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A B S T R A C T

The current study examined the role of color and spatial frequency on the early acquisition of perceptual ex-
pertise after one week of laboratory training with bird stimuli. Participants learned to categorize finches (or
warblers) at the subordinate species level (e.g., purple finch) and categorize warblers (or finches) at the more
general family level. Training images were presented in their natural colors across 6 sessions. Participants
completed a subordinate level species matching task prior to training, one day after training and one week after
training while event-related potentials (ERPs) were recorded. Bird images were presented in either their natural
congruent color, incongruent color, grayscale, low spatial frequency (LSF< 8 cycles per image) or high spatial
frequency (HSF>8 cycles per image). Replicating previous training studies, performance benefited more from
subordinate- than basic-level training. Before training, any color helped performance, but color congruence
effects (congruent> incongruent) only emerged after subordinate-level training. Spatial frequency manipula-
tions did not interact with training. The N170 ERP component was sensitive to spatial frequency manipulations,
but not color. N170 spatial frequency effects did not interact with training, and training effects generalized to all
manipulations except the LSF images. Like performance, color congruence effects on the N250 were only ob-
served after subordinate level training. These results are consistent with previous reports suggesting that effects
of perceptual expertise training on performance are more clearly indexed by N250 than N170 effects. Taken
together, our behavioral and ERP results show that color plays an important role in both low- and high- level
visual processing, supporting surface-plus-edge–based theories for object processing and recognition.

1. Introduction

Although any object can be identified at multiple levels of ab-
straction, it has been shown that objects are typically recognized fastest
at the basic level (e.g., bird, car, chair) (Rosch et al., 1976). In contrast,
object recognition is slower at levels that are either more superordinate
(e.g., animal, vehicle, furniture) or more subordinate (e.g., sparrow,
Honda, rocking chair) to the basic level (Rosch et al., 1976; Mack et al.,
2009). However, with experience and practice, experts (e.g., bird-
watchers or car experts) demonstrate a “downward shift” in their re-
cognition where objects are recognized as quickly at the subordinate
level as the basic level (Tanaka and Taylor, 1991; Johnson and Mervis,
1997). Bird experts, for example, are as fast to recognize a bird as a
“sparrow” as they are to recognize the same image as a “bird”. In the

present study, we investigated the role of color and spatial frequency
(SF) on the early acquisition of perceptual expertise after one week of
laboratory training with bird stimuli.

Real-world expertise has been investigated across a variety of do-
mains including car (Gauthier et al., 2000; Grill-Spector et al., 2004;
Rossion et al., 2007; Stein et al., 2016) and bird experts (Johnson and
Mervis, 1997; Gauthier et al., 2000; Tanaka and Curran, 2001; Martens
et al., 2018). Real-world experts acquire their expertise on the scale of
years, but it is possible to approximate the early acquisition of expertise
by training participants in the laboratory across several days with novel
objects (Gauthier et al., 1999; Cheung and Gauthier, 2014; Jones et al.,
2018), or real-world objects, like cars (Scott et al., 2008) or birds
(Tanaka et al., 2005; Scott et al., 2006). In previous expertise training
studies, participants were trained to classify objects at either the basic
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(e.g. wading birds versus owls) or the subordinate levels (e.g., Snowy
Egret versus White Ibis). Only the participants who received practice
with subordinate-level identification recognized these birds equally fast
at the subordinate and basic levels and their speeded subordinate level
recognition transferred to new instances from within the expert cate-
gory (Tanaka et al., 2005).

Event-related potentials (ERPs) provide a reliable neural marker of
real-world (Tanaka and Curran, 2001; Busey and Vanderkolk, 2005)
and laboratory-trained (Scott et al., 2006, 2008) perceptual expertise.
Training with visual objects enhances two distinct occipitotemporal
ERP components, the N170 and N250 which peak around 170 and
250ms respectively (Tanaka and Curran, 2001; Scott et al., 2006,
2008). The N170 component is thought to index some aspects of face
processing (Bentin et al., 1996). Carmel and Bentin (2002) found a
larger N170 component elicited for faces compared to cars, birds or
items of furniture. Tanaka and Curran (2001) showed that the N170
component was also enhanced when bird or dog experts categorized
objects within their domain of expertise (e.g., birds) compared to an-
other domain (e.g., dogs). This result has been replicated with car ex-
perts (Gauthier et al., 2003). In addition, an N170 inversion effect, si-
milar to what is seen with faces (for review see Rossion et al., 2002),
was reported for fingerprint recognition in experts such that the N170
component was delayed for inverted fingerprints in experts but not in
novices (Busey and Vanderkolk, 2005). The N170 component has also
been shown to be modulated during tasks involving real-world objects
or computer-generated artificial stimuli with experimentally induced
expertise. In two different studies, adults learned to classify wading
birds and owls (Scott et al., 2006) or three different categories of cars
(Scott et al., 2008). They reported that both basic- and subordinate-
level training enhanced the N170 component. Curran et al. (2002) si-
milarly reported that the N170 component was enhanced after training
to recognize categories of visually similar novel objects called “blobs”.
An inversion effect, similar to what is seen with faces and fingerprint
experts, was reported after training participants to recognize computer-
generated artificial stimuli called “Greebles” (Rossion et al., 2002).
Taken together, these results suggest that the N170 component is not
necessarily face-specific, but modulated by perceptual experience and
expertise.

The N250 component has also been reported to be associated with
face processing (Schweinberger et al., 2002), to be sensitive to repeti-
tion of familiar celebrity identities (Schweinberger et al., 2004), one's
own face and a recently familiarized face (Tanaka et al., 2006) as well
as to be enhanced after learning for non-repeated novel faces
(Kaufmann et al., 2009; Limbach et al., 2018). In object recognition, the
N250 is elicited by personally familiar objects (i.e., own car, own dog)
(Pierce et al., 2011). Whereas the N170 component is primarily sensi-
tive to object categories, the N250 is sensitive to the familiarity of ex-
emplars within the face or object categories. Scott et al. (2006, 2008)
found that only subordinate-level training enhanced the N250 compo-
nent. Subordinate-level training of other-race faces (individual level)
also enhanced the N250 component compared to basic-level training
(race level) (Tanaka and Pierce, 2009). Folstein et al. (2017) had par-
ticipants practice a categorization task that included artificial animal
stimuli followed by a speeded target detection task with both trained
and untrained stimuli. They reported that trained stimuli elicited a
significantly larger N250 than untrained stimuli. Overall, these results
suggested that the N250 component is sensitive to individuation and
repetition of unfamiliar faces but also generalizes across different re-
presentations of the same object and reflects subordinate-level access to
object or face representations.

