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When learning a novel visuomotor mapping (e.g., mirror writing), accuracy can improve quickly through
explicit, knowledge-based learning (e.g., aim left to go right), but after practice, implicit or procedural learn-
ing takes over, producing fast, natural movements. This procedural learning occurs automatically, whereas it
has recently been found that knowledge-based learning can be suppressed by the gradual introduction of the
novel mapping when participants must make fast movements and visuomotor perturbations are small (e.g.,
30° rotations). We explored the range of task instructions, perturbation parameters, and feedback that pre-
clude or encourage this suppression. Using a reaching task with a rotation between screen position and
movement direction, we found that knowledge-based learning could be suppressed even for an extreme
90° rotation, but only if it was introduced gradually and only under instructions to move quickly. If the rota-
tion was introduced abruptly or if instructions emphasized accuracy over speed, knowledge-based learning
occurred. A second experiment indicated that knowledge-based learning always occurred in the absence of
continuous motion feedback, evidenced by the time course of learning, the aftereffects of learning when the
rotation was abruptly removed, and the outcome of formal model comparison between a dual-state (proce-
dural and knowledge-based) versus a single-state (procedural only) learning model of the data. A third
experiment replicated the findings and verified that the knowledge-based component of the dual-state
model corresponded to explicit aiming, whereas the procedural component was slow to unlearn.

Public Significance Statement

Some situations require adaptation to a novel mapping between visual directions and motor directions,
such as when attempting to cut one’s own hair in the mirror. Prior results established that slowly learned
procedural adaptation to a novel visuomotor mapping is automatic and always occurs. More recent
results established that explicit, knowledge-based learning (e.g., a learned strategy to move left for a
rightward target or to move south for a target located due east) can be suppressed by introducing the
novel mapping gradually. The current study replicates this finding and demonstrates that this suppression
can occur even for visuomotor remappings of large magnitude (a rotation of 90°). Importantly, it also
establishes that this suppression does not occur when task instructions emphasize accuracy nor in the
absence of continuous online visual feedback during motor actions.
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The spatial mapping between visual signals and motor actions is

arbitrary and must be learned. For example, the retinal image is upside
down and mirror-reversed, and yet for a baby learning to interact with

the world, this is no more or less intuitive than if the inversion and
reflection were not present—tetinal positions are arbitrary from the
perspective of the brain, and through extensive experience we simply
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learn that to grasp an object appearing at the top right of the retinal
image, we should move our hand downward and to the left. In
some situations, the learned spatial mapping between vision and
action is abruptly altered, requiring explicit or knowledge-based cor-
rection. For instance, during the early months of the COVID-19 pan-
demic, when hair salons were widely shuttered, some readers may
have attempted to cut their own hair in the mirror for the first time.
Moving the scissors from in front of the forehead toward the head
requires a motion that pulls toward oneself, and yet the image in the
mirror displays this as a motion pushing away from oneself. Thus,
using the visual feedback from the mirror requires a person to pur-
posely do the opposite of their natural impulse, because the visual
information specifies motion away and yet the hand must pull toward.
With practice, such novel mappings are procedurally learned, and
action becomes automatic.

In laboratory studies, sensorimotor learning has been studied using
paradigms that distort visual or motor feedback while participants
perform reaching tasks, such as with kinematic distortion via force
field manipulations (Criscimagna-Hemminger et al., 2010; Klassen
et al., 2005; Schween et al., 2020; Smith et al., 2006), locomotor
manipulations (Sawers et al., 2013), visual distortions with prism
glasses (Redding & Wallace, 2006), or visuomotor adaptation tasks
that involve center-out reaching under a rotated mouse-to-cursor
mapping (Bond & Taylor, 2015; Day et al., 2016; Galea et al.,
2010; Haith et al., 2015; Izawa & Shadmehr, 2011; Kagerer et al.,
1997; McDougle & Taylor, 2019; Modchalingam et al., 2019;
Morehead et al., 2011, 2017; Taylor & Ivry, 2011; Taylor et al.,
2011, 2014). Results from these studies suggest there are two quali-
tatively different kinds of sensorimotor learning—one explicit or
knowledge-based and one implicit or procedural—that operate simul-
taneously, competing against each other to learn a new sensorimotor
mapping over repeated trials. The fast-to-learn, knowledge-based
system (i.e., a system that quickly adapts to the new sensorimotor
mapping) produces slow but accurate responses early in learning.
The slow-to-learn, procedural system guides fast, automatic actions,
but only after considerable practice. Studies supporting this distinc-
tion have, for instance, compared conditions that give aiming instruc-
tions about the sensorimotor perturbation (Mazzoni & Krakauer,
2006; Taylor & Ivry, 2011), compared conditions with versus with-
out online visual feedback (Hinder et al., 2008), or compared gradual
versus abrupt introduction of a sensorimotor perturbation (Albert et
al., 2022; Kagerer et al., 1997; Yin & Wei, 2020). Aftereffects of a
sensorimotor perturbation are often examined by abruptly
returning the sensorimotor mapping to the standard situation in a
“washout” phase (Kagerer et al., 1997), by examining whether sen-
sorimotor learning transfers to other actions (Werner et al., 2019)
or by examining “savings” when the novel mapping is reintroduced
(Yin & Wei, 2020).

A particularly clear demonstration of the knowledge-based/proce-
dural learning distinction is found in the study of Mazzoni and
Krakauer (2006), in which participants were explicitly told to aim
45° counterclockwise to compensate for a 45° clockwise visuomotor
rotation in the mapping between visually displayed targets and
reaching direction in a pointing task. This instruction allowed almost
perfect performance soon after rotation, but paradoxically, move-
ments slowly drifted in the direction of “overcorrection” (e.g.,
even further counterclockwise than was needed to counteract the
rotation). That is, the procedural, implicit system continued to slowly
adjust to the rotation even though the knowledge-based strategy was

sufficient for good performance. Thus, even when knowledge-based
learning is maximized through an explicit aiming strategy, proce-
dural learning still occurs even if it results in worse performance.
In other words, procedural motor adaptation is automatic.

As applied to learning a novel visuomotor rotation, “dual-state”
models of motor learning assume that actions on each trial reflect
the summation of the rotation estimates provided by two different
learning systems (aka, two “states” that estimate the required rota-
tion; McDougle et al., 2015; Smith et al., 2006; Taylor & Ivry,
2011). When referring to the dual-state model we adopt the terminol-
ogy of the “fast-learning system” for explicit or knowledge-based
learning and the “slow-learning system” for implicit or procedural
learning (McDougle et al., 2015). A point of potential confusion,
which we clarify here, is that the fast-learning system is thought to
produce slower movements. These slower movements may take
the form of a longer time period spent planning/aiming before
initiation of the movement (Langsdorf et al., 2021). In contrast,
the slow-learning system is thought to produce faster movements
(e.g., participants initiate their movements quickly because they
do not take the time to explicitly aim). Besides slower/faster move-
ment initiation times, there may also be differences in motion times
when continuous feedback is provided, reflecting mid-course correc-
tions that might or might not involve additional attempts to explicitly
correct for the rotation. However, rather than directly addressing
movement times, the dual-state model is typically applied to explain
motion accuracy. This provides a descriptive account of what hap-
pens when a fast-learning and slow-learning system compete to pro-
duce motion errors.

The conclusion that the explicit and implicit motor learning sys-
tems exist in parallel and compete with each other has recently
been supported in a comprehensive investigation that compared
explicit aiming to actual motion error in a variety of situations
(Albertetal., 2022). Because the rotation estimates from each system
are summed, accurate motion could reflect a perfect estimate of the
rotation in the fast system combined with no rotation in the slow sys-
tem, or vice versa, or a situation in which each system provides a par-
tial estimate of rotation, with these adding up to the correct total.
Thus, manipulations that suppress one system or the other will affect
the magnitude of learning for the other system. More specifically, if
the explicit knowledge-based learning system can be “turned off,”
there should be greater implicit procedural learning. In the current
study, we investigate the conditions that suppress knowledge-based
learning.

One consequence of parallel learning systems that compete with
each other is that learning curves should exhibit a quick reduction
in error as the fast system rapidly develops a relatively accurate esti-
mate of rotation, followed by a longer tail as the estimate of rotation
gradually shifts from the fast to the slow system, which further fine-
tunes the rotation estimate (Taylor et al., 2014). Because the slow
system not only learns slowly but also forgets slowly, the dual-state
model successfully explains aftereffects upon abrupt removal of the
rotation, as well as the spontaneous recovery during readaptation
with the reintroduction of the rotation (Ethier et al., 2008;
Morehead et al., 2015; Smith et al., 2006). Supporting the assump-
tion that the fast system reflects explicit, knowledge-based learning
(aka, aiming strategies), the fast system has been found to reflect the
explicit aim reported by participants (Taylor et al., 2014) and to cap-
ture conditions where participants are given a strategy to counter the
perturbation (Taylor & Ivry, 2011).
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Most studies supporting the dual-state model instruct participants to
be both fast and accurate. Because there is always some emphasis on
accuracy, this may lead participants to use some form of knowledge-
based aiming strategy. Thus, these instructions may be critical for
ensuring that the explicit, knowledge-based system plays some role
in adapting to a novel sensorimotor perturbation. In other words,
the success of the dual-state model in explaining initial learning,
unlearning, and relearning may reflect the combination of obligatory
procedural learning (Mazzoni & Krakauer, 2006; Taylor & Ivry,
2011), which is captured by the slow-learning state (McDougle et
al., 2015), and an explicit aiming strategy induced by instructions
that emphasize accuracy, which is captured by the fast-learning
state. Providing support for this claim, forcing participants to wait
before moving has been found to increase accuracy through explicit
aiming strategies (Langsdorf et al., 2021). Conversely, because the
fast- and slow-learning systems interact to produce a combined error
signal in the dual-state model (Albert et al., 2020), pressure to respond
quickly should lead to an increased contribution of the slow-to-learn
(but fast-to-deploy) procedural system (Haith et al., 2015).

Another important factor for the knowledge-based system may be
whether errors are sufficiently large to be noticeable. For instance, if
a large rotation is abruptly introduced, participants will become
explicitly aware of the rotation, and this awareness may underlie
learning in the knowledge-based system even in the absence of pres-
sure to be accurate. One way to address this possibility is by intro-
ducing the rotation gradually in increments such that participants
are never explicitly aware of any large discrepancies between their
movements and the desired outcome (e.g., the gradual introduction
of a 90° or 60° counterclockwise rotation in steps of 10°, with
time to procedurally adapt to each additional change of 10°). Prior
work with a gradual introduction of rotation found that it results in
a larger washout aftereffect (Kagerer et al., 1997; Saijo & Gomi,
2010). That is, when participants adapt to a 90° visuomotor rotation
that is introduced all at once (sudden perturbation), participants tend
to make fewer errors when the rotation is subsequently removed as
compared to when the 90° rotation is introduced in small increments
(gradual perturbation). These results are consistent with the claim
that a gradual introduction of rotation more effectively promotes pro-
cedural learning, which is then more slowly forgotten, producing
greater errors upon removal of the rotation. This claim finds addi-
tional support in the finding that Parkinson’s patients can success-
fully adapt to a gradual perturbation but not a sudden perturbation
(Venkatakrishnan et al., 2011). In other words, lacking effective
knowledge-based movement control, Parkinson’s patients struggle
to adapt to the sudden introduction of a large rotation, but their intact
procedural motor control system can nonetheless adapt gradually if
environmental conditions permit.

Beyond an emphasis on speed and the introduction of the pertur-
bation gradually, another factor that may enhance procedural adap-
tation is continuous on-screen cursor feedback during motions as
compared to feedback that shows only the final result of the motion
(Morehead et al., 2011; Taylor et al., 2014). In other words, allowing
participants to see only the end result, but not the motion path,
encourages the use of explicit aiming strategies. To maximize the
contribution of the procedural learning system, our first and third
studies always presented continuous cursor feedback during each
motion (see the Method section).

