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Control processes are critical for both facilitating and suppressing memory retrieval, but these processes are
not well understood. The current work, inspired by a similar fMRI design (Detre et al., in press), used a
modified Think/No-Think(TNT) paradigm to investigate the neural signatures of volition over enhancing
and suppressing memory retrieval. Previous studies have shown memory enhancement when well-learned
stimulus pairs are restudied in cued recall (“Recall or think of studied pair item”), and degradation when
restudied with cued suppression (“Avoid thinking of studied pair item”). We used category-based (faces
vs. scenes) multivariate classification of electroencephalography signals to determine if individual target
items were successfully retrieved or suppressed. A logistic regression based on classifier output determined
that retrieval activation during the cued recall/suppression period was a predictor for subsequent memory.
Labeling trials with this internal measure, as opposed to their nominal Think vs. No-Think condition, revealed
the classic TNT pattern of enhanced memory for successful cued-retrieval and degraded memory for cued-
suppression. This classification process enabled a more selective investigation into the time-frequency signa-
tures of control over retrieval. Comparing controlled retrieval vs. controlled suppression, results showed more
prominent Theta oscillations (3 to 8 Hz) in controlled retrieval. Beta oscillations (12 to 30 Hz) were involved
in high levels of both controlled retrieval and suppression, suggesting it may have a more general control-
related role. These results suggest unique roles for these frequency bands in retrieval processes.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Control over memory retrieval is a powerful tool for effective
learning, however the mechanisms supporting this process are not
well understood. Successful retrieval of previously-studied material is
known to improve long-term retention, a finding referred to as the
testing effect (Karpicke and Roediger, 2008). Conversely, successful
suppression of previously-learnedmaterial has shown the reverse rela-
tionship, such that successful suppression of retrieval leads to dimin-
ished long-term retention (Anderson and Green, 2001; Depue et al.,
2007). The objective for the current work is to focus on the underlying
neuralmechanisms supporting these control processes, using oscillatory
dynamics within Electroencephalography (EEG) as a window into the
coordinated processing dynamics across different neural networks.

Neural oscillations in intracranial recordings measure fluctuations
in the local field potential, reflecting the excitatory and inhibitory
input into different neuronal assemblies. These oscillations can thus
provide a measure of the postsynaptic potentials responsible for
shaping cell assemblies involved in the storage and retrieval of long-
term memories (Buzsaki and Draguhn, 2004; Fell and Axmacher,
tz),
olorado.edu (T. Curran).
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2011). If these oscillations are distinct enough, they can be picked up
by scalp based EEG/MEG sensors, and several studies have shown that
scalp-recorded neural oscillations play an important role in long-term
memory (Hanslmayr et al., 2012;Nyhus andCurran, 2010). These studies
suggest that fluctuations in synchronized activity in the Theta (approxi-
mately 3–8 Hz), Alpha (approximately 8–12 Hz), Beta (approximately
12–30 Hz), and Gamma (approximately 30–50 Hz) frequency ranges
may play differential roles in memory formation and retrieval processes.

In particular, Theta and Gamma power are the most prominent
oscillatory markers of successful retrieval (Burgess and Gruzelier,
1997; Düzel et al., 2003; Nyhus and Curran, 2010; Osipova et al.,
2006). Several of the studies supporting this claimuse recognitionmem-
ory tests to show that Theta power is increased for Hits (i.e. correctly
remembered items) compared to correct rejections (new itemspresented
at test that are correctly identified as new) fromEEGdata recorded during
test (Burgess andGruzelier, 1997; Düzel et al., 2003; Osipova et al., 2006).
Similarly, several studies have used a source judgment task (i.e., testing
individuals on the particular context inwhich an itemwas studied)with-
in the subsequent memory paradigm and found greater Theta power, in
EEGdata recordedduring study, for correctly identified sources compared
to incorrect sources (Gruber et al., 2008;Osipova et al., 2006; Sederberg et
al., 2003). Gamma results have beenmore varied than Theta, but they are
often found to covary with each other and are perhaps coordinated with
more general retrieval processes (Hanslmayr et al., 2009; Osipova et al.,
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2006). Although these results can provide insight in the oscillatory signa-
tures surrounding successful memory retrieval, these studies were un-
able to contrast the amount of retrieval control required to perform
these tasks, and therefore are unable to selectively reveal the general
control processes involved in memory retrieval.

A collection of recent work focused on the suppression of task-
irrelevant information to gain more direct insight into memory control
processes, and found that that Alpha and Beta power are prominent
under these conditions (Hanslmayr et al., 2012; Klimesch, 2012). One
such study used a recognition memory task and found a greater
decrease in Beta power for Hits compared to Misses from EEG data
recorded at test (Düzel et al., 2003).

A pair of more recent studies manipulated the number of items
required to be retrieved for successful execution of a given trial
(Hanslmayr et al., 2010; Khader and Rösler, 2011). Results from this
study, using EEG data recorded during testing, show that Theta power
was positively correlated with the number of successfully retrieved
items, while Alpha and Beta power were negatively correlated with
the number of successfully retrieved items. Although the authors
framed their manipulation in reference to the number of items
retrieved, one could also interpret this as manipulating the amount of
control required for successful retrieval. A similar study also showed
that Alpha/Beta power decreasedwhen trying to retrieve a targetmem-
ory, however the design was also able to show that Alpha/Beta power
increased for items competing with the target memory (Waldhauser
et al., 2012). A recent review interpreted these and other results to
suggest that Alpha/Beta decreases provide a marker for the amount
of information retrieved, but also correlates with active suppression
in the retrieval of competing/unwanted items (Hanslmayr et al.,
2012).

There are at least two open questions that emerge from these
results. First, are oscillations within the Alpha and Beta bands always
negatively coupled to successful retrieval as suggested by Waldhauser
et al. (2012) or can they play separable roles? Results highlighted
above suggest Alpha and Beta to be more or less inseparable within
the domain of controlled retrieval. These studies, however, have not
directly targeted difficulty of retrieval, or required control over retrieval
as an independent variable. Second, what role does Theta play in the
control over memory? Historically the role of Theta in memory (either
encoding or retrieval) has been confounded with the successful execu-
tion of thosememory processes. It is unclearwhether Theta is correlated
with the successful execution of encoding and retrieval, or to a more
general control processes regulating memory.

These questions were targeted in the current work through the use of
amodified Think/No-Think (TNT) paradigm (Anderson andGreen, 2001),
while participants underwent scalp recorded EEG. The standard TNT par-
adigm trains participants on a series of paired associates, and thenmanip-
ulates these associates in a cue recall task where one item within the
originally-studied pair is presented and participants are asked to either
actively recall (Think) or actively suppress recall (No-Think) of the corre-
sponding pair item. The modified paradigm adopted in the current work
uses paired associates with multiple levels of interference to further ma-
nipulate the level of control required to retrieve a given pair. Here, we in-
creased the number of interfering traces for a given paired associate to
likewise increase the demands on retrieval processes required to success-
fully identify the originally studied pair. Our manipulation of interfering
traces, described below, is derived from the presentation of distracting
pair images during the Controlled Retrieval portion of the TNT task. This
paradigmwas used so that contrasts of low vs. high control overmemory
suppression and retrieval can be made. This augmented TNT paradigm
then allows for the more subtle investigation into the oscillatory dynam-
ics during controlled retrieval processing.