Both color and shape information play a critical role in object re-
cognition (Biederman, 1987; Gauthier and Tarr, 1997; Tanaka and
Presnell, 1999; Collin and Mcmullen, 2005). Color improves object
recognition (Wurm et al., 1993) and contributes in a small way to ob-
ject recognition with long-term color knowledge playing an important
top-down role (Mapelli and Behrmann, 1997). It benefits for delineating

shape and surface segmentation in early visual processing
(Gegenfurtner and Rieger, 2000). Gegenfurtner and Rieger (2000)
showed that natural scenes were better encoded when presented with
color relative to grayscale and suggested that color plays an important
role at the very earliest stages of analysis of a scene to recognize and
memorize it. In the same vein, objects associated with a particular color
(high-color diagnosticity, e.g., banana) are recognized faster when they
are presented with their natural congruent color than when they are
presented in grayscale or with incongruent colors, while objects not
associated with a particular color (low-color diagnosticity, e.g., car) are
recognized equally fast when presented with color, in grayscale, or with
incongruent colors (Tanaka and Presnell, 1999; Nagai and Yokosawa,
2003). It has been demonstrated that extensive real-world experience
with a color diagnostic object domain can influence the role of color
cues in subordinate recognition (Hagen et al., 2014). Here, expert and
novice birdwatchers were tested using colored, grayscale, and incon-
gruent bird images while having to recognize the birds at the sub-
ordinate levels (e.g., “Robin”). Although color congruence affected both
the fast and the slow recognition judgments of the experts, it affected
only the slow judgements of the novices, suggesting that while the use
of color cues were automatic in the experts, it was more deliberate in
the novices. Thus, real-world experience acquired by the bird experts
were associated with the ability to instantly rely on diagnostic color
cues.

The role of shape information in recognition depends on the cate-
gory level at which the objects are recognized. Different types of shape
information can be isolated by filtering images for different ranges of
SFs. For example, the low resolution of low SFs (LSFs) carries coarse
shape information (e.g., global shape and internal blobs) and the high
resolution of high SFs (HSFs) carries fine-grained information (e.g., fine
edged contours, internal edge shapes). Subordinate-level recognition is
reported to depend disproportionately on HSF information whereas
basic-level recognition relies more on LSF information (Collin and
Mcmullen, 2005), suggesting that the former category-level relies more
on fine-grained features such as internal feature information. Similar to
color, it has been demonstrated that extensive real-world object ex-
perience can influence the role of internal shape information in sub-
ordinate recognition (Hagen et al., 2016). Specifically, expert and no-
vice birdwatchers were tested with bird images that were band-pass
filtered over a range of different SFs (low to high SFs), while masking
the external contour so to only vary internal shape information. While
both the experts and the novices were more accurate when bird images
contained the internal shape information carried by a midrange of SFs
(8–32 cycles per image - cpi), only the experts were faster in the same
midrange. Thus, the real-world experience did not change the range of
shape information that was used, but instead influenced the efficiency
with which the observers could utilize shaped in the midrange. How-
ever, it is unknown whether these changes develop early or late in the
acquisition of real-world expertise.

Whereas the study of extant, real-world experts sheds light on im-
portant perceptual cues, such as color and SFs, in expert recognition,
laboratory training studies show how these cues are utilized during the
acquisition of expertise. In a recent investigation, Jones et al. (2018)
examined the impact of color and SF manipulations (similar to Hagen
et al., 2014, 2016) before and after adults were trained to categorize an
artificial creature species. Adults were trained to categorize one object
family at the basic level and another family at the subordinate level.
Subordinate-level matching of both families was tested before and after
training with images that appeared in colors that were congruent with
training, grayscale images, or images retaining either low SFs (LSF<8
cpi) or higher SFs (HSF>8 cpi). As in previous training experiments,
discrimination increased after subordinate- but not after basic-level
training. These training effects generalized to each of the three image
manipulations. Jones et al. (2018) also measured ERPs before and after
training. Both the N170 and N250 amplitudes were enhanced more
after subordinate- than basic-level training, departing from previous
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research showing that training level did not influence N170 training
effects (Scott et al., 2006, 2008). Both components were also influenced
by the image manipulations, but these manipulations did not interact
with training. As discussed by Jones et al. (2018), the use of novel
objects might be account for differences from previous experiments
using categories that adults have previous experience with, including
birds (Scott et al., 2006) and cars (Scott et al., 2008)

In the present study, adults were trained to categorize ten species of
birds from the finch family and ten species of birds from the warbler
family. Similar to Hagen et al. (2014, 2016), we manipulated color and
SF to examine the effects on perceptual expertise training with birds.
Following previous studies (Scott et al., 2006, 2008; Jones et al., 2018),
we defined basic level at the family level of warbler and finch and
subordinate level at the species level (e.g., Bachman warbler, Bay-
crested warbler). Participants were trained to categorize the finches (or
warblers) at the subordinate species level (e.g., purple finch) and ca-
tegorize the warblers (or finches) at the more general basic level.
Training images were presented in their natural colors across 6 sessions.
Participants were given a subordinate level species matching task prior
to training, one day after training and one week after training. In this
task, participants decided whether two sequentially presented bird
images belonged to same or different species. The bird images were
presented in either their natural color (congruent condition), incon-
gruent color, grayscale, low SF (LSF<8 cpi) or high SF (HSF> 8 cpi).
We also tested both the originally trained image exemplars as well as
untrained exemplars of the trained species to examine generalization
beyond the training set.

Based on past expertise studies, we made several predictions about
how color and SF information might impact recognition after basic-
versus subordinate-level training. In general, because color and SF ef-
fects seen in real-world experts emerged after some experience, we
expected subordinate training to yield color and SF effects that are
consistent with those observed in bird experts (Hagen et al., 2014,
2016). Because color plays a role in early visual processes of edge de-
tection and texture segmentation (Cavanagh, 1987; Gegenfurtner and
Rieger, 2000), we predicted that both congruent and incongruent color
would produce better performance than grayscale images before
training. However, because congruent, but not incongruent, color im-
proves performances of species categorization for real-word bird ex-
perts (Hagen et al., 2014), we expected that only subordinate level
training produces the color-congruency effect (congruent>
incongruent). With respect to SF manipulations, we hypothesized that
overall, the full spectrum images would produce the best recognition
followed by the HSF images, which preserve more useful detail in-
formation than LSF images (Collin and Mcmullen, 2005; Hagen et al.,
2016; Jones et al., 2018). We expected that training may increase be-
havioral performance advantage for HSF over LSF. Hagen et al. (2016)
reported that experts showed larger SF effects on reaction time than
novices but did not report accuracy difference between experts and
novices. However, in their study, they used an easier task than in the
present study so we hypothesized that training will improve accuracy in
a more difficult task.

We expected to replicate the N170 and N250 ERP results from
previous training experiments with birds (Scott et al., 2006) and cars
(Scott et al., 2008). In particular, these studies indicated that the N250
effects parallel behavioral findings more so than the N170. Just as
performance improvements follow subordinate-but not basic-level
training, the N250 amplitude should only be enhanced by subordinate
training. On the other hand, as a marker of category exposure, the N170
should be higher amplitude at post- than pre-test, but equally enhanced
by subordinate- and basic-level training (Scott et al., 2006, 2008).
Furthermore, we expected any image manipulation effects on perfor-
mance (e.g., the predicted dependence of color congruency effects on
subordinate level training) to more likely be reflected in N250 than
N170 amplitudes, based on previous indications that the N250 is more
consistently related to behavior.

