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a  b  s  t  r  a  c  t

We  describe  how  computational  models  can be useful  to  cognitive  and  behavioral  neuroscience,  and  dis-
cuss some  guidelines  for deciding  whether  a model  is  useful.  We  emphasize  that  because  instantiating  a
cognitive  theory  as a computational  model  requires  specification  of an  explicit  mechanism  for  the  func-
tion  in  question,  it often  produces  clear  and  novel  behavioral  predictions  to guide  empirical  research.
However,  computational  modeling  in  cognitive  and  behavioral  neuroscience  remains  somewhat  rare,
perhaps  because  of  misconceptions  concerning  the  use  of  computational  models  (in  particular,  connec-
tionist  models)  in  these  fields.  We  highlight  some  common  misconceptions,  each  of  which  relates  to
ehavioral neuroscience
ognitive neuroscience
evels of organization
roblem space
iological plausibility
arsimony

an aspect  of  computational  models:  the  problem  space  of  the  model,  the  level  of  biological  organization  at
which  the  model  is  formulated,  and  the  importance  (or  not)  of biological  plausibility,  parsimony,  and  model
parameters.  Careful  consideration  of these  aspects  of  a model  by  empiricists,  along  with  careful  delin-
eation  of them  by  modelers,  may  facilitate  communication  between  the  two  disciplines  and  promote  the
use  of  computational  models  for guiding  cognitive  and  behavioral  experiments.

© 2012  Elsevier  Ltd.  All  rights  reserved.

odel parameters

. Introduction

The statistician George E.P. Box famously declared that “all mod-
ls are wrong, but some models are useful” (Box and Draper, 1987).
n the cognitive and behavioral neurosciences – both relatively
oung disciplines in which few theories are well-established – this
xiom is truer than ever. But it is precisely where well-established
heory is lacking (where the models are most “wrong”) that build-
ng models is most useful to scientific progress. In this review, we
hampion the use of concrete computational models in the search
o understand the links between brain and behavior. We  do so first
y describing how such models can be useful when they are at their
est, and second, by laying out a framework for deciding whether

 model is useful in any given case.
In recent years, computational modeling has emerged as an

xtremely powerful tool in neuroscience. At a fine-grained biolog-
cal scale, it can help to elucidate many diverse aspects of neural
rocessing; a few recent examples include models that examine

he characteristics of photon-sensitive ion channels (Foutz et al.,
012), the nature of temporal summation at transient receptor
otential channels (Petersson et al., 2011), and the information

∗ Corresponding author.
E-mail address: rcowell@ucsd.edu (R.A. Cowell).

149-7634/$ – see front matter © 2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.neubiorev.2012.08.008
processing advantages conferred by the different spiking and burst-
ing modes of pyramidal cells in CA1 (Pissadaki et al., 2010).
Low-level, realistic models of the information processing effected
by neurons can provide critical insights into the consequences of
known neurobiological details for the emergent properties of neu-
ral networks. However, computational modeling in neuroscience
can be extremely valuable not just for low-level neuroscience, but
also at higher levels of analysis where it can, for example, help
to elucidate the links between brain and behavior. Some models
that speak to behavioral phenomena are formulated at an inter-
mediate level of analysis, employing neurobiological details such
as realistic simulations of neural firing (Knight, 1972) and empiri-
cally observed mechanisms of neural plasticity such as long-term
potentiation (LTP) (e.g., Sohal and Hasselmo, 2000; Bogacz et al.,
2001) and adult neurogenesis (e.g., Aimone et al., 2009; Becker et al.,
2009). Others are couched at a biological scale that is coarser still,
a level which we will refer to as the ‘anatomical systems’ level.
We use this term to describe models that provide an explanation
of the function of a brain structure (or set of structures) that is
defined by anatomical boundaries, such as perirhinal cortex (e.g.,
Cowell et al., 2006), or anterior cingulate cortex (e.g., Braver et al.,

2001). In general, such models make fewer assumptions regarding
low-level synaptic mechanisms or the details of neural processing,
tending instead to focus on more abstract properties such as the
type of representations contained in the brain region and the

dx.doi.org/10.1016/j.neubiorev.2012.08.008
http://www.sciencedirect.com/science/journal/01497634
http://www.elsevier.com/locate/neubiorev
mailto:rcowell@ucsd.edu
dx.doi.org/10.1016/j.neubiorev.2012.08.008
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echanisms by which the region learns or processes the represen-
ations, associates them with certain responses, or makes decisions
bout them.