In addition to the manipulation of multiple levels of required con-
trol, the current work also takes advantage of multivariate pattern
classification methods to sub-select trials in which participants were
successfully able to elicit control over retrieval processes. One major
concern with using the Think/No-Think paradigm is that previous
studies have found varying degrees of success in eliciting the desired
effect (Bulevich et al., 2006). Similarly, there has been contention as
to whether the memory systems involved in retrieval are suppressed
during No-Think trials, or whether a distracting memory is retrieved
in place of the learned associate (Tomlinson et al., 2009). These issues
raise concern as to the trial-by-trail efficacy of participants in
performing the task. A recent fMRI study by Detre et al. (in press) has
addressed these issues through the inclusion of multivariate pattern
classification into the study design. This allows for the trial-by-trial de-
tection of how successful participants were at retrieving or suppressing
the image category of the target associate. Detre et al. (in press) found
that the TNT effects were much stronger when sorted based on this
internal measure of memory retrieval. In the present study, we adapted
this analysis method to the EEG context to provide a continuous mea-
sure of how successful or unsuccessful control over retrieval was on
individual trials. This allows us to dissociate subsequent memory from
successful control over retrieval, which are ubiquitously confounded
in previous studies. With this dissociation we are able to investigate
the neural signatures related to retrieval control without the as-
sumptions built into subsequent memory and Think/No-Think stud-
ies, i.e., that greater retrieval success leads to better subsequent
memory.

We carried out the study in three major phases as shown in Fig. 1,
all within one experimental session. First, in the Paired Associate task,
we trained individuals on word–image pairs to be later remembered.
The second phase was done while scalp EEG was recorded and
consisted of two tasks separated by a short break. During this phase par-
ticipants first performed a 1-Back task using the same types of images
used with the word–image pairs studied in the first phase. This data
was later used to train a classifier to identify when participants were
holding a particular image category inmind (faces or scenes). Following
the 1-Back task participants carried out a modified Think/No-Think
task, called the Controlled Retrieval task. During this task participants
performed either cued recall (Think), or cued suppression of recall
(No-Think) using pairs learned in the PairedAssociate task. Interference
within pairswasmanipulated after the presentation of the cuedwordby
either presenting the originally studied image (low interference Green
condition), or by presenting a distracting image (high interference Red
and Blue conditions). It is expected that these two types of trials either
reinforce the original word–image pair (i.e., the Green condition) or
interfere with that original association (i.e., Blue and Red conditions).
Here, Red trials are similar to the standard No-Think condition, and
Blue/Green trials are similar to the Think condition. Finally, in the
third phase of the experiment, participants performed a standard cued
recall task to assess their memory for the original word–image pairs
after the Controlled Retrieval manipulation.

The specific goal of the current work is to target varying levels of
control over both enhancement and suppression of memory retrieval
with the intention of targeting Theta, Alpha, Beta, and Gamma oscilla-
tions as dependent measures. Based on previous literature cited above
we expected to find Theta band power to be positively correlated with
successful retrieval, and Alpha/Beta band power to be negatively corre-
latedwith successful suppression. Further, we targeted varying levels of
required control by manipulating interference to further define the
specific functional correlates within these frequency bands.

Materials and methods

As shown in Fig. 1, the overall structure of the experiment consisted
of 4 main tasks: initial Paired Associate learning, a perceptual 1-Back
task using faces and scenes, the modified Think/No-Think task referred
to as the Controlled Retrieval task, and finally the Subsequent Memory
Test for the originally learned paired associates. The initial Paired Asso-
ciate task was self paced by participants and took approximately 2
rounds of study/test and a total of 20 min to complete.The 1-Back task
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had constrained stimulus timing but self paced blink breaks and took
approximately 20 min to complete. The Controlled Retrieval task also
had constrained stimulus timing but self paced blink breaks and elec-
trode impedance adjustments, in total taking approximately 90 min to
complete. The final Subsequent Memory Test was self paced and took
approximately 10 min to complete. In total, the full course of the exper-
iment took approximately 3.5 h including EEG setup.

Participants

Thirty University of Colorado undergraduates participated in the
experiment and received payment of $15 per hour (ages 18–25,
M = 20; 14 males, 16 females). All participants were right handed,
had normal or corrected-to-normal vision, and all but threewere native
English speakers. Informed consentwas obtained fromeachparticipant,
and the study conformed to the Institutional Review Board (IRB)
guidelines.

Materials

A list of 96 common food nouns was generated for the study
constrained by the food item being only one word long. Words were
presented in 52 point Geneva font just below the paired image during
the Paired Associate Learning and the Subsequent Memory portions of
the study, and in 30 point Geneva font in the center of the screen during
the Controlled Retrieval task. The image pool consisted of 1032 color
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graphs focused from the shoulder up with the center of the face gener-
ally in the center of the image, and taken in front of an off-white
background (Phillips et al., 2000). Scene images were photographs
taken from the SUN image database within the ‘Living Room’ category
Xiao et al. (2010). Each image was scaled to match its original propor-
tions with a maximum size of 350 pixels on either the length or the
width corresponding with the largest dimension of the image before
resizing. On average across images faces were presented at a size of
325 × 217 pixels, and scenes were presented at a size of 226 × 322
pixels. As is discussed in the EEG classification section this size differ-
ence between image categories is likely to be uninformative to the clas-
sification process due to the feature-selection procedure shown in
Fig. 2, and the optimal time points ultimately used in classifier training
shown in Fig. 3A. The experiment was presented on a 17-in flat-panel
display with a resolution of 1024 × 768 (60 Hz frame rate) placed 1 m
in front of the participants. All portions of the display not occupied by
stimuli or text were filled with grey pixels.
Design

Paired associates were generated at the time of the experiment for
each participant. Each list of stimuli consisted of 96 word–image pairs
where each of the 96 words was paired with a given image, randomly
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equally divided into faces and scenes. These pairs were used for the
initial Paired Associate learning.

Stimuli for the 1-Back task were taken from a separate image pool
of 80 faces and 80 scenes. Each of these images were repeated 3 times
throughout the task, and a total of 12 target trials were used giving a
total trial count of 492. Target trials are trials in which the image
which was just presented is repeated and participants are instructed
to identify these trials with a button press. The images used throughout
the task were perceptually similar to those used in the Paired Associate
learning task, however no image was used in both tasks. Image presen-
tation was blocked by image type (faces or scenes) into a length of
20 trials. These blocks were presented in alternating order based on
image category (i.e., a face block always followed a scene block and
vice versa). The image category of the starting block was counter-
balanced across participants.