Recent work has found evidence that explicit knowledge-based
learning is suppressed for a 30° or 60° visuomotor rotation, as

measured by explicit aim reports, if the rotation is introduced gradu-
ally (Albert et al., 2022; Yin & Wei, 2020). It appears that gradual
introduction of the rotation is necessary for the suppression of explicit
knowledge, but it may not be sufficient. For example, participants in
these studies were instructed to make “rapid center out shooting move-
ments” or make ““a brisk movement” in less than 325 ms, which may
maximize the role of implicit procedural learning; thus, it is not known
whether rapid movement is also a necessary condition for suppres-
sion. Furthermore, these studies presented on-screen continuous
motion feedback, which is also likely to maximize procedural learn-
ing, and therefore may be another necessary condition for the suppres-
sion of explicit knowledge. The current study investigated whether the
gradual introduction of rotation is sufficient to suppress knowledge-
based learning even when other factors (e.g., instructions that empha-
size accuracy over speed and/or removal of continuous motion feed-
back) that might short-circuit the suppression by encouraging
explicit learning are present. Furthermore, although earlier work
with the gradual introduction of rotation used extreme 90° rotations
(Kagerer et al., 1997), this work could not examine whether suppres-
sion of explicit knowledge occurred because it did not employ a tech-
nique that can ascertain the relative contributions of the two learning
systems (e.g., application of dual-state model or collection of explicit
aiming directions). The two studies that did demonstrate such suppres-
sion used smaller rotations (30° and 60° and thus the possibility of
suppressing explicit knowledge with a more extreme rotation of 90°
has not been examined.

We used a2 x 2 between-subjects design (speed/accuracy empha-
sis crossed with sudden/gradual introduction of a visuomotor rota-
tion) in a center-out reaching task to determine how speed/accuracy
emphasis interacts with the finding that gradual introduction of a rota-
tion can suppress explicit knowledge-based aiming strategies. The
combination of speed emphasis and gradual introduction of the rota-
tion may be unique in suppressing knowledge-based learning. This
combination may encourage participants to begin moving (i.e.,
“leap”) without knowledge-based correction for the motion direction.
That is, rather than “look before you leap,” this may produce “leap
before you look.”

Prior work with the dual-state model assumed that both learning
systems play an active role in explaining behavior across initial learn-
ing of a rotation and the unlearning or relearning of the rotation
(Smith et al., 2006). However, the dual-state model has never been
applied to the time course of learning for a gradually introduced rota-
tion. If the knowledge-based system is suppressed by gradual rotation
learning with instructions to move quickly, then only one learning
system should be needed to explain the time course of learning.
Thus, rather than applying just the dual-state model, we also applied
a single-state model so that we could ascertain, via model compari-
son, whether the second state is necessary (Donchin et al., 2003;
Smith et al., 2006).

In Experiments 1 and 2, after initial learning of the rotation, the
rotation was suddenly removed in a “washout” phase to examine
whether there was more of a rotation aftereffect in some conditions
than others. More specifically, if the knowledge-based system is sup-
pressed with the gradual introduction of the rotation, then there
should be a larger aftereffect (i.e., errors in the opposite direction)
owing to a greater contribution from the slow-to-adapt procedural
system. However, because the sudden removal of the rotation is
likely to engage the knowledge-based learning system, the single-
state model would likely fail to capture both initial learning as
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well as washout (e.g., a single learning system may be sufficient for
initial learning of the gradually introduced rotation, but with the sud-
den removal of the rotation, both systems will play a role). Thus, the
sudden removal of the rotation would bias the comparison between
the dual-state and single-state models in favor of the dual-state
model; therefore, we applied the models only to the initial learning
of the rotation. The main use of the washout phase was an empirical
assessment of the predicted rotation aftereffect (e.g., there should be
a larger aftereffect in the washout phase for conditions where initial
learning was better fit by the single-state model than the dual-state
model).

Following Experiments 1 and 2, we partially replicated Experiment 1
in a third experiment while also examining how the results relate to
explicit aiming strategies, verifying that the fast state corresponds
to explicit knowledge-based learning. This study also examined the
relearning of the rotation, to additionally test predictions from the
slow state. To preview our results, we found that the fast-to-learn,
knowledge-based system is suppressed only with the specific combi-
nation of a gradually introduced rotation under instructions to move
quickly and with the presence of on-screen continuous motion feed-
back. Our conclusion that the knowledge-based system can be sup-
pressed under certain conditions complements prior investigations
of the procedural, implicit system, which concluded that the proce-
dural system is obligatory (Mazzoni & Krakauer, 2006; Taylor &
Ivry, 2011).

Experiment 1
Method
Participants

The sample size was determined using a power analysis in relation
to our main statistical test of interest, which was an assessment of the
proportion of participants in each condition that required both learn-
ing systems, rather than just procedural learning. Whether both sys-
tems were required was determined separately for each participant
using formal model comparison, and then the proportions of such
participants in each condition were compared using a chi-square
test. To compute power, we made the a priori assumption that
only 25% of the population in the gradual speed condition would
require both learning systems whereas 75% of the population in
the other three conditions would require both learning systems.
Using our own code written in Matlab, we simulated 1,000 hypothet-
ical experiments with 15 participants per condition, determining the
frequency of participants in each condition that required both learn-
ing systems using random samples from a binomial distribution.
With this simulation, we found 87% power to detect differences
between the conditions (i.e., 87% of the simulated experiments pro-
duced significant results based on a chi-square test with a signifi-
cance criterion of .05) under the effect size stated above.

Sixty undergraduate students from the University of Massachusetts
Ambherst participated in the study in 2019. The study was approved by
the Institutional Review Board at the University of Massachusetts
Ambherst. Participants received course extra credit as compensation
for time spent in the study. There were 15 participants in each of
the four between-subjects conditions. This sample size was sufficient
for comparing proportions across the four conditions, according to the
power analysis, under the assumption that the participants in each con-
dition were drawn from the same population. However, this sample

size is insufficient to further break down the data by demographic
groups, and demographic data for the particular sample were not col-
lected. Participants were randomly assigned to the four conditions,
and the demographics of the University of Massachusetts undergrad-
uate population are 54% assigned female at birth, 17% from underrep-
resented groups (Black, Latinx, and Indigenous American), and 7%
international. Because this was a study of visuomotor learning, all par-
ticipants had normal or corrected-to-normal vision and the ability to
hold and manipulate a stylus with their dominant hand. However,
because the experiment was inadequate for breaking the data down
for different demographic groups, it is unknown whether our conclu-
sions are generalizable beyond the population of undergraduate stu-
dents or generalizable across all demographic groups within this
population.

Paradigm

Each participant was seated in front of an Asus LCD screen with a
resolution of 1,920 x 1,080 pixels that displayed experimental stim-
uli. A trackpad with an active area of 10 x 6.25 in. was placed in
front of the monitor, and motor responses were made with the pre-
ferred hand using a stylus on the trackpad. Movements were
recorded using Psychtoolbox routines within MATLAB 2018, run
on a Windows 7 PC.

The experiment design is illustrated in Figure 1. On each trial, par-
ticipants used the stylus on the trackpad to move the on-screen cursor
from its center starting position to the displayed target. Each trial
started with the presentation of a small circle (“cursor”) at the center
of the screen. Next, a target circle appeared 0.75-1.25 s later (stim-
ulus onset asynchrony drawn from a uniform distribution). The tar-
get appeared at one of the four possible locations, which were the
four diagonal directions relative to the central cursor (upper-left,
upper-right, lower-left, and lower-right), centered at 60% of the dis-
tance to the corner of the screen. Participants moved the cursor to the
target in order to complete a trial. They were provided with contin-
uous feedback on cursor movements, which allowed them to correct
their motion until they hit the target.

In some trials, participants lifted their pen before reaching the tar-
get. This tended to occur if they ran out of space on the trackpad as
might be the case if they made large errors in their motion or if they
failed to initiate the trial at the center of the trackpad. When this
occurred, the particular trial was reset (i.e., the trial was repeated
until the target was hit without lifting the pen). Once the target
was reached, the cursor reset to the center of the screen, indicating
the start of the next trial. To initiate each trial, the first point of con-
tact of the stylus to the trackpad was mapped to the cursor position at
the center of the screen. All subsequent on-screen cursor positions
for the trial were displayed relative to this first point of contact at
the start of the trial. Thus, by placing the pen somewhere on the
trackpad, participants simultaneously started the trial and defined
the center starting position, from which they made “center-out”
movements toward the target. In this manner, participants did not
have to return to the exact center of the trackpad to initiate each trial.

Trial resets were fairly common, and for some conditions, more
than 10% of trials needed to be repeated one or more times before
the participant was able to reach the target without lifting the pen.
This rate of repeated trials was the direct consequence of movement
error. Specifically, if participants moved in the wrong direction, it
was more likely that they would run out of room on the trackpad,
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Figure 1
Trial Sequence, Gradual/Sudden Introduction of Rotation, and Speed/Accuracy Emphasis Manipulation
Used for All Experiments
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Note. Top left: Trial sequence for an example trial with an upper-right target: Each trial began with a small red (dark
gray) circle in the center of the screen, which was the starting point for movements. After a variable delay of 1 s on
average, a target circle appeared at one of four predefined locations on the screen (in one of four diagonal positions
relative to the central dot: upper-right, upper-left, lower-left, or lower-right). Using a stylus, participants dragged the
cursor from the center of the screen to the large target circle in a drag-and-drop motion. Top right: Visuomotor per-
turbation. The stylus-cursor mapping was perturbed such that the on-screen cursor direction was rotated in the coun-
terclockwise direction by angle (0) from the direction of stylus movement (the ideal movement direction for an
error-free movement was thus rotated clockwise). Bottom left: Sudden/gradual manipulation: The sudden perturba-
tion schedule presented 10 blocks of 90° rotation, whereas the gradual perturbation schedule gradually achieved a 90°
rotation by implementing 10° increments across nine blocks with the final two blocks inducing 90° rotations. Each
block included 64 trials. Bottom right: Speed/accuracy manipulation: The participant’s score, shown in green, was
calculated based on either speed or accuracy for all trials within a block. This feedback appeared on a scoreboard
shown at the end of each block. The other scores in the scoreboard were fictitious and were randomly drawn from
anormal distribution centered around the participant’s score. See the online article for the color version of this figure.
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in which case the trial would reset for another attempt. Figures 14
and 15 in the online supplemental materials report graphs for how
often trial repeats occurred for each of the conditions during each
block of rotation learning (these are reported for Experiments 1
and 3 but not Experiment 2 because Experiment 2 involved swiping
movements for which there was no such thing as a failed trial). As
seen in the graphs, the situations that produced the highest move-
ment errors (e.g., the first block of trials with the sudden introduction
of the rotation) were also the situations that produced the highest
number of repeated trials. It is important to note that repeated
attempts at the same trial entailed more opportunities to learn.
Therefore, rather than remove the failed attempts from the analyses,
the motion error measure for a particular trial included these failed
attempts to hit the target. In other words, the motion error for each
trial was averaged across all attempts to complete the trial (i.e.,
any initial failed attempt(s) at the trial, which likely involved a
high degree of motion error, as well as the final successful attempt).