Across these different levels of theorizing, computational mod-
ling is popular and prevalent in lower-level neuroscience, whereas
ore abstract (but still brain-based) computational models of

ognition are less frequently used in partnership with empirical
esearch, at the level of cognitive neuroscience. Yet, as we  will
uggest in this article, models formulated at the anatomical sys-
ems level can be as useful for theorizing about behavior as the
ower-level models are for theorizing about neural information
rocessing. Computational models of cognition and behavior facil-

tate the development of concrete hypotheses with well-specified
ssumptions. Model simulations then aid empirical investiga-
ions of behavior by distinguishing between viable and non-viable
ypotheses ahead of time, narrowing the field of potential investi-
ation. Moreover, instantiating a cognitive or behavioral theory as

 computational model requires specification of an explicit mecha-
ism for the function in question, which often produces clear, novel,
nd even counter-intuitive predictions for behavior. When simu-
ations produce predictions that are novel or counter-intuitive, the

odel may  be more easily distinguished from alternative, compet-
ng theories.

Despite these advantages, the symbiotic coupling of computa-
ional modeling and empirical behavioral neuroscience is exploited
omewhat rarely. One possible reason for this is that empiricists
an sometimes harbor certain misconceptions regarding computa-
ional models. These misconceptions can sometimes be caused by
nadequate or incomplete communication of the modeling goals
y modelers. But we believe that miscommunication between
esearchers from these two quite different academic disciplines
eed not be inevitable. We  highlight some common misconcep-
ions and note that each can be related to a particular aspect of

 computational model, such as the identification of the prob-
em space of the model, the level at which the model is couched,
nd the importance (or not) of biological plausibility, parsimony,
nd model parameters. Accordingly, careful and explicit consider-
tion of these aspects of a model by empiricists, along with careful
nd explicit delineation of these aspects of a model by model-
rs, may  facilitate productive communication between the two
isciplines, promoting the use of computational models to guide
xperiments.

Broadly, this article will justify and advocate the use of com-
utational modeling in cognitive and behavioral neuroscience. Of
ourse, there are many successful and influential theories in this
omain that are formulated in terms other than computational
e.g., verbal, diagrammatic); we do not propose that there is no
lace for them. Rather, we argue that computational theoriz-

ng is a useful method that is complementary to other forms of
heorizing and, in particular, to empirical investigation (see also
owell et al., 2011). We  restrict our discussion largely to the set
f computational models that can be described as connectionist
odels concerned with cognitive processes occurring in the brain.

his restriction excludes two classes of neural network model:
rst, models within the domain of artificial intelligence that aim

 legitimately – to build a useful machine without concern for
hether the processes contained therein are related to cognitive
echanisms in biological organisms, and second, ‘pure’ psycho-

ogical models that are unconcerned with how the algorithms
hey propose as a model of cognition might be implemented in
iological tissue, for example, cognitive-level mathematical mod-
ls and certain connectionist models (e.g., the model of word

ecognition and naming proposed by Seidenberg and Mcclelland
1989)). Our intended audience includes two groups of researchers:
rst, empiricists in the field of cognitive or behavioral neuro-
cience, and second, scientists with a specialized theoretical or
vioral Reviews 36 (2012) 2371–2379

mathematical background who  would like to adapt their expertise
to address empirical problems in an area of cognitive or behavioral
neuroscience.