In the Controlled Retrieval task the word–image pairs studied in the
initial Paired Associate learning task were randomly divided into 4
conditions: retrieval-low (retrieval with low interference), retrieval-
high (retrieval with high interference), suppression-high (retrieval
suppression with high interference), and Baseline (no Controlled
Retrieval manipulation). These conditions will be referred to in short-
hand from Fig. 1 as Green (retrieval-low), Blue (retrieval-high), and
Red (suppression-high). Each condition contained equal number of
stimuli, and equal number of faces and scenes. The Baseline pairs
were omitted from the Controlled Retrieval task to be used as ameasure
of subsequent memory that had no Controlled Retrieval manipulation.
Each stimulus from the other three conditions was repeated 10 times
throughout the course of the Controlled Retrieval task yielding a total
of 720 trials (72 paired associates across Green, Blue and Red conditions
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by 10 repetitions each). Words from the Blue and Red conditions were
shown with a unique new image for each repetition during the task.
These distracting new images were randomly selected within image
category such that the image presented in the Controlled Retrieval
task was contra-category to the image originally studied in the Paired
Associate task. For example, a word that was originally studied with
an image of a scene would be re-paired with images of 10 different
faces throughout the course of the Controlled Retrieval task, and vice
versa for a word that was originally paired with a face image. This
distractor pair presentation in the Red and Blue conditions provided
the increased interference relative to the Green condition pairs which
displayed the original studied image during the controlled retrieval
task. The use of contra-category images within the interference images
was intentionally done to increase the sensitivity of our classifier to
detect when interfering items as opposed to target items are being
processed. In total 480 new images were used (48 paired associates
by 10 repetitions). The presentation order of stimuli was randomized
within each cycle of the full list of originally studied pairs.

The final subsequent memory test used only the images from the
original Paired Associate learning. Presentation order of the images
was random. No testing of the new images shown in the Controlled
Retrieval task for Blue and Red conditions was done.

Procedure

All stimulus presentationwas doneusing the Psychophysics Toolbox
withinMatlab (Brainard, 1997). During the Paired Associate task partic-
ipants saw 96 unique word–image pairs; each presented in random
order with the image in the center of the screen and the word just
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below it. During this study portion each word–image pair was
presented for 7 s. After all word–image pairs were presented once, par-
ticipants were given a cued recall memory test for all the studied pairs.
The test consisted of randomly ordered studied images presented in the
center of the screen and a prompt below it where participants were
asked to type the word they studied with the given image. During the
cued recall testing, if no response was made in 30 s participants were
prompted to make a response by displaying ‘Please make a response!’
above the cued image. The Inter Stimulus Interval (ISI) between both
study and test items was 1 s. If an item was misidentified in the cued
recall test participants were shown the correct pairing before moving
on to the next test pair. If there was less than a 10% accuracy rate in
the test portion, then the pairs which were incorrectly labeled were
re-studied in random order in the same fashion as the original study
portion. Following this a test of the complete list of pairs was again
carried out. This cycle of study and test continued until the accuracy
rate on the test portion was above 10%. Average accuracy for studied
pairs on the final test round of the Paired Associate task was 30 ±
10%, and the number repetitions (i.e., cycles of study and test) required
to complete the task was an average of 1.1 ± 0.5 cycles, where 1 cycle
implies the taskwas completed on the first round of study and test. This
liberal learning criteria was adopted to ensure that participants under-
stood the associations theywere instructed to learn and that they had at
least a minimal recall rate going into the Controlled Retrieval task, sim-
ilar to the scenario where only a single round of study were allowed on
the word–image pairs.

Following the initial Paired Associate learning, participants were
fit with an electrode net and given general instructions regarding
proper handling of the net, and to avoid blinking during the tasks
unless during designated blink breaks which were spaced no more
than 1 minute apart. The 1-Back task was then carried out in which
participants viewed a series of images presented in the center of the
screen and were told to press the ‘J’ key whenever a given image was
repeated immediately in sequential order. Images were presented for
250 ms and a jittered ISI was randomly sampled from 1000 to
1500 ms where a ‘+’ symbol would appear in the center of the screen
in 62 point Geneva font. If participants correctly identified a target
image the word ‘Correct’ appeared in green superimposed over the
image, and if participants false alarmed to a non-target image a ‘X’
appeared in red over the image. Feedback text was presented in 32
point Geneva font and remained on the screen until the end of the
trial which depended upon how quickly participants responded. In
total 492 images were presented, 12 of which were targets.

Participants then began the Controlled Retrieval task, as shown in
Fig. 1, which consisted of the sequential presentation of previously
studied words followed by either novel or previously studied images.
Each trial began with the presentation of a 350 by 350 pixel square
with a 20 pixel colored border which remained on the screen until
the completion of the trial. The color of the square's boarder indicated
the trial's condition type; either Green, Blue or Red. After a 750 ms
cue from the colored square, a previously studied word appeared in
the center of the square in 30 point Geneva font, which remained
on the screen for 1500 ms. This was followed by a jittered ISI between
500 and 1000 ms during which a ‘+’ symbol of 62 point Geneva font
appear in the center of the screen. An image was then presented in
the center of the colored square for 1500 ms. In the Green condition
this image was the same image originally studied with the currently
presented word in the Paired Associate learning. In the Blue and
Red conditions this image was a novel image and was contra-
category to the image that was studied with the currently presented
word in the PairedAssociate learning. Following the image presentation
the color square was removed from the screen, and a 62 point Geneva
font ‘+’ symbol appear in the center of the screen for a jittered ISI
between 1000 and 1500 ms which completed the extent of a single
trial. Each of the conditions consisted of 24 word–image pairs taken
from the Paired Associate learning, yielding a list of 72 stimuli. This
list was repeated 10 times through the course of the task with Red
and Blue stimuli using a unique image on each repetition. The presenta-
tion order was randomized within each repetition such that each of the
72 stimuli was presented once before any single stimuli was presented
in the next repetition.

In the Green and Blue conditions participants were instructed to:
“Retrieve or think about the image previously studied with the
presented word”. In the Green condition the previously studied image
appeared following the word presentation. In the Blue condition, a
new image appeared following theword presentation, and participants
were instructed to “…simply maintain thinking about the originally
studied image while holding your gaze on this new image”. In the Red
condition participants were instructed to: “Try and not think of the
image previously studied with the presented word, and to simply try
to not think of anything while the word is on the screen”. Following
the word presentation participants were instructed to “…actively asso-
ciate this new image with the word that was just presented”. Through
this design it was intended that the Green condition required the least
amount of control over retrieval as the word–image pairs are presented
several times together during the course of the Controlled Retrieval
task. The Blue condition is analogous to a classic Think condition with
the exception that an increasing number of distractor images are
presented with a given cue word during the course of the task. Finally
the Red condition is analogous to a No-Think condition with the excep-
tion that participants are actively trying to encode new associations
with a given cue word during the course of the task. The addition of
this active encoding task was included to look at active enhancement
vs suppression of encoding, however the current analysis only focuses
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on the interfering effects of these distractor images and leaves these
effects of volitional control over encoding for future work. The Red
and Blue conditions, due to their presentation with distractor images,
were intended to require more control over retrieval than the Green
condition.

