The data from the remaining conditions
(e.g., Misses and False Alarms) were not used to evaluate the
classifier, but were still projected onto the discriminative vector
(learned from the entire balanced training set) for interpretative
analysis.

Statistical Methods
The average classifier scores (for a given classification problem)
across all subjects were compared across different behavioral
conditions (SC, SI, CR, M, and FA). The classifier score
is a projection of the high-dimensional EEG data onto a
1-dimensional vector which is representative of the given
classification problem. Paired t-tests were conducted on the
trial-by-trial classifier scores separately for the four available
datasets to compare the classifier scores of the different
retrieval/subjective rating conditions. A comparison was
considered to be significant only when all four separate
datasets gave p-values below 0.05 for the conditions of
interest.

It is advantageous to also visualize the EEG features utilized
by the classifiers for interpreting any effects identified from
the multivariate analysis using the pattern classifiers. This

was done by analyzing the classifier activation patterns
representing which channel, time pairs were important
for classification (Haufe et al., 2014). For each source
type, the 30-dimensional classifier activation pattern
vector for each subject was normalized to have length
1.

In order to identify features consistent across subjects, a
cluster-based method for correction for multiple comparisons
was used (Maris and Oostenveld, 2007). In this method, first each
spatiotemporal pixel significantly different from zero (p < 0.05)
was identified. Then the t-statistic of all significant flagged
neighboring pixels with the same sign was summed and the
maximum absolute value over all clusters taken. This value is
compared to the distribution of max absolute cluster values
obtained from a permutation distribution resulting from 10,000
random permutations of class labels for each subject. Temporal
neighbors were temporally adjacent time windows. Spatial
groups were considered neighbors if they contained adjacent
electrodes from the cap layout (see Figure 2). Using this rule,
LAS, CM, and RAS were all mutual neighbors; CM was also
neighbors with LPS and RPS; LPS and RPS were also neighbors
with PM.
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RESULTS

Classifier Performance
Performance of the SC-CR classifier was computed based on
classification of the SC and CR trials (SC-RS, SC-RO, SC-
F, CR-SN, CR-MN). The significance of the performance of
a classifier (whether it performs significantly over chance)
was evaluated based on the number of test trials used for
classification. The 95% confidence interval for the obtained
accuracy was calculated using Wald intervals with small sample
size adjustments (Agresti and Caffo, 2000) for each subject.
Classification results were considered to be significantly over
chance only when the interval did not include 50%. Results
are given in Table 1. The overall classification accuracy for
Experiment 1 (SC-CR) was 62% with 18 of 25 subjects
having individual accuracies significantly over chance. When
restricted to subjects with at least 50 trials in each class,
the performance is somewhat better. The overall classification
accuracy for Experiment 2 (SC-CR) was 59% with 17 of
28 subjects having individual accuracies significantly over
chance. Experiment 3-loc (SC-CR) had an average accuracy of
57% and Experiment 3-col (SC-CR) had an average accuracy
of 56%.

Figure 4 gives the ROC (receiver operating characteristic)
curves for choosing different thresholds (between 0 and 1) to
make decisions between classes 1 and 2 for all 3 classification
problems. Table 2 gives the area under these ROC curves.
All results were above 0.5, however, there was a variability in
performance across the different classification problems. The
SC-CR classifiers showed the highest performance on all four
datasets. It was also found that the datasets with recordings from
multiple days (Exp 3-loc and Exp 3-col) showed a slight decrease
in performance compared to the single session datasets. The SC-
SI classification performs better for the location source datasets
relative to the color source datasets in contrast with the SI-CR
classifiers.

We redid some classifications using the reference electrode
standardization technique (REST) (Yao, 2001; Dong et al., 2017).
The performance of classifiers SC-CR in Experiment 1 using
REST for re-referencing pre-processing showed comparative
AUC (0.6571) and accuracy (0.6221) to that obtained with our

usual average reference method (AUC of 0.6555 and accuracy
of 0.6231). We then compared the REST method for the harder
SC-SI classification in the two color source datasets, but this
also resulted in no significant improvement in the classification
results. Specifically for SC-SI in Exp2 (color) with REST we
have AUC of 0.5206 (vs. 5357 with AR) and accuracy of 0.5191
(vs. 5263 with AR) and for SC-SI in Exp3 (color) with REST
we have AUC of 0.5075 (vs. 5108) and accuracy of 0.5034 (vs.
5024).