2. Method

2.1. Participants

Seventeen novice participants, ranging from 18 to 29 years of age
(M = 22.17, SD = 0.79, 9 female, 1 Hispano or Latino, 7 Asian, 9
White) were trained to recognize several exemplars of several different
bird species. Sample size was selected to be consistent with previous
research (Scott et al., 2006, n=16; Scott et al., 2008, n= 12). To
compensate for participant attrition, 26 adult participants were re-
cruited in total. Within this group, the data from three additional par-
ticipants were lost due to technical issues. One additional participant
was stopped early due to poor performance. Five additional participants
dropped out before completing all the training sessions. Participants
had no prior experience in bird-watching before the training.

Participants received monetary compensation for their participa-
tion. All participants were right-handed native-English speakers and
had normal or corrected-to-normal vision. Informed consent was ob-
tained from each participant, and the study was approved by the
University of Colorado Boulder Institutional Review Board (IRB).

2.2. Stimuli

Stimuli included 12 images for each of the 10 species from the finch
family (Pine Grosbeak, Pine Siskin, American Gold, House, Evening
Grosbeak, Common Redpoll, Cassins, Brambling, Black Rosy, White
Winged Crossbill) and 12 images for each of the 10 species from the
warbler family (Nashville, Golden Winged, Chestnut Sided, Canada,
Blue Winged, Black Throated Green, Blackburnian, Bay Breasted,
American Redstart, Wilsons) (Fig. 1).

Using Matlab,1 the images were transformed to manipulate the color
and SF content. Birds were manipulated during the matching task to
appear in one of five conditions: color congruent, incongruent, grays-
cale – all SF (AllSF), low SF (LSF<8 cpi) and high SF (HSF> 8 cpi).
The bird images were transformed to create an incongruent condition
and a grayscale condition, using the L*a*b color space. This color space
has been used in previous studies investigating the role of color scene
and expert bird recognition (Oliva and Schyns, 1997; Hagen et al.,
2014). The incongruent condition was created by either rotating the
color axis (e.g., red to green or blue to yellow or vice versa), by
swapping the two color axes (e.g., blue to red), or by both swapping and
flipping the color axes. The decision of which transformation to use
depended on which transformation created the subjectively best in-
congruent condition. The grayscale bird images were created by elim-
inating the hue and saturation information while retaining the lumi-
nance. For the SF manipulations, the grayscale bird images were
normalized to the mean then band-pass filtered for two ranges of
SFs:> 8 cpi and< 8 cpi. We chose a cutoff of 8 cpi based on previous
studies on object recognition (Collin and Mcmullen, 2005; Harel and
Bentin, 2009; Hagen et al., 2016). A mask of the external bird contour
was applied to keep the external contour constant for the two SF ranges
(Hagen et al., 2016). Fig. 1 illustrates the stimuli and the transforma-
tions used in this experiment. Images were cropped and scaled to fit
within a frame of 450 × 450 pixels and pasted on a gray background.
Images subtended a visual angle of approximately 8.79 vertically and
8.90 horizontally.

2.3. Procedure

Participants performed a pretest matching task, then 6 training
sessions were completed and finally participants performed a posttest
matching task one day after the last training session (posttest) and one
week after the last training (delay).

1 https://github.com/warmlogic/expertTrain/tree/master/imageProcessing.
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2.3.1. Matching task
Participants completed a subordinate-level sequential matching task

that has previously been shown to be sensitive to differences in levels of
perceptual expertise (Gauthier et al., 2000; Scott et al., 2008). Partici-
pants were shown a fixation point for 500–700ms then a stimulus for
800ms followed by a fixation point for 1000–1200ms and then another
image for an additional 800ms (Fig. 2). Then the participants were
immediately presented with a question mark and were required to in-
dicate whether the two images were of the SAME (e.g. two “Nashville
Warblers”) or of a DIFFERENT (e.g., a “Nashville Warbler” and a
“Wilson's Warbler”) species. SAME trials were always different ex-
emplars of the same species. DIFFERENT trials included two exemplars
of different species within the same family. The question mark re-
mained on the screen until a response was made. All stimuli were
randomly ordered and randomly matched within each condition. This
task consisted of 1200 trials.

Across both same and different trials, there were four different types
of trials: 1) Trained Exemplar/Trained Exemplar (350 trials), 2)
Untrained Exemplar/Untrained Exemplar (350 trials). Two other con-
ditions were presented by mistake: Trained Exemplar/Untrained
Exemplar (250 trials) and Untrained Exemplar/Trained Exemplar (250
trials). The latter two mistaken trial types were excluded from analyses
because they were not part of the intended design. Note that these two
conditions were presented to all participants, which means that if ever
there is an influence on the results, it would be the same for all parti-
cipants and all conditions. The trained exemplars were specific ex-
emplars from each of the bird families used during training. The un-
trained exemplars included new instances of each species of the two
bird families. Assignment of exemplars to test conditions was counter-
balanced across subjects.

2.3.2. Training task
Half of the participants learned to differentiate birds from the finch

(or warbler) family at the subordinate level of species (e.g., “purple
finch”), whereas birds from warbler (or finch) family was categorized at
the basic level of family (e.g., “warbler”). The exact same stimulus pairs
were shown in the pre- and post-tests, but in different randomized or-
ders.

Participants were shown a fixation cross for 500–700ms then a
stimulus for 1000ms followed by a question mark for 2000ms. They
were then required to identify the species the bird was from (species
1–10) or whether the bird was from the other family (Fig. 2). Species
numbers 1–10 were randomly assigned to the subordinate-level family,
for each participant. Species were labeled with arbitrary numbers ra-
ther than actuals species names to facilitate manual responding and to
minimize subject differences in familiarity with the species names. The
number labeling technique was not meant to teach the participants the
proper names for the birds, but to associate each bird species with a
unique key press. This type of labeling technique has been successfully
applied in other training studies (e.g., Tanaka and Curran, 2001; Scott
et al., 2008). Feedback was given on every trial by an auditory tone
indicating a correct or incorrect response and the bird's species number
was shown either in green (correct responses) or red (incorrect re-
sponse). For each family, 6 exemplars for each of the 10 species were
trained. Birds were shown in their normal colors during training. All
stimuli were randomly ordered, with the constraint that no more than 3
exemplars from the same family could occur in a row.

The first training session differed from the subsequent 5 sessions in
that it consisted in 240 trials preceded by a phase that slowly in-
troduced species from both families, rotating through in a total of 5
blocks. The other training session consisted of 480 trials, divided in 4
phases consisted of naming each exemplar once (120 trials), so a

Fig. 1. Examples of the stimuli used, for the two families Finches and Warblers and the ten species for each family. The two top rows show the color manipulation:
congruently colored birds and incongruently colored birds. Middle row shows the grayscale versions. The two bottom rows show the SF manipulation: HSF (> 8
cycles per image) and LSF (< 8 cycles per image).

Fig. 2. Time course of one trial during the matching test (A) and during the training task (B).
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participant had the chance to name each exemplar 4 times in a session
(480 trials).