After the Controlled Retrieval task the electrode net was removed
from the participants head, and the final subsequent memory task
was carried out. The testing procedure was identical to the testing
in the original Paired Associate learning with the exception that no
feedback was given for participants' responses, and only one testing
of the items was carried out regardless of the participants' accuracy
level.

Electrophysiological recordings and data processing

A 128-channel HydroCel Geodesic Sensor Net TM(GSN 200, v. 2.1)
was used to measure the EEG at the scalp using a central vertex refer-
ence (Cz) with a sampling rate of 250 Hz. The net was connected to an
AC-coupled, high-input impedance amplifier (300 MΩ, Net Amps TM;
Electrical Geodesics, Inc., Eugene, OR). The electrodes were adjusted
until impedance measurements were less than 40 kΩ, and were
checked to meet this criteria at an interval of 15 min at most.

Post recording, Net Station software (Electrical Geodesics, Inc.) was
used to digitally high-pass filter at 1 Hz, low-pass filter at 100 Hz, and
notch filter at 60 Hz. Data was epoched into 3000 ms segments, 1 s
before the onset of each test stimulus and 2 s after. The Net Station
artifact detection was used to detect trials that contained sufficient
eye-blink artifacts. Subsequently, the Net Station's bad channel interpo-
lation and trial rejection algorithmswere used. Bad channelswere iden-
tified by looking at the full epoch timewindow and evaluatingwhether
it met any of the following criteria: average amplitude exceeds 100 μV,
differential average amplitude exceeds 50 μV, or the channel had zero
variance. On average across participants and conditions 40 ± 15% of
trials were removed due to blink artifacts. All analyses were based
on referencing to the average of all electrodes (Dien, 1998) using Net
Station's PARE correction (Junghfer et al., 1999). All subsequent data
processing and analyses were done in MATLAB (version R2011b; The
MathWorks, Inc., Natick, MA) using the FieldTrip toolbox (Oostenveld
et al., 2011) and in-house scripts.

The spectral decomposition was performed using a set of 71
Morlet wavelets that were equally spaced in 0.67 Hz intervals from
3 to 50 Hz. Each wavelet had a width that was 4 times the period of
its center frequency. After decomposition, the analyzable window was
reduced to a 1680 ms window, starting −340 ms prior to stimulus
onset and extending to 1340 ms after stimulus onset; stimulus onset
here implies word onset in the Controlled Retrieval task and image
onset in the 1-Back task. The power, i.e., themagnitude of each complex
coefficient, was then computed for every 40 ms time bin within the
1680 ms analyzable window. In total, the spectral decomposition
transformed each of the 42 time bins of a trial into the power values
of 71 frequency bands for each of the 128 electrodes, yielding a poten-
tial 381,696 analyzable features per trial. For each trial, the average
power across the 200 ms period between −300 and −100 ms prior
to stimulus onset was used to baseline correct each 1640 ms epoch
within each electrode/frequency bin. These spectral features were
used as inputs to the EEG pattern classifiers and cluster based analyses.

EEG classification

The overall EEG classification goal was to train a pattern classifier
to predict when participants were thinking about the studied image
category (e.g., faces) vs. the contra image category (e.g., scenes) on
each Controlled Retrieval trial. Classifiers were first trained to discrimi-
nate face and scene images during the 1-Back task, and were then used
to estimate whether participants were thinking about faces or scenes
during Controlled Retrieval task. The EEG analysis was composed of
the following steps which are outlined in Fig. 2.

First, shown in panel A of Fig. 2, a set of classifiers was trained to
detect the patterns of spectral features associated with processing
each image category in the 1-Back task. Spectrally decomposed EEG
data from the 1-Back task was used to train the category specific clas-
sifiers. 200 ms time windows, selected in steps of 40 ms between 0
and the 1040 ms, were used to train 27 independent classifiers (one
for each 200 ms window) per subject.

Second, shown in panel B of Fig. 2, each of those 27 classifiers pro-
vide 27 different test responses to each of the Green condition trials.
These responses are based on the same running 200 ms time windows
in which the classifier was originally trained and span the full 0 to
1040 ms epoch, however the data being input to the already trained
classifier is now coming from the Green condition trials.

Third, the classifier features which perform optimally for the
intended task of identifying latent processing of face and scene
images were selected using what will be referred to as the Max
Difference method. This Max Difference method, shownin panel 3 of
Fig. 2, measures the difference in classifier response between the
image category of the originally studied paired-associate, for a given
cue word, and the contrary image category. This difference is calculated
across the full 0 to 1040 ms word presentation using the 27 test
responses acquired in panel B of Fig. 2, yielding 27 difference scores.
The time window that showed the maximum absolute value in this
difference of response is then taken as the classifiers' categorization
for that trial, and is labeled it's Max Difference score.

Finally, the results of thisMaxDifference score, across trials, are then
passed to an Area Under the Curve (AUC) test. Here an AUC score of .5
indicates chance levels of discrimination and an AUC score of 1.0 indi-
cates perfect separation of the two categories (Fawcett, 2006). Using
this method, the classifier that was trained on a specific 200 ms time
window within the 1-Back EEG data that showed the largest AUC
score to Green condition trials was selected within each subject, and
was then used in all subsequent analysis for that particular subject.

These selected classifiers provide an estimate of image category
processing in Blue and Red Controlled Retrieval trials using the same
Max Difference measure. These Max Difference scores were used in
two ways. The first was a predictor within a logistic regression model
regressing subsequent memory on a composite Memory Activation
score, which is an average Max Difference score across stimulus repeti-
tions. The second use for the classifier determined Max Difference
scores was a trial selection criteria within a cluster based spectral
power analysis. Both of these analyses are described in more detail in
the Classifier training section.

This multi-step procedure was used because the timing of perceiv-
ing a face vs. scene in the 1-Back test is likely to differ from the timing
of thinking about a face vs. scene in the Controlled Retrieval task. This
selection procedure allows us to select the point in time during which
faces and scenes are best discriminated in a trial-by-trial basis during
the Controlled Retrieval task. Because the target category is well
remembered in the Green condition, performance on that condition is
used to determined the training data most sensitive to the latent pro-
cessing of faces and scenes before applying the selected classifier to
the Blue and Red conditions of interest.