Analysis of the Classifier Scores
The projection weights for a given classification problem can be
used to project the EEG data onto a discriminative vector. In
this paper, these projection values are denoted as the classifier
scores. The relationship between the average classifier scores for
the different behavioral conditions represents the characteristics
of the different discriminative hyperplanes (Noh and de Sa, 2014).
As described in section “Statistical Methods,” the representation
of the EEG data on the three different discriminative vectors
were compared across the different behavioral conditions. The
classifier scores were computed for each classification problem
(as described in section “Classification Problem”) and the average
scores corresponding to the different behavioral conditions were
compared. The results were compared across the four datasets
and effects with p < 0.05 consistently across the different datasets
were considered to be meaningful (the individual comparison
results are given in Table 3).

The correct item memory conditions (SC, SI, and CR) showed
similar patterns across the different projections where SC trials
gave the highest scores and the CR trials showed the lowest scores.
However, the relative distance between the three conditions
varied across the different discriminative vectors. It was found
that the SI condition was mapped closer to the CR condition on
the SC-SI plane (see Figure 5C) while it was mapped closer to
the SC condition on the SI-CR plane (see Figure 5B). It was also
found that the difference between the SI and CR trials were only
significant (p < 0.05 for all four datasets) on the SC-CR and SI-CR
planes (see Figure 5).

The relative mapping of the error conditions (M and FA)
with respect to the correctly retrieved/rejected conditions (SC,
SI, and CR) gave different patterns for the different projection
directions. Interestingly, the source correct (SC) trials and false

FIGURE 4 | The ROC curves for the three different classification problems (A: SC vs. CR; B: SI vs. CR; and C: SC vs. SI) are given separately for the four individual
datasets.
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TABLE 2 | The average AUCs of the ROC curves for the three different
classification problems on four experiments.

SC-CR SI-CR SC-SI

Experiment 1 (loc) 0.6555 0.5586 0.5434

Experiment 2 (col) 0.6160 0.5779 0.5357

Experiment 3 (loc) 0.5916 0.5264 0.5375

Experiment 3 (col) 0.5726 0.5376 0.5108

Average 0.6089 0.5501 0.5319

Every AUC was computed using the projections of the trials, by leave-two-out
training, in the selected balanced training data.

alarms (FA) were mapped to significantly different values on
the SC-CR and SC-SI plane but not on the SI-CR plane (see
Table 4). In contrast, the misses (M) gave values significantly
lower than the two correct item retrieval conditions (SC and SI)
when mapped onto the SC-CR and SI-CR plane.

A similar analysis was conducted considering the different
subjective ratings given to the correct item retrieval/rejection
trials (SC, SI, and CR). These responses consisted of remember
source (RS), remember other (RO), and familiar (F) for the SC/SI
conditions and sure (SN denoting sure new) and maybe (MN
denoting maybe new) for the CR condition. The error conditions
(FA and M) can be similarly projected. While the classifiers
generally gave a monotonic decrease in classifier scores from the
RS to SN conditions, there were interesting interactions with the
memory retrieval conditions as illustrated in Figure 6.

Classifier Activation Patterns
The activation patterns which represent the features used by the
classifiers (or the characteristics of the projection weights) were
compared across the three different classification problems (see
Figure 7). The activation patterns were computed for each subject
and the average activation patterns were computed by averaging
the values across all four datasets. A t-test was conducted on
each of the features to illustrate which features showed similar
effects across the different subjects. Cluster based analysis (Maris
and Oostenveld, 2007) was then used to control for multiple
comparisons. This revealed features with values significantly
above/below zero across all the subjects available for analysis. The
activation patterns are given as a 2-dimensional matrix with its
corresponding channel groups and time segments (the times give
the center of the interval) in Figure 7 and the most significant
clusters (with significance values) are shown in Figure 8.

