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Recent progress in the experimental design for event-related fMRI experiments made it possible to find the
optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a
novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavior-
al information, based on pilot data, in the genetic algorithm. As a particular application, a recognition mem-
ory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items
(pictures of objects) and the recollection of qualitative information associated with the items (left/right ori-
entation). Optimization of contrast efficiency is a complicated issue whenever subjects' responses are not de-
terministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are
included in the design optimization. However, available software for design optimization does not include
options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the
optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting con-
trast efficiency is greater than what either a block design or a random design can achieve. Furthermore, im-
provements of contrast detection power depend strongly on the behavioral probabilities, the perceived
randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in
which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Optimal design efficiency refers to the best arrangement of stimuli
in both event-related and block-type fMRI tasks to make tasks more
efficient by reducing scanner time and saving costs. Unfortunately,
there is no universally optimum arrangement of events and the best
arrangement of stimuli is strongly dependent on whether activation
is to be detected, a specific contrast is to be obtained, or if the hemo-
dynamic response function (HRF) is to be determined (Dale, 1999;
Friston et al., 1999; Josephs and Henson, 1999). When determining
the best shape of the hemodynamic response, it is customary to de-
scribe this scenario as optimization of estimation efficiency, whereas
best detection of activation or a contrast of activation is referred to
as optimization of detection power. It is well known that, in general,
optimized random designs are best to determine the shape of the
HRF, whereas block-type designs are best for detection power (at
least for simple contrasts involving the difference of activation pat-
terns) (Birn et al., 2002; Friston et al., 1999). The converse is
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also true: block-type designs are inefficient to determine the HRF,
and random designs are inefficient to detect activation (Liu et al.,
2001).

Other factors in the design of events are psychological require-
ments to avoid habituation and anticipation effects, which can be
achieved by counterbalancing stimuli to some degree. Minimizing
predictability of events leads to more random designs that decrease
the detection power. To maximize detection power, it is necessary
to relax the condition of stimulus randomness and only require a
“perceived” randomness of stimuli that is determined to be sufficient
based on pilot data (Liu, 2004; Liu and Frank, 2004; Liu et al., 2001).
Design optimization and anticipated behavioral responses

Of particular interest in psychology is the design of tasks for fMRI
in which analysis depends on specific probabilistic behavioral out-
comes such as response accuracy and latency. The design matrix is
set up by sorting the fMRI trial responses post-hoc according to be-
havioral measurements. Predicting the optimal arrangement of
events for maximum contrast detection power requires optimization
that must include the behavioral probabilities of the anticipated re-
sponses. Anticipated behavioral constraints have not been studied in
the optimization of contrast detection power or design efficiency,
and available software for design optimization cannot handle them.

http://dx.doi.org/10.1016/j.neuroimage.2012.01.127
mailto:dietmar.cordes@UCDenver.edu
http://dx.doi.org/10.1016/j.neuroimage.2012.01.127
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Several natural questions, which are the focus of the present research,
arise:

1. Can the order of the stimulus sequence be optimized for maximum
detection power based on the probability of the behavioral out-
comes from previous pilot studies?

2. Neglecting predictability of stimuli, is a block-type design the most
efficient design for contrast detection?

3. How good is a random design for contrast detection? What are the
tradeoffs between detection power and perceived randomness in
this case?

4. How robust is an optimized design based on probabilistic behav-
ioral information if the anticipated behavioral outcome is less ac-
curate due to the fact that subjects' accuracy and timing may
have improved?

To answer these questions, we newly designed a genetic algo-
rithm that allows the incorporation of probabilistic behavioral infor-
mation and optimized the design for maximum contrast detection
power. Simulations were carried out for a recognition memory task
in which responses are highly probabilistic, making this task an
ideal test for the proposed genetic algorithm. Functional MRI data
for a group of 18 subjects were obtained with an experimental design
that was optimized by a new algorithm. Results were compared to
findings in the literature.

Recognition memory: familiarity and recollection

The critical role of the hippocampus and nearby medial temporal
lobe (MTL) cortex in learning and memory is well documented, espe-
cially from neuropsychological studies of anterograde amnesia that
results from damage to these areas (Eichenbaum et al., 2007; Squire
et al., 2004). As research in this domain has progressed, theories of
the precise contributions of these regions to learning and memory
have increasingly called for differentiation between the hippocampus
proper and surrounding MTL cortex. For example, behavioral and
electrophysiological work has suggested that recognition memory is
supported by separate processes: those that support the recollection
of the details of previous experiences and those that allow us to rec-
ognize events based on familiaritywithout the recall of specific details
(Rugg and Curran, 2007; Yonelinas, 2002). Some researchers have hy-
pothesized that recollection is specifically related to the hippocampus
and parahippocampal cortex, whereas familiarity is related to peri-
rhinal cortex (Aggleton and Brown, 1999; Norman and O'Reilly,
2003). Others have suggested that the hippocampus and MTL cortex
work together in an undifferentiated manner to support both types
of memory (Squire et al., 2007; Wixted and Squire, 2011). Initial
tests of these ideas in humans have focused on patients with selective
hippocampal damage, but have been impeded by inconsistent results
(Squire et al., 2007; Yonelinas et al., 2010). More recent work has
tried to address these issues with fMRI (reviewed by Carr et al.,
2010), an enterprise that demands the development of advanced
high-resolution imaging techniques to resolve differences between
hippocampus and MTL regions.

In the present experiment, recollection was defined as the recog-
nition of the study orientation for common objects whereas familiar-
ity was defined as recognition without the recollection of orientation.
Subjects studied pictures of objects followed by recognition memory
tests that required recollecting the original left/right orientation of
each studied picture. Functional MRI scanning took place during rec-
ognition testing. Test lists contained studied pictures in their original
(“same”) orientation, studied pictures in the opposite (“different”)
orientation, and non-studied (“new”) pictures. Activation related to
recollection was estimated by contrasting trials in which subjects cor-
rectly classified the orientation of studied items as “same” or “differ-
ent,” with trials in which subjects incorrectly classified the study
orientation of old items. Here we assume that these two sets of trials
differ with regard to subjects' recollection of picture orientation. Acti-
vation related to familiarity was estimated by contrasting trials in
which subjects incorrectly classified the study orientation of items
(but recognized that the items were old) with trials in which subjects
correctly classified non-studied pictures as “new.” Here we assume
that these two sets of trials differ with regard to the familiarity of
old vs. new items, with minimal contributions of recollection because
orientation was judged incorrectly. The logic of these contrasts is sim-
ilar to past fMRI research using source recognition to separate recol-
lection and familiarity (Diana et al., 2007; Spaniol et al., 2009).
Similar to typical source recognition tasks, there are at least two lim-
itations to keep in mind when interpreting results. First, recollection
and familiarity contrasts are likely to also differ with regard to confi-
dence (Wixted and Squire, 2011). Second, the familiarity contrast
may include activity related to the recollection of attributes other
than orientation, so-called “noncriterial” recollection (Parks, 2007;
Yonelinas and Jacoby, 1996). Although these issues are critical for
psychological interpretation, they are less important for our primary
present goal of design optimization.

Methodology

In this section we briefly review the parameterization of the HRF,
the form of the general linear model and its solution in the presence
of temporal autocorrelations, and the formal definition of design effi-
ciency and contrast detection power. Furthermore, we define a non-
predictability index to avoid psychological confounds and introduce
a measure to determine the robustness of the design against misspe-
cification of behavioral information.