The experimental paradigm consisted of 12 blocks of 64 trials
each, divided into three unequally sized phases (one block, 10
blocks, one block). Each block of 64 trials consisted of 16 reaching
movements to each of the four targets. Trials in a block were pseu-
dorandomly ordered with four sub-sequences of 16 trials, which

each contained a random order of four reach movements to each
of the four targets. After a short set of familiarization trials for
which the experimenter was present to ensure successful understand-
ing of the task, the first phase, “baseline,” lasted for one block of 64
trials. During the baseline phase, the mapping between trackpad and
on-screen directions was standard (unrotated). The second phase,
“rotation,” lasted for 10 blocks of 64 trials. The mapping was dis-
torted by rotating the on-screen cursor by a maximum of 90° coun-
terclockwise relative to the position of the stylus on the trackpad (see
Figure 1 bottom left for details of perturbation schedule). The final
phase, “washout,” lasted for one block of 64 trials without rotation
(identical to the baseline phase). The start of each block was self-
paced—the participant indicated by a stylus click when they were
ready to start a new block. Many prior studies have used ballistic
shooting motions. However, such motions may tend to emphasize
explicit aiming, and so we did not use them.

Participants were randomly divided into four groups of 15. Two of
the groups were asked to make their movements as quickly as pos-
sible, while the other two were asked to make their movements as
accurately as possible. To reinforce the speed/accuracy instruction,
at the end of each block, participants were shown a scoreboard indi-
cating their performance in that block relative to four other scores of
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hypothetical competitors. Block scores were calculated by adding up
a participant’s performance across all 64 trials within a block. For
speed-emphasis participants, the score for each trial was calculated
as the inverse of the time between the target’s appearance and the
time at which the target was reached. For accuracy emphasis partic-
ipants, the score for each trial was the inverse of Euclidean distance
in pixels between each sample of the participant’s trajectory and the
closest point on a straight line from the center to the target. In the
scoreboard shown at the end of the block, the participant’s total
score (indicated by green text) was always shown at Positions 2—4.
The other three scores were created by taking random draws from
a normal distribution centered on the participant’s score. If a partic-
ipant’s score happened to be the highest in the random draw of four
scores, scores were resampled until there was at least one random
score better than the participant’s, thus giving the participant some
incentive for continued improvement. Participants were not provided
any information about where the additional scores on the scoreboard
came from. The purpose of the scoreboard was to motivate partici-
pants to adhere to the speed/accuracy instructions.

All 60 participants adapted to a 90° counterclockwise rotation. In
the rotation phase, one of the speed groups of participants and one of
the accuracy groups of participants were assigned to receive a “sud-
den” rotation. These groups experienced the 90° rotation for all 10
blocks of the rotation phase. The other two groups were assigned
to receive a “gradual” rotation by gradually building up to the 90°
rotation in nine increments of 10° across nine blocks, with the
tenth block holding steady at 90°.

Measurement of Motion Accuracy

Most studies in the visuomotor adaptation literature use initial
angular error as the measure of motion accuracy. Panel A of
Figure 2 shows a hypothetical movement trial to demonstrate how
initial angular error is measured by finding the angle between the
starting point and the target versus the starting point and the first
point at which the movement crosses an invisible circle with a radius
equal to 10% of the Euclidean distance to the target. Results using
initial angular error are reported in the online supplemental materials
for comparison to the literature and for comparison to the results
reported below using an alternative measure of angular error. This
alternative measure was developed because, compared to initial
angular error, the alternative measure more accurately captured the
true state of learning and proved to be more statistically reliable, par-
ticularly for the speed/accuracy emphasis manipulation.

Panel B of Figure 2 shows the movement made by a participant
under accuracy emphasis. This participant began the motion by mov-
ing very slowly (the sampled data points are very close together), and
it was likely that this participant was making many small adjust-
ments to the movement direction. As a result, at the point when
they reached 10% of the distance, their initial angular error was
low, giving the false impression that they had learned the rotation.
However, as they sped up during the later stages of their movement,
it became clear that they had not yet learned the rotation. This behav-
ior stands in stark contrast to the movement shown in Panel C of
Figure 2. This participant was under speed emphasis. Owing to
the rotation, they initially headed in the wrong direction but then cor-
rected themself.

The crux of the problem with initial angular error is deciding the
point in the movement trajectory at which to calculate the angle. For

the movements shown in Panel B of Figure 2 (accuracy emphasis)
versus Panel C of Figure 2 (speed emphasis), if the initial angle
were based on 10% of the distance, this would indicate that the accu-
racy emphasis participant was perfectly accurate whereas the speed
emphasis participant was wildly inaccurate. But if a different cutoft
were used (e.g., 30% of the distance), this would suggest that both
participants were equally inaccurate. Given that participants can
speed up and slow down and make midcourse corrections based
on visual feedback, and considering that the speed/accuracy empha-
sis manipulation would likely alter these behaviors, it was unclear
how to define initial angular error in a manner that would consis-
tently and faithfully capture motion error across conditions.

Rather than using initial angular error, a trial-averaged measure of
motion error was used. Consider, for instance, the two angles shown
in Panel A of Figure 2. Both show the difference between the direc-
tion to the target versus the direction to the next sampled position. To
characterize motion error across the entire movement (as well as prior
failed attempts at the trial), all such angles were averaged. Critically,
this average was across absolute angles (e.g., if the average was across
signed angles, the average angle in Panel B of Figure 2 would be zero
considering the participant first veered in one direction and then over-
corrected, veering in the opposition direction).

When comparing the results of this trial-averaged absolute angular
error to initial angular error (see the online supplemental materials),
the trial-averaged measure proved to be more reliable. In terms of stat-
istical conclusions, the results from Experiment 1 were the same for
both the trial-averaged measure and the traditional measure of initial
angular error. For Experiment 2, neither measure produced reliable
differences between the conditions for the washout period and the pat-
tern of results during the learning period were similar. For Experiment
3, the trial-averaged measure replicated the results of Experiment 1,
whereas initial angular error was too noisy to reach any conclusions.
Most importantly, a comparison of the trial-by-trial plots reveals that
the signal-to-noise ratio was considerably higher for the trial-averaged
measure as compared to initial angular error. This greater reliability at
the level of trials was important for the application of the state models,
which were fit to the trial-by-trial data of each participant. To further
reduce noise in the trial data, all analyses were performed on an across-
trial smoothed version of this within-trial average angular error.
Smoothing was calculated using a weighted average across trials
within a block, with weights determined by a Gaussian kernel with
an SD of two trials.

Model Fitting

Both the single-state and dual-state models were fit to the data
from the rotation phase, separately for each participant, to determine
which participants required both learning systems for an adequate
description of their learning. The baseline block was not included
in model fitting because performance was highly accurate in this
block and there was nothing to be learned (the actual rotation was
zero, and the model estimate of rotation was initialized to be zero).
The washout block was not included because it would bias model
comparison in favor of the dual-state model considering that all par-
ticipants were likely to become explicitly aware of the sudden
removal of rotation.

To fit data, the model took on parameter values that were constant
across the entire trial sequence of rotation learning; constant learn-
ing/retention rate parameters produce a learning curve of gradually
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Figure 2
Calculation of Angular Error for Different Kinds of Motion Trajectories When Under Accuracy Versus
Speed Emphasis Instructions
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Note. Panel A: A hypothetical motion trajectory with five sampled data points between the initial position (small
red [dark gray] circle) and the first point of contact with the large red (dark gray) target circle. Angular error is the
angle between a straight line to the target and the actual motion path (two such angles are shown). Prior studies
reported initial angular error using an invisible threshold circle at 10% of the distance to the target based on the
first sampled point that crosses the threshold, and results with this measure are reported in the online supplemental
materials. Panel B: An actual trajectory on a particular trial for a participant under accuracy emphasis instructions.
Initial angular error at 10% distance would incorrectly suggest that they had learned the rotation. Panel C: A trajec-
tory for a participant under speed emphasis. Depending on the choice of distance for measuring initial angular error,
comparison between Panel B and Panel C could either indicate a large difference in accuracy between these two
trials (e.g., using a 10% threshold) or a small difference in accuracy (at 30% of the distance to the target, both tra-
jectories would show a similar initial angular error). Instead of initial angular error, the results were analyzed in
terms of angular error across the entire motion trajectory by taking the trial-averaged absolute angular error. See
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the online article for the color version of this figure.

decreasing angular error across trials. Thus, the model produced a
sequence of predicted angular errors, simulating the performance of
a hypothetical participant, where that hypothetical participant is
exposed to a particular sequence of rotations determined by the spe-
cific condition of the experimental design (e.g., a fixed 90° rotation in
the sudden condition, or rotations of increasing magnitude in the grad-
ual condition). In theory, the model predictions are signed angular
error (e.g., in theory, estimated rotation could be clockwise or coun-
terclockwise from the actual rotation). Thus, in relating the model to
the observed unsigned angular error data, the model predictions were
converted to unsigned rotational error. However, in practice, this did
not require any adjustment because the model was fit only to the rota-
tion learning phase of the experiment and the predicted angular error
was always positive during this phase. When the rotation is suddenly
removed (Experiments 1 and 2) or reversed (Experiment 3), the model
predicts negative signed angular error (an aftereffect), but the model
was not fit to the aftereffects because doing so would bias model com-
parison in favor of the dual-state model. Nevertheless, the model
parameters that best fit the rotation learning curves can be used to pre-
dict the magnitude of the aftereffect.

We first explain the single-state model because the dual-state
model is an extension of the single-state model. For the single-state
model, the error that dictates learning in the model is the difference
between the rotation estimate based on the experience in the previous
trial and the actual rotation of the current trial, as dictated by the
experimental design sequence (Equation 1). Note that the observed
data do not play arole; the observed data only matter in terms of opti-
mizing the parameter values, which are fixed for the entire trial
sequence. The first trial starts with an estimate of no rotation. The
estimate of rotation, 7., at the end of the current trial, ¢, is a weighted
average (parameters A and B determining the weights) between the

previous estimate of the rotation and the currently experienced error
(Equation 2; Donchin et al., 2003; Smith et al., 2006).

Error (f) = R —reg (1 — 1). (1)
Fest 1) = A X reg(t —1) + B x error (7). 2)

Here, R is the rotation for the current trial as dictated by the exper-
imental design, 7. (?) is the estimate of rotation on trial 7, the param-
eter A represents a “retention” factor, and the parameter B represents
a learning rate.

We also fit the dual-state model to error data (Smith et al., 2006).
The dual-state model postulates that there are two competing systems
involved in successful adaptation to a rotated stylus-cursor mapping
(McDougle & Taylor, 2019; McDougle et al., 2015; Smith et al.,
2006; Taylor & Ivry, 2011) as described in the following equations.

Error (1) = R — reg(t — 1). A3)

fest () = Af X fox (t = 1) + B x error (7). 4)
Sest () = Ay X Ses (1 — 1) + By x error (f). 5)
Test (1) = Jest (1) + Sest (0. (©)

0<A; <A <1,0<B;<B;<l. 7

The total estimate of rotation is modeled as the sum of two inde-
pendent systems: A “fast” system ( f) that learns quickly and forgets
quickly and a “slow” system (s) that learns slowly but retains the
learned mapping better than the fast system.

Data fitting was done in two stages: First, all 640 trials from
the rotation phase were fit with three separate model comparison mea-
sures (chi-square, Akaike information criterion [AIC], and Bayesian
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information criterion [BIC]); Second, the data were fit using cross-
validation that randomly divided the data into training and test sets.
AIC and BIC can either be determined from least-squares error
under an assumption that the residual error is normally distributed
or they can be determined more directly when using a model that
specifies the likelihood of the observed data. However, chi-square
error requires a model that specifies the likelihood of the observed
data. Thus, we built the assumption of normally distributed error
into the single and dual-state models by assuming that the model
equations specify the predicted average angular error, with normally
distributed variation about the predicted average as dictated by a stan-
dard deviation parameter. This standard deviation parameter is math-
ematically equivalent to the typical application of least-squares/
general linear modeling under the normal assumption, but, rather
than dropping a degree of freedom for residual error, the noise/
deviation parameter is explicitly included in the model. In this man-
ner, the model not only fits the mean of the data but also fits
trial-by-trial variability that is unrelated to the learning curve. Thus,
to the extent that the model is able to capture the observed data,
the standard deviation will be set to smaller values to increase the
likelihood of the observed data. In theory, the normality assumption
might be violated because unsigned error is bounded at zero (i.e.,
the observed data can never be negative, and yet the normal distribu-
tion is unbounded). However, the best-fitting standard deviation
parameters were typically at least half the size of the predicted
mean rotational error. In other words, the predicted mean error was
usually more than 2 SDs above the lower bound of zero. Thus, the nor-
mality assumption was adequate in this case.