Classifier training
The training of category specific image classification of EEG data

was implemented using the Donders Machine Learning toolbox as
integrated within the FieldTrip toolbox. An Elastic Net classifier was
used because of its automated feature selection which allows for
parameterized balance between L1 and L2 regularization Zou and
Hastie (2005). Like standard multiple linear regression, the elastic
net algorithm adjusts feature weights to minimize the squared error
between the predicted label and the correct label. Unlike standard
multiple linear regression, elastic net also includes both L1 and L2
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regularization terms which bias the classification process to find a
solution that minimizes the feature weights. Regularized regression
algorithms (such as elastic nets) use a parameter (λ) that determines
the impact of the regularization term, which in this case was fit across
cross-validated training sets to find the best performance within sub-
ject. The balance between L1 and L2 regularization is adjusted using
another parameter (α) which was loosely fit across individuals to a
value of 0.08, emphasizing L1 regularization over L2. In effect this
emphasizes the minimization of the absolute values of the weights
(L1 regularization) as opposed to the squared weight values (L2
regularization).

Memory activation and trial selection

Following classifier selection a regression on the classifiers' relation-
ship with subsequent memory was carried out. The measure of image
processing used in this regression will be termed Memory Activation
and was constructed by averaging the largest absolute Max Difference
measure (as described in the EEG classification section) across all repe-
titions of the same stimulus for each subject. Eachword–image pair had
a potential 10 repetitions throughout the Controlled Retrieval task,
however due to blink artifacts not every word–image pair had its full
10 repetitions present, and thus an average across repetitions was
used. TheMemory Activation response is measured relative to the orig-
inally associated image for eachword–image pair, i.e., positive values in
the Memory Activation scores reflect classifier response on average
biased towards the original image association, and negative values
reflect classifier response on average biased towards the contra-
category of the originally associated image. This Memory Activation
score was then used in two analyses. The first coarse analysis adjusted
trial condition labels regardless of their original condition (Red or
Blue), and solely based on the trials' Memory Activation score;specifi-
cally positive Memory Activation scores were moved to a relabeled
Blue condition referred to as Blue-Neural throughout the text, and
negative scores were moved to a relabeled Red condition referred to
as Red-Neural. It was predicted that these re-assigned trials would
show stronger memory enhancement (Blue-Neural) and suppression
(Red-Neural) effects, as measured by subsequent memory scores, than
the original assignments (Detre et al., in press). A second, more robust,
analysis was done using the Memory Activation scores as a continuous
predictor in a mixed effects logistic regression, with fixed effects
grouped across participants, on the binary values of subsequentmemory
(memory or no-memory) for each word–image pair. We predicted that
higher Memory Activation scores would be associated with successful
subsequent memory.

In addition to the regression analysis, classifier output from the
Controlled Retrieval task was used to sub-select trials that showed
successful control, relative to task instructions, over image processing.
For example, trials were selected for later analysis when the task was
to think of the associated face image, and the classifier showed high
levels of face processing. Similarly, trials were selected for later analysis
when the task was to not think of the associated face image, and the
classifier showed high levels of scene processing. These conditions are
referred to as Bluesucc for successfully executed Blue trials and Redsucc
for successfully executed Red trials. This selection was done on a
trial-by-trial basis, such that the Max Difference score for a given trial
was used in the selection process, regardless of the aggregate Memory
Activation score across repetitions of a given cue word. The goal of
this process was to select successfully executed trials in an attempt to
remove unwanted noise from the power analysis of controlled retrieval
effects.

Spectral power analysis

An analysis of the spectral power differences between the levels of
control over retrieval was carried out using the trial selection described
in the Classifier training section. Average number of trials, both before
and after classifier determined sub-selection, are shown in Table 1. In
general there were a minimum of 30 trials per condition, per subject
used in the EEG analysis which combined across face and scene trial
types. No significant differences in trial numbers between conditions
existed across subjects before or after sub-selection. The three levels
of control over retrieval are those described in the Design section,
i.e., Green, Blue, and Redwhich are short hand for retrieval-low interfer-
ence, retrieval-high interference, and suppression-high interference
respectively. It's assumed, based on behavioral measures of subsequent
memory, that the Green condition required the least amount of control
over retrieval, while the Blue and Red conditions required more.
No a-priori differences were assumed in the amount of control over re-
trieval required in the Blue and Red conditions. The power differences
between these conditions were assessed using a cluster based analysis
(Maris and Oostenveld, 2007). Frequency data were averaged into the
Theta (3–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–
50 Hz) bands. These averaged frequency bands were analyzed across
the time window of 200–1000 ms, and across all electrodes except
the 4 surrounding the eyes. Clustering was done by performing a
t-test for conditions of interest within each time/electrode bin across
subjects, followed by grouping together the adjacent binswhich yielded
a p value of less than 0.01. Cluster significance was calculated using a
Monte-Carlo style permutation test of the summed t-values within a
given cluster. Each observed cluster was subject to 10,000 random per-
mutations of condition labels where its significance was estimated by
the proportion of random permutations which yielded clusters that
had a summed t-value as larger or larger than the observed cluster. It
should be noted that due to the random nature of these permutation
tests the reported p-values are non-stationary and will have 95% confi-
dence intervals approximately equal to p ± 0.004 (Ernst, 2004; Maris
and Oostenveld, 2007). Clusters found to have a p value less than 0.1
were inspected manually, and included in the results. Any cluster
which did not reach this threshold went unnoticed within our analysis
stream.

Results

Classifier selection and performance

Classifier training performance from selected time windows in the
1-Back task, assessed using a 5-fold cross validation, across subjects
was significantly greater than chance (μ = 0.63 ± 0.01, t(29) =
9.22, p b 0.01). Classifier performance within the Controlled Retrieval
conditions was validated across subjects using the Area Under the
ROC Curve (AUC) for each condition type. Performance in these con-
ditions were evaluated with a t-test against chance (0.5) showing a
significant difference for the Green condition trials (μ = 0.573 ±
0.005, t(29) = 13.58, p b 0.01), and no difference from chance for
the Blue (μ = 0.510 ± 0.009, t(29) = 1.07, p = 0.29) or Red (μ =
0.50 ± 0.01, t(29) = 0.10, p = 0.92) conditions. It should be noted
that AUC measures, which take into account both sensitivity and
specificity, within our two category classification problem provide
an equally unbiased estimate of classification performance for both
faces and scenes. The tested classifiers were selected based on the
best performance using the Green condition trials, and it should be
noted that this will inflate performance on these trials relative to the
Red and Blue conditions, however the average performance across indi-
viduals suggests that the classifiers were at least able to categorize the
Green trials above chance. The chance level performance within the
Blue and Red conditions is assumed to reflect participants' failure to suc-
cessfully execute the task on a sizable number of trials.