Contrast detection power and the linear model

According to the general linear model (GLM), the relationship be-
tween stimuli and the BOLD response is modeled as a convolution of
stimulus functions sr(t)with amplitude βr and the HRF h(t) which we
assume to be known for the purpose of this research. In particular, we
assume that the HRF has the conventional two-gamma form

h tð Þ ¼ t
d1

� �a1
e
− t−d1ð Þ

b1 −c1
t
d2

� �a2
e
− t−d2ð Þ

b2

with parameters a1 ¼ 6; a2 ¼ 16; b1 ¼ 1; b2 ¼ 1; c1 ¼ 1
6 ; d1 ¼

a1b1; and d2 ¼ a2b2 similar to Glover (1999).
The fMRI signal y(t) is then given by

y tð Þ ¼
XR
r¼1

βrsr tð Þ � h tð Þ þ ε tð Þ for t ¼ 1;…; T ð1Þ

where R is the number of stimulus functions and ε(t) is a Gaussian
distributed error term of the form N(0,Σ) with mean zero and autore-
gressive (AR) order 1 such that the elements of the covariance matrix
are given by

Σlm ¼ σ2

1−ϕ2 ϕ
l−mj j ð2Þ

where σ2 is the variance and ϕ is the autocorrelation coefficient
(Cordes and Nandy, 2007). In matrix notation, Eq. (1) becomes

y ¼ Xβ þ ε ð3Þ

where y is a column vector corresponding to the observed signal at a
particular voxel and X is the T×R design matrix resulting from the
convolution of

βrsr tð Þ � h tð Þ; r ¼ 1;…;R;
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sampled at the TR. To obtain uncorrelated errors, standard pre-
whitening is performed by multiplying Eq. (3) with the matrix K
such that

KΣK ′ ¼ σ2I;

where the prime indicates transpose and I labels the unit matrix
(Friston et al., 2000). Low-frequency drifts can be projected out by
applying a high-pass filter with cutoff frequency f0. This is accom-
plished by transforming Eq. (1) into frequency space using the Fouri-
er transform and setting all frequencies f for |f|b f0 to zero (ideal high-
pass filter). This operation will transform the variables in Eq. (3). Note
that high-pass filtering and pre-whitening are commutative operations.
In the following to simplify notation, we assume that high-pass filtering
(see for example Gonzalez and Woods, 1993) and pre-whitening (see
for example Wager and Nichols, 2003) have been carried out on
Eq. (3). Then, given the transformed data y and the transformed design
matrix X (which is different from the y and X in Eq. (3)), the least
squares solution of β is given by

βLS ¼ X′X
� �−1

X′y

with variance–covariance matrix var βLS=σ2(X′X)−1.
In these equations, we have used the same symbols as before in

Eq. (3) to simplify notation. However, the reader should keep in
mind that now X and y refer to the transformed (preprocessed)
variables.

For a given contrast matrix C=[c1c2…cp]′with p contrast vectors,
the variance of the least square estimate CβLS becomes

var CβLSð Þ ¼ σ2C X′X
� �−1

C′

and the contrast detection power is defined as

ξ ¼ 1
trace diag wð Þ var CβLSð Þ½ � ¼

1

σ2trace diag wð ÞC X′X
� �−1C′

h i

wherew is a suitable weight vector describing the importance of each
contrast vector ci for i=1,…,p, and diag(w) a diagonal matrix with
the elements of w in its diagonal. This equation can also be used to
compute the design estimation efficiency to determine the shape of
the HRF if finite impulse response functions are used as a basis set
to model the HRF. Note that, strictly speaking, ξ depends also on the
error variance σ2, as pointed out by Mechelli et al. (2003). In the cur-
rent research, we neglect this dependency and treat σ2 as a constant
by setting it to 1.

Counter balancing of stimuli order to reduce the chance of prediction

Predictability, in general, refers to the correct guessing of a future
event based on the memory of a sequence of similar past events. A
block design is highly predictable, because the same types of stimuli
are presented, and a completely random design is non-predictable.
Given a sequence of events (stimuli) {ijk…}, we define an index of
“non-predictability” or randomness in the range [0,1], where 1
means the next event is perfectly non-predictable and 0 means it is
perfectly predictable. Thus, predictability needs to be calculated
based on how many stimuli that were presented previously may in-
fluence the response of the next stimulus to be presented. For the pre-
sent recognition paradigm, we have three different stimuli (“same,”
“different,” “new”). If a “same” stimulus was presented, then the
next stimulus to be presented, in order to be non-predictable, must
be either “same,” “different,” or “new” with equal probability of 1/3.
This is called first-order non-predictability. Higher order non-
predictability takes into account more than just the last stimulus/
response presented to predict the next stimulus. We defined the pre-
dictability of order one to three as follows:

1. order: Let pi be the probability that the ith stimulus (example
i=1, 2, 3) occurs next, independent of the previous stimulus.
Thus, if there are n different stimuli (example n=3), the stimuli
are perfectly balanced if p=1/n for all i, and the non-
predictability index of first order, I(pi), is equal to 1.
2. order: Let pj|i be the probability that whenever stimulus i oc-
curred, the next presented stimulus is stimulus j. Also here, the de-
sign is perfectly balanced if pj|i=1/n for all i, j. Then, the non-
predictability index of second order, is I(pj|i)=1.
3. order: Let pk|ij be the probability that whenever stimulus i oc-
curred and the next stimulus was stimulus j, then the next pre-
sented stimulus is stimulus k. Also here, the design is perfectly
balanced if pk|ij=1/n for all i, j,k. Then, the non-predictability
index of order three is I(pk|ij)=1.

For all other values of pi,pj|i, pk|ij we define the non-
predictability indices I(pi), I(pj|i), I(pk|ij) as linearly scaled functions
of 1− maxθ pθ−E pθð Þj j mapped to the interval [0,1] where pθ is
either pi,pj|i,, or pk|ij and E(pθ) is the expectation value for a
perfectly balanced design, i.e.

I pθð Þ ¼ 1− maxθ pθ−E pθð Þj j
1−E pθð Þ :

Please note that the specified non-predictability indices are simi-
lar to the ones defined by Wager and Nichols (2003), however, in
our definition we use conditional probabilities and chose a different
meaning for the order of the non-predictability indices. A main differ-
ence of the defined criteria for non-predictability is that other criteria
(Kao et al., 2009; Wager and Nichols, 2003) do not assume that the
different stimulus types are happening equally often. The specified
non-predictability constraints are implemented as hard constraints
in this research. Hard constraints have the advantage that specified
criteria are exactly met whereas soft constraints are only met up to
a specified probability or soft threshold yielding an overall solution
of the constrained optimization problem. In this research, we chose to
use hard constraints because we wanted to exactly meet the specified
degrees for non-predictability. In general, the advantage of soft
constraints over hard constraints is that faster algorithms can be
found leading to a solution of the optimization problem. Furthermore,
soft constraints can lead to increased optimal values because the
space of constraints has more degrees of freedoms available than the
space of hard constraints.

For completeness, we would like to mention that other criteria
based on soft constraints have been proposed previously. For exam-
ple, Wager and Nichols (2003) and Kao et al. (2009) proposed a
multi-objective criterion. In particular, the criterion proposed by
Kao et al. (2009) is a multi-objective optimal experimental design
which is an improvement of the weighted average design criteria of
Wager and Nichols (2003). While the algorithm of Kao et al. seems
to perform better than the algorithm ofWager and Nichols, this better
performance is not related to using soft or hard constraints of the
multi-objective design criterion.

Robustness against misspecification of behavioral information

To measure the robustness of the obtained design against misspe-
cification of the probabilities of the behavioral information, we calcu-
lated the mean ratio of the contrast detection power by

ξ
1
��2 ¼ mean

subjects

ξ misspecified designð Þ
ξ optimal designð Þ



Table 1
Actual behavioral probabilities during fMRI scanning.