2. The field of cognitive neuroscience

Thanks to recent technological developments, cognitive neuro-
science has at its disposal a wealth of powerful experimental tools
for mapping function onto brain. The various techniques available
for measuring brain function operate at a range of spatial resolu-
tions (from patch clamp recordings to magnetoencephalography
(MEG)), across a range of timescales (from single and multi-unit
electrophysiology, through in vivo infusion of pharmacological
agents, to naturally occurring lesions in humans), and offer a variety
of different advantages, such as non-invasiveness combined with
reasonable spatial resolution (e.g., functional magnetic resonance
imaging (fMRI)), temporal precision combined with moderate cost
(e.g., electroencephalography (EEG)), or sensitivity to specific vari-
ables of interest (e.g., in vivo monitoring of neurotransmitter levels
through microdialysis). Moreover, in combination across a range of
species, these techniques offer an unprecedented level of temporal
and spatial resolution for the study of the circuitry and dynamics
of the brain. With such a variety of techniques available, there may
be a temptation to use them to generate as much data as possible,
as quickly as possible. However, conducting empirical investiga-
tions of cognition from the stand-point of a well-specified theory
can speed our acquisition of understanding immeasurably. Well-
specified theories can give concrete predictions for experiments,
are falsifiable and are explicit enough to be tested and refined,
lending themselves to a systematic process of development into
an ever more accurate model (Popper, 1999). The process of test-
ing and refinement narrows down the number of experiments
required in the investigation, focuses the research direction and
encourages thorough, mechanistic understanding of the underly-
ing processes. This theory-driven approach contrasts with one in
which data is generated in a more piecemeal fashion by testing
stand-alone hypotheses that do not form part of a comprehen-
sive theory. Hypotheses that may  be described as ‘stand-alone’
have typically been derived intuitively according to prior empirical
results, rather than according to a mechanistic account of cognition
that offers an explanation for the observed effect (and not sim-
ply a description of it). Testing such stand-alone hypotheses might
guide us toward a more detailed characterization of a cognitive pro-
cess or a deficit in a patient population; in this way, a data-driven
approach can advance our intuitive understanding and may suggest
important improvements in clinical treatment or diagnoses. How-
ever, progress in truly understanding a cognitive process or clinical
deficit is likely to be incremental unless the hypothesis is part of a
fully developed theory that links brain to behavior in a mechanistic
way.

That is not to say that a bottom-up approach to investigat-
ing cognition should never be taken. Indeed, there are persuasive
arguments in favor of an interactive or co-evolutionary strategy,
which combines bottom-up (data-driven) and top-down (theory-
driven) research strategies (e.g., Churchland and Sejnowski, 1992;
McClelland et al., 2010). Top-down, or ‘function-first’, strategies
begin with abstract principles concerning cognitive functions and
only later attempt to map  these principles onto neural processes
(Griffiths et al., 2010). Bottom-up, or ‘mechanism-first’, strategies
begin with knowledge of the mechanisms implemented in neurons,
and use them to generate theories of psychological phenomena,

for example, figure ground segregation or selective visual atten-
tion (Koch, 1993). A co-evolutionary research strategy can combine
advantages from each, such as the tendency of a data-driven
approach to generate new ideas about cognitive mechanisms
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hrough the discovery of intricate or counter-intuitive biological
etail, and the capacity of a top-down approach to guide empirical
esearch in a focused manner. An interactive research strategy is
ften adopted in connectionism, by exploiting principles of infor-
ation processing consistent with biological properties of the brain

n the search for the abstract, algorithmic processes underlying cog-
ition and behavior (Mcclelland and Plaut, 1993; McClelland et al.,
010).

. The approach of computational modelers

Computational modeling as a tool for theorizing in cognitive
euroscience has many advantages, which have been eloquently
escribed by many authors (Sejnowski et al., 1988; Mcclelland and
laut, 1993; O’Reilly, 1998; McClelland et al., 2010). We  summa-
ize those advantages briefly, here. Although models from a variety
f traditions possess the desirable properties we discuss here, we
ocus mainly upon connectionist models in this review because
hey are of particular utility to cognitive and behavioral neuro-
cience.

First, instantiating a theory in a computational model forces the
heorist to specify the details of that theory; in writing a computer
rogram, the assumptions, representations and operations of the
heory are given as concrete statements. Once written, the theory
s rigorously laid down and fully specified.

Second, computational modeling can reveal underlying com-
lexities and unexpected predictions of a theory that may not be
ealized without simulations. At the outset of building a computa-
ional model, the theorist has likely considered the assumptions
nderlying the theory and should therefore have a good idea
f the predictions that will emerge. However, there may  be
dditional, unappreciated assumptions in the verbally or diagram-
atically outlined theory that are revealed only when the code

s written. Moreover, the consequences of certain assumptions
whether those assumptions were apparent from the outset or
ot) might be difficult to determine a priori, particularly when
hose consequences are the results of complex dynamics involv-
ng distributed representations. Allowing a simulation to do the
umber-crunching that follows from the theory can reveal con-
equences of the theory’s assumptions, in terms of predictions
or behavior, that the theorist him- or herself might not have
nticipated. That is, the complexity of a model can block the
odel builder from appreciating the consequences of its underly-

ng assumptions, but running simulations can reveal them, helping
s to understand our own theories more fully. An example of this