2.3.3. EEG recordings
A 128-channel HydroCel Geodesic Sensor Net TM (GSN 200, v. 2.1;

Tucker, 1993) was used to measure the EEG at the scalp using a central
vertex reference (Cz) with a sampling rate of 250 Hz, a high-pass
hardware filter of 0.01 Hz, and a low-pass hardware filter of 100 Hz.
The net was connected to an AC-coupled, high-input impedance am-
plifier (Net Amps TM; Electrical Geodesics, Inc., Eugene, OR) and re-
cordings were made using the Net Station application. The electrodes
were adjusted until impedance measurements were less than 40 kΩ. All
data processing steps and analyses were done in MATLAB using in-
house scripts calling functions from the FieldTrip toolbox (Oostenveld
et al., 2011). A high-pass filter at 0.1 Hz, low-pass filter at 100 Hz, and a
notch filter from 59 to 61 Hz were applied to the data. Study and test
trials were epoched into 1200ms segments, 200ms before the onset of
each stimulus and 1000ms after. Artifact detection was used to reject
particularly noisy epochs, as well as those that exceed an amplitude
of± 100 µV. An average of 2.07% (SD = 1.46) of the trials were re-
jected. The data were referenced to the average of all channels and
individual trials were baseline corrected relative to − 200–0ms. EEG
was recorded during both the training and testing phase, but given the
goals of the present investigations analyses reported here focused on
the three test phases (pretest, posttest and delay).

2.4. Analysis

The effects of color and SF manipulations were analyzed separately.
Note that the “grayscale” label in the color analyses refers to exactly the
same trials as the “AllSF” label in the SF analyses, to emphasize the
most pertinent attribute of those trials in each set of analyses.

′d and RT were separately analyzed in a mixed-design analysis of
variance (ANOVA) with manipulation – color or SF (congruent, in-
congruent, grayscale or AllSF, HSF, LSF), session (pretest, posttest,
delay), level (basic, subordinate) and exemplar type (trained, un-
trained) as within-subject factors. Multiple comparisons were assessed
with Fisher LSD post-hoc tests.

Based on previous perceptual expertise studies (Scott et al., 2006,
2008; Jones et al., 2018), ERP analyses focused on the visual P1, N170
and N250 components. Exploratory P1 analyses were conducted after
observing apparent P1 effects in our grand averages. For each compo-
nent, we averaged over electrode montages at left occipito-temporal
(50 51 57 58 59 64 65) and right occipito-temporal (90 91 95 96 97 100
101) regions. These clusters were selected based on previous studies
(Scott et al., 2006, 2008). P1 amplitude was calculated as the mean

amplitude over the time window spanning 97–141ms using peak de-
tection (the window was centered on the peak of the grand average
± 2 standard deviations), N170 over the time window spanning
155–211ms (Scott et al., 2006), and N250 over the time window
spanning 230–330ms (Scott et al., 2006, 2008). The data of one par-
ticipant was not used for the ERP analyses due to low trial counts. P1,
N170 and N250 amplitude were separately analyzed in a mixed-design
ANOVA with manipulation – color or SF (congruent, incongruent,
grayscale or AllSF, HSF, LSF), session (pretest, posttest, delay), level
(basic, subordinate), exemplar type (trained, untrained), hemisphere
(left, right) and stimulus presentation order (or “order”) (stim1, stim2)
as within-subject factors. Although we have no hypotheses concerning
order, it is included to account for additional variability and for con-
sistency with previous work (Scott et al., 2006, 2008). Hence, order
effects are reported in ANOVA tables without discussion. Multiple
comparisons were assessed with Fisher's LSD post-hoc tests. An average
of 54.64 (SD = 0.87, min=23) trials (out of 60) per condition were
included for each condition across participants.

Because of a priori interest in whether or not training effects would
be observed when each of the image manipulations was considered
alone, we ran separate ANOVAs for each color and SF manipulation, for
d′, P1, N170 and N250 with session (pretest, posttest, delay) and level
(basic, subordinate) as within-subject factors.

Details of main effect and interaction statistics from the ANOVA
analysis are reported in tables, in the Supplementary material section.
p-values are reported in the text, denoted by p for main effects and
interactions from the ANOVA and pFisher for Fisher's LSD post-hoc tests.

3. Results

3.1. Color manipulation

3.1.1. Behavioral performance
3.1.1.1. Accuracy ( ′d ). Fig. 3 presents the ′d matching performance for
pretest, posttest and delay for the congruent, incongruent and grayscale
conditions. Complete results of the statistical analysis are presented in
Table A. 1. Analysis of accuracy indicated a significant main effect of
session, F(2,32) = 18.20, p < .001, showing that participant's
accuracy increased with training (pretest< posttest and
pretest< delay, both pFisher< .001). The main effect of condition, F
(2,32) = 23.69, p < .001, revealed that participants were more
accurate for congruent and incongruent color compared to grayscale
images (both pFisher< .001). We also observed a main effect of level, F
(1,16) = 15.66, p < .01, with better accuracy for the subordinate
compared to the basic level. The significant condition × level
interaction, F(2,32) = 14.63, p < .001, showed that the d′ difference

Fig. 3. Matching performance ′d for pretest, posttest and delay, for congruent, incongruent and grayscale images, collapsed over trained and untrained exemplars.
Colored regions represent the 95% confidence interval. Thick black lines represent the mean. Individual data points represent the mean ′d for each participant.
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between the subordinate and basic levels was greater for congruent
(pFisher< .001) and grayscale (pFisher< .01) images compared to
incongruent images. The significant level × exemplar interaction, F
(1,16) = 5.51, p < .05, indicated that, at the subordinate level,
participants were more accurate for trained stimuli compared to
untrained stimuli (pFisher< .05), but no difference was observed at the
basic level. The significant session × level interaction, F(2,32) = 12.64,
p < .001, revealed that participants’ session differences
(posttest> pretest and delay> pretest) were larger following
subordinate than basic training (both pFisher< .01). When each of the
color conditions was analyzed in separate ANOVAs, session effects were
significant for each color condition (Congruent: F(2,32) = 23.18,
p < .001, Incongruent: F(2,32) = 6.63, p < .01 and Gray: F(2,32)
= 13.81, p < .001).

Following the significant session × level interaction, we ran sepa-
rate subordinate and basic level ANOVAs (complete results are pre-
sented in Table A. 2). At the basic level, the significant main effect of
session, F(2,32) = 5.70, p < .01, showed that participants were more

accurate after training (pretest< posttest and pretest< delay, both
pFisher< .01). The main effect of condition, F(2,32) = 15.89, p < .00,
revealed that participants were more accurate for congruent and in-
congruent compared to grayscale images (both pFisher< .001). At the
subordinate level, analysis of accuracy indicated a main effect of color,
F(2,32) = 30.29, p < .001, with grayscale images showing lower ac-
curacy than congruent and incongruent images (all pFisher< .001). This
was qualified by a significant color × session interaction, F(4,64)
= 2.72, p < .05, such that accuracy for congruent and incongruent
images did not differ before training, but congruent images showed a
better accuracy than incongruent images after training (pFisher< .001).
Furthermore, subordinate-level training effects were significant after
both the posttest and delay session, for each of the three color condi-
tions (all pFisher< .01).