Subject # p(s|s) p(d|s) p(s|d) p(d|d) p(n|n)

1 0.89 0.11 0.41 0.59 0.94
2 0.72 0.28 0.40 0.60 0.92
3 0.92 0.08 0.23 0.77 0.97
4 0.80 0.20 0.35 0.65 0.81
5 0.93 0.07 0.27 0.73 0.98
6 0.83 0.17 0.15 0.85 0.93
7 0.89 0.11 0.34 0.66 0.89
8 0.85 0.15 0.23 0.77 0.95
9 0.93 0.07 0.36 0.64 0.94
10 0.73 0.27 0.31 0.69 0.99
11 0.84 0.16 0.48 0.52 0.64
12 0.96 0.04 0.23 0.77 0.99
13 0.89 0.11 0.29 0.71 0.96
14 0.95 0.05 0.22 0.78 0.94
15 0.93 0.07 0.15 0.85 0.98
16 0.98 0.02 0.13 0.87 0.98
17 0.94 0.06 0.15 0.85 0.98
18 0.90 0.10 0.34 0.66 0.98
Mean 0.88 0.12 0.28 0.72 0.93
std 0.08 0.08 0.10 0.10 0.09
*Mean pilot study 0.78 0.11 0.27 0.60 0.87

Note: The five conditions are s|s (“same” stimulus, subject responds “same”), d|s
(“same” stimulus, subject responds “different”), s|d (“different” stimulus, subject
responds “same”), d|d (“different” stimulus, subject responds “different”), n|n (“new”

stimulus, subject responds “new”). The last line (indicated by *) gives the
probabilities obtained from pilot studies.
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where the misspecified design of a subject differs in the behavioral
probabilities based on actual behavioral subject data collected during
fMRI scanning. Here, the optimal detection power, ξ (optimal design),
is a theoretical quantity that is obtained by optimizing the design for
the actual achieved behavioral probabilities during fMRI scanning.

Materials and methods

Subjects

Subjects were 18 healthy undergraduate students from the Uni-
versity of Colorado at Boulder: 10 female, 8 male, mean age
21.9 years, SD=3.03, all right-handed. Subjects had previously com-
pleted (approximately a week earlier) the same experiment with
EEG recording, but using different pictures as stimuli. The findings
of the EEG experiment and the EEG–fMRI relationships derived from
both the EEG and present experiment are reported elsewhere
(Herzmann et al., submitted for publication).

fMRI acquisition

fMRI was performed in a 3.0 T GE HDxMRI scanner equipped with
an 8-channel head coil and parallel imaging acquisition using EPI with
imaging parameters: ASSET=2, ramp sampling, TR/TE=1.5 s/30 ms,
FA=70°, FOV=22 cm×22 cm, thickness/gap=3.5 mm/0.5 mm, 30
slices, resolution 64×64, axial acquisitions. A standard 2D co-planar
T1-weighted image and a standard 3D high resolution T1-weighted
SPGR (1 mm3 resolution) were also collected.

Memory task

Subjects studied a long list of 268 pictures of common objects that
were asymmetric about the vertical axis. Functional scanning took
place a day after the study session during memory testing with lists
that contained pictures studied in the subjects' original orientation,
pictures studied in the opposite left/right orientation, and new pic-
tures never studied. The length of presentation of each stimulus was
3 s. During scanning, 402 pictures (about 134 same orientation, 134
different orientation, and 134 new pictures) were presented. The ac-
tual number of stimuli presented varied from 134 by less than 2.5%
due to practical implementations of the genetic algorithm. Subjects
responded within the 3-second time period of stimulus presentation
by selecting one of three memory judgments for each stimulus:
studied picture with “same” orientation, studied picture with “dif-
ferent” orientation, or “new”. The conditions were coded according
to the stimulus (second letter) and the subject's response (first
letter):

1. s|s (stimulus is “same”, subject responds “same”)
2. d|d (stimulus is “different”, subject responds “different”)
3. d|s (stimulus is “same”, subject responds “different”)
4. s|d (stimulus is “different”, subject responds “same”)
5. n|n (stimulus is “new”, subject responds “new”).

In the data modeling, we disregarded the other four possible re-
sponses (n|s (stimulus is “same”, subject responds “new”), n|d (stimu-
lus is “different”, subject responds “new”), s|n (stimulus is “new”,
subject responds “same”), and d|n (stimulus is “new”, subject responds
“different”)) because these scenarios are not relevant for the contrast of
interest and occurred only with very low probability, with the excep-
tion of a single subject (#11 in Table 1), according to our pilot studies.

In order to maximize contrast detection power, the stimulation
periods were not interleaved by null events (such as resting periods)
and the pictures were presented one after the other. Such an arrange-
ment could potentially result in some contributions from the non-
linear BOLD effect. However, the nonlinear effect is unknown for
memory activation and so far has only been systematically
investigated for primary motor and visual sensory cortex (Wager et
al., 2003). For motor and visual cortex, the nonlinear BOLD response
has been found significant only for stimulation periods of less than
2 s (Buckner, 1998). Consequently, an investigation of the existence
of nonlinear effects for memory activation at a stimulation period of
3 s is beyond the scope of the current research study.

Genetic algorithm implementation

Genetic algorithms are suitable to solve optimization problems in
a high dimensional space (Ahn, 2006). Starting from a large number
of randomly generated design vectors, where the sequence of stimuli
is coded using discrete numbers for different conditions, three pro-
cesses act on the vectors in genetic algorithms: selection, crossover,
and point mutations.

In addition, specialized new designs such as random designs,
block designs and their combinations can be added to the population
vector. The process of adding specialized new designs is referred to as
“immigration” (Kao et al., 2009). The purpose of immigration is to add
extra variability, which prevents the genetic algorithm from being
trapped in a local optimal solution.

The selection process uses particular fitness criteria (in our case
contrast detection power) to select the best vector of the particular
generation. Crossover interchanges a portion of the vector sequence
between a pair of vectors using a randomly selected cut point, and
point mutation changes a proportion of the entries of a vector se-
quence into different ones. For fMRI, the first algorithm for design op-
timization using a genetic algorithm was proposed by Wager and
Nichols (2003). For our research, we designed an algorithm similar
to Wager and Nichols and incorporated changes so that probabilistic
behavioral constraints can be included in the optimization.