s given by Huber et al. (2002),  who tested novel and unexpected
redictions of a computational model of temporal perception. The
odel, first presented in Huber et al. (2001),  accounted for short-

erm priming effects, in which the brief presentation of a stimulus
efore its subsequent appearance as a to-be-detected target either
aused performance to improve (if the prime was  presented only
riefly) or to decline (if the prime lasted longer). The model
ccounted for this phenomenon by assuming that an observer can
ecome confused about the source of incoming information when
vents are closely spaced in time, but can also implement ‘dis-
ounting’ of evidence for sources of perceptual information that
re known to have recently been active, to counteract the effects
f source confusion. The model is a probabilistic Bayesian account
f temporal perceptual processing, but it operates upon stimu-
us representations that are “distributed” in a connectionist sense,
apturing important stimulus properties such as feature-based

imilarity. In running probabilistic simulations using thousands of
xamples of feature-based stimulus representations, the authors
evealed important limitations to the interaction between the two
echanisms that were assumed to underlie temporal perception:
vioral Reviews 36 (2012) 2371–2379 2373

‘source confusion’ and ‘discounting’. In sum, although the theoreti-
cal framework seemed at the outset to imply that source confusion
could always be offset by discounting when the prime stimulus was
presented for a long duration, this was  discovered not to be the case.
Simulations predicted that if the target stimulus was  presented
very briefly, or if the target and prime stimuli were perceptually
weakly related, discounting was  unable to counteract the effects of
source confusion. These predictions were critical in setting apart
the model of Huber et al. (2001) from a competing theory of short-
term priming authored by Ratcliff and McKoon (2001),  and were
confirmed empirically in Huber et al. (2002).  Interestingly, because
this model employed distributed, connectionist-like representa-
tions it lent itself naturally to a neural network implementation,
which tied the source-confusion and discounting hypotheses to
neural mechanisms, linking its account of behavior to the brain
(Huber and O’Reilly, 2003).

A third advantage of computational models, particularly those
in the connectionist tradition, is that they are necessarily mechanis-
tic. A connectionist model requires representations of both inputs
and outputs and a set of operations to transform those inputs into
outputs, all of which are formulated according to the hypothesized
mechanism underlying cognition. Some verbal theories might be
subject to the criticism that their assumptions and operations are
slippery because they are not mathematically specified: the verbal
description of a cognitive process can mean different things in dif-
ferent situations. This can lead to excessive flexibility of a model
in accounting for data and may  render it unfalsifiable. Computa-
tional models, though not foolproof in this regard, are less likely to
be excessively flexible because they are constrained by a concrete
mechanism that is instantiated in computational code. Other ver-
bal theories might give the impression of mechanistic explanation
when in fact they are just descriptive. Computational models can
help to flesh out such verbal theories, providing a mechanism for
the processes described. The model of facial expression recognition
presented by Dailey et al. (2002) constitutes a good example of this.
There existed a verbally stated theory of facial expression recog-
nition (Etcoff and Magee, 1992) that proposed that expressions
are subject to “categorical perception” (CP), that is, the percep-
tual mechanisms underlying expression recognition are tuned to
sharply defined emotion categories such that any given stimulus is
mandatorily assigned to one or other category. The EMPATH model
of Dailey et al. showed precisely how CP might emerge from cortical
representations, by implementing the task with a pattern classifier
that incorporated biologically plausible representations of visual
stimuli.

A fourth advantage specific to connectionist computational
models is that they commonly employ distributed representations,
in which stimuli that share behaviorally relevant properties typ-
ically elicit activation across overlapping subsets of units in the
network. This can give rise to interesting and useful properties
of representations, such as generalization of learned responses to
novel items, when those items share properties with stimuli that
have been experienced previously (Hinton et al., 1986). In addition,
the use of distributed representations in computational modeling
is likely to aid convergence upon a theory in which the infor-
mation processing operates in a brain-like manner, since there
is evidence that distributed representations are used by biologi-
cal neural networks in the hippocampus and other cortical areas
(Zhang et al., 1998; Kilgard and Merzenich, 1999).