The SC-CR classifier utilized temporal features from 300 to
800 ms. The SI-CR classifier only showed consistent patterns

between 300 and 700 ms and the SC-SI classifier showed
consistent patterns between 400 and 800 ms for the two tasks
with spatially presented contextual information (1 and 3-loc).
In the two tasks with colored frames as context, there is not a
strong activation pattern consistency across subjects for the SC-
SI classifier. Interestingly the SC-SI (source memory) classifier
has strong consistent activity across all spatial areas except PM
when the source context is location. The SI-CR (item memory)
classifiers have an early frontal activation when the source context
is the colored outline, but a more parietal activation when the
source context is the location.

The activation patterns for the three classifiers we created
using the REST preprocessing (SC-CR Exp1, SC-SI Exp 2-col,
SC-SI Exp 3-col) were similar to the analogous ones with average
referencing.

Classifier Scores Evolution Over Time
In the activation patterns, the characteristics of projection
weights in different time intervals and channel groups were
shown. The classifier scores variation across time gives a clear
insight about the evolution of the separation of classes over time.
To obtain the scores only under the operation with weights
between 300 and 400 ms in activation patterns, the grouped
EEG data after 400 ms were set to zero, and the remaining
computations remained the same. In brief, the data were set to
zero after the considered intervals and the trained classifier was
used to get the classifier scores.

Figure 9A shows that the scores of SC and CR trials start
to be discriminable around 500–600 ms and separate further
afterwards. Figure 9B, shows that with the SI-CR classifier, scores
of SI and CR trials also start to separate around 500–600 ms.
As for the SC-SI classifier in Figure 9C, the scores of SC trials
become more separable from the scores of the SI trials after about
700 ms. Note that while the activation patterns for the SI-CR
classifier show not much significant activation that is consistent
between subjects after 600 ms, the classifier scores continue
to separate, indicating that the activation patterns causing this
separation are less consistent between subjects.

DISCUSSION

The results show that it is possible to predict successfully
identified old vs. new items based on single-trial scalp EEG
activity recorded during the retrieval episode. The prediction
rate was higher for the location-source datasets and the average
accuracy of the single-session datasets was higher compared

TABLE 3 | Comparison results between the classifier scores for the SC-CR classifier.

SC vs. CR SC vs. SI SC vs. M SC vs. FA CR vs. SI CR vs. M CR vs. FA SI vs. M SI vs. FA M vs. FA

Exp 1 (loc) 5.79E-110 4.11E-11 6.45E-47 9.77E-08 5.22E-15 0.24363 1.08E-06 5.56E-12 0.21081 5.07E-08

Exp 2 (col) 5.53E-49 0.002464 1.93E-14 0.00092829 3.29E-27 0.14601 2.93E-07 6.62E-07 0.51457 0.0022279

Exp 3-loc 6.86E-34 0.0054622 1.36E-25 4.43E-10 3.89E-06 0.86631 0.0043021 1.34E-07 0.065969 0.0012858

Exp 3-col 3.63E-27 9.87E-05 2.25E-09 2.27E-07 7.60E-11 0.76771 0.23946 0.0001848 0.00011229 0.14554

Paired t-tests between all possible pairs are given with their corresponding uncorrected p-values.
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FIGURE 5 | The average of the estimated means and the approximate 95% confidence intervals of the classifier scores (Hochberg and Tamhane, 1987) across the
four datasets [Exp 1 (loc), Exp 2 (col), Exp 3-loc, Exp 3-col] for the five behavioral conditions (SC, SI, CR, M, and FA) for the three different classification problems (A:
SC vs. CR; B: SI vs. CR; and C: SC vs. SI).

TABLE 4 | The uncorrected pairwise comparison results for the five behavioral conditions across the four datasets [Exp 1 (loc), Exp 2 (col), Exp 3-loc, Exp 3-col].