Specifically, for the proposed memory task the matrix of temporal
autocorrelations is set up with ϕ=0.2 in Eq. (2) (Cordes and Nandy,
2007). Then, the first generation is defined by 500 randomly generat-
ed design vectors (also called population vectors). Each design vector
has the entry 1, 2, or 3 specifying which stimulus was shown (“1” for
“same,” “2” for “different,” “3” for “new”). Each entry in the design
vector corresponds to a stimulus duration of 3 s. Then, the three stim-
ulus vectors representing the timing of stimuli 1, 2, and 3,
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respectively, are computed for the entire population. Using the prede-
termined behavioral information from pilot data, the probabilities
p(s|s), p(d|s), p(s|d), p(d|d), p(n|n) are used to construct the timing
of the five regressor delta functions. Upon convolution with the as-
sumed hemodynamic response function, following pre-whitening
and high pass filtering, the 5-column design matrix is formed and
the contrast detection power can be calculated for the entire popula-
tion. Since the behavioral data are probabilistic, the median detection
power is computed among 100 repetitions. This completes the prob-
abilistic loop. The next step is to sort the population vectors in des-
cending order according to the median value of contrast detection
power. The best 25 population vectors (#1 to #25) are used to per-
form a random pair-wise crossover. The final number of new vectors
arising from the crossover operations is 450. A new population of de-
sign vectors (next generation) is then defined by specifying #1 to #11
equal to the best vector of the previous population (best vector #1
+10 replications of best vector #1) and #12 to #461 as the 450 cross-
over vectors from the previous step. Then, a point-wise mutation
with probability 0.01 is carried out on all vectors of the new genera-
tion except vector #1. Point-wise mutation with probability 0.01
here means that the “stimulus” numbers for the “same”, “different”
and “new” stimuli are randomly assigned for 1% of the entries of
each vector. Finally, random vectors are added to the new generation
such that the total size of the generation contains 500 population vec-
tors. The program then repeats until convergence or until a fixed
number of generations are computed.
Fig. 1. Flowchart of the genetic algorithm. The probabilistic information of the behavi
For this research project all simulations were run initially up to
generation 1000. From generation 100 to generation 1000, we
obtained the empirical result that the median detection power did
not increase by more than 1%. From generation 200 to generation
1000, we could not detect reliably any increase due to the small in-
trinsic fluctuations of the probabilistic loop, and the median detection
power was essentially flat. Generation 100 is an acceptable threshold
to achieve convergence and was used to stop the optimization pro-
cess. It is also possible to define convergence by calculating

ξ g þ 1ð Þ−ξ gð Þ
σ ξ gð Þð Þ

����
����b ε

where ξ(g+1)−ξ(g) is the difference of the median detection power
at generation g+1 and g, σ(ξ(g)) is the standard deviation of the
median detection power at generation g, and ε is a convenient thresh-
old (such as 0.001). However, such an approach is more computation-
ally expensive due to the estimation of σ(ξ(g)) and was not carried
out due to time constraints.

The genetic variables involved were optimized by varying the
number of random lists, the number of crossover vectors to be used
in the crossover computations, the number of cross-over computa-
tions performed, and the number of replications of the best vector.
The numbers stated above lead to the fastest performance. A flow-
chart of the entire algorithm is given in Fig.1.
oral responses is included in the optimization by an additional loop (inner loop).
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Fig. 2. Median detection power of the proposed memory task assuming a block-type
arrangement of the stimuli sequences with equal block size for “same” stimuli, “differ-
ent” stimuli, and “new” stimuli. The simulation was carried out using the mean behav-
ioral probabilities determined by pilot data (see Table 1, last line). Note, each stimulus
has a duration of 3 s and the optimal detection power occurs at a block size of 4 stimuli
equaling a duration of 12 s.
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To incorporate the non-predictability of the stimulus sequence, if
desired, all vectors determined for the next generation are subjected
to the criteria for non-predictability, and the operations using cross-
over, point-wise mutations, and random-vector-adding are repeated
until the criteria for non-predictability are satisfied and the necessary
number of 500 new vectors for the next generation is found.

We would like to point out that the proposed algorithm under the
condition that no behavioral constraints are included or all behavioral
information has a probability of one leads to deterministic regressors
of the design matrix. In this case, our algorithm is fundamentally
equivalent to the method proposed by Wager and Nichols (2003).

The fMRI task was designed as described before in section
“Memory task” and was programmed in EPRIME (Psychology Soft-
ware Tools, INC., Pittsburgh, PA). The behavioral probabilities
used in the design were determined from pilot data from the same
design with an independent sample of undergraduate subjects. The
average probabilities were p(s|s)=0.78, p(d|s)=0.11, p(s|d)=0.27,
p(d|d)=0.6, and p(n|n)=0.87. The actual probabilities during fMRI
scanning were slightly different and are listed in Table 1. Note that,
in general, subjects weremore likely to respond “same” than “different”
(i.e. p(s|s)>p(d|d) and p(s|d)>p(d|s)) indicating a bias for “same.”
Using the proposed genetic algorithm, the fMRI task was optimized
using the average probabilities from the pilot study. Sufficient balance
and randomness were accounted for by specifying non-predictability
indices={0.975, 0.9, 0.85} for 1st to 3rd order. Due to GE hardware
limitations of the MR scanner prohibiting EPI scans with more than
20,000 image acquisitions, the task was split into two runs of 201
stimuli each. Scan duration for each task was 603 s after 10 s of equi-
librium null scans at the beginning. Behavioral data were collected
using a conventional 4-button response box with EPRIME.

The subjects' expected accuracy was incorporated in the optimiza-
tion of the design by an additional loop (inner loop) as shown in
Fig. 1, which outlines the structure of the proposed genetic algorithm.
The inner loop uses the probabilistic information of the behavioral re-
sponses to extract the possible five regressors for the conditions s|s, d|
s, s|d, d|d, and n|n. These regressors are then convolved with the two-
gamma HRF giving the design matrix. Then, contrast efficiency for
recollection and familiarity are computed using equal weighting.

Data analysis

All fMRI data were realigned in SPM5 (http://www.fil.ion.ucl.ac.
uk/spm/) and corrected for differences in timing of slice acquisitions.
The design matrix was set up using the five regressors for conditions
s|s, d|s, s|d, d|d, and n|n, which were formed by using the stimulus se-
quence together with the collected behavioral information, as de-
scribed before. The design matrix and all voxel time series were
high-pass filtered using the standard cut-off frequency 1/120 Hz
(Frackowiak, 2004). No temporal low-pass filtering was carried out.
A brain mask was used to effectively eliminate all non-brain voxels
leading to an average of about 1200 voxels per slice. Standard smooth-
ing using a Gaussian FWHM=6 mm was carried out to increase the
SNR and to enable group analysis. The data were re-sliced to an isotro-
pic voxel size of 2×2×2 mm3. Two contrasts of fMRI memory activa-
tion – recollection and familiarity – were computed according to past
fMRI research (Diana et al., 2007; Spaniol et al., 2009). These contrasts
assume that recollection is indexed by the ability to correctly remem-
ber item and orientation (i.e., source), whereas familiarity is indexed
by item recognition without the recollection of orientation (i.e.,
source). The recollection contrast is defined by

crecollection ¼ 1
2ððβsjs þ βdjdÞ–ðβdjs þ βsjdÞÞ

.

and the familiarity contrast is

cfamiliarity ¼ 1
2ðβdjs þ βsjdÞ−βn n;j

.

where the β are the estimated regression coefficients and the sub-
scripts refer to the five conditions (s|s, d|s, s|d, d|d, n|n). A second-
level mixed-effects analysis was carried out after normalization of
images to MNI space. Group statistical maps were computed for the
contrasts familiarity and recollection, as defined previously, with a
family-wise error rate (FWE)b0.05. Cluster significance was comput-
ed using Monte-Carlo simulations in AFNI (Cox, 1996).

Results

Simulation 1 using block designs

Block designs have been shown to have optimal detection power
for simple contrasts of the form A−B, where A and B refer to the am-
plitudes of the corresponding stimuli sequences. Though block de-
signs are not suitable for the proposed memory task because the
arrangement of stimuli can only be balanced up to first order and
thus leads to predictability of the stimuli, there is theoretical interest
in the detection power of such a block arrangement for more compli-
cated contrasts involving probabilistic responses. We carried out sim-
ulations for the memory task by specifying a block-type arrangement
of the “same”, “different”, and “new” stimuli for block sizes of 1 to 30
stimuli, where each stimulus lasts 3 s. The arrangement of stimuli was
balanced to first order (i.e. same number of “same” stimuli, “different”
stimuli, and “new” stimuli). Using the mean behavioral probabilities
from the pilot study (see section Materials and methods or Table 1),
100 different realizations of the five conditions (s|s, d|s, s|d, d|d, n|n)
were chosen for each block size and the median detection power for
the combined contrast (0.5∗(familiarity+recollection)) was computed
(Fig. 2). The best detection power was obtained for a block size of 4
stimuli (12 s).