4. Combining the two  approaches
Considering the advantages of conducting empirical research
that is theory-driven, and the advantages of computational model-
ing as a theoretical tool, the combination of empirical behavioral
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Fig. 1. Levels of biological organization. Schematic illustration of the levels of bio-
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euroscience and modeling should provide an extremely fruit-
ul research approach. An example of this profitable symbiosis
s provided by an investigation of anterior cingulate cortex
ACC) in speeded response tasks by Jones et al. (2002).  A
conflict-monitoring’ theory of ACC function was instantiated in a
onnectionist network that successfully simulated behavioral per-
ormance on three different tasks, as well as fMRI activation of
he ACC during performance of each task (Braver et al., 2001).
he model hypothesized a functional role of ‘conflict detection’ in
peeded response tasks, and drew a convincing link between that
ognitive process and the activation of the ACC. In addition, prior to
his modeling study there existed an apparent discrepancy between
he brain imaging and behavioral data that had been difficult to rec-
ncile with previous instantiations of the ACC conflict-monitoring
ypothesis: although ACC activity was equivalent across three
ifferent speeded response task paradigms (2-alternative forced
hoice (2AFC), go/no-go and oddball), modulations in accuracy
y target-frequency were seen in only the two-response speeded
esponse task paradigm (2AFC), and not in either of the one-
esponse speeded response task paradigms (go/no-go and oddball).
he model reconciled these findings by demonstrating a plausible
echanism whereby conflict-monitoring in ACC plays a critical role

n task performance for all three paradigms, but differences in overt
ehavior between two- versus one-response speeded response task
aradigms are generated downstream of conflict detection. Thus,
he use of computational modeling helped to understand counter-
ntuitive effects in the empirical data, and in turn, the empirical
ata were used to refine the theory.

If the fields of cognitive neuroscience and connectionism can be
ombined so effectively, why is this combination not more often
een? Largely, we would argue, because of a problem with com-
unication.
In order to iron out misunderstandings between the model

uilder and the critic, we must decide on the expectations that each
arty can reasonably hold. On the one hand, what can cognitive and
ehavioral neuroscientists evaluating a model reasonably demand,
nd what should they not expect? On the other hand, in which
ays is it critical for modelers to define the scope and aims of their
odel, and how best should they communicate these properties?
ur attempt to facilitate communication between these two  differ-
nt fields is in the spirit of Churchland and Sejnowski (1992).  We
ill address five areas of potential miscommunication: the level

f biological organization at which the model attempts to address
ata, the problem space of the model, the biological plausibility of
he model, the issue of parsimony, and the importance of param-
ters. For each area, we will describe how misconceptions can
rise. In each case, we will outline how we believe computational
odelers must clearly define their position in order to avoid such
isconceptions, and highlight some considerations for the appro-

riate evaluation of computational models by both empiricists and
odelers alike. In doing so, we hope to reveal a set of guidelines

hat may  be used for deciding whether a given model is useful, or
oo wrong to be useful.

. Five critical properties of computational models

.1. Levels of biological organization

In neuroscience, the level of biological organization of a theory
efers to the scale of the biological components that feature in the
xplanation that the theory offers. For complex organisms, there
xists a hierarchy of levels of biological organization that emerges

rom the structure of the organism itself: an individual animal pos-
esses many organs, including a brain; brains are composed of lobes
nd anatomically distinct systems (e.g., the parietal lobe, or the hip-
ocampal system); each anatomical system contains networks of
logical organization at which a problem may  be studied. After Churchland and
Sejnowski (1988).

Adapted from Cowell et al. (2011).

neurons; neurons contain axons, cell bodies, ion channels and so
forth; these components in turn carry out their function via molec-
ular interactions at a still smaller scale. Churchland and Sejnowski
(1988) discuss the levels of organized structure at which research
can be conducted in neuroscience, ranging from molecular inter-
actions within and between cells to mechanisms at the level of the
central nervous system (CNS) as a whole (see Fig. 1).

The mechanisms of cognition may  be investigated at any of the
levels of biological organization shown in Fig. 1. Often, explanations
of a single cognitive phenomenon can exist simultaneously at sev-
eral levels of biological organization. For example, memory might
be explained both at the level of individual synapses – for example
in terms of LTP – and at the level of brain systems – in terms of
the multiple interacting anatomical systems (e.g., visual and audi-
tory cortices, hippocampus and prefrontal cortex) that contribute
to the encoding of a rich episodic memory trace. Moreover – unlike
Marr’s levels of analysis (Marr, 1982), which he argued to be for-
mally independent – the mechanisms that operate at each level
of biological organization are far from independent; for example,
the manner in which neurons within a network interact can depend
critically on the types of synapses those neurons possess. Given that
the different levels in the hierarchy can interact, and that cognitive
phenomena can be understood at multiple levels, neuroscientific
theories can sometimes be usefully couched across a small range
of biological levels rather than strictly adhering to a single level.
Either way, it is vital that both modelers and evaluators of models
consider the hierarchy of organizational levels carefully: knowing
where in the hierarchy of levels a model of cognition is situated
is fundamental to the proper understanding and evaluation of the
explanation offered by that model.