3.1.1.2. Reaction time. A plot of response time is presented in Fig. A. 1
and complete results of the statistical analysis are presented in Table A.
3. The main effect of condition, F(2,32) = 7.70, p < .01, revealed that

Fig. 4. ERP for pretest, posttest and delay, for congruent, incongruent and grayscale images, collapsed over exemplar types and order. Gray regions show time
windows for the P1, N170, and N250 ERP components.
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participants were slower for grayscale images compared to both
congruent and incongruent images (both pFisher< .05).

3.1.2. ERP results
Fig. 4 presents the ERP data for pretest, posttest and delay, for the

three color conditions.

3.1.2.1. P1 component analysis. A plot of the amplitude of the P1 ERP is
presented in Fig. A. 2 and complete results of the statistical analysis are
presented in Table A. 4. Analysis of P1 amplitude indicated a main
effect of session, F(2,30) = 3.85, p < .05, showing that the amplitude
of the P1 was larger during pretest compared to posttest and delay
(both pFisher< .05). The significant color × hemisphere × session
interaction, F(4,60) = 3.30, p < .05, indicated that the amplitude of
the P1 was larger over the right than left hemisphere (pFisher< .01) and
that session effects were greatest for congruent images over the right
hemisphere (pFisher< .01). The color × hemisphere × session × level
interaction, F(4,60) = 2.55, p < .05, appeared to have captured slight
differences in the pre-training, right hemisphere, color effect between
subordinate and basic training levels. When each of the color conditions
were analyzed in separate ANOVAs, the main effect of session was
significant for congruent images, F(2,30) = 4.95, p < .05, with
pretest> posttest = delay (both pFisher< .05) and marginal for
incongruent, F(2,30) = 3.12, p= .059, and gray, F(2,30) = 3.17,
p= .056, images.

3.1.2.2. N170 component analysis. A plot of the N170 amplitude is
presented in Fig. A. 3 and complete results of the statistical analysis are
presented in Table A. 5. Analysis of N170 amplitude indicated a main
effect of session, F(2,30) = 4.45, p < .05, qualified by a significant
hemisphere × session interaction, F(2,30) = 3.98, p < .05. Results
showed that the right hemisphere N170 was smaller at pretest than
posttest and delay (both pFisher< .001). For the left hemisphere, the
N170 was smaller at pretest than posttest (pFisher< .05), but pretest and
delay did not differ. As previously indicated, we have no hypotheses
concerning order, so the last two significant interactions in Table A. 5
(order × exemplar type and color × session × level × exemplar type
× hemisphere × order) are not discussed. When each of the color
conditions were analyzed in separate ANOVAs, the main effect of
session was significant for each color condition (Congruent: F(2,30)
= 4.82, p < .05, Incongruent: F(2,30) = 3.41, p < .05 and Gray: F
(2,30) = 4.19, p < .05), showing pretest> posttest = delay (all
pFisher< .05).

3.1.2.3. N250 component analysis. Fig. 5 shows the amplitude of the
N250 ERP for pretest, posttest and delay, for the three color conditions.
Complete results of the statistical analysis are presented in Table A. 6.
Analysis of N250 amplitude indicated a main effect of level, F(1,15)
= 10.90, p < .01, qualified by a significant color × level interaction, F
(2,30) = 5.61, p < .01, showing that the amplitude of the N250 was
larger for subordinate- than basic-level for the three color conditions
(all pFisher< .001). The session × level, F(4,60) = 2.90, p < .05, and
color × session × level interactions, F(4,60) = 2.90, p < .05, showed
an increased N250 amplitude after training, for both posttest and delay,
with subordinate-level training leading to a larger N250 than basic-
level training. This is further discussed below. When each of the color
conditions were analyzed in separate ANOVAs, the significant session
× level interaction showed that session effects were significant only at
subordinate level for congruent, F(2,30) = 12.30, p < .001, with
pretest< posttest and pretest< delay (both pFisher< .01) and
incongruent, F(2,30) = 7.88, p < .01, with pretest< posttest
(pFisher< .01) images. For gray images, session effects were not
significant.

Following the significant session × level × color interaction, we
ran separate subordinate and basic level ANOVAs (complete results are
presented in Table A. 7). At the basic level, the significant color

× hemisphere × exemplar type interaction, F(2,30) = 3.49, p < .05,
showed that over the left hemisphere, the amplitude of the N250 was
more negative for incongruent and gray untrained stimuli compared to
congruent untrained images (both pFisher< .05) and that over the right
hemisphere, the amplitude of the N250 was more negative for trained
gray compared to trained congruent images (pFisher< .05). At sub-
ordinate level, the main effect of color, F(2,30) = 3.38, p < .05, re-
vealed a larger amplitude of N250 for incongruent compared to con-
gruent images (pFisher< .05). The significant color × session
interaction, F(4,60) = 4.06, p < .01, showed that the color effects
differed before and after training. More specifically, as observed for d′,
the N250 for congruent and incongruent images did not differ before
training but amplitudes were more negative for congruent than in-
congruent images after training (pFisher< .001 for posttest session and
pFisher< .05 for delay session). From a different perspective, N250
training effects were only observed for congruent images and did not
generalize to incongruent and gray images. Furthermore, subordinate-
level training effects were significant after both the posttest and the
delay session in the congruent condition (both pFisher< .001), but only
significant after posttest for incongruent and grayscale.

3.2. Spatial frequency manipulation

3.2.1. Behavioral performance
3.2.1.1. Accuracy ( ′d ). Fig. 6 presents the matching performance data

′d for pretest, posttest and delay for the three SF conditions. Complete
results of the statistical analysis are presented in Table B. 1. As
previously indicated, the grayscale results in the color analyses are
based on exactly the same data as the AllSF results in the SF analyses.
The main effect of session, F(2,32) = 18.03, p < .001, showed that
participants’ accuracy increased with training (pretest< posttest =
delay) (both pFisher< .001) and the main effect of SF, F(2,32) = 64.58,
p < .001, revealed that all SF conditions significantly differed from
each other (AllSF>HSF>LSF) (all pFisher< .001). We observed a main
effect of level, F(1,16) = 9.19, p < .01, qualified by a significant SF
× level interaction, F(2,32) = 3.35, p < .05, indicating that the
accuracy difference between the subordinate and basic levels was
greater for AllSF compared to HSF and LSF images (both
pFisher< .001). The significant level × exemplar type interaction, F
(1,16) = 5.35, p < .05, and the significant session × level × exemplar
interaction, F(2,32) = 3.31, p < .05 revealed that no difference was
shown between basic- and subordinate-level training for untrained
stimuli but that participants were more accurate after subordinate
training compared to basic training for trained stimuli (pFisher< .001).
The significant session × level interaction, F(2,32) = 10.26, p < .001,
indicated that the training improvement was greater for subordinate
than basic-level training (pFisher< .001 for both posttest and delay
sessions). When each of the SF conditions were analyzed in separate
ANOVAs, session effects were significant for each SF condition (AllSF: F
(2,32) = 13.81, p < .001, HSF: F(2,32) = 13.84, p < .01 and LSF: F
(2,32) = 8.92, p < .01).