Descriptive data from selected classifiers are shown in Fig. 3. There
was a wide range of training data timewindows used in selected classi-
fiers across subjects, which can be seen in Fig. 3A. It's interesting to note
that there was no strong bias towards any particular time, which can be



Table 1
Trial numbers and subsequent memory accuracies for conditions used in the spectral
power analysis. Subscripted ‘succ’ indicates classifier determined sub-selection of trials
based on the successful execution of task. Variation in trial numbers in non
sub-selected conditions reflect trial loss due to artifact rejection (120 possible in each
condition if no loss). Errors shown are standard error in the mean.

Condition EEG trial counts Percent correct

Faces Scenes Faces Scenes

Green 74 ± 3 73 ± 3 84 ± 3 78 ± 4
Blue 72 ± 3 72 ± 4 53 ± 4 44 ± 4
Red 73 ± 3 73 ± 3 53 ± 4 42 ± 4
Baseline – – 51 ± 5 45 ± 4
Bluesucc 38 ± 2 34 ± 2 55 ± 5 52 ± 5
Redsucc 34 ± 3 39 ± 3 44 ± 5 43 ± 5
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seen in the overlaid histogram, as the stimuluswas only visually present
in the 1-Back task for the first 250 ms of the trial. This suggests that, in
general, non-perceptual features are being used in the selected classifier.
Similarly, averaged z-scored classifier weights across subjects, shown in
Figs. 3B and C, suggest no clear pattern of informative electrodes or
frequencies. This complex interaction across time, space, frequency
and participant is very difficult parse, and there may be systematic
patterns underlying classification weights. However, if we assume that
similar bottom-up perceptual processes would produce similar time-
locked spectral signatures, these results suggest no clear bias across
participants towards bottom-up perceptual features being the most
informative features for classification.
Subsequent memory

Subsequent memory was assessed for stimulus type (i.e., Faces or
Scenes) and Controlled Retrieval conditions (i.e., Green, Blue, and Red).
These accuracy values were corrected by subtracting a within-subject
baseline condition accuracy which consisted of word–image pairs
studied in the original Paired Associated Learning task but not included
in the Controlled Retrieval task. Fig. 4A shows the baseline corrected
proportion of stimulus pairs correctly identified in the subsequent
memory test. Mean uncorrected accuracy measures for the various
conditions are listed in Table 1. A 2(Faces, Scenes) × 3(Green, Blue,
Red) Linear Mixed Effects ANOVA showed significant fixed effects
across subjects for stimulus type and condition type (χ2(2, N =
30) = 8.16, p b 0.05). Main effects were found in accuracies for Faces
greater than Scenes (t = 3.28, Markov Chain Monte Carlo(MCMC)
estimated p b 0.01), and across condition type (t = −10.04, MCMC
p b 0.01), with no interaction (χ2(5, N = 30) = 1.04, p = 0.95).
Follow-up paired t-tests showed the Green condition accuracies to be
on average larger than the Blue (t(29) = 9.20, p b 0.01) and Red
(t(29) = 10.32, p b 0.01) conditions, with no significant difference
between the Blue and Red condition accuracies (t(29) = 0.52, p =
0.61).

Adjusted condition labels for the Blue and Red conditions (denoted
as Blue-Neural and Red-Neural in Figs. 4 and 5A) were calculated
using classifier output to determine a Memory Activation score, as
described in the Classifier training section. The subsequent memory
for these adjusted condition labels can be seen in Fig. 4. These adjusted
condition labels show a significant difference in the baseline corrected
accuracies between the Blue-Neural and Red-Neural conditions
(t(29) = 2.66, p b 0.05). Blue-Neural and Red-Neural conditions, how-
ever are not significantly different from baseline accuracy (Blue-Neural:
t(29) = 1.26, p = 0.22, Red-Neural: t(29) = −1.29, p = 0.21). Differ-
ences in accuracy across stimulus type were present in the Blue-Neural
condition, where Blue-Neural Face accuracy was greater than Scene
accuracy (t(27) = 2.66, p b 0.05), while no differences by stimulus
type in the Red-Neural condition were observed (t(29) = 1.02, p =
0.31).
Memory activation regression

Using a generalized linear mixed effects logistic regression, an
analysis of the impact of Memory Activation scores on subsequent
memory was carried out within the R analysis software using the
Linear and Non-Linear Mixed Effects package (Pinheiro et al., 2013; R
Core Team, 2012). These results, as seen in Fig. 5B, show the classifier
determined Memory Activation scores to have a significant positive
relationship with subsequent memory (β = 0.38, z = 2.01, p =
0.04). Critically, this estimate was assessed while controlling for any
differences in accuracies between stimulus type (i.e., face image pairs
or scene image pairs) described in the Subsequent memory section.
Similarly, a regression of stimulus type, controlling for subsequent
memory, showed no relationship with Memory Activation scores
(z = 0.84, p = 0.40). Therefore the relationship between Memory
Activation and subsequent memory cannot be attributed to memory
related differences based solely on stimulus type. Finally a fixed effect
covariate was also included for each individual's performance on the
final cycle of the Paired Associate learning. This covariate allows us to
control for any memory differences which might impact individuals'
ability to successfully engage in the Controlled Retrieval task.

To provide further support for this relationship we used the Max
Difference scores directly in the same mixed effects model used pre-
viously and found a significant relationship for the Max Difference
score with subsequent memory (β = 0.09, z = 2.44, p = 0.01).
This shows that Memory Activation scores have a significant positive
relationship with subsequent memory even on a trial-by-trial level.

Spectral power analysis

Based on the trial selection described in the Classifier training
section, a cluster based analysis of spectral power difference between
conditions was carried out. The results from this analysis are broken
down into two major contrasts. The first is Suppression vs. Retrieval
which is instantiated in Redsucc N Bluesucc contrast. The second targeted
contrast is High vs. Low control conditions, which is instantiated in
Bluesucc N Green, and Redsucc N Green contrasts.

Retrieval vs. suppression
The relationship between memory retrieval and suppression of

retrieval was probed by contrasting Bluesucc and Redsucc conditions
which are assumed to be equated in control of retrieval demands.
This contrast, as seen in Fig. 6, showed a marginally significant cluster
within the Theta band averaged over 3 to 8 Hz. The cluster had a
temporal extent from 780 to 980 ms and a permutation significance
value of p = 0.058. The average Green power over time within those
electrodes is also shown. However, because of the relatively larger stan-
dard error in the Green condition, there is no significant difference
between Bluesucc and Green trials.

High vs. low control
It is assumed, and supported in subsequent memory accuracies,

that Green trials required less control than Bluesucc or Redsucc trials
which both had concurrently presented interfering stimuli during
the Controlled Retrieval task. Therefore there are two contrasts that
best target the construct of high vs. low retrieval control: Bluesucc N
Green and Redsucc N Green.