Misunderstanding of the organizational level at which a model
is pitched can lead to inappropriate demands on a model. Those
appraising computational models need to be especially mindful
in deciding when it is appropriate to forgive simplifying assump-
tions of the independence of levels (e.g., modeling a cognitive
phenomenon at the systems level without including detail from
the synaptic level), and when it is appropriate to insist on inter-
action between levels. A hypothetical example is given by the
connectionist model of Ashby et al. (1998),  COVIS, which offers a
brain-based account of category learning. This model is formulated

at the anatomical-systems level. It possesses several components
that perform distinct cognitive goals such as ‘computing a high-
level visual representation’, ‘associating a stimulus with a category
response’ or ‘rule selection’, and each component corresponds to
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Fig. 2. Problem space. Two  illustrative examples of the problem space that may  be
adopted by a computational model. Left: a model that attempts to deal with many
phenomena (e.g., categorization, priming and recognition memory) at only one level
of  biological organization – systems. Right: a model that addresses a very specific
cognitive phenomenon but attempts to explain its mechanism at many levels of
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n anatomically defined brain region, such as extrastriate (infe-
ior temporal, IT) cortex, striatum or anterior cingulate cortex. The
odel makes predictions for category learning in both healthy par-

icipants and patient populations. The architecture and the chain of
ognitive events assumed by the model are strongly inspired and
upported by neuropsychological and neuroanatomical data, but
he model does not attempt to account for low-level neurobiolog-
cal details such as neural firing patterns. For example, no attempt
s made to explain how the visual representations are constructed
y neurons in IT cortex, because the primary aim of the model is
o investigate how stimulus representations in this region (once
onstructed) participate in category learning through interaction
ther brain regions. The fact that stimulus representations exist
n IT cortex is well known, and their construction is the subject
f a great many other models addressing the equally formidable
roblem of object recognition (e.g., Fukushima, 1980; Wallis and
olls, 1997; Dailey and Cottrell, 1999; Riesenhuber and Poggio,
999; Serre et al., 2007), hence COVIS justifiably assumes this stage
f processing to be complete. It would therefore be inappropriate
o insist that the COVIS model include low-level biological details
uch as the repetition-sensitive responses of IT neurons (e.g., Miller
t al., 1991) in its mechanism. Repetition-sensitive responding is a
euron-level mechanism, and COVIS is couched at the anatomical-
ystems level. In this hypothetical example, such an inappropriate
emand might stem from one of two sources. Either the model
valuator has misunderstood the organizational level at which the
odel is couched, or they have understood the level of the model

ut are insisting that the model should additionally account for
ata from a different level and simulate the interaction between
hose levels. In the second case, the error would lie in prema-
ure insistence upon a multi-level explanation: when a problem
emains poorly understood at the anatomical systems level alone,
t is acceptable to model only that level of biological organization in
n attempt to account for unexplained data. Indeed, building a sim-
le, clear theory that accounts for the anatomical-level data is an

mportant and necessary first step in scenarios such as this. Another
eason for excluding lower-level details (such as repetition sensi-
ive responses of neurons) is that they are not a necessary part of the

echanism by which the behavior (category learning) is explained.
o include unnecessary computational detail can obscure the key
ssumptions driving the critical behavioral effects.

The risk of such misunderstandings arising is greatly reduced if
he modeler takes care to make clear exactly at which level, or lev-
ls, of biological organization the explanation of the model is aimed.
f the model spans more than one level, the author must specify

hether it uses data from lower levels of organization according to
trict constraints, or simply as an inspirational guide to the kind of
rocessing that might operate at a higher level. Choice of the level
f biological organization of a model is also relevant to the idea of
roblem space, which we discuss next.