SC vs. CR SC vs. SI SC vs. M SC vs. FA SI vs. CR CR vs. M CR vs. FA SI vs. M SI vs. FA M vs. FA

SC-CR 2.35E-193 1.75E-28 6.41E-83 4.86E-26 9.18E-49 0.055638 8.80E-14 2.07E-25 0.0504 6.10E-14

SI-CR 3.46E-10 0.12096 8.04E-10 0.52851 1.44E-11 0.023804 9.54E-05 9.27E-14 0.32681 3.38E-11

SC-SI 1.52E-23 6.84E-06 8.67E-11 1.36E-10 0.0043127 0.67362 0.19108 0.0098251 0.0014469 0.32367

The results for the different projections are given in separate rows.

to the multi-session datasets. The non-stationarity of the data
between the two sessions (due to electrode position changes,
impedance changes, or changes in brain-state) likely contributes
to the drop in classification performance (Krauledat et al.,
2007). Our analysis was restricted to time domain signals
from specific channel groups known to be involved in frontal
and parietal old/new effects. It is possible that accuracy could

be increased by using frequency domain information from
multiple electrode location and frequency bands (see for
example, Hammon and de Sa, 2007; Hammon et al., 2008;
Velu and de Sa, 2013; Noh et al., 2014a; Mousavi et al.,
2017).

The current analysis found that the projections of the temporal
information from the EEG data onto different hyperplanes
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FIGURE 6 | The average of the estimated means and the approximate 95% confidence intervals of the classifier scores (Hochberg and Tamhane, 1987) across the
four datasets (Exp 1 (loc), Exp 2 (col), Exp 3-loc, Exp 3-col) when considering the breakdown by subjective ratings (RS, RO, F, MN, and SN) for the three different
classification problems (A: SC vs. CR; B: SI vs. CR; C: SC vs. SI).

show different patterns. This was evident in the relationship
between the behavioral conditions of interest. We focused on
the patterns which were consistent across multiple subjects and
multiple datasets to compare across the different classifiers.
These results suggested that the classifier may be exploiting
features which are more informative for discriminating between
the two behavioral conditions selected for training. It was
found that the SC-SI classifier performance on the two color
source datasets (Experiment 2 and the color blocks from
Experiment 3) was lower compared to the location datasets
(Experiment 1 and the location blocks from Experiment 3).
The activation patterns for the SC-SI classifier were also not
significantly consistent across subjects for the color outline
source. In Mollison and Curran (2012), it was found that

accurate/inaccurate judgments to the familiar responses were
affected by source type where the SC trials with familiar ratings
and SI trials with familiar ratings were significantly different
only for the location-source datasets when comparison was
conducted on a ROI centered at FCz. This suggests that the
temporal information in the EEG signal may be less separable
between SC and SI trials for the color datasets compared
to the location datasets resulting in a lower classification
performance.

The relationship between the correctly remembered
conditions (where the classifier scores showed CR < SI < SC
on all three discriminative vectors) suggests that these classifier
scores may reflect the amount of information retrieved from
the study episode. The difference in the amount of information
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FIGURE 7 | (A) The average activation patterns from the SC-CR classifiers averaged across all available subjects. (B) The average activation patterns from the
SI-CR classifier averaged across all available subjects. (C) The average activation patterns from the SC-SI classifiers averaged across all available subjects. Note that
the numbers on the x-axes represent the mid-point of the 100 ms window used to compute the features.

retrieved from the study episode is maximal between conditions
SC (when the correct item is retrieved from the study phase
with the appropriate source information) and CR (when no
information is retrieved from the study phase) which may be
why the SC-CR classifier outperformed the other two classifiers.
The drop in classifier performance for the SC-SI and SI-CR
classifiers compared to the SC-CR classifier may be due to this
innate relationship between the 3 behavioral conditions used for
classifier training. The SI-CR classifier would primarily be able to
utilize information related to differences between item retrieval
vs. correct rejection to distinguish between the two classes. On

the contrary, the SC-SI classifier would only be able to utilize
information related to source memory differences between
correct source retrieval vs. incorrect source retrieval in order to
distinguish between the SC and SI conditions.