In the first stage, which fits all trials from rotation learning, a global
best fit for each participant was found by running multiple instances
of simplex minimization, with each instance using a different set of
starting parameters determined by a small grid of parameter values.
This was done separately for each model, and the best-fitting param-
eter values were used to generate three different model comparison
measures (chi-square, AIC, and BIC). In the second stage, which
used cross-validation, the trials for each participant were divided
into a training set of 90% (576) trials picked at random with the
remaining 10% (64) trials serving as the test set. One hundred differ-
ent train-test sets were created for each participant and fit separately
using the simplex minimization routine. For each cross-validation
fit of the training data, the parameter values from the first stage
were used as the starting point, thus ensuring that the parameter val-
ues were “in the ballpark”™ for each sample of training data. Model
performance for the second stage was assessed by examining how
well each model predicted, a priori, the 100 different held-out sam-
ples of test data for each participant, using the best-fit parameters
from the corresponding training samples. These predictions for the
held-out data were not assessed using point estimates of the angular
errors but rather the likelihood of the observed held-out data accord-
ing to the model with parameters that had been fit to the training data.
In this way, the models were also assessed in terms of their ability to
capture the reliability of the predictions (e.g., whether the error vari-
ance parameter was well matched to variability in the predicted data).

Transparency and Openness

The power analysis described above determined the sample size in
the first experiment, and we note that this power to detect differences
across conditions was slightly increased in the second experiment,

SAVALIA, COWELL, AND HUBER

which recruited 16 rather than 15 participants for each of the four
conditions. The first experiment was administered using MATLAB
Psychtoolbox (Brainard & Vision, 1997), whereas the second exper-
iment was administered using PsychoPy (Peirce, 2007). All analyses
were achieved using Python with the help of packages: statsmodels
(Seabold & Perktold, 2010) for statistical analyses, scikit-learn
(Pedregosa et al., 2011) for model fitting, and seaborn (Waskom,
2021) for plotting. The study design and analyses were not preregis-
tered. All data and code for analyses are available publicly on
GitHub (https:/github.com/tejas-savalia/vma_behavioral).

Results

The online supplemental materials report full trial sequence
graphs for initial motion direction signed angular error (e.g., clock-
wise vs. counterclockwise). As described in the Method section, ini-
tial angular error is particularly variable for these drag-and-drop
motions. The main result from initiation/movement times is a manip-
ulation check for the speed/accuracy emphasis manipulation, as
demonstrated with the inferential statistics, reported below.

Performance After Learning

The first nine blocks of rotation learning were nonequivalent
between the sudden and gradual groups because each of the nine
blocks introduced an additional rotation change for the gradual con-
dition but not the sudden condition. This nonequivalence made it
difficult to compare the conditions during the first nine blocks of
rotation learning, although, as reported below, the time course of
learning can be compared by applying learning models to the data.
To compare conditions after learning, we analyzed the 10th block
(final block of rotation) and 11th block (“washout”), which were
identical across conditions. The 10th block was a continuation of
the 90° rotation for all groups, and the washout block was the sudden
removal of the rotation for all groups. These analyses used a
between-subjects 2 x 2 analysis of variance with the factors of
type of rotation learning (sudden/gradual) and performance empha-
sis (speed/accuracy), with either average absolute angular error or
median latency as the dependent measure.

As shown in the left panel of Figure 3, for the angular error during
the final block of rotation learning, there was a main effect of perfor-
mance emphasis, F(1, 56) = 18.07, p < .001, with lower error for
the accuracy emphasis groups, demonstrating that accuracy empha-
sis instructions produced more accurate movements. There was no
evidence for a main effect of the type of learning, that is, sudden ver-
sus gradual, F(1, 56) = 1.54, p = .22, or for an interaction between
the two factors of performance emphasis and learning type,
F(1, 56) =0.92, p =.32. As shown in the right panel of Figure 3,
the subsequent washout block produced very different results,
with no support for an effect of performance emphasis, F(1, 56) =
2.75, p = .102, and yet there was a main effect for type of rotation,
F(1,56) =13.39, p < .001, with greater error for the gradual rotation
groups. This effect of gradual versus sudden rotation learning during
the washout block replicates prior work (Kagerer et al., 1997). There
was no reliable evidence that these two factors interacted during the
washout block, F(1, 56) =0.017, p = .89. Demonstrating that the
elimination of the performance emphasis effect and the emergence
of the type of rotation effect between Blocks 10 and 11 were both
reliable, a three-way analysis of variance that also included block
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Figure 3
Accuracy After Learning in Experiment 1
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Left panel: During the final block of rotation learning, participants in the speed conditions made larger errors

than participants in the accuracy conditions for both the gradual and sudden introduction of rotation, demonstrating
that the speed/accuracy instructions affected behavior as expected. Right panel: During the washout block in which
the rotation was removed, participants who had learned the rotation gradually produced larger errors than those who
had learned the rotation suddenly. Error bars are 95% Cls. CIs = confidence intervals.

*p <.05.

(final rotation, 10, vs. washout, 11) revealed a significant interaction
between block and performance emphasis, F(1, 56) =4.8, p =.03,
and a significant interaction between block and type of rotation,
F(1, 56)=10.89, p = .001.

To examine whether participants adhered to the speed versus
accuracy instructions, median latency was examined separately for
the time to initiate movement and movement time. When including
all phases of the experiment, there was no reliable difference in
median movement initiation time between the speed and accuracy
groups, #(58) = —0.85, p =.39, whereas median movement times
were affected by emphasis, with faster movements for the speed empha-
sis groups of participants, #(58)=—2.22, p=.03, confirming the
expected effect of emphasis. Thus, in conjunction with the accuracy
results reported above, there was a speed-accuracy tradeotf when com-
paring the speed emphasis groups to the accuracy emphasis groups.

Although movement times confirmed the effect of speed/accuracy
emphasis, it might seem surprising that there was no effect for move-
ment initiation times. However, this likely reflected an analysis that
collapsed over all phases of the experiment. Supporting this claim, a
more focused analysis of movement initiation times for the baseline
and first rotation blocks revealed a main effect of speed/accuracy
emphasis, F(1, 112) =5.37, p = .02, with speed emphasis partici-
pants initiating movement more quickly. In addition, movement ini-
tiation times slowed down with the first rotation block, F(1, 112) =
13.79, p < .001, and this slow-down interacted with the type of rota-
tion, F(1, 112) =7.27, p =.008: Participants who experienced a
sudden 90° rotation took longer to initiate movement than those in
the gradual conditions. As seen in the online supplemental materials,
the participants in the gradual conditions did not appear to slow
down at all with the onset of rotation, as might be expected if they
were not aware of the rotation.

In summary, accuracy versus speed emphasis affected speed and
accuracy as expected during rotation learning, and yet, in the wash-
out block, the main finding was lower accuracy following the gradual
introduction of the rotation, regardless of speed/accuracy emphasis.

This pattern implies that a longer lasting form of learning took place
during the nine blocks of rotation learning for the gradual introduc-
tion of the rotation. Next, we turn to analyses of the time course of
learning, using the single- and dual-state learning models to interpret
the results.

Learning Curves: Are Two Learning Systems Needed?

Our central question was whether both the knowledge-based,
fast-to-learn system and the procedural, slow-to-learn system are
necessary or whether in some cases behavior is better explained
using only the slow-to-learn procedural system. The latter scenario
would suggest that some conditions suppressed knowledge-based
learning of the rotation. To address this question, we used formal
model comparison, comparing the dual-state model to the single-
state model as applied to the trial-by-trial data from the 10 blocks
of rotation learning, as seen in Figure 4. Although the slow-to-learn,
procedural system may be an obligatory component of motor learning,
as indicated by prior studies (Morehead et al., 2011; Taylor et al.,
2014), the fast-to-learn, knowledge-based system might be suppressed
in some cases (i.e., conditions that favor the single-state model).

The main difference between the models is that the dual-state
model can capture a learning curve that shows both very rapid
improvements over just a few trials as well as much slower improve-
ments over the course of hundreds of trials. Such patterns are readily
apparent in the average results shown in Figure 4, for the sudden
rotation conditions (black lines). In these conditions, after the 90°
rotation is suddenly introduced at the 65th trial, the average angular
error is approximately 90°, but then this error is rapidly reduced to
approximately 50° (accuracy emphasis) or 70° (speed emphasis)
over the first 10-20 trials of rotation learning. After this initial
rapid error reduction, a very slow time course of additional error
reduction ensues. Something similar is seen in the gradual accuracy
condition (solid gray line, lower plot), in the first 10-20 trials of
every new block (every set of 64 trials) of rotation learning,


https://doi.org/10.1037/xhp0001210.supp

ied publishers.

This document is copyrighted by the American Psychological Association or one of its

This article

794

Figure 4
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Average Angular Error for Each of the Four Groups of Participants as a Function of Trial in

Experiment 1
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Note. Darker lines indicate the groups that experienced a sudden introduction of the 90° rotation, whereas lighter

lines indicate the groups that were introduced to the rotation gradually. Top panel: Results for speed emphasis groups
(dotted lines). Bottom panel: Results for accuracy emphasis groups (solid lines). Shaded regions indicate the 95%

CI. CI = confidence interval.

whenever a 10° rotational increment is introduced. It can perhaps be
observed that, in the gradual speed condition (dotted gray line, upper
plot), the period of error reduction in each block is more drawn out
(i.e., the error reduction happens less sharply) than in the gradual
accuracy condition (solid gray line, lower plot); this may provide
an important clue to the involvement of the two systems in the dif-
ferent conditions. However, these descriptions are speculative and
are based on average results, which can be misleading if there are dif-
ferent learning patterns for different participants (e.g., perhaps some
participants learn quickly and others learn slowly, in which case the
average pattern would show an initial rapid decrease followed by a
long tail of additional learning as an artifact of averaging).

To test the nature of the learning curves, both models (dual state
and single state) were fit separately to the learning curves of each
participant to determine, for each participant, whether learning
entailed both fast and slow learning (i.e., the dual-state model), or
whether learning entailed only slow learning (i.e., the single-state
model). The dual-state model has more free parameters that can
be fine-tuned to fit data, allowing it to capture a wider range of
behaviors. Thus, a head-to-head comparison between these two
learning models requires some sort of penalization for the extra flex-
ibility of the dual-state model (Pitt & Myung, 2002). Table 1 shows
the results using four different penalization techniques. The values
in Table 1 are the number (and proportion) of participants in each
group whose behavior was better explained by the dual-state
model; the remainder were better fit by the single-state model.
For instance, where the table shows 0, this means that none of the

participants in the corresponding group produced learning curves
that were better explained by the dual-state model. The final column
shows the observed p values from chi-square tests comparing the
frequencies of observed dual-state selections. A p < .05 indicates
that the number of participants for whom the dual-state model is
required significantly differs across conditions. Providing a more
qualitative sense of how well the models fit, the best fits to each par-
ticipant were treated in the same manner as the real data to produce
model average learning curves for each model in each condition as
reported in Figures 16-21 and Tables 1 and 2 in the online supple-
mental materials, including report of R* metrics and summed AIC/
BIC differences between the models. Cutting straight to the main
result, all four methods of model comparison indicated that the
dual-state model was not needed for the specific combination of

Table 1
Model Comparison Results for Experiment 1 Showing How Often
the Dual-State Model Was Preferred

Comparison  Sudden Sudden Gradual Gradual
metric speed accuracy speed accuracy P
x 6 (40%) 12 (80%) 0 (0%) 9 (60%) <.001
AIC 7 (46%) 13 (87%) 0 (0%) 9 (60%) <.001
BIC 533%) 11(73%) 0(0%) 6 (40%) <.001
CrossVal 9(60%) 13(87%) 3(20%) 10 (67%) .0015
Note. AIC = Akaike information criterion; BIC = Bayesian information

criterion; CrossVal = cross-validation.
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speed emphasis instructions and a gradual introduction of the rotation.
That is, for the “gradual speed” condition, the single-state model pro-
vided a sufficient explanation of behavior without requiring a second
state.