Simulation 2 using random designs

Designs determined by a random number generator are the easi-
est to implement and are non-predictable to any order. However, ran-
dom designs usually suffer from a low contrast detection power (Liu
et al., 2001). In our case, it is not clear without simulation to predict
the detection power of random designs for the memory task when
probabilistic behavioral information is included. Since the contrasts
of interest (recollection and familiarity) depend on the behavioral
performance (parameterized by random variables) of each subject,
random designs are not necessarily ideal for probabilistic tasks simi-
lar to ours. We tested 500 random designs at each generation (with-
out invoking any optimization) leading to 50,000 different random

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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configurations. However, the median detection power of the best ran-
dom configuration did not exceed 24.9, a value which is about 6%
lower than the best block-type design (see Fig. 3, top). The random
design was not explicitly controlled for non-predictability.
Simulation 3 using optimized designs

Starting with a random design, we determined the optimal design
using the proposed genetic algorithm without any non-predictability
constraint. The obtained solution vector had non-predictability indi-
ces of 0.786, 0.577, and 0.251 for the orders 1, 2, and 3, respectively
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Fig. 3. Top: Optimization of median contrast detection power for the proposed memory
task without any non-predictability constraint. The obtained solution vector had non-
predictability indices of 0.786, 0.577, and 0.251 for the orders 1, 2, and 3, respectively.
The genetic algorithm converged at generation 100 with 99% of the maximum achieved
(at generation 1000) (see blue curve). For comparison, the detection power was calcu-
lated using 50,000 random arrangements of stimuli (500 random configurations at
each generation) (see green curve). Note that the best block design (Fig. 2) is better
than the best random design but still about 20% inferior to the optimal design. Middle:
Distribution of the block length of the optimal design for the three stimuli. Bottom: Op-
timal stimulus sequence for “same” stimuli, “different” stimuli, and “new” stimuli. Note
that the arrangement of the “new” stimuli are block-like (most-likely block size is 3
stimuli (9 s)), as determined by the genetic algorithm.
(Fig. 3). Although, this scenario is less realistic for the given recogni-
tion memory paradigm, it provides an upper limit of the contrast de-
tection power which can never be surpassed by any arrangement of
the stimuli sequence, and thus has important theoretical value. The
genetic algorithm converged at generation 100 with 99% of the max-
imum achieved (at generation 1000). In comparison to the best ran-
dom design, the optimal design achieved 28% increased contrast
detection power, and in comparison to the best block design, the op-
timal design achieved 18% increased detection power (Fig. 3 top). For
the optimized design, we computed the distribution of the stimuli du-
rations (referred to as block-lengths) and found that the distribution
for the “same” and “different” stimuli is pseudo-random (most-likely
block length=3 s) whereas for the “new” stimuli the distribution is
block-like (most-likely block length=9 s) (Fig. 3 middle and
bottom).

Please note that the convergence is not increasing in a monotone
way. Due to the probabilistic loop, the detection power is a random
variable with a mean and a standard deviation. According to our sim-
ulations, this standard deviation of is about 2 for the probabilistic
loop, almost independent of the number of generations. At generation
100 using 100 trials for the probabilistic loop, the standard deviation
of the median detection power is about 0.12. If the number of trials is
increased to say 10,000, the standard deviation of the median detec-
tion power at generation 100 is reduced to 0.01 according to our sim-
ulations. Thus, there will always be oscillations in the convergence
performance because of the inner loop (which is probabilistic). With-
out the probabilistic loop, the detection power is a monotone increas-
ing function.

We repeated the analysis under the more realistic experimental
condition that all stimuli are approximately balanced for the first
three orders (non-predictability indices≥{0.975, 0.9, 0.85}) (Fig. 4).
These were the same constraints used to generate the condition se-
quences that were actually used in the experiment. The genetic algo-
rithm converged at generation 100 with 99% of the maximum
achieved (at generation 1000). In comparison to the best random de-
sign, the optimal design achieved about 8% increased contrast detec-
tion power (26.5 for the optimal design from Fig. 4 top and 24.5 for
the random design from Fig. 3 top). For the optimized design, we
computed the distribution of the stimuli durations and found that
the distribution for all three stimuli is pseudo-random (most-likely
block length=3 s) (Fig. 4 middle and bottom).

We also carried out simulations for intermediate scenarios. If it
would be sufficient to have a perceived randomness with non-
predictability indices of the first 3 orders≥{0.975, 0.8, 0.75} or
{0.975, 0.6, 0.55}, our simulations indicate an improvement of 9% to
13%, respectively, compared to a random design. The stimuli se-
quences for both of these scenarios are pseudo-random with similar
appearance to the more general case of Fig. 4.

Computation time

Typical computation time for the simulations using MATLAB on a
computer equipped with Intel Core 2, 2.4 GHz CPU, and 4 GB memory
was about 20 min per generation of the proposed genetic algorithm
of Fig. 1. Note that the inner loop of the genetic algorithmwas execut-
ed 100 times for each generation to compute the median contrast de-
tection power based on the expected behavioral probabilities.

Robustness of design against misspecification

It is important to investigate the robustness of the obtained con-
trast detection power of our design, which was not optimized for
each individual subject but optimized based on the average pilot data,
against misspecification of the probabilities that actually occurred
during fMRI scanning (Table 2). We have computed the ratio of the
detection power for the misspecified design and the optimal design
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Fig. 4. Top: Optimization of median detection power for the proposed memory task
under the experimental condition that stimuli are approximately balanced for 1., 2.,
and 3. order (non-predictability indices≥{0.975, 0.9, 0.85}). The obtained solution vec-
tor had non-predictability indices of 0.978, 0.908, and 0.853 for the orders 1, 2, and 3,
respectively. The genetic algorithm converged at generation 100 with 99% of the max-
imum achieved (at generation 1000). Middle: Distribution of the block length of the
optimal design for the three stimuli. Bottom: Optimal stimulus sequence for “same”
stimuli, “different” stimuli, and “new” stimuli.

Table 2
Robustness of design against misspecification of behavioral probabilities and compari-
son to a random design.

Subject # ξ misspecifiedð Þ
ξ optimalð Þ

ξ randomð Þ
ξ optimalð Þ

1 0.977 0.931
2 0.966 0.934
3 0.975 0.908
4 0.967 0.948
5 0.978 0.969
6 0.984 0.950
7 0.968 0.920
8 0.965 0.948
9 0.970 0.968
10 0.979 0.943
11 0.969 0.944
12 0.994 0.972
13 0.975 0.920
14 0.881 0.872
15 0.978 0.958
16 0.991 0.985
17 0.987 0.974
18 0.942 0.942
Mean 0.969 0.944
std 0.025 0.027

Note: The term ξ misspecif iedð Þ is the detection power that was achieved during fMRI
scanning based on the actual behavioral response of the subject and a stimulus
arrangement that was optimized for the mean behavioral probabilities from pilot
data. The term ξ optimalð Þ is the theoretical detection power if the actual behavioral
response would have been used to optimize the stimulus sequence. The term
ξ randomð Þ is the best detection power of 10,000 random designs.