In the Bluesucc N Green contrast the Beta frequency band, averaged
over 12 to 30 Hz, was the only one to show a significant cluster. This
cluster, as seen in Fig. 7, had a temporal extent from 460 to 540 ms,
and permutation test significance value of p = 0.032. The Redsucc N

Green contrast showed a significant cluster within the Alpha frequency
bandaveraged over 8 to 12 Hz, and in the Beta band averaged over 12 to
30 Hz, as seen in Fig. 7. The Alpha cluster had a temporal extent from
340 to 660 ms and a permutation significance value of p = 0.014. The
Beta cluster had a temporal extent from340 to 500 ms and permutation
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significance value of p = 0.020. To try and differentiate these two clus-
ters the full range of un-averaged frequencies was subject to a cluster
analysis and found a single cluster. The significant frequencies of this
cluster extended from 7.6 to 37.6 Hz, temporally extended from 220
to 660 ms, and had a permutation significance of p = 0.008.

Discussion

The above highlighted results have three major areas of discussion:
Memory Activation results, Theta power analysis results, and Alpha vs.
Beta power analysis results. Each will be addressed in turn, with three
major implications: First, that Think/No-Think results can be at least
partially explained by a linear relationship between controlled retrieval
success and subsequentmemory. Second is a reinforcement of previous
results showing Theta power correlated with successful retrieval, and
further clarification that suggests Theta effects are unrelated to the
controlled suppression of retrieval. Finally the high vs. low retrieval
control contrasts help define the functional correlates of Beta oscilla-
tions, suggesting theymay be related tomore general control processes.

Think vs. No-Think

Results show that, on average, classifier-determined Memory
Activation scores have a positive linear relationship with subsequent
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error of the mean. B) Results from logistic regression predicting probability of subsequent
corresponds to the originally studied image category (faces in cyan and scenes in grey) of
shown in black with the transparent bar showing the 95% confidence interval.
memory. Specifically this implies that the more a given individual
recalled a previously-studied associate image, the more likely they
are to remember that word–image association later. In the context
of Think/No-Think studies this also carries the implication that the
act of suppressing retrieval reduces an individual's ability to later
recall a given item. This relationship, however, could only be found
when memory for studied paired associates was assessed through
Memory Activation scores, which aggregates the amount of re-
activation a given paired-associate experienced across the Controlled
Retrieval task. The adjusted trial labels, which were derived from
these Memory Activation scores, shown in Fig. 4A do indeed show
the classic Think/No-Think pattern, where Think/Blue-Neural trials
had a larger baseline corrected accuracy than No-Think/Red-Neural
trials. Individually, however, these two conditions are not significantly
different from Baseline accuracy.

It should also be noted here that our classifier based regression is
only sensitive to image categories, and more specifically to the images
of faces and images of scenes used in this experiment. Because our
methods do not have the resolution to target individual stimuli
(i.e., a particular face or scene) we cannot be certain that the relation-
ship of Memory Activation to subsequent memory is attributable to
the reactivation of the originally studied image pair, or just to the
general control over retrieval processes. For the purposes of the spec-
tral analysis we need only show that this Memory Activation score is
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indicative of control over retrieval processes, however further work
within this methodology could attempt to use representational simi-
larity to try and gain stimuli specific resolution.

The lack of a significant difference between Baseline subsequent
memory and the adjusted condition labels may be attributed to the
hypothesis that the Memory Activation scores that determine these
labels do not have a simple linear relationship with subsequent mem-
ory (Detre et al., in press; Newman and Norman, 2010; Norman et al.,
2007). The proposed hypothesis from Norman et al. (2007) is that
feedback inhibition can be used to increase the separation between
representations by decreasing the strength of representations that,
when cued via some input, only becomemoderately active. Functional-
ly this serves to reduce the competition for representations that are
strongly activated given the same cue. Detre et al. (in press) used a sim-
ilar classification method implemented in the current study to
evaluate the claim that memory re-activation has this non-linear
relationship with subsequent memory, such that only moderate levels
of re-activation will lead to later deficits in recall. Although our logistic
regression of Memory Activation did show a positive linear relationship
with subsequent memory, as shown in Fig. 5B, this effect may only be a
first order explanationwhich doesn't fully take into account themoder-
ate levels of activation hypothesis originally proposed in Norman et al.
(2007). To capture this effect more sophisticated methods would need
to be adopted as our regression approach is insensitive to these more
subtle relationships. It is critical to note that our approach does not
exclude the possibility that the data is better fit by a non-monotonic
model; speculative interpretation of Fig. 5A, indeed, allows room for
potential non-monotonic effects within our data.

The results from the logistic regression shown in Fig. 5B can, how-
ever, provide a solid grounding for the sub-selection of trials used in
the spectral analysis. Further, we have shown that the Max Difference
scores also have a positive relationship with subsequent memory.
Because of this positive relationship betweenMemory Activation scores
(which are averaged across the trial-by-trialMaxDifference scores) and
subsequent memory, we can confidently interpret the successfully
executed trial labels (e.g. Bluesucc and Redsucc) as meaningfully related
to later memory, and defined by an individual's ability to exert control
over retrieval processes.

Retrieval vs. suppression

Results from the spectral power analysis of retrieval vs. suppression
(i.e., Bluesucc N Redsucc) showed a single significant cluster within the
Theta (3 to 8 Hz) frequency range. This is consistent with previous
results suggesting amore prominent role for Theta in retrieval. Themo-
tivation behind this comparison of active memory retrieval vs. retrieval
suppressionwas in part due to computational models of the hippocam-
pus suggesting that Theta oscillations may be more generally related
to control over retrieval processes (both enhancement and suppres-
sion) rather than just a marker of successful retrieval or encoding
(Hasselmo and Eichenbaum, 2005; Hasselmo et al., 2002). Similarly,
several empirical studies have suggested that Theta oscillations are
positively correlated with a general control over memory processes
(Hanslmayr et al., 2010; Khader and Rösler, 2011). The results of the
current study reinforce these previous empirical interpretations on
the functional correlates of Theta oscillations in humans, namely that
Theta power is correlated with successful retrieval (Nyhus and Curran,
2010). These results, however, also provide clarifying evidence with
regards to levels of control over retrieval. In particular, our results
suggest that Theta power is correlated with enhancement of retrieval
more so than suppression, and is less involved in a general control
over retrieval processes.

An open question from these results is the lack of a Theta cluster
within the Redsucc vs. Green contrast (i.e., high control suppression vs.
low control retrieval). If Theta power is positively correlated with
retrieval, we might expect to see a cluster related to Green N Redsucc.
The lack of a significant cluster in the contrast may be explained from
previous results which show that higher levels of interference in suc-
cessfully retrieved memory traces show higher levels of Theta power
(Hanslmayr et al., 2010; Khader and Rösler, 2011). The Green condition
was subject to the least amount of interference relative to the Blue and
Red conditionswhich both had distractor images presented throughout
the course of the experiment. This lack of interference within the Green
condition seems to have equated the Green and Redsucc conditions in
terms of Theta power, which can be seen in Fig. 6. Indeed, a followup
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paired t-test of the average Theta power across the cluster identified
significant time/electrode bins shown in Fig. 6, reveals that the
Green condition is significantly different from the Bluesucc condition
(t(29) = 2.38, p = 0.024).