Following the significant session × level interaction, we ran sepa-
rate subordinate and basic level ANOVAs (complete results are pre-
sented in Table B. 2). Within each ANOVA, the main effect of session,
revealed that both the basic-, F(2,32) = 3.29, p < .05, and sub-
ordinate-, F(2,32) = 34.47, p < .001, level training showed the same
training effect that was reported above in the initial ANOVA
(pretest< posttest = delay) (both pFisher< .05 for basic ad both
pFisher< .001 for subordinate). The main effect of SF for basic, F(2,32)
= 32.81, p < .001, and subordinate, F(2,32) = 41.38, p < .001, also
showed the same SF differences as reported previously (AllSF>
HSF>LSF) (all pFisher< .05). Furthermore, at the subordinate level, the
main effect of exemplar type, F(1,16) = 4.90, p < .05, showed that
participants were more accurate with trained than untrained stimuli.

3.2.1.2. Reaction time. A plot of the response time is presented in Fig.
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Fig. 5. A. N250 amplitude for pretest, posttest and delay, for congruent, incongruent and grayscale images and for subordinate training only, collapsed over
hemispheres, order and exemplar types. Gray regions show time windows for the N250 ERP component B. Topography differences between posttest and pretest, and
delay and pretest, for congruent, incongruent and grayscale images at time 280ms C. N250 amplitude for pretest, posttest and delay, for congruent, incongruent and
grayscale images, collapsed over order and exemplar types. Colored regions represent the 95% confidence interval. Thick black lines represent the mean. Individual
data points represent the mean amplitude for each participant.

Fig. 6. Matching performance ′d for pretest, posttest and delay, for AllSF, HSF and LSF images, collapsed over trained and untrained exemplars. Colored regions
represent the 95% confidence interval. Thick black lines represent the mean. Individual data points represent the mean ′d for each participant.
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B. 1 and complete results of the statistical analysis are presented in
Table B. 3. The main effect of SF, F(2,32) = 4.58, p < .05, revealed
that participants were slower for LSF images compared to AllSF images
(pFisher< .05). The main effect of level, F(1,16) = 6.91, p < .05,
showed that participants were faster for basic- compared to
subordinate-level training.

3.2.2. ERP results
Fig. 7 presents the ERP data for pretest, posttest and delay, for the

three SF conditions.

3.2.2.1. P1 component analysis. A plot of the amplitude of the P1 is
presented in Fig. B. 2 and complete results of the statistical analysis are
presented in Table B. 4. The main effect of SF, F(2,30) = 17.31,
p < .001, revealed that the amplitude of the P1 was larger for AllSF
and LSF images compared to HSF images (both pFisher< .001). The main
effect of session, F(2,30) = 3.72, p < .05, showed that the amplitude
of the P1 was larger for pretest compared to posttest and delay (both

pFisher< .05). When each of the SF conditions were analyzed in separate
ANOVAs, the main effect of session was significant for HSF images, F
(2,30) = 3.82, p < .05, with pretest> posttest = delay (both
pFisher< .05) and marginal for AllSF, F(2,30) = 3.17, p= .056, and
LSF, F(2,30) = 3.22, p= .054, images.

3.2.2.2. N170 component analysis. A plot of the amplitude of the N170
is presented in Fig. B. 3 and complete results of the statistical analysis
are presented in Table B. 5. The main effect of SF, F(2,30) = 19.06,
p < .001, showed that the amplitude of the N170 was smaller for AllSF
compared to HSF and LSF images (both pFisher< .001). The main effect
of session, F(2,30) = 19.06, p < .001, revealed that the amplitude of
the N170 was increased by training (pretest< posttest = delay) (both
pFisher< .05). The hemisphere × session interaction, F(2,30) = 3.49,
p < .05, indicated that the training effect was larger over the right
hemisphere compared to the left hemisphere (pFisher< .05 0.05 posttest
and pFisher< .001 for delay session). When each of the SF conditions
were analyzed in separate ANOVAs, the main effect of session was

Fig. 7. ERP for pretest, posttest and delay, for AllSF, HSF and LSF images, collapsed over exemplar types and order. Gray regions show time windows for the P1,
N170, and N250 ERP components.
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significant for AllSF, F(2,30) = 4.18, p < .05, and HSF, F(2,30)
= 4.21, p < .05, with pretest> posttest = delay (all pFisher< .05),
but not for LSF conditions.

3.2.2.3. N250 component analysis. Fig. 8 presents the amplitude of the
N250 for pretest, posttest and delay, for the three SF conditions.
Complete results of the statistical analysis are presented in Table B. 6.
The main effect of level, F(1,15) = 19.26, p < .01, indicated that the
amplitude of the N250 was more negative for subordinate level
compared to basic level training. The significant SF × session
interaction, F(4,60) = 5.57, p < .02, was followed up by: (1) SF
effects within each session, and (2) training session effects within
each SF. First, for pretest, the amplitude of the N250 was ordered
LSF< HSF< AllSF (with LSF having the most negative amplitude, and
hence largest N250) (all pFisher< .05). For posttest, the amplitude of the
N250 was ordered HSF< LSF =AllSF (all pFisher< .05). No difference
was observed between conditions during delay session. Second, for
AllSF, no training effect was observed. For HSF, N250 amplitude was
more negative for pretest and posttest than delay sessions (both
pFisher< .05). For LSF, N250 amplitude was more negative for posttest
and delay than pretest sessions (both pFisher< .001). As previously
indicated, we have no hypotheses concerning order, so the last

significant interaction in Table B. 6 (SF × order) is not discussed.
When each of the SF conditions were analyzed in separate ANOVAs, no
significant session effects were observed.

4. Discussion

The aim of the current study was to examine the role of color and
spatial frequency (SF) on the early acquisition of perceptual expertise
after one week of laboratory training with bird stimuli. Participants
learned to categorize 10 species of finches and warblers at either the
species or family levels. Birds were shown in their natural color during
training, but we tested the effect of color by presenting birds in 3
conditions during pretest and two posttests (1-day posttest; 1-week
delay): congruent color, incongruent color and grayscale. The effect of
SF was tested by presenting birds in 3 conditions during pre- and post-
tests: all SF (AllSF), low SF (LSF<8 cpi) and high SF (HSF> 8 cpi). We
will discuss separately the effects of the color and SF manipulations.