Table 3
Contrast detection power as a function of the behavioral probabilities.

p(s|s) p(d|s) p(s|d) p(d|d) p(n|n) ξ(random) ξ(optimal) ξ optimalð Þ
ξ randomð Þ

0.80 0.20 0.30 0.70 0.93 35.7 37.7–39.7 1.056–1.112
0.75 0.25 0.35 0.65 0.93 40.8 43.4–45.9 1.064–1.125
0.70 0.30 0.40 0.60 0.93 45.1 47.9–51.0 1.062–1.131
0.65 0.35 0.45 0.55 0.93 48.3 52.1–55.6 1.079–1.151
0.60 0.40 0.50 0.50 0.93 50.8 55.1–58.5 1.085–1.152

Note: The simulations of ξ(optimized) were performed using the proposed genetic
algorithm with non-predictability indices for 1. to 3. order≥ {0.975, 0.9, 0.85}) (lower
number in columns) and also for {0.975, 0.6, 0.55}) (higher number in columns). The
random design was not controlled for their non-predictability index.
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for each subject data. Furthermore, we list the ratio of the detection
power for the random design and the optimal design. The results
listed in Table 2 show that our approach based on average pilot data
was 97% effective in obtaining the maximum detection power where-
as a random approach would have been only 94% effective. These re-
sults indicate that on average we were able to achieve a 3%
improvement of the contrast detection power (compared to a ran-
dom design) with behavioral probabilities from average pilot data.
This improvement may seem low. Nevertheless, the methods intro-
duced in this article can be applied to individual subject pilot data in-
stead of average pilot data, which will increase the detection power
by 2% to 14% (mean 6%, std 3%) over a random design (computed
from Table 2).

Note, that the detection power is not easily predictable based on
the behavioral probabilities. For example, subject 14 is farthest from
optimal whereas other subjects (e.g., 16) seem to have behavioral
results that deviate more from the pilot averages. This odd behavior
may be explained by the fact that subject 16 has a larger imbalance be-
tween s|s+d|d and d|s+s|d responses. In fact, the responses for d|s+
s|d are almost twice as large in subject 16 compared to subject 14. This
imbalance leads to a double penalty in subject 16 becausewe optimize
for two different contrasts, but both contrasts involve the term d|s+s|d.
The result is that the optimal detection power ξ is low for subject 16,
and ξ(optimal) and ξ(random) do not differ much.

Further optimization can be achieved by calibrating task difficulty
such that the behavioral probabilities become more balanced (or op-
timal) for the contrasts of interests. We carried out simulations with
more balanced behavioral probabilities for recollection and familiari-
ty (Table 3). Note that even a small increase in the difficulty level of
the task can lead to a significantly increased detection power. From
this perspective, it seems that stimuli should be carefully selected
for each contrast of interest. However, we acknowledge that this is
not always possible due to conflicting goals and practicality of the ex-
periment. For example, orientation recollection is near chance in the
bottom row of Table 3, which would not be optimal from a psycholog-
ical perspective.

fMRI results

In Fig. 5, we show group activation maps for the familiarity
and recollection contrasts at an individual (single voxel, unadjusted)



1796 D. Cordes et al. / NeuroImage 60 (2012) 1788–1799
p-value=0.001. All clusters with a cluster size of at least 424 mm3

are significant at FWEb0.05, as determined by AlphaSim in AFNI
(Cox, 1996). Strong activations are present for recollection>0 in the
anterior medial prefrontal cortex, the lateral parietal cortex, the later-
al temporal cortex, hippocampus, parahippocampal gyrus, and poste-
rior cingulate cortex. For familiarity>0, the strongest activations
occur in the lateral anterior prefrontal cortex, the dorsolateral pre-
frontal cortex, the superior parietal cortex, the caudate nucleus, pre-
central gyrus, and peristriate (mid occipital) area. Most activations
are bilateral with larger cluster sizes in the left hemisphere.

All significantly activated regions at FWEb0.05 are listed in
Table 4 (recollection) and Table 5 (familiarity). The entries in
Tables 4 and 5 indicate that there are many overlapping areas be-
tween recollection and familiarity when both positive and negative
contrasts are taken into account. The reason for overlapping areas is
likely related to the common βd|s+βs|d term in the recollection and
familiarity contrast. Regions that show both positive recollection acti-
vations and negative familiarity activations might reflect confidence
differences between conditions insofar as both βs|s+βd|d and βn|n

should be associated with higher confidence. From this perspective,
focusing on activations that are unique to either familiarity or recol-
lection irrespective of the sign might better reflect true differences
between familiarity and recollection. Major clusters (positive or neg-
ative) of the familiarity contrast (but not for the recollection contrast)
occur in the right prefrontal cortex (Frontal Inf Oper, Frontal Inf Tri,
Frontal Mid Tri, Frontal Sup), right caudate, bilateral Heschl gyrus, bi-
lateral mid occipital cortex, left superior and inferior occipital cortex,
bilateral inferior parietal cortex, left superior parietal cortex, left pre-
central cortex, right inferior temporal cortex, left superior temporal
pole, and bilateral mid temporal cortex. For the recollection contrast
(but not the familiarity contrast), major activations are in the left
Fig. 5. Group activation maps for familiarity>0 (top) and recollection>0 (bottom) at an in
least 424 mm3 are significant at FWEb0.05. Images are in radiological convention (left is ri
cerebellum, left lingual gyrus, left pallidum, right putamen, and
right thalamus.

Discussion

Design optimization

The purpose of this study was to determine if the stimuli sequence
for a recognition task can be optimized for maximum detection
power using probabilistic behavioral information. Our analysis fo-
cused on implementing anticipated behavioral probabilities in a ge-
netic algorithm to achieve the best design for contrast detection
power of familiarity and recollection. We clearly showed that behav-
ioral probabilities obtained from independent pilot data are helpful
for design optimization.

We also examined stimuli sequences based on block-type designs
and found that block-type designs are not necessarily optimal, even if
non-predictability criteria of the behavioral outcomes are not imple-
mented. As in our case, where the contrast is more complicated, a
block design will not be the best design for the arrangement of stim-
uli. Nevertheless a particular stimulus-type can have a block-like ap-
pearance, as shown for the “new” stimuli but not for the “same” and
“different” stimuli. We attribute this finding to the particular con-
trasts of interest (0.5∗(familiarity+recollection)) and the high prob-
ability for the correctly identified “new” stimuli.

We explored the usefulness of a random design without invoking
the genetic algorithm and found that a random design is suboptimal
for paradigms similar to our recognition task. Despite the probabilis-
tic nature of the regressors, a genetic algorithm can improve the de-
sign by significantly increasing detection power. Results will be
more accurate when the anticipated behavioral responses are closer
dividual (single voxel, unadjusted) p-value=0.001. All clusters with a cluster size of at
ght and vice versa).



Table 5
Significant regions (corrected pb0.05) for familiarity contrast.