A recent study, done within our research group, used a more
standard Think/No-Think paradigm to investigate oscillatory signatures
of retrieval and suppression of retrieval (Depue et al., in press). Those
results show a positive Theta cluster for a No-Think N Think contrast,
while the results from the current work show a Theta cluster for
Think/Bluesucc N No-Think/Redsucc. Two informative differences exist
between the current work and Depue et al. (in press). The first is the
use of interfering/distracting images in the modified Think/No-Think
task of the current work, and the second is the sub-selection of success-
fully executed Think/Bluesucc and No-Think/Redsucc trials in the current
work. It seems the lack of an interference manipulation in Depue et al.
(in press) diminished Theta power within the Think condition relative
to the current work, and would be similar to our Green condition.
Crucially, without trial sub-selection, No-Think trials in Depue et al.
(in press) are likely to be more related to retrieval of the cued associate
as compared to the current work's Redsucc condition, suggesting their
No-Think effects are potentially driven by the monitoring of retrieval
processes and less driven by a suppression of retrieval processes.
These contrasting factors between our study and Depue et al. (in press)
provide further constraints on the specificity of cognitive level processes
associated with Theta oscillations.

In general the results discussed above suggest that the relatively low
levels of interference in the Green condition provide similar changes in
Theta power as compared to the controlled suppression of retrieval
shown in the Redsucc condition. This suggests that suppression of
retrieval is similar to retrieval processes with very little interference.
We interpret these results to suggest that Theta power does not neces-
sarily positively correlate with all aspects of retrieval processes but
rather is more directly related to interference resolution within target
representations.

Alpha vs. Beta

Power analysis contrasts of high vs. low control over retrieval
showed two main frequency bands of interest, Alpha (8 to 12 Hz),
and Beta (12 to 30 Hz). This comparison itself is composed of two
specific contrasts, which can be thought of as high controlled retrieval
vs. low controlled retrieval (in the Bluesucc N Green case), and high
control suppression vs. low control retrieval (in the Redsucc N Green
case). Looking at Fig. 7 shows the Beta cluster was consistent across
both contrasts, while the Alpha cluster was witnessed only in the
Redsucc N Green contrast.

The most straightforward interpretation of these results would
suggest that the Green condition follows previously reported patterns
of retrieval, i.e., Alpha and Beta bands show a larger decrease in power
forwell remembered trials (e.g. Green trials) compared to relatively less
remembered trials (e.g. Blue andRed) (Depue et al., in press; Hanslmayr
et al., 2010; Klimesch, 2012). As can been seen in Fig. 7 our results
replicate these previous findings, which are shown in the contrasts
highlighting suppression of retrieval compared to retrieval success
(i.e., Redsucc N Green). The Beta band power changes, however, show a
novel relationship to control over retrieval.

As shown in Fig. 7, the Beta frequency band shows an interesting
pattern of results within the high vs. low levels of retrieval control.
Specifically, a significant cluster was found in the Beta band for both
Redsucc N Green, and Bluesucc N Green. Based on previous findings,
the two general expectations for Alpha and Beta power are: (a) that
they are negatively correlated with successful retrieval; and (b) that
this negative relationship can be facilitated by increasing the amount
of interference or control over retrieval processes required (Hanslmayr
et al., 2012; Klimesch, 2012). Our results, in contrast, suggest that
there is a diminished decrease in Beta power for high levels of control
compared to low. This holds true for both suppression and enhance-
ment of retrieval suggesting Beta to be involved in a more general con-
trol related process.

A significant Alpha cluster was found only within the Redsucc N
Green contrast, suggesting it may be more related to suppression of
retrieval as opposed to retrieval control more generally. It must be
noted, however, that the potential interpretation of Alpha and Beta
clusters as playing differing roles in this instance is dependent on a
null effect; that is to say the key Bluesucc vs. Green contrast was not
associated with a significant cluster within the Alpha band. Follow
up tests found tentative evidence to support this interpretation by
comparing the difference in power between Redsucc and Green with
the difference between Bluesucc and Green within the electrode/time
cluster identified by the Redsucc N Green contrast in the Alpha band.
This t-test showed a marginally significant difference (t(29) = 1.82,
p = 0.078) suggesting that the Redsucc condition shows a larger
difference from the Green condition as compared to the difference be-
tween Bluesucc and Green. However, due to the marginal significance
of this interaction, the lack of a Alpha cluster within the high vs. low
controlled retrieval contrast should not be over-interpreted in this
instance to suggest differing roles for Alpha and Beta. Further testing
is necessary to properly establish this relationship.

The Bluesucc and Redsucc trials used within this design provide a
unique condition type that has not previously been investigated. The
sub-selection of successfully executed retrieval on a trial-by-trial basis
within these conditions allows for an investigation into control over
retrieval that is not necessarily bound to subsequent memory. In light
of this unique role it is hard to place it precisely in terms of previous
resultswhich almost invariably are related to successful retrieval during
the subsequent test of memory. This later recall can be disrupted for
a various reasons unrelated to prior retrieval success, and does not
necessarily reflect the processes occurring during the Think/No-Think
manipulations, or in subsequent memory tasks more generally. Results
discussed above suggest that previousfindings relating the role of Alpha
and Beta to successful retrieval may not hold constant when consider-
ing successful retrieval independent of subsequent memory, and
thatBeta power may play a more general role in control over retrieval
processes.

Conclusion

In conclusion, the current work provides three main contributions.
The first is that Think/No-Think results can be at least partially
explained by a linear relationship between controlled retrieval success
and subsequent memory. The second is a reinforcement of previous
results showing Theta power correlated with successful retrieval.
These results also further clarify this point by suggesting Theta effects
are unrelated to the controlled suppression of retrieval, and within suc-
cessful retrieval Theta is more related to the control over interference.
Finally the high vs. low retrieval control contrasts help define Beta func-
tional correlates. These results suggest Beta power shows a diminished
level of desynchronization in cases of high levels of required control
compared to low, and that Beta power may be more broadly related
to control processes. Themore general implications of thiswork suggest
that stimuli which later show successful subsequentmemorymay have
differential neural signatures from those that show instantaneous suc-
cessful retrieval.

The relative novelty of scalp based EEG classification should also
be noted. Very few studies have shown success within this domain
(however see Morton et al. (in press) for a similar approach) and we
hope our methods can contribute to furthering this analysis approach
in more studies. In general, however, much more work is required to
better understand the neural sources of these oscillations. We use
these scalp based oscillatory measures as indicators of differential pro-
cesses, however we can make no strong claims as to where or how
these processes are dissociated outside of their functional correlates.
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We feel the mechanistic modeling of these neural signals is crucial in
advancing the understanding of these cognitive level signatures, and
have targeted it for future work.
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