4.1. Color

Both congruent and incongruent colors produced better perfor-
mance (higher d′ and shorter RT) than grayscale images independent of

Fig. 8. A. N250 amplitude for pretest, posttest and delay, for AllSF, HSF and LSF images and for subordinate training only, collapsed over hemispheres, order and
exemplar types. Gray regions show time windows for the N250 ERP component B. Topography differences between posttest and pretest, and delay and pretest, for
AllSF, HSF and LSF images at time 280ms C. N250 amplitude for pretest, posttest and delay, for AllSF, HSF and LSF images, collapsed over order and exemplar types.
Colored regions represent the 95% confidence interval. Thick black lines represent the mean. Individual data points represent the mean amplitude for each parti-
cipant.
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training. All color conditions showed improved accuracy from training
in both the posttest and the delay session, and improvement was
strongest when color was congruent. Matching performance benefited
more from subordinate- than basic-level training (replicating Scott
et al., 2006, 2008; Jones et al., 2018). Prior to training, congruent and
incongruent colors did not differ and both showed better matching
discrimination than grayscale images. This result is consistent with the
benefits of color for delineating shape and surface segmentation in early
visual processing (Wurm et al., 1993; Gegenfurtner and Rieger, 2000).
However, after subordinate-level training, participants performed best
with congruent colors relative to the incongruent and grayscale images.
These findings highlight the importance of color knowledge in sub-
ordinate-level identification and suggest that color congruency effects
were dependent on learning. The results show that subordinate-level
training with color images may be important for supporting the early
acquisition of perceptual expertise. Previous work (Hagen et al., 2014)
suggests that color knowledge is automatically applied by experts, at
least when color is diagnostic for that domain. In Hagen et al.’s (2014)
study, bird experts were asked to ignore color information, but this was
hard for them, due to a recognition strategy in which color encoding is
an implicit and automatized process. The authors proposed that color
contributed to the recognition advantage even when structural in-
formation is sufficient for accurate recognition. This suggests that, for
experts, object representations in their domain of expertise contain
color information. In our study, we show that novices integrate color
information into their object representation after minimal training, si-
milar to what was observed for real-world experts. Our results partly
differ from Jones et al.’s (2018) training study, which showed that
accuracy was greater for color compared to grayscale but the color
effect did not differ between pre- and post-test. The different pattern of
results between our study and Jones et al.'s (2018) may be due to sti-
mulus difference: they used images of computer-generated artificial
objects and participants had no pre-experimental experience with these
objects compared to birds used in this study.

The amplitude of P1 decreased with training, in contrast to previous
work that did not report P1 training effects and did not appear to be
present in the published waveform figures (Scott et al., 2006, 2008;
Jones et al., 2018). The amplitude of P1 generally varies with the
amount of attention (Mangun et al., 1993; Clark and Hillyard, 1996).
The effect observed in our study could be explained by adults de-
creasing attention or habituation from pretest to the posttest and delay
sessions. It is possible that P1 habituation was present in the current
investigation and not previous studies (Scott et al., 2006, 2008; Jones
et al., 2018) because here EEG was also recorded during the training
sessions and not just at pre- and post-test, in which case participants
may pay more attention if they think these sessions are more important.
On the other hand, such general attention/habituation influences
would not be expected to affect the P1 to congruent images more so
than to incongruent and grayscale images, as we observed.

Results for the N170 and N250 components replicated previous
work, which has generally showed performance increases to parallel
N250 increases more than the N170 (Scott et al., 2006, 2008). Training
increased N170 amplitude for both posttest and delay, following both
basic- and subordinate-level training, for each color condition when
analyzed separately. This result is consistent with previous studies
using birds (Scott et al., 2006) and cars (Scott et al., 2008) but differs
from Jones et al. (2018) who used computer-generated artificial objects
and reported that N170 amplitude was more enhanced for subordinate-
trained objects compared to basic-trained objects. As for accuracy, this
may be explained by differences in participant's past experience with
birds in general. In the present study, training increased N250 ampli-
tude for both the posttest and the delay session, but with a larger in-
crease after subordinate- relative to basic-level training. For each of the
three color conditions, we observed a larger amplitude after sub-
ordinate- than basic-level training (posttest and delay session). Fur-
thermore, subordinate-level training effects on N250 were larger for

congruent images compared to incongruent and grayscale images.
These results differed from Jones et al. (2018) who did not find N250
differences between color and grayscale image. Again, this difference is
probably due to participant previous experience with the objects used
in the two different studies. Consistent with behavioral results, no N250
difference was observed between congruent and incongruent images
until after subordinate-level training. These results show the im-
portance of color information for subordinate-level discrimination, in-
dexed by the N250. However, some findings were not entirely con-
sistent between the accuracy and N250 results. One inconsistency was
that the accuracy training effects generalized to incongruent and
grayscale images after a week delay, whereas the N250 training effects
only generalized to incongruent and grayscale images a day after
training. Thus, the processes supporting accuracy improvements may
be distinct from those that underlie the N250, or may include additional
neural resources not measured by the N250. One possibility is that
processes underlying the N170 contribute to the performance effects, as
color and training did not interact at the level of the N170, and N170
training effects persisted for a week in all conditions.

Taken together, behavioral and ERP results showed how short-term
training changed the way color was used behaviorally, and that this
change was mirrored in neural correlates related to high-level vision. It
is known that color plays a critical role in both low-level and high-level
vision (Tanaka et al., 2001). At the lower level, color helps to segment
objects from the background and different parts of the object. This
perspective is supported by our pretest results showing similar accuracy
and N250 effects on congruent and incongruent color images before
training. In this case, participant's a priori knowledge of the “real” color
of objects did not benefit their performance before training. This is in
line with previous studies arguing that color is sensory in nature and
not related to people's knowledge of the colors of things (Wurm et al.,
1993). However, subordinate-level training, and by consequence
learning, leads to a higher level of recognition where images were ca-
tegorized more readily and elicited a larger N250 amplitude when
presented in their congruent colors compared to incongruent. These
results are in line with previous studies claiming that color is an in-
trinsic component of visual representations of objects and not only used
to help segmentation or other precursors to object recognition (Naor-
Raz et al., 2003). Thus, our posttest results support the role of color in
high-level visual mechanisms. To summarize, our results are showing
that color plays an important role at different levels of vision proces-
sing, with pre-training effects showing the effect of color on low-level
vision and post-subordinate-training effects supporting the role of color
in high-level vision.

Overall, our results are contrary to edge-based theories (Ostergaard
and Davidoff, 1985; Biederman and Ju, 1988; Biederman and
Gerhardstein, 1993) which argue that surface cues, like color, are
generally less efficient for accessing object representations. The edge-
based theories argue that color is not related to vision but rather to non-
vision/semantic processes (Davidoff and Ostergaard, 1988). However,
our results are in line with surface-plus-edge–based theories which
claim that both shape contours and color contribute to recognition
(Humphrey et al., 1994; Wurm et al., 1993). Thus, beyond its low-level
contribution to edge segmentation, color plays an important role in
high-level vision by providing diagnostic information that facilitates
object recognition (Mapelli and Behrmann, 1997; Tanaka et al., 2001).

4.2. Spatial frequency

SF effects did not interact with training, but training improved
performance for all image types. Because training images were always
color congruent, it is important to keep in mind that all three SF con-
ditions (AllSF, HSF, and LSF) represent generalization to manipulated
images. Accuracy before as well as after training was higher for AllSF
compared to HSF, and for AllSF and HSF compared to LSF. Reaction
time was longer for LSF images compared to both HSF and AllSF
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images. Faster answers were observed for basic- relative to subordinate-
level training.