MNI region Cluster
size

t-values
at peak

MNI coordinates at peak

Amygdala (L;R) 158;181 −5.7;−6.0 −28,2,−16;24,−6,−14
Angular_(R) 318 5.5 40,−56,48
Angular (L;R) 391;485 −7.3;−6.4 −44,−60,28;60,−60,28
Calcarine (L) 223 −4.9 −2,−64,22
Caudate (L;R) 56;101 4.2;4.6 −10,14,4;12,14,8
Cerebellum_Crus1_(R) 88 4.7 40,−66,−30
Cingulum_Ant (L;R) 527;436 −7.5;−8.7 0,44,2;2,46,4
Cingulum_Mid (L;R) 1078;1026 −7.9;−8.9 −12,−52,34;4,−48,38
Cingulum_Post (L;R) 277;140 −10.5;−8.7 −4,−52,34;4,−54,32
Cuneus (L;R) 547;234 −6.3;−4.8 −8,−60,26;18,−84,28
Frontal_Inf_Oper (L;R) 221;151 5.8;4.3 −46,22,34;62,14,22
Frontal_Inf_Orb (L) 54 −4.5 −36,18,−18
Frontal_Inf_Tri (L;R) 500;185 5.7;4.6 −46,20,30;52,38,28
Frontal_Inf_Tri (R) 66 −4.0 54,34,6
Frontal_Mid (L;R) 461;353 5.7;7.2 −32,4,60;30,−2,54
Frontal_Mid (L;R) 600;428 −5.9;−4.9 −24,30,44;22,46,30
Frontal_Mid_Orb (L) 65 −4.2 −26,38,−12
Frontal_Med_Orb
(L;R) (L;R)

467;537 −7.9;−7.8 2,58,−8;2,58,−6

Frontal_Sup (L;R) 64;254 4.9;5.9 −26,−2,62;28,10,62
Frontal_Sup (L;R) 1001;725 −8.1;−8.0 −14,60,20;16,56,14
Frontal_Sup_Medial (L) 183 5.5 −6,22,44
Frontal_Sup_Medial (L;R) 1622;1244 −8.5;−10.0 −12,60,20;14,58,12
Fusiform (L) 135 −6.8 −22,−42,−12
Heschl (L;R) 135;53 −7.8;−4.8 −38,−22,6;58,−2,8
Hippocampus (L;R) 499;403 −9.4;−7.4 −24,−16,−16;24,−12,−18
Insula (L;R) 359;119 7.3;4.8 −32,18,4;34,26,−4
Insula (L;R) 525;602 −6.7;−7.3 −38,−18,2;38,6,10
Lingual (R) 103 −4.7 14,−80,0
Occipital_Mid (L;R) 115;92 4.8;4.3 −28,−64,40;30,−70,36
Occipital_Inf_(L) 185 4.0 −52,−72,−4
Occipital_Sup_(R) 184 6.1 24,−66,48
Occipital_Sup (L;R) 137;157 −4.9;−4.8 −12,−92,34;18,−82,30
Paracentral_Lobule (L;R) 147;167 −5.3;−6.7 0,−30,54;10,−30,50
ParaHippocampal (L;R) 371;336 −7.1;−8.0 −26,−40,−8;22,−14,−20
Parietal_Inf (L;R) 1061;621 7.5;8.5 −40,−54,50;40,−50,50
Parietal_Sup (L;R) 918;907 6.2;6.2 −20,−66,50;24,−66,50
Postcentral (L;R) 118;159 −4.3;−6.0 −24,−40,62;16,−38,70
Precentral (L;R) 862;177 7.4;7.3 −38,2,62;30,−2,52
Precuneus (L;R) 158;118 5.1;4.5 −14,−70,58;12,−66,64
Precuneus (L;R) 1285;998 −11.0;−10.6 −8,−54,32;2,−54,34
Putamen (L) 387 −5.3 −30,2,10
Rectus (R) 62 −4.9 8,50,−14
Rolandic_Oper (L;R) 229;390 −5.3;−5.6 −40,−34,16;54,−12,22
Supp_Motor_Area (L;R) 241;88 6.2;4.3 10,22,52;−6,22,44
Supp_Motor_Area (L;R) 143;176 −5.4;−5.2 −6,−16,50;10,−26,52
SupraMarginal (L;R) 285;891 −5.5;−8.0 −62,−34,30;66,−42,28
Temporal_Inf (L;R) 326;287 −5.5;−6.3 −48,6,−34;54,0,−36
Temporal_Mid (L;R) 1561;1999 −9.2;−9.0 −54,2,−24;60,−10,−14
Temporal_Pole_Mid (L;R) 89;145 −5.3;−4.8 −50,10,−30;52,8,−32
Temporal_Pole_Sup (L;R) 130;110 −6.1;−4.6 −36,16,−20;44,4,−16
Temporal_Sup (L;R) 1606;2161 −7.7;−8.0 −40,−20,2;62,−38,12

Note: Cluster volume is given by cluster size⁎8 mm3

Table 4
Significant regions (corrected pb0.05) for recollection contrast.

MNI region Cluster
size

t-values
at peak

MNI coordinates at peak

Amygdala (L;R) 130;167 5.3; 5.2 −28,2,−12; 32,−2,−10
Angular (L;R) 630;401 5.9;5.3 −52,−60,28;48,−54,26
Calcarine (L;R) 214;65 4.5;3.8 −2,−64,22;2,−58,18
Caudata (L) 60 4.7 −20,0,24
Cerebellum_4_5 (L) 165 5.3 −18,−42,−26
Cerebellum_6 (L) 146 4.2 −22,−54,−24
Cingulum_Ant (L) 144 4.6 −4,54,0
Cingulum_Mid (L;R) 1139;1047 6.7;5.5 −12,−40,40;12,−46,36
Cingulum_Mid (R) 83 −4.4 4,34,38
Cingulum_Post (L;R) 373;198 6.2;5.4 −8,−52,34;4,−54,32
Cuneus (L;R) 325;161 5.2;5.0 0,−70,32;18,−84,26
Frontal_Inf_Tri (L) 80 −4.3 −34,20,12
Frontal_Mid (L) 256 5.6 −22,32,44
Frontal_Med_Orb (L;R) 350;329 5.4;5.0 −8,56,−6;8,44,−6
Frontal_Sup (L) 471 5.4 −20,32,44
Frontal_Sup_Medial (L;R) 697;379 5.3;5.2 −6,66,8;8,64,14
Frontal_Sup_Medial (L) 89 −5.5 −6,24,42
Fusiform_(L) 143 5.7 −22,−42,−12
Hippocampus (L;R) 445;383 5.0;4.9 −28,−22,−14;34,−16,−14
Insula (L;R) 331;442 5.9;6.1 −32,2,10;38,2,16
Insula (L;R) 330;174 −5.6;−4.8 −30,20,−2;32,24,−4
Lingual (L;R) 174;131 5.3;4.2 −24,−42,−8;14,−78,2
Occipital_Sup_(R) 129 5.1 20,−84,26
Pallidum_(L) 68 4.4 −22,4,−2
Paracentral_Lobule (L;R) 205;151 5.5;5.4 −6,−28,52;16,−40,50
ParaHippocampal (L;R) 255;168 4.7;4.5 −24,−40,−8;24,−8,−24
Parietal_Sup_(R) 177 5.4 16,−46,56
Postcentral (L;R) 190;359 4.5;5.2 −38,−24,38;16,−38,70
Precentral_(R) 68 5.5 38,−18,42
Precuneus (L;R) 1614;1182 7.2;5.8 −6,−58,32;2,−54,34
Putamen (L;R) 656;611 6.3;6.8 −32,−2,6;28,−12,10
Rolandic_Oper (L;R) 107;488 4.0;5.9 −54,0,10;42,4,14
Supp_Motor_Area (L;R) 155;278 4.4;4.7 −6,−16,50;10,−18,50
Supp_Motor_Area (L) 63 −4.8 −6,20,46
SupraMarginal (L;R) 290;1001 5.1;6.5 −58,−40,30;54,−30,32
Temporal_Inf_(L) 71 4.4 −56,−4,−28
Temporal_Mid (L;R) 1769;2089 7.0;7.8 −46,−44,10;66,−40,6
Temporal_Pole_Sup_(R) 61 4.8 62,4,−8
Temporal_Sup (L;R) 855;1832 6.7;4.8 −60,−42,14;56,−40,12
Thalamus_(R) 93 5.5 22,−22,10

Note: Cluster volume is given by cluster size⁎8 mm3
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to the actual responses during fMRI scanning than to previous mea-
surements. The detection power can be increased even further if the
number of responses for the different conditions becomes more sim-
ilar, which could be achieved by manipulating the difficulty of the
task.