The activation patterns (see Figure 8) indicated that the
classifiers used features mostly around 400 to 800 ms and gave
these features higher weights. The spatiotemporal distribution
of predictive features associated with the (SI - CR) classifiers
(early and more frontal) were somewhat consistent with the
timing and location of the FN400 only in the color-source
experiments [2 and 3(col)]. Likewise the spatiotemporal
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FIGURE 8 | The average activation patterns from Figure 7 but masked by the most significant cluster (with p-value for that cluster given below) (Maris and
Oostenveld, 2007) for the three different classification problems (A: SC vs. CR; B: SI vs. CR; C: SC vs. SI). Note that the numbers on the x-axes represent the
mid-point of the 100 ms window used to compute the features.

distribution of predictive features associated with the (SC-SI)
classifiers (later and more parietal) were somewhat consistent
with the timing and location of the parietal ERP old/new
effect only in the color-source experiments. In the location-
source experiments, the (SC-SI) classifier had significant
contributions from both early (<500 ms) and late (500–
800) time periods and frontal and parietal locations. This
suggests that while the SI-CR classifier may be representative
of the early frontal old/new effect and the SC-SI classifier
representative of the later parietal old/new effect when
color is the source information, the mapping is not as

appropriate when location is the source information. This
is consistent with Mollison and Curran’s (2012) observations
suggesting that familiarity contributes to source recognition
for location more so than for color. The activation patterns
corresponding to the SC-CR classifier took advantage of the
features across all time periods (see Figure 8) which most
likely resulted in the largest distinction between the SC and CR
condition.

Additionally, the multivariate classification approach
showed that trial-by-trial variation in EEG corresponding to
these ERP components are predictive of subjects’ behavioral
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FIGURE 9 | (A) The scores of all conditions across time by SC-CR classifiers. (B) The scores of all conditions across time by SI-CR classifiers. (C) The scores of all
conditions across time by SC-SI classifiers.

responses, which is consistent with the hypothesis that the
underlying processes are influencing memory judgments. One
previous study has similarly used logistic regression to predict
performance on a city-size comparison task from single-trial
EEG data corresponding to the FN400 (Rosburg et al., 2011).
Their results showed that the relative familiarity of two cities, as
indexed by single-trial FN400 measures, predicted which of the
cities subjects judged as being more populous. Taken together
with the current results, these classification approaches are
important for establishing that EEG patterns which have been
related to familiarity and recollection in ERP averages, can be
shown to predict behavior on individual trials in both standard
memory tasks as well as a decision making task that is influenced
by memory. Overall, this strengthens the hypothesized links
between these EEG patterns and behaviorally relevant memory
processes.

The ERP studies of recognition memory often exclude error
trials from analyses because of insufficient trials for stable

ERPs in these conditions. In their original study, Mollison and
Curran (2012) excluded subjects with less than 15 artifact-
free trials/condition/subject and 24% of subjects would have
been excluded if errors were included in the analyses. One
approach for increasing the false alarm rate has been to use
lures that are similar to studied items (e.g., Curran, 2000;
Curran and Cleary, 2003; Nessler et al., 2001). In these cases
subjects are presumed to have a high false alarm rate because
similar lures are as familiar as studied items, and the familiarity-
related FN400 responds similarly to hits and false alarms to
similar lures. It is also common to hypothesize that false alarms
to even non-similar lures are driven by familiarity. For example,
the Yonelinas (1994, 1997) dual process model of ROC curves
explicitly assumes that recollection does not contribute to false
alarms, which are only driven by familiarity. Few ERP studies
have assessed false alarms from lures that were not similar to
the studied items. If familiarity differentiates “no” (CR) and
“yes” (FA) responses to new items, the FN400 should be more
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TABLE 5 | The difference between the average classifier scores for the SC and FA conditions are given in the top three rows.

Classifier Exp 1 (loc) Exp 2 (col) Exp 3-loc Exp 3-col Average

Difference between SC and FA

SC-CR 0.0992 0.0630 0.0647 0.0546 0.0704

SI-CR −0.0220 0.0099 −0.0042 0.0151 −0.0003

SC-SI 0.0832 0.0456 0.0479 0.0241 0.0502

Difference between SI and FA

SC-CR 0.0121 0.0353 0.0135 0.0254 0.0216

SI-CR −0.0173 0.0258 −0.0021 0.0096 0.0040

SC-SI 0.0244 0.0171 0.0121 0.0165 0.0175

The difference between the average classifier scores for the SI and FA conditions are given in the bottom three rows. Negative values indicate FA had larger values. The
table shows that FA is mapped closer to SC and SI in the SI-CR classifier than the SC-CR and SC-SI classifiers.