.2. Problem space

The problem space of a model defines the intended scope of the
odel’s explanatory power. In neuroscience, it can be thought of

s a two-dimensional space, as illustrated schematically in Fig. 2.
he two dimensions are the number of phenomena (in the present
iscussion, cognitive phenomena, e.g., visual discrimination, recog-
ition memory, spatial attention) that a model attempts to explain
nd the number of levels of organization at which it attempts to
xplain them.

Problem space can be constrained enormously by choosing a

articular scale, or level of biological organization, at which to
uild the model. Constraining a model to one or a few biologi-
al levels is advantageous because details from other levels may
e irrelevant and would reduce the clarity of the model’s account.
biological organization.

Adapted from Cowell et al. (2011).

Building a complex model that includes all known biological detail
can lead to the simulation being as poorly understood as the ner-
vous system itself (Sejnowski et al., 1988). This principle applies
to many branches of science: a useful meteorological model that
makes weather forecasts or predicts the formation of air pollut-
ants does not need to include the energetic states of individual
water molecules in the atmosphere. However, the choice of one
biological level need not preclude the model from being sensitive
to the levels below and above; drawing inspiration or constraints
from details of nearby levels can greatly facilitate development of
the hypothesized mechanisms at the chosen level. A good exam-
ple of this is offered by ACT-R, a framework that was originally
proposed as a purely cognitive architecture (Anderson, 1993); that
is, it initially explained behavior at the abstract, psychological level
without reference to biology. However, recent development of ACT-
R has exploited fMRI, examining the activation of different brain
regions (defined at the anatomical systems level, e.g., motor cor-
tex, fusiform gyrus and anterior cingulate cortex) to assess the
validity of ACT-R’s assumptions about the partitioning of cogni-
tive processes into separate modules (Anderson, 2007; Anderson
et al., 2008). In this way, Anderson and colleagues have directed the
development of a cognitive-level theory of problem solving (and
more generally, a theory of cognitive architecture) by using brain
imaging to reveal the properties of a lower level – the anatomical
systems level – in order to constrain the theory.

In contrast to the need for constraint over levels of organiza-
tion, it is generally advantageous for a model to account for as
many related phenomena (at the same level of organization) as
possible. However, in order to define a computationally tractable
problem, constraining the problem space to a limited number of
phenomena may  be necessary. The pursuit of too large a prob-
lem space can produce a model that is not at all parsimonious.
Additionally, the problems in cognitive neuroscience addressed
by connectionist models are often poorly understood; attempting
to model several phenomena might reduce the clarity of the key
demonstration made by the model, or might simply prove pro-
hibitively ambitious. To provide a concrete example, consider the

construction of a model of a very specific aspect of cognition such
as visual recognition memory. Such a model needs to explain how
an animal can make a judgment of familiarity about an object that
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s presented to it. This explanation can be achieved by simulating
he development of a stimulus representation with visual expe-
ience so that it looks familiar the second time the network sees
t. The model need not also explain everything else that an animal
oes in a recognition memory task, such as deciding that the peanut
eward is worth performing for, planning an arm movement, exe-
uting the motor command to reach out and indicate that the object
s familiar, and so on. To model all of these behavioral feats would
equire a theory of vast scope, incorporating memory, motivation
nd executive control. It is thus justifiable to focus on only one
spect of behavior, simplifying or assuming all other aspects of the
ehavioral phenomenon not within the pre-defined problem space.

The delineation of a clearly defined problem space at the out-
et of model building is an extremely important step: without it,
roblem space, like levels of biological organization, can be an area
here misconceptions arise. In turn, to avoid such misconceptions,

he critic of a connectionist model must consider whether his or
er criticism is appropriate for the explanation being offered by
he model. For example, it would not be sensible to criticize a

odel of the role of the hippocampus in spatial memory because it
oes not explain the hyperactivity seen in animals with hippocam-
al lesions, if the author of the model has made it clear that the
ehavior that the model is intended to explain is spatial memory.
Provided, of course, that the model does not make incorrect pre-
ictions regarding activity levels. It is acceptable for the model to
ake no predictions at all about activity levels, but in the unlikely

vent that the mechanism accounting for spatial memory entailed
n inescapable prediction for activity levels that contradicted the
bserved increase in activity caused by hippocampal lesions, the
odel should of course be deemed incorrect.) Indeed, hippocam-

al function offers a second example of how a model’s problem
pace must sometimes be limited: most brain-based models of
pisodic memory are partly or wholly localized to the hippocampus
e.g., McClelland et al., 1995; Norman and O’Reilly, 2003; Meeter
t al., 2005; Greve et al., 2010) and yet many such models do not
ddress the well-documented role of hippocampus in spatial mem-
ry or navigation. Because there are such a wide variety of datasets
nd empirical phenomena pertaining to episodic memory function
lone, addressing both episodic and spatial memory with a single
omputational account may  often be too ambitious.