The trade-off in obtaining the best design with the largest detec-
tion power is the perceived randomness. For our experimental
setup, we used a design that was balanced for orders 1 to 3, which re-
duced the theoretically achieved detection power. If it would be suf-
ficient to reduce the perceived randomness to {0.975, 0.8, 0.75} or
{0.975, 0.6, 0.55} for the first 3 orders, our simulations indicate an im-
provement of 9% to 13% compared to a random design.

For the simple case of using behavioral probabilities from average
pilot data, we showed that our design with the proposed genetic algo-
rithm is robust against design misspecification, which arises due to
the fact that actual subject performance during fMRI scanning may
be different than the pilot data. We obtained for all subjects an in-
crease of the detection power compared to a random design, though
we did not optimize the experimental design for each individual sub-
ject but used average pilot data. This result can be attributed to the
closeness of the behavioral probabilities at scanning to the pilot data.

Effect of imbalance of task responses

We obtained a larger imbalance of the responses for conditions in-
volving the familiarity contrast (#(d|s)+#(s|d) vs. #(n|n)) than for
recollection contrast (#(s|s)+#(d|d) vs. #(d|s)+#(s|d)) leading to
a small bias in the ability to detect activations for familiarity vs. recol-
lection. Using a 2-sample t-test, the significance (t-value) is approxi-
mately proportional to

s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q ;

where n1 and n2 are the number of responses for the contrasting condi-
tions (n↓1=#(d|s)+#(s|d) and for familiarity; n↓1=#(s|s)+#(d|d)
and n↓2=#(d|s)+#(s|d) for recollection), assuming similar variance
of the samples. Using Table 1, we computed s for familiarity and
recollection of all subjects, and obtained, on average, a 6% increased s
for recollection over familiarity, with a standard deviation of 2%. It
follows that the given imbalance of the behavioral probabilities leads
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tomore significant activation of the recollection contrast than the famil-
iarity contrast.

Comparison with other fMRI studies

A more detailed discussion of the present whole brain analysis of
familiarity and recollection can be found elsewhere (Herzmann et
al., submitted for publication). There, we report a comprehensive
analysis of the present fMRI activation, and a parallel event-related
potential study which we conducted within the same subjects. Here,
we want to briefly discuss the present results with regard to similar,
previous investigations to provide evidence for the successful use of
the proposed optimization algorithm.

Previous whole-brain studies on familiarity and recollection mea-
sured by item and source memory judgments, respectively, reported
very similar results as found in the present experiment. The present
finding of stronger activation for the familiarity contrast in the pre-
frontal, occipital, and parietal cortex corresponds well with previous
findings (e.g., Cansino et al., 2002; Dobbins et al., 2003; Ragland et
al., 2006; Skinner and Fernandes, 2007; Slotnick et al., 2003;
Wheeler and Buckner, 2004). The present recollection activations
are in line with previous studies that reported activation in the thal-
amus, amygdala, and the lingual cortex for the recollection contrast
(reviewed in Spaniol et al., 2009).

Similar results as in the present study were also found in previous
investigations that measured recollection and familiarity with subjec-
tive memory judgments. Henson et al. (1999) used the remember–
know procedure, originally introduced by Tulving (1985), to study
recollection and familiarity of words. Activations for familiarity>0
and recollectionb0 were found at right (lateral and medial) prefron-
tal cortex. This result is in strong agreement with the current study
where several regions of the right prefrontal cortex were activated.
Activity of the right prefrontal cortex can be explained by a larger
working memory demand when memory judgments are only familiar
and thus appear less certain and more difficult for the participant.
This observation has been called “adoption of retrieval mode” for fa-
miliarity decisions (Kapur et al., 1995; Nyberg et al., 1995). A conse-
quence is that the response times for familiarity decisions are
increased compared to recollection decisions.

Activations for recollection contrast >0 reported by Henson et al.
(1999) were in left parietal, left prefrontal, and posterior cingulate.
Except for the left parietal activation, these findings agree well with
our data. When Spaniol et al. (2009) considered differences between
“subjective recollection” (e.g., remember/know judgments) and ob-
jective recollection (e.g., source memory judgments or orientation
recollection), left inferior parietal activation was more strongly asso-
ciated with subjective than objective recollection. For familiarity con-
trast b0, Henson et al. (1999) found bilateral amygdala and bilateral
temporo-occipital regions active just as in our study. Significance of
this negative contrast is expected presumably due to a response to
novel stimuli involving the anterior portion of the medial temporal
lobes (amygdala and hippocampus).

The study by Yonelinas et al. (2005) used a modified remember–
knowprocedurewhere subjects rated the confidence of their familiarity
judgments for words that they knew they had studied before but which
they did not remember. Recollection-related regionswere identified for
the contrast remember>most confident familiarity ratings and found
to be in bilateral hippocampus, anteriormedial prefrontal cortex, lateral
parietal and temporal cortex, posterior cingulate cortex, and left para-
hippocampal cortex. Familiarity-related regions were determined as
those correlated with increasing familiarity confidence ratings from
least to most confident and found to be located in anterior lateral pre-
frontal cortex, dorsolateral prefrontal cortex, superior lateral parietal
cortex, and precuneus. We obtained very similar activations and our re-
sults agree in general well with the study by Yonelinas et al. A few dif-
ferences, however, exist. One difference is that in our study precuneus
is activated for both recollection and familiarity (and not just for famil-
iarity). Also, we found amygdala to be active for recollection >0 but not
for familiarity >0. Furthermore, the caudate nucleus is clearly activated
in our study for familiarity but not for recollection. Since the level of sig-
nificance is lower for the familiarity >0 contrast, we also investigated
the familiarity activationmap at amore liberal t-threshold (uncorrected
p=0.01) to see if the pattern of positive activation changes significant-
ly. We did not find any evidence that more overlap occurs between the
two contrasts at the lower threshold. In particular, we did not find any
activation in the medial temporal lobes (hippocampus, parahippocam-
pal gyrus, entorhinal cortex, perirhinal cortex, amygdala) for familiarity
>0. This important result also agrees very well with Yonelinas et al.
(2005), except that our study cannot addressmemory strength (or con-
fidence) as a possible confound (also seeWixted and Squire, 2011). Fur-
thermore, we did not find any indication that the perirhinal cortex is
involved in familiarity, contrary to current opinion (Diana et al., 2007;
Haskins et al., 2008). A reason for this discrepancy may be signal
drop-out due to susceptibility effects of the sphenoid sinus affecting
the anterior part of the parahippocampal gyrus (entorhinal cortex, peri-
rhinal cortex). Signal drop-out in these regions is especially strong for
axial acquisitions of echoplanar data (Jin et al., in press).
Conclusions

In this article, we propose a genetic algorithm that includes prob-
abilistic behavioral information to optimize the design of a task for
contrast detection power. We have applied this optimization tech-
nique to a recognition memory task to investigate familiarity and rec-
ollection of pictures of common objects with different orientations.
We have shown that the order of stimuli can be optimized for proba-
bilistic behavioral responses, leading to better contrast detection
power than a random design or the best block design. Furthermore,
the optimized design is robust to small changes of the behavioral
probabilities, which occur during actual fMRI scanning due to differ-
ences in the subjects' performance from the pilot data. Contrast de-
tection power can be further increased by optimizing the task
design for each individual subject. The present genetic algorithm
can be applied to any case in which fMRI contrasts are dependent
on probabilistic responses that can be estimated from pilot data.
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