TABLE 6 | The uncorrected pairwise comparison results for the five subjective rating options across the four datasets [Exp 1 (loc), Exp 2 (col), Exp 3-loc, Exp 3-col].

RS vs. RO RS vs. F RS vs. MN RS vs. SN RO vs. F RO vs. MN RO vs. SN F vs. MN F vs. SN MN vs. SN

SC-CR 0.0031227 6.83E-27 8.57E-92 8.08E-158 5.62E-13 4.19E-66 2.31E-117 3.52E-28 1.97E-47 0.0017659

Only the trials with correct item judgments were included in this analysis.

positive to FA trials than CR trials. Although early studies that
did not clearly differentiate the FN400 reported no differences
between hits and false alarms (Wilding et al., 1995; Wilding and
Rugg, 1996, 1997; Rubin et al., 1999), two studies that specifically
focused on the FN400 did observe more positive FN400s to FA
than to CR trials (Finnigan et al., 2002; Wolk et al., 2006). Wolk
et al. (2006) included a very large number of test items, which
resulted in an average of 105 FA trials/subject, but Finnigan et al.
(2002) only averaged 12 trials/subject. The current multivariate
analysis approach using pattern classifiers addresses this trial
count issue by projecting the high dimensional EEG data onto
a one-dimensional vector which is meaningful with respect to
the experimental paradigm. The SI-CR classifier responded more
strongly to FA trials than to CR, with FA being more similar to
item hits (SC and SI), as would be expected if FA trials were driven
by familiarity.

The relationship between the SC and FA conditions was
particularly interesting. The difference between the two
conditions were consistently larger across all four datasets on
the SC-CR and SC-SI planes compared to the SI-CR plane as
given in Table 5 (and shown in Figure 5). This pattern was
also evident between the SI and FA conditions, however, the
distances between these two conditions were closer. Hence
the representations with respect to the different classification
boundaries suggest that SC and FA are more similar to each
other on the SI-CR (item memory) plane compared to the
other two representations. In other words, false alarms (on item
information) may include information related to item retrieval
while they do not include much information related to source
retrieval (recollection).

The other type of error, misses (M), were generally similar to
CR in all three classifiers. Both of these conditions reflect low
levels of familiarity and recollection that lead to “no” responses.
Previous studies have found 300–500 ms FN400 or 500–800 ms
parietal old/new differences between hits and misses, but not

between CR trials and misses (Rugg et al., 1998; Curran and
Hancock, 2007). Instead, Rugg et al. (1998) found differences
between misses and CR were observed over posterior channels
between 300 and 500 ms. The latter differences were interpreted
as reflecting the activity of an implicit memory process because
subjects were giving the same explicit “no” response to both
old and new items, but the brain was still differentiating their
memory status [although others dispute this definition of implicit
memory, Voss and Paller (2008)]. Because our classifiers were
trained to differentiate different levels of explicit memory, it
makes sense that no major differences were observed between
misses and CR in any of our results. Future work could be done to
further investigate any differences by specifically involving misses
in the classification training [see for example (Noh et al., 2014b)].

In summary, the present results showed that the classification
analysis successfully extracts information related to retrieval
strength from the EEG data. These results show that the classifier
scores well represent the subjects’ behavioral performance on
source retrieval (the relationship between the SC, SI, and CR
conditions in Figure 5) and indicate that EEG item-memory
and source-memory responses may be more spatially widespread
than previously thought and differ between source-types. The
results also indicate that retrieval strength as reflected in the
classifier scores follows the subjects’ subjective ratings (Figure 6
and Table 6). It was also found that the brain activity related
to item memory/familiarity may be present during false item
retrieval (FA trials) as well as during correct item retrieval (SC
and SI trials).
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