Different Methods of Model Comparison

First, we compared the two models using chi-square tests. Because
the single-state model is nested under the dual-state model, one can
ask whether the single-state model provides a significantly worse
fit considering that it is a special case of the dual-state model that
removes two of the parameters. More precisely, there are two circum-
stances in which the dual-state model is the same as the single-state
model: (a) if the slow-learning state learning parameter (B;) is fixed
at 0 (no learning) and hence the fast-learning state remains; or (b)
if the fast- and slow-learning states of the dual model have the
same rates of retention as the single-state model (Af=A;=A), and
the learning rates of the slow- and fast-learning states add up to the
learning rate of the single-state model (B;+ B;=B). In the first
case, the contribution of the slow-learning state is turned off (i.e., it
always predicts a zero rotation), and the fast-learning state is the
only state that learns the rotation. However, we emphasize that in
this first case, the constraint that 0 <Ay <Ay <1, and 0 < B, <
By <1 (Equation 7) mandates that any learning loads onto the
fast-learning state parameters, Ay and By. Therefore, such a result
emerging in the dual-state model could, in fact, reflect that only the
slow-learning state is in operation, with its parameters labeled as
“fast-learning state” owing to model constraints. In the second
case, the two states learn (and forget) at the same speed as the single-
state model, and their individual estimates of rotation add up to be the
same value as that of the single-state model.

For nested models, one test of whether the extra parameters of the
more complicated model provide some benefit is based on the like-
lihood ratio test and the corresponding G> goodness-of-fit metric
(Batchelder & Riefer, 1999); accordingly, we used a chi-square
test with 2 df'to assess whether the single-state model provided a sig-
nificantly worse fit, separately for each participant. The top row of
Table 1 shows the results of this nested model comparison, revealing
that the extra free parameters of the dual-state model were not war-
ranted for any participant in the gradual speed group. In contrast,
nearly all of the participants (80%) in the sudden accuracy group
produced learning curves that were better explained by the dual-state
model. The sudden speed and gradual accuracy groups were more
mixed, with a more moderate proportion of participants that were
better explained by the dual-state model than the single-state model.

The chi-square test for nested models assumes that the parameters
can take on any value, and yet this is not strictly true with the dual-
state model because it imposes rank order constraints between the
two states. For instance, it is not allowed to have one state with slower
forgetting (A) but faster learning (B) as compared to the other state
(the slow-learning state is constrained to always have both slower for-
getting and slower learning, Equation 7). Thus, nested model com-
parison somewhat unfairly handicaps the dual-state model, which
is not truly free to set its parameters to any value. There are a wide
variety of techniques that can be applied to nonnested models, and
Table 1 also reports model comparison using the AIC (Sakamoto
et al., 1986) and the BIC (Vrieze, 2012). It is commonly understood
that AIC, which is based on predicting data, tends to favor more flex-
ible models, whereas BIC, which is based on identifying the more

likely model, tends to favor less flexible models. Correspondingly,
as seen in Table 1, the dual-state model did somewhat better on aver-
age when using AIC and somewhat worse on average when using
BIC, as compared to the chi-square results. However, for both AIC
and BIC, it was still the case that no participant in the gradual
speed condition produced behavior that was better explained by the
dual-state model.

AIC and BIC are parameter-counting measures and assume that
each additional free parameter entails the same degree of extra flex-
ibility. However, some parameters are likely to be more important
than others (e.g., the inclusion of a second state might affect the
goodness of fit only for trials occurring early in learning, whereas
the error variance parameter affects all trials). Furthermore, as men-
tioned above, the dual-state model may be overly penalized on the
basis of a simple parameter count because the rank order constraints
between the two states (Equation 7) reduce the extra flexibility pro-
vided by the second state. To seek a fairer model comparison metric,
we examined available techniques for nonnested models that avoid
parameter-counting (for a review, see Pitt & Myung, 2002, and
from among these, we opted to use cross-validation; Myung et al.,
2005), which is relatively assumption free and easy to implement
through a nonparametric sampling of the data. When using cross-
validation, an overly flexible model will fit noise in the training
data and produce a worse prediction for held-out data. As with the
chi-square test, we asked whether the extra flexibility of the dual
state was warranted. This framing of the question implies a default
selection of the simpler model in the case of nondiagnostic data
(Jang et al., 2011). Thus, the dual-state model was selected to be
the winner for a particular participant if it performed better than
the single-state model significantly more often, which corresponded
to 59 of the 100 cross-validation predictions (Binomial test cutoft for
p = .05, n = 100) when comparing the likelihood of the held-out test
data based on parameters fit to the training data. As seen in the bot-
tom row of Table 1, the dual-state model did somewhat better on
average for cross-validation, as compared to the other methods of
model comparison. However, only 20% of the participants in the
gradual speed group were better fit by the dual-state model. Thus,
even when using a technique that accurately addresses the flexibility
of the models, the addition of the fast-to-learn, knowledge-based
system was not often needed in the gradual speed condition.

Does the Single State Correspond to Procedural Learning?

In reaching conclusions from the model comparison results, we
assumed that when a second learning state was not needed (i.e.,
when the dual-state model failed to fit better than the single-state
model), the single state reflected the slow-to-learn, procedural learn-
ing system. This interpretation was based on prior evidence that the
procedural system is an obligatory component of learning (Izawa &
Shadmehr, 2011; Mazzoni & Krakauer, 2006). Nevertheless, this
assumption can be checked directly by examining the best-fitting
learning and retention rate parameter values. If only one learning
state was needed, did this single state correspond to a relatively
slow time course of improvement? The time course of improvement
for a state reflects both the learning parameter and the retention
parameter. For instance, a high learning parameter would cause
learning on every trial, but if the retention parameter were low,
then the learning from the previous trial would be immediately for-
gotten, and there would be little improvement. The rate of accuracy



This document is copyrighted by the American Psychological Association or one of its a

are reserved.

ar technologies

nd is not to be ¢

)
&
]

g for text and data mining, Al tr:

>
=]
o
<
=}
G
o
Q
7}
=
<
o
122
o
15}
=}
5}
=
Kel
o=
>
2

ghts, includin

<

2
3}
=
=1
@
2
=

796

improvement is related to the multiplication of the learning and
retention parameters (e.g., it can be algebraically proven that this
relationship is directly proportional to the change from the second
to the third step of learning), and so we used this multiplication
term in our analysis, as a proxy for the rate of improvement. The
results are shown in Figure 5, which plots side by side the rate of
improvement for the single-state model, the fast-learning state, and
the slow-learning state separately for each of the four conditions.
As Figure 5 shows, the rate of improvement for the three states takes
on a qualitatively different pattern (i.e., the relative heights of the three
colored bars) for the gradual speed condition. For the other three con-
ditions, the fast-learning state has a higher rate of improvement than
that of the single-state model, #(14) =4.27, p <.001. In contrast,
for the gradual speed condition, the rate of improvement for the
fast-learning state is significantly lower than that of the single state,
t(44) = 3.37, p = .002. Furthermore, in the gradual speed condition,
the rate of improvement for the fast- and slow-learning states are
approximately equal and approximately half the value of the rate of
improvement for the single-state model. This is expected in a
situation, described earlier, where the dual-state model mimics the
single-state model (e.g., when By+B;=B and A;= A;=A). This

Figure 5

The Multiplication of the Best-Fitting Learning Rate (B) and
Retention Rate (A) Parameter Values, as a Proxy for the Rate of
Accuracy Improvement, for Each of the Three States (the Single
State, the Fast-Learning State, and the Slow-Learning State) as
Applied to the Rotation Learning Phase of Experiment 1
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Note. As seen in the figure, only for the gradual speed condition does the

fast-learning state have a lower rate of improvement than the single state. In
this case, the fast- and slow-learning states add up to approximately the same
rate of improvement as the single state, as expected in a situation that does
not require two states. Furthermore, the rate of improvement for the
fast-learning state in the gradual speed condition is similar to that of the
slow-learning state for the other conditions, as expected if the gradual
speed condition involves only slow, procedural learning. Error bars are
95% Cls after applying the correction suggested by Cousineau (2005).
CIs = confidence intervals. See the online article for the color version of
this figure.
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corroborates the model comparison results that favor the single state
in this condition. In addition, the rate of improvement for the
fast-learning state in the gradual speed condition was much slower
than the fast-learning state in the other three conditions, as would
be the case if the learning curve in the gradual speed condition
required only a single state with a slow rate of learning.

Experiment 2: Removal of Online Visual Feedback
During Motion

Experiment 1 identified circumstances that produced procedural
learning without knowledge-based learning (the gradual speed condi-
tion). This conclusion builds on prior studies demonstrating that the
gradual introduction of a rotation can suppress explicit learning, as
measured with aiming judgments after learning (Albert et al.,
2022; Yin & Wei, 2020). More specifically, Experiment 1 demon-
strates that the gradual introduction of the rotation does not always
suppress knowledge-based learning; this suppression did not occur
in the gradual-accuracy condition (prior studies used a speed empha-
sis). Next, we ask if there are other circumstances for which the grad-
ual introduction of the rotation fails to suppress knowledge-based
learning. Continuous visual feedback was provided during motion
based on prior work finding that this leads to a larger contribution
of procedural learning (Heuer & Hegele, 2008; Izawa &
Shadmehr, 2011; Taylor & Ivry, 2011). In the case of the gradual
introduction of rotation, this continuous visual feedback may be cru-
cial for blocking awareness of each additional 10° rotation. In
Experiment 1, participants could see when their motion first deviated
from the desired direction, and they may have automatically adjusted
their motion, thus failing to realize that the mapping between the
trackpad and on-screen direction was modified. However, if there is
no online visual feedback during motion, participants will not adjust
midstream and will simply miss the target by afull 10°. Because these
10° errors will occur in a systematic direction, the rotation may
become noticeable even with speed emphasis, allowing the
knowledge-based system to contribute to learning. To test this
hypothesis, Experiment 2 was identical to Experiment 1 except that
visual feedback was removed during motion except at the end
point. Instead, participants were given only final outcome feedback
after their motion was completed. If the removal of online feedback
elicits knowledge-based learning, the gradual speed condition should
become similar to the other conditions. All experimental methods
were the same as Experiment 1, except for the removal of online
visual feedback, and other minor differences as noted. All modeling
procedures were the same as for Experiment 1.

Method
Participants

Sixty-four individuals participated, with 16 randomly assigned to
each of the four conditions. This study was conducted in 2021.