These results are similar to those of previous studies. Collin and
Mcmullen (2005) used vehicles (planes, boats, cars) and animals (in-
sects, birds, dogs) and demonstrated that the LSF condition selectively
impaired subordinate- but not basic-level category verification. In
Hagen et al.’s (2016), bird experts and novices demonstrated higher
accuracy for birds presented in midrange SFs (8–32 cpi) compared to
low- (2–4 and 4–8 cpi) and high- (32–64 cpi) range SF. These results are
also partly consistent with Jones et al. (2018) who showed that sub-
ordinate matching accuracy with novel visual species was greater for
AllSF and HSF relative to LSF. Current findings suggest that the effects
of SF did not qualitatively change with learning in contrast to the
changes observed for color. Rather, the SF manipulation magnified the
qualitatively similar training effects for AllSF and HSF compared to LSF.
However, we did expect reaction time differences between SF condi-
tions to be larger after training than before training, based on Hagen
et al.’s (2016) finding the SF impacts reaction time for experts but not
novices. Perhaps our matching task was relatively insensitive to reac-
tion time difference because speed was not emphasized to subjects, like
it was in Hagen et al.’s (2016) category verification task. Our results are
also consistent with previous studies exploring SF manipulations on
object recognition using geometric figures (Boeschoten et al., 2005),
airplanes (Harel and Bentin, 2009) or cars (Harel and Bentin, 2013),
which suggest that basic-level object recognition relies on the general
shapes of objects (e.g., external contour/global shape; presence of
certain component features like beak for birds), whereas subordinate-
level recognition relies more on specific diagnostic details (e.g., varia-
tions on a fixed set of features like shape of beak, wings, tail) contained
in the higher spatial frequency bands. Our results partly support this
interpretation, with small accuracy differences observed between the
basic- and subordinate-level for LSF (i.e., general shapes of objects) but
larger accuracy differences for subordinate- compared to basic-level
training for AllSF. However, for HSF, we observed the same pattern as
for LSF. This difference could be explained by the cutoff applied to
stimuli in HSF which was higher in previous work (16 cpi in Collin and
Mcmullen, 2005, 21 cpi in Boeschoten et al., 2005 and 54 cpi in Harel
and Bentin, 2009).

The electrophysiological results show that P1, N170 and N250 were
all affected by the SF manipulation, but there were no interactions
between SF and training level or session. As for the color manipulation
we observed a decrease of P1 amplitude with training. The P1 also
showed smaller amplitude for HSF compared to AllSF and LSF. One
previous study on object processing with high-pass and low-pass fil-
tering did not report any effect on P1 (Goffaux et al., 2003), even
though it is a component which is sensitive to the low-level visual
properties determining the overall stimulus visibility. However, our
results are consistent with previous studies showing that the P1 am-
plitude to faces was increased by low-pass filtering (Alorda et al., 2007;
Nakashima et al., 2008).

The N170 exhibited a smaller amplitude for AllSF compared to HSF
and LSF, and, when SF conditions were taken separately, we observed
training effects for AllSF and HSF, where the amplitude of N170 was
larger after training, but not for the LSF condition. N170 results re-
plicated previous results showing that the N170 is mainly sensitive to
the relatively familiarity of object categories with an increase of am-
plitude following both basic and subordinate training (Scott et al.,
2006, 2008). The SF manipulation effect on N170 amplitude was also
observed by Jones et al. (2018) with their novel visual objects. These
results are opposite to previous work showing that the amplitude of
N170 to cars was larger for low spatial frequencies (< 8 cpi) compared
to all spatial frequencies and not different between all spatial fre-
quencies and high spatial frequencies (> 32 cpi, Goffaux et al., 2003).
Perhaps these differences reflect variation in the importance of different
frequency ranges for different types of objects. This perspective is
supported by studies showing that the spatial frequency characteristics

vary across different types of stimuli, as for example faces (Blickhan
et al., 2011), natural scenes (Simoncelli and Olshausen, 2001) or art
images (Redies, 2007). However, these results are generally consistent
with findings suggesting that manipulations that impair categorization
(e.g., face inversion) can result in larger N170 amplitude (Rossion and
Jacques, 2011). Furthermore, we observed an increased right later-
alized N170 component after training. This is consistent with previous
work with faces (Rossion et al., 2003) or novel objects (Jones et al.,
2018) who showed that subordinate-level training effects appear to be
more right lateralized for the N170 compared to the N250 component.

As previously summarized along with the color results, training
effects on the N250 were not significant for AllSF (i.e. grayscale)
images. Thus, even our baseline condition for assessing SF effects did
not show effects of training on the N250. The LSF images showed effects
of training, with N250 amplitudes being more negative after training
(posttest and delay) than before training. The HSF images showed an
unusual pattern with N250 amplitudes being more negative for pretest
and posttest compared to the delay session. None of the training effects
observed on N250 interacted with training level, as it has been observed
in previous training studies with color images of birds and cars (Scott
et al., 2006, 2008) as well as for the congruent and incongruent color
images in the present study. Thus, as previously observed for the N250
in the context of the color manipulation, training effects on the N250
did not generalize across the SF manipulation as readily as observed for
discrimination performance.

5. Conclusions

This study examined how the effects of perceptual expertise training
generalized to manipulations of color and spatial frequency (SF).
Replicating previous training studies, performance benefited more from
subordinate- than basic-level training. Color manipulations suggest that
color can be learned, even through short-time training, when it is di-
agnostic for a category of objects. Before training, any color helps, but
color congruence effects (congruent> incongruent) only emerged after
subordinate-level training. SF manipulations influenced performance
such that subordinate-level matching performance was better for
images retaining AllSF than those containing only HSF, and HSF were
better than LSF, but these SF effects did not interact with training.

The neural correlates of these effects were measured with ERPs. The
N170 component was sensitive to SF manipulations, but not color. This
result is in line with face literature which reported that shape is more
relevant than color during earlier stages of processing, as mainly
measured by the N170 component (Caharel et al., 2009; Itz et al.,
2014). As mentioned previously, in this study we considered the SF
manipulation to be predominantly a manipulation of shape. N170 SF
effects did not interact with training, and training effects generalized to
all manipulations except LSF. This somewhat broad generalization is
consistent with the view that the N170 indexes basic-level categoriza-
tion processes (Scott et al., 2006, 2008; Rossion and Jacques, 2011) that
would be less sensitive to perceptual details. The N250 was sensitive to
both color and SF manipulations. Subordinate level training effects on
the N250 did not generalize to any of the non-color conditions. Like
performance, the color ERP differences that were not present before
training were demonstrated after training. Specifically, congruent and
incongruent images did not differ before training, but amplitudes were
more negative for congruent than incongruent images after sub-
ordinate-level training. These results suggest that color plays an im-
portant role in both low-level vision, supported by pretest results, and
high-level vision, as shown by posttest results. Together, this supports
surface-plus-edge–based theories for object processing and recognition
(Wurm et al., 1993; Mapelli and Behrmann, 1997; Tanaka et al., 2001).
The SF results indicated that shape information is also important for
object recognition, again supporting surface-plus-edge–based theories,
but that more extensive training is needed to use SF information more
efficiently, as shown in Hagen et al. (2016) with real-expert bird
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