Paradigm

The experimental task was built using the PsychoPy platform
(Peirce, 2007). In each trial, participants were shown a circular
band formed by two concentric white circles centered on the center
of the screen. A trial started with the appearance of a red circular cur-
sor at the center of the screen along with a red circular target within
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the white-edged band. Participants were asked to make ballistic
“shooting” movements to hit the target using the stylus. Once the
movement was initiated, the dot at the center of the screen disap-
peared. Next, once the heretofore invisible movement crossed the
inner boundary of the circular band, the dot reappeared at the corre-
sponding location between the inner and outer circular bands, pro-
viding visual end-point feedback the target remained on the screen
for the entire duration of the trial.

Results

Because these were shooting movements rather than drag-and-drop
movements, the magnitude of movement error was computed as the
angle formed by the lines joining the start point and the target and
the line joining the start point and the actual endpoint.

The online supplemental materials report full trial sequence
graphs for signed angular error (e.g., clockwise vs. counterclock-
wise), movement initiation time analyses, model average learning
curves, and additional model fit metrics.

Performance After Learning

As seen in Figure 6, there was a main effect of the speed/accuracy
emphasis manipulation after the nine blocks of rotation learning,
with smaller angular errors for the accuracy groups, F(1, 60)=
8.6, p =.004. However, in the subsequent washout block in which
the rotation was removed, there were no apparent differences
between the conditions. Unlike prior results (Kagerer et al., 1997),
and unlike Experiment 1, there was no reliable evidence that par-
ticipants who received a gradual introduction to the rotation
made larger errors than those who learned the rotation suddenly,
F(1, 60) = 0.07, p = .78. This failure to find a larger washout effect
for the gradual conditions is expected if the elimination of visual
feedback during motion resulted in knowledge-based learning for
all conditions.

To examine whether participants adhered to the speed versus accu-
racy instructions, median movement latency was examined. When

Figure 6
Accuracy After Learning in Experiment 2
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including all phases of the experiment, there was a main effect of
emphasis, with faster movements for the speed emphasis groups of
participants in the final learning block, F(1, 60) = 32.99, p <.001,
confirming the expected effect of emphasis. Thus, in conjunction
with the accuracy results reported above, there was a speed-accuracy
tradeoff when comparing the speed emphasis groups to the accuracy
emphasis groups.

Model Comparison of Learning Curves

Each model was applied to the trial-by-trial rotation learning data
shown in Figure 7, using the same fitting routines and model com-
parison metrics as Experiment 1.

As seen in the last column of Table 2 (chi-square test of fre-
quencies across conditions), there were no reliable differences
between the different conditions in terms of how often each
model was preferred when the models were compared with BIC
or with cross-validation, bearing in mind that cross-validation
is likely the most accurate method for comparing the models.
When using chi-square, AIC, or BIC to compare the models,
the single-state model was almost always preferred, regardless
of condition, but with modest differences across conditions for
chi-square and AIC. In contrast, when using cross-validation,
more than half of the participants in each condition were better
explained by the dual-state model. As outlined above, the
parameter-counting metrics (AIC, BIC, and chi-square) may
unfairly penalize the dual-state model, whereas the cross-
validation metric is likely to appropriately take account of
true model flexibility. The cross-validation results might therefore
be considered more reliable in this case of conflicting outcomes,
suggesting that two states are operating in many participants.
Most importantly, however, it is no longer the case that the gradual
speed condition is reliably different from the other conditions, in
terms of model comparison.

As seen in Figure 8, the rate of improvement measure (given by the
learning parameter multiplied by the retention parameter) shows a
very similar pattern across all conditions, especially regarding the

Block 11
50, (Washout Block)
40
30 Rotation
%0 % E Gradual
/ / BEE Sudden
10 / /
Speed  Accuracy
Emphasis

Left panel: During the final block of rotation, participants in the speed conditions made larger errors than par-

ticipants in the accuracy conditions for both the gradual and sudden introduction of rotation, demonstrating that the
speed/accuracy instructions affected behavior as expected. Right panel: Unlike in Experiment 1, there were no apparent
differences between conditions during the washout block. Error bars are 95% Cls. ClIs = confidence intervals.

*p <.05.
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Figure 7
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Average Absolute Angular Motion Direction Error for Each of the Four Groups of Participants as a

Function of Trial for Experiment 2
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lines indicate the groups that were introduced to the rotation gradually. Top panel: Results for speed emphasis groups
(dotted lines). Bottom panel: Results for accuracy emphasis groups (solid lines). Shaded regions indicate the 95%
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comparison of the single-state and fast-learning state parameters.
That is, in all conditions, there is no apparent difference between
the rate of improvement for the single-state model and the
fast-learning state of the dual-state model. Moreover, the rate of
improvement for the slow-learning state is generally close to zero,
whereas the fast-learning state’s rate of improvement mimics that
of the single-state model. As discussed above, one way in which
the dual-state model can mimic the single-state model is when the
slow-learning state is completely switched off, such as by setting
either learning to zero or retention to zero. However, the (cross-
validation) model comparison results indicate that two states are
needed in a substantial number of participants. Thus, the best expla-
nation for these results seems to be that both states are needed and that
learning in this paradigm is primarily accomplished by the fast,
explicit, knowledge-based state but with a small amount of slower,

Table 2
Model Comparison Results for Experiment 2 Showing How Often
the Dual-State Model Was Preferred

Comparison Sudden Sudden Gradual Gradual
metric speed accuracy speed accuracy P
o 3 (19%) 2 (13%) 0 (0%) 0 (0%) .05
AIC 4 (25%) 3 (19%) 0 (0%) 0 (0%) .01
BIC 2 (13%) 2 (13%) 0 (0%) 0 (0%) 12
CrossVal 10 (63%) 11 (69%) 9 (56%) 11 (69%) .84
Note. AIC = Akaike information criterion; BIC = Bayesian information

criterion; CrossVal = cross-validation.

implicit, procedural learning in some or all participants. This domi-
nance of the fast-learning state likely explains the equivalence of
the rate of improvement for the single-state model and the
fast-learning state of the dual-state model (see Figure 8).

Finally, we note that the rate of improvement metric in
Experiment 2 shows substantially lower values overall than in
Experiment 1. This is not surprising considering that in the absence
of continuous feedback, Experiment 2 is much more of a guessing
game for participants as they determine which direction to move
to hit the target (errors were generally much higher and more vari-
able). Without visual feedback on the position of the cursor during
the hand movement, the opportunity for learning of either kind is
much reduced. In Experiment 1, there was not only feedback regard-
ing initial movement directions but there was ample opportunity to
learn from mid-course corrections made during the extended time
period of the drag-and-drop motion.

Experiment 2 Discussion

This follow-up study investigated the impact of removing contin-
uous feedback on the previously reported suppression of knowledge-
based learning under a gradual introduction of rotation. Unlike all
previous studies comparing the sudden/gradual conditions, there
were no apparent differences in the rotation aftereffect during the
washout phase of the experiment. In addition, there was no differ-
ence in how often the dual-state model was selected between the
experimental conditions. Collectively, these results suggest that
knowledge-based learning played a role in all conditions, regardless
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Figure 8

The Multiplication of the Best-Fitting Learning Rate and Retention
Rate Parameter Values Shows the Rate of Accuracy Improvement
for Each of the Three States (the Single State, the Fast State, and
the Slow State) in Experiment 2
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for the single-state model is very similar to the fast state of the dual-state
model. The slow state contributes minimally to the overall improvement,
and learning is mostly through the fast state when continuous feedback is
not provided. Error bars are 95% ClIs after applying the correction suggested
by Cousineau (2005). CIs = confidence intervals. See the online article for
the color version of this figure.

of whether the rotation was introduced gradually/suddenly and
regardless of speed/accuracy emphasis.

Why did removal of continuous feedback lead to knowledge-based
learning despite the gradual introduction of rotation? It might be that
the lack of continuous feedback weakened implicit procedural learning.
In the absence of strong procedural learning, explicit knowledge-based
learning could play an important role even with a small increment in
rotation (Albert et al., 2022). In Experiment 1, the procedural system
could learn from the small 10° change in rotation owing to mid-course
corrections. However, because participants made these small mid-
course corrections, they easily hit the target and may have failed to real-
ize that a small rotation occurred. But in the absence of this continuous
feedback, performance is worse (compare the left panels of Figures 3
and 6), and even a small rotation may be revealed to participants by
their systematic missing of the target. Thus, because the only feedback
was the endpoint, which consistently revealed to participants when they
missed the target in the same systematic way, the gradual introduction
of rotation failed to suppress knowledge-based learning regardless of
speed/accuracy emphasis.

Experiment 3: Assessing Relearning and Directly
Measuring Explicit Aiming

Experiments 1 and 2 build on prior studies reporting the suppression
of knowledge-based learning with the gradual introduction of rotation
(Albert et al., 2022; Yin & Wei, 2020). Specifically, Experiment 1

demonstrated that this suppression of knowledge-based learning was
smaller, or absent, under accuracy emphasis, and Experiment 2 demon-
strated that this suppression of knowledge-based learning does not
occur in the absence of continuous motion feedback. However, there
are some important differences between Experiments 1 and 2 on the
one hand and prior studies investigating suppression of knowledge-
based learning during gradual introduction of a rotation on the
other. Experiments 1 and 2 used an extreme 90° rotation, whereas
prior work used a more modest 30° or 60° rotation. In addition,
Experiments 1 and 2 examined washout effects, whereas prior studies
examined relearning with the reintroduction of the rotation. Finally,
and perhaps most importantly, the prior studies assessed knowledge-
based learning with an explicit aiming measure whereas Experiments
1 and 2 used formal model comparison applied to learning curves.
Model comparison indicated that the fast-learning system was not
needed to explain the learning curve for the gradual introduction of
rotation under speed emphasis. But does the fast-learning system cor-
respond to explicit aiming? Experiment 3 directly tests this question.

Experiment 3 replicated the interaction between speed/accuracy
emphasis and sudden/gradual introduction of rotation in a
drag-and-drop continuous feedback task with three key changes rel-
ative to Experiment 1: (a) The maximum rotation was 60° rather than
90° (with increments of 10° in the gradual conditions, rotation learn-
ing entailed seven blocks, with the final two learning blocks at 60°);
(b) After rotation learning, participants were asked to explicitly
report their aiming directions on a circular wheel, similar to Taylor
et al. (2014); and (c). Following these explicit aiming judgments,
participants unlearned the rotation by experiencing one block with
a 60° rotation in the opposite direction. Finally, participants were
given two blocks of relearning of the original 60° rotation.

If the suppression of the fast-learning system in Experiment 1
reflects suppression of explicit aiming, we predict that participants
in the gradual speed condition should be less aware of their move-
ment direction as measured by explicit aiming and that they should
have the greatest retention of the original rotation when relearning
that rotation, reflecting the slow and incomplete unlearning of the
original rotation during the single opposite-rotation block of trials.
Explicit awareness of motion direction was assessed by asking par-
ticipants to (a) explicitly report the aiming direction (i.e., a clock
hand number) they had been using when under rotation and (b)
make a swipe movement without visual feedback immediately
after providing the explicit aim report. In theory, the swipe move-
ments should match the explicit aim report (their instructions were
to swipe at the clock hand number they had just entered).
However, if the rotation was learned implicitly, they might unknow-
ingly swipe in a different direction than the explicit aiming direction
that was reported just a second ago (e.g., because the learned rotation
was counterclockwise, they might unknowingly swipe with a clock-
wise offset during their attempt to hit the just-reported clock hand
number). In contrast, if the rotation was learned explicitly, such
that there is no carryover of the previously learned rotation, their
swipe movements should accurately match their explicit aim reports.

Method
Participants

Sixty-two individuals participated, with 16 participants each
assigned to the sudden-speed and gradual-accuracy conditions
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whereas 15 were randomly assigned to sudden-accuracy and
gradual-speed conditions. This study was conducted in Spring
2023. Forty-two participants were between 18 and 20 years old,
14 were between 21 and 25, one was between 26 and 30, and five
chose not to provide age information. Forty-five of the participants
identified as female, 14 identified as male, one identified as nonbi-
nary, and one declined to answer.

Paradigm

The experimental task was built using the PsychoPy platform
(Peirce, 2007). The experimental procedures were the same as
Experiment 1 except as noted. There were five phases of the exper-
iment across 12 blocks, with a total of 720 movement trials. After the
baseline phase, the rotation learning phase contained seven blocks
rather than 11 blocks, as needed for the gradual learning of the
60° counterclockwise rotation in increments of 10°, with the last
two blocks at full rotation (participants in the sudden conditions
experienced the full rotation for all seven blocks).

In the “aiming” phase, which followed the seven blocks of rota-
tion learning, participants were asked to report their aiming direction
to hit the target in light of the rotation they had just learned (see
Figure 9). For each of the 16 aiming trials, a target appeared in
one of the same four locations seen during the rotation phase, and
participants first reported their aiming direction by typing in a num-
ber from a circular wheel around the target and then immediately
swiped in the direction of their aim without any feedback (neither
continuous motion feedback nor endpoint feedback). Once partici-
pants covered 50% of the total distance required to hit the target,

Figure 9
Example Aiming Phase Trial in Experiment 3

SAVALIA, COWELL, AND HUBER

they were informed that their swipe was registered and the next aim-
ing trial started.

Following the aiming phase, participants returned to the task of
performing drag-and-drop center-out reaching movements in two
further phases. In the first of these phases, the “unlearning”
phase, participants performed these movements for one block
(64 trials) while under a clockwise 60° rotation (i.e., the opposite
rotation). Finally, in the second of these phases, the “relearning”
phase, to test the prediction that the implicit system should be
slow to unlearn, and thus promote greater retention of the rota-
tion, participants returned to reaching movements under the orig-
inal 60° counterclockwise rotation for two blocks (64 trials per
block).

Results

As with Experiment 1, the online supplemental materials report
additional analyses of signed initial angular error, average signed
error, movement initiation times, total movement times, model aver-
age learning curves, and additional model fit metrics.

Performance After Learning

As seen in the left panel of Figure 10, there was a main effect of
the speed/accuracy emphasis manipulation after the seven blocks
of rotation learning, with smaller errors for the accuracy groups,
F(1, 58) =9.84, p =.002. Additionally, there was a main effect of
rotation type, with participants in the sudden condition making
more accurate motions than participants in the gradual condition,
F(1, 58) =7.01, p =.01. To assess retention of the rotation after a
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Participants were first asked to report the direction they think they should move in order to hit the target.

After recording their aim report, participants were asked to perform a swiping motion in the direction they just
reported. No feedback was provided during this swiping motion. See the online article for the color version of

this figure.
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Figure 10
Accuracy After Learning in Experiment 3
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Note. Left panel: During the final block of rotation, participants in the speed conditions made larger errors than

participants in the accuracy conditions for both the gradual and sudden introduction of rotation, demonstrating
that the speed/accuracy instructions affected behavior as expected. Right panel: Participants in the gradual condi-
tions performed as well during relearning of the rotation (i.e., good retention; aka, minimal unlearning) as they
did at the end of initial rotation learning, whereas participants in the sudden conditions did significantly worse, sug-
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single block of counterrotation learning, errors in the first block of
the final relearning phase were compared to the final block of the ini-
tial learning phase. In line with the larger washout effects for the
gradual conditions of Experiment 1, participants who learned the
rotation gradually appeared to retain information about the original
rotation for a longer period of time: Their relearning accuracy was
nearly the same as at the end of initial learning (i.e., they did not for-
get the rotation), whereas participants in the sudden groups did sig-
nificantly worse with relearning, F(1, 58) =7.45, p=.008. Also,
similar to the washout results from Experiment 1, relearning did
not appear to show a reliable difference between the speed and accu-
racy emphasis groups, F(1, 58) =0.18, p = .66.

To examine whether participants adhered to the speed versus
accuracy instructions, median latency was examined separately for
the time to initiate movement and movement time. When including
all phases of the experiment, there was a significant difference in
median movement initiation time between the speed and accuracy
groups, F(1, 58) =20.32, p < .001, with speed participants initiat-
ing movements faster than accuracy participants. There no main
effect of rotation type, with participants in sudden groups slower
to initiate their movements than participants in the gradual groups,
F(1,58) = 0.75, p = .38. There was also a speed/accuracy emphasis
effect in terms of median movement times, F(1, 58)=10.03,
p =.002, in the expected direction. Thus, in conjunction with the
accuracy results reported above, there was a speed-accuracy tradeoff
when comparing the speed emphasis groups to the accuracy empha-
sis groups.

Participants in the gradual conditions appeared to better retain
rotation information than participants in the sudden conditions, as
expected if learning in the gradual conditions was more procedural.
In other words, forgetting of the procedural information during the
single block of counterrotation learning was not complete, resulting
in smaller differences between relearning and the final block of ini-
tial rotation learning. However, there was no difference between
speed versus accuracy emphasis in terms of this relearning measure.

We assessed knowledge-based and procedural learning with model
comparison of learning curves (see below), similar to Experiments 1
and 2. In addition, the question of whether knowledge-based learn-
ing is explicit and procedural learning is implicit is addressed by
comparing participants’ explicit report of aiming directions to the
swipe motions that were made after each explicit aim report. These
swipe motions were supposed to be in the direction of the explicitly
reported clock hand number. However, if learning is implicit, partic-
ipants might unknowingly swipe in a different direction than the
explicitly reported clock hand number.

As reported in Figure 10 in the online supplemental materials,
there were no differences between the conditions in terms of the
explicit aiming clock hand numbers. More to the point, these aiming
reports were not reliably different than zero in terms of the difference
between the reported explicit aiming direction and the direction of
the on-screen target. On average, participants tended to report the
clock hand number that was directly in line with the on-screen target.
However, close examination of the individual differences suggests
confusion regarding the explicit aiming task, with some participants
reporting aiming directions that were clockwise, as was appropriate
to counteract the previously learned counterclockwise rotation, and
other participants reporting aiming directions that were counter-
clockwise, as if they took the instructions to mean that they should
indicate the nature of the rotation, rather than the manner in which
they sought to counteract the rotation. In light of this confusion,
these explicit aiming numbers were not particularly useful on their
own. Nevertheless, these explicit aiming judgments were informa-
tive in comparison to the swipe motions made immediately after typ-
ing each aiming direction.

If the rotation was implicitly learned, participants might have
retained some of that learning and might unknowingly swipe in an
offset direction during their attempt to indicate the just-reported
clock hand number. We therefore examined the direction and mag-
nitude of the swipe error relative to the explicit clock hand report.
Because the swipes were made without visual feedback, the signed
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angle of the initial swipe direction was used for this analysis (i.e., the
direction of motion as indicated by crossing the 10% threshold).
As seen in Figure 11, for this comparison between explicitly
reported aiming direction versus nonfeedback swipe motion direc-
tion, there was no significant main effect of speed/accuracy instruc-
tions, F(1, 58) =0.01, p = .90, or type of rotation, F(1, 58) = 0.24,
p = .62. However, there was a significant interaction between these
two factors, F(1, 58) =4.52, p = .03, although the swipe errors were
not reliably different from zero for any of the conditions. As seen in
the figure, the effect of the gradual/sudden manipulation was more
pronounced under speed emphasis and was, if anything, slightly
reversed under accuracy emphasis. Thus, participants who had ini-
tially learned the rotation gradually under speed emphasis swiped
somewhat more clockwise than their just-reported aiming direction,
as compared to the participants in the other conditions. In their
attempt to swipe at the just-reported clock hand number, participants
in this condition unknowingly swiped somewhat clockwise, as if
their motor system expected the ongoing existence of a counterclock-
wise rotation. The direction of this interaction is in agreement with
the modeling of the learning curves (Experiments 1 and 3), the wash-
out results (Experiment 1), and relearning results (Experiment 3).
Because this finding reflected a difference from explicit aiming direc-
tion (i.e., participants’ explicit aiming was not affected in the same
way by the initial learning phase), this provides support for the

Figure 11
Aim Report Relative to Swiping Motion Direction for Experiment 3

Aim Report - Swipe Angle

S
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L
T O v Rotation
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o
T -20 4
Speed Accuracy
Emphasis
Note. Participants made swipe motions that were supposed to be toward

the just-entered explicit aiming clock hand numbers (see Figure 9),
although if the rotation had been learned implicitly, they might unknow-
ingly swipe in a slightly different direction in their attempt to indicate the
reported clock hand number. Values above zero indicate that the swipe
direction was clockwise relative to the explicitly reported aiming direction,
as would be the case if the swipe motions were unknowingly made to coun-
teract the previously learned counterclockwise rotation. Any effects of
swiping in the wrong direction were subtle and none of these average values
were significantly different from zero. However, there was a significant
interaction between the sudden/gradual manipulation and the speed/accu-
racy manipulation (p =.03). All error bars are 95% Cls. CIs = confidence
intervals.

conclusion that explicit knowledge-based learning was suppressed
for the gradual introduction of the rotation, but only under speed
emphasis instructions.

Model Comparison of Learning Curves

Similar to the first two experiments, both models were applied to
the rotation phase of the smoothed trial-by-trial average angular error
data, as shown in Figure 12. The other phases were omitted because
they would bias the results in favor of the dual-state model.

As seen in the last column of Table 3 (chi-square test of frequen-
cies across conditions), all model comparison metrics indicate a sig-
nificant difference between the number of participants’ data best
explained by the dual-state model. Specifically, the dual-state
model offers the least advantage in explaining the data from partic-
ipants in the gradual speed condition.

As seen in Figure 13, the pattern across conditions for the best-
fitting parameter values was largely similar to Experiment 1, except
that the gradual-accuracy condition was somewhat more similar to the
gradual-speed condition. The best-fitting parameters for the sudden
group indicated a faster rate of improvement (i.e., the multiplication
of the learning and retention parameters) for the fast state of the dual-
state model as compared to the single state, #(29) = 5.83, p <.001,
whereas there were no reliable differences between these states for
the gradual groups, #29) = —0.9, p =.36. Unlike Experiment 1,
there was no reliable difference between the rate of improvement
for the fast state of the gradual-speed condition versus the gradual-
accuracy condition, #(29) = —0.9, p = .36. This is perhaps not sur-
prising considering that the magnitude of rotation was smaller in
Experiment 3 as compared to Experiment 1 and perhaps the partici-
pants in the gradual-accuracy condition were less aware of the rota-
tion, meaning that their behavior became more similar to that of
the participants in the gradual-speed condition.

Experiment 3 Discussion

Experiment 3 replicated the main results of Experiment 1 in terms
of model comparison, as applied to the rotation learning phase of the
experiment. As with Experiment 1, model comparison indicated that a
single, slow-to-learn state was sufficient to capture the learning curve
in the case of a gradually introduced rotation when under instructions
that emphasized speed over accuracy. In addition, Experiment 3 con-
firmed the longer lasting effects of the gradually learned rotation, as
measured by relearning of the rotation after unlearning the rotation
through a block of trials with the opposite rotation—because unlearn-
ing block was brief, the slow-to-learn procedural system was also slow
to forget, resulting in easier subsequent relearning.

At first blush, these results appear inconsistent with prior work
demonstrating greater savings for explicit learning system as com-
pared to the implicit system (Avraham et al., 2021; Morehead et al.,
2015). However, this highlights the distinction between “savings” ver-
sus “retention.” In a savings paradigm, the initially learned informa-
tion is completely unlearned after an extensive washout period,
followed by assessment of relearning (i.e., savings is faster relearning
of fully unlearned information). In contrast, the current experiment
used a single block of counterrotation learning that was too brief to
support complete unlearning of the original rotation within the
slow-to-learn and slow-to-unlearn implicit system. Thus, the reported
relearning experiment assessed retention (i.e., information that was
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Average Angular Error for Each of the Four Groups of Participants as a Function of Trial for

Experiment 3
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lines indicate the groups that were introduced to the rotation gradually. Top panel: Results for speed groups (dashed
lines). Bottom panel: Results for accuracy emphasis groups. Shaded regions indicate the 95% CI. CI = confidence

interval.

not completely unlearned) rather than savings. This lingering reten-
tion of the original rotation within the implicit system might explain
other reports that the implicit system can support relearning (Coltman
et al., 2019; Yin & Wei, 2020).

Experiment 3 also provides evidence that participants were less
aware of the manner in which they had adapted to the rotation in
the conditions that promoted slow learning; this supports the conclu-
sion that the slow-learning system is more implicit. The evidence is
as follows. Because participants were apparently confused as to
whether the explicit aiming judgments were supposed to indicate
the direction of their correction versus the direction of the rotation,
the explicit aiming judgments were not informative in their own
right. However, immediately after giving each explicit aiming judg-
ment, participants made a swiping motion at the explicit aiming
clock hand number they had just entered. There was a significant

Table 3
Model Comparison Results for Experiment 3 Showing How Often
the Dual-State Model Was Preferred

Comparison Sudden Sudden Gradual Gradual
metric speed accuracy speed accuracy p
v 16 (100%) 15 (100%) 1 (7%) 6 (40%) <.001
AIC 16 (100%) 15 (100%) 1 (7%) 6 (40%) <.001
BIC 16 (100%) 15 (100%) 0 (0%) 2 (13%) <.001
CrossVal 15 (94%) 15 (100%) 3 (20%) 8(53%) <.001
Note. AIC = Akaike information criterion; BIC = Bayesian information

criterion; CrossVal = cross-validation.

interaction between sudden/gradual and speed/accuracy manipula-
tions for these swipe directions as compared to the just-entered
clock hand numbers. Furthermore, the interaction was in the same
direction as the modeling results and washout/relearning results
from Experiments 1 and 3, indicating that the conditions for which
there was less fast learning were also the conditions for which partic-
ipants unknowingly swiped as if to counteract the no-longer-present
rotation. In brief, they were not aware that they were swiping in the
wrong direction. In combination with the modeling results, this
result indicates that participants in the gradual speed condition
were less aware of the manner in which they had learned the rotation,
suggesting that explicit aiming was suppressed for this condition.
The finding that the gradual introduction of rotation can suppress
explicit strategic aiming replicates prior work (Albert et al., 2022;
Yin & Wei, 2020), but, in addition, Experiment 3 demonstrates
that this primarily occurs with speed emphasis rather than accuracy
emphasis.

General Discussion

Prior studies found that visuomotor adaptation occurs automat-
ically to a change (e.g., a rotation) in the mapping between the
required motor direction and the on-screen motion of visual targets
in a reaching task (Izawa & Shadmehr, 2011; Kagerer et al., 1997;
McDougle & Taylor, 2019; McDougle et al., 2015). Such implicit,
procedural learning appears to be obligatory (Heuer & Hegele,
2008; Heuer et al., 2011) and slowly learned (McDougle et al.,
2015; Smith et al., 2006), resulting in slow extinction of the
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Figure 13

The Multiplication of the Best-Fitting Learning Rate (B) and
Retention Rate (A) Parameter Values, as a Proxy for the Rate of
Accuracy Improvement, for Each of the Three States (the Single
State, the Fast-Learning State, and the Slow-Learning State) as
Applied to the Rotation Learning Phase of Experiment 3
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Note. The general pattern is similar to that of Experiment 1, except that

both of the gradual conditions show some evidence that the fast-learning
system was suppressed (for both of these conditions, the rate of improve-
ment when fitting the single-state model was comparable to the rate of
improvement for the fast-learning system when fitting the dual-state
model). Error bars are 95% Cls after applying the correction suggested by
Cousineau (2005). CIs = confidence intervals. See the online article for
the color version of this figure.

newly learned visuomotor mapping when it is subsequently
removed. In contrast, explicit, knowledge-based learning can pro-
duce accurate motions after just a few trials and can be quickly
modified when the rotation is eliminated (McDougle et al., 2015;
Smith et al., 2006). Thus, theories that include both slow learning
and fast learning on every trial provide a good explanation of
visuomotor adaptation behavior (Smith et al., 2006; Taylor &
Ivry, 2011).

Despite the success of dual-state models and theories that
include both learning systems, recent results indicate that explicit,
knowledge-based learning (e.g., strategic aiming) can be sup-
pressed when the rotation is gradually introduced (Albert et al.,
2022; Yin & Wei, 2020), although the extent of this suppression
was not quantified, and the conditions required for suppression
were not fully explored. The current study used model comparison
to ask whether this suppression was absolute, in which case only
the implicit procedural system would be engaged. The current
study also places important caveats on prior results, providing a
more complete account of the conditions that can suppress explicit
knowledge-based learning. Experiments 1 and 3 indicate that this
suppression occurs to a lesser extent when instructions emphasize
accuracy rather than speed. Experiment 2 found that this suppres-
sion requires on-screen continuous movement feedback. In the
absence of continuous feedback, all conditions appeared to reflect
knowledge-based learning. Collectively, these results indicate

SAVALIA, COWELL, AND HUBER

that knowledge-based learning can be fully suppressed (i.e.,
behavior is best explained by implicit procedural adaptation with-
out any contribution from explicit knowledge-based learning)
when the visuomotor perturbation is small (gradually introduced),
in situations where there is immediate visual feedback for the
motion trajectory, and where the emphasis is to move quickly.
Thus, when participants were encouraged to “leap before you
look,” learning appeared to reflect only the slow, procedural learn-
ing system.

Our use of visual feedback in combination with accuracy empha-
sis instructions is relatively unique in the visuomotor adaptation lit-
erature. This combination resulted in slow, careful movements in
which participants made online course corrections (e.g., see
Figure 2B). Such situations likely occur in real life (e.g., slow and
error-prone progress when cutting one’s own hair in the mirror for
the first time), and our results suggest that this situation selectively
enhances explicit knowledge-based learning even if the visual per-
turbation is minor. However, under speed emphasis with the same
minor change of the visuomotor mapping (e.g., a video game with
ajoystick controller held at a slight angle), explicit knowledge-based
learning is suppressed.

Because our experiments involved both slow, careful movements
and fast, inaccurate movements in different conditions, rather than
using initial angular direction error as others have done, we adopted
an error measure that averaged across the entire motion trajectory
(see also Kagerer et al., 1997; Stillman et al., 2018) to consistently
assess motion accuracy despite different motion strategies. The
more traditional measure of initial angular direction error produced
similar qualitative results to this trajectory-averaged measure (see
the online supplemental materials), but initial angular direction
proved to be less reliable (lower signal-to-noise ratio), particularly
at the level of the individual trial data, which is the level at which
the learning curve models were applied.

Our conclusions regarding the extent of suppression of
knowledge-based learning in different conditions were primarily
based on fitting both single and dual-state models to the initial
learning curves, asking whether learning was better described by
a single learning process or whether there was both rapid initial
learning as well as a slower tail of learning. However, this approach
could be questioned considering that the dual-state model was
developed for its ability to capture unlearning and relearning rather
than just initial learning (Smith et al., 2006). We did not include
unlearning/relearning in the model fits because doing so would
bias the results in favor of the dual-state model (these subsequent
phases involve the sudden removal or sudden reintroduction of
rotation, which would release knowledge-based learning from sup-
pression). Nevertheless, examination of the unlearning/relearning
phases of the experiment provides converging support for the mod-
eling results. Model comparison indicated that a single, slow-
learning system was sufficient to describe rotation learning behav-
ior in the gradual-speed conditions of Experiments 1 and 3.
Correspondingly, this condition also exhibited a greater aftereffect
during the unlearning washout phase (Experiment 1) and greater
retention of the rotation during relearning (Experiment 3), as
would be expected if initial learning was primarily based on the
slow-to-learn yet slow-to-forget implicit, procedural learning
system.

Fast versus slow learning does not necessarily imply explicit
versus implicit learning (Ruttle et al., 2021). To address this
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concern, Experiment 3 tested for the presence of explicit learning
by collecting explicit aiming judgments in terms of clock hand
numbers as well as swiping motions made at the just-given
clock hand numbers. Supporting the claim that the slow-learning
system is more implicit, the swiping motions systematically dif-
fered from the explicit aiming judgments in a manner that was
similar to the modeling results and washout/relearning results:
The conditions that tipped things toward greater single-system
slow learning were also the conditions that produced more errone-
ous swiping motions as if to adjust for the previously learned rota-
tion (even though there was no rotation at this point in the
experiment and the instructions were to swipe at the just-reported
clock hand number). This is not to say that participants were
unaware that there was a rotation in the initial learning phase.
During rotation learning, they could clearly see which direction
their hands were moving to hit the target. Instead, this indicates
that when the rotation was learned gradually with visual feedback,
under instructions to move quickly, participants were less aware
of the manner in which their motor system had adapted to this
novel visuomotor mapping.

Model-Based and Model-Free Learning

Implicit, procedural, slow learning versus explicit, knowledge-
based, fast learning in visuomotor adaptation is closely related to dif-
ferent kinds of computational reinforcement learning models termed
“model-free” versus “model-based,” respectively (Daw et al., 2005;
Savalia et al., 2016). Put simply, model-free is trial-and-error
learning-by-doing, whereas model-based involves mental simula-
tion of possible outcomes before choosing between action alterna-
tives. As might be expected, model-free learning is very slow and
inflexible whereas model-based learning more quickly adapts to
changes in the environment. Furthermore, because model-based
learning requires some form of mental simulation to calculate the
subsequent outcomes that may arise from different actions (e.g., dif-
ferent movement directions), it follows that an emphasis on speedy
action rather than accuracy may promote greater use of model-free
learning. Our results mesh with this literature, suggesting that a
model-free system that slowly learns inflexible representations can
dominate the learning of a gradual motor adaptation under condi-
tions of speed emphasis.

Analogous to the dual-state model, it has recently been proposed
that model-free and model-based learning can operate in a coordi-
nated fashion, perhaps with model-based learning serving as the
offline teacher of the model-free system (Gershman et al., 2014;
Kool et al., 2016). When applying the dual-state model to learning
curves that appear to require both states, the fast-learning state rap-
idly learns the rotation, explaining the initial rapid reduction in
error. But after many learning trials, the slow-learning state eventu-
ally learns the rotation and is able produce fast, accurate movements
without any help from the fast-learning state. Once this happens,
the fast-learning state loses its knowledge of the rotation because
there is no longer enough movement error to maintain its estimate
of rotation considering that the fast state is also fast to forget the
rotation. Thus, there is a transition of information regarding the
rotation from the fast- to the slow-learning state. This transition
of information is similar to the proposal that the model-based sys-
tem can serve as the teacher of the model-free system. Our results
indicate that the fast-learning, knowledge-based system is not

always needed to explain behavior. By analogy, this suggests that
some learning situations (e.g., a need for fast decisions during grad-
ual change of the environment) may short-circuit explicit, model-
based learning. However, even when model-based learning is
unavailable, the model-free system continues to learn through
direct experience.

Conclusions

In this article, we explored the role of procedural versus
knowledge-based, explicit learning in adaptation to novel motor
mappings. While standard models of motor learning suggest that
humans need both procedural and knowledge-based components
to successfully adapt to new motor mappings, we show that when
the new motor mappings are introduced gradually, under time pres-
sure, and with online feedback, participants may be able to adapt
without using knowledge-based learning.
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