But not all examples are so clear cut. Another is offered by a
odel of visual discrimination learning proposed by Bussey and

aksida (2002).  The authors clearly stated the problem space to be
hat of visual discrimination – learning or remembering how to tell
wo visual stimuli apart from one another. But a critic might argue
hat the same model ought to account for delay-dependent deficits
n object recognition, since this is the canonical deficit observed
ollowing lesions in perirhinal cortex. The critic has a good point; a

ore comprehensive theory should aim to account for these data,
nd a justification should be offered for why the model does not
ddress them. The problem space of this model was not expanded to
eal with the phenomenon of object recognition in the first instance
or two reasons. First, the behavioral data on discrimination learn-
ng were complex and puzzling enough alone, so that a model of
ust these effects would constitute a significant advancement in
nderstanding. Second, the ideas that were under development
egarding the explanation of object recognition memory deficits
eemed likely to hinge upon the explanation of simple visual dis-
rimination. The additional simulation of the effect of a retention
elay (as used in object recognition memory tasks) is therefore a
echanism that would be explained by building on top of the dis-

rimination model (which was later done, see Cowell et al., 2006).

he discrimination model therefore had to be well worked out and
ested first. Thus, in this case, restricting the number of phenomena

odeled seems justified, but this example illustrates the shades of
ray that exist in making such restrictions. In particular, the size of
vioral Reviews 36 (2012) 2371–2379

the problem space enters into a trade-off with other factors such as
parsimony, as is discussed below. Importantly, just as with levels
of biological organization, it is up to the modeler carefully to delin-
eate and justify the problem space, particularly if there is danger of
it appearing narrow to the skeptic.

5.3. Biological plausibility

All brain-based models of cognition necessarily strive for some
degree of biological plausibility. O’Reilly (1998) argues persuasively
in favor of biological plausibility: “Biological realism lies at the
foundation of the entire enterprise of computational modeling in
cognitive neuroscience. This approach seeks to understand how
the brain. . . gives rise to cognition, not how some abstraction of
uncertain validity does so. Thus, wherever possible, computational
models should be constrained and informed by biological prop-
erties of the cortex. Moreover, computational mechanisms that
violate known biological properties should not be relied upon.”
This philosophy provides a useful guiding principle for researchers
interested in brain-based cognition. However, within the realm of
biologically plausible models, there are at least two distinct sub-
classes between which it is useful to make a distinction: realistic
models and simplifying models.

Rolls and Deco (2002) advocate a realist approach, arguing that
while connectionist approaches make an important start on under-
standing how complex computations such as language could be
implemented in brain-like systems, if the model uses, for exam-
ple, back-propagation or too few neurons, it can only provide a
guide as to how cognition might be implemented in the brain. In its
most extreme form, the realist tradition builds models that operate
according to strict rules of biological plausibility and incorporate
as many low-level details as possible (Sejnowski et al., 1988). We
would argue that there are in fact several disadvantages to using
realistic models in the domain of cognitive neuroscience. First, real-
istic models cannot feasibly be pitched at a level of any organization
any higher than the neuron or network level, since incorporation of
cellular detail in a model of systems-level processes would result
in a model so complex as to make analysis of its mechanisms
intractable. Second, historical precedent suggests that some pro-
portion of experimentally established facts are likely to be revealed
as wrong or inaccurate in detail as scientific progress is made: this
tendency may  have a greater negative effect on detailed models
than on simpler ones. Finally, it is unclear where the adherence to
known biology should stop: is it sufficient to employ biologically
plausible synaptic updating rules, without implementing individ-
ual inhibitory and excitatory postsynaptic potentials, or realistic
placement of the ion channels within the membranes? Returning
to George Box, “all models are wrong” – no matter how hard one
labors to include all known biological detail, a perfect simulation
of the brain will never be achieved. Of course, achieving such a
thing would amount to synthesizing a real brain, and if we could do
this, our understanding of the brain would be complete: we would
no longer need models. It is our incomplete understanding that
necessitates models, which allow us to simplify reality in order to
understand it. Models are thus by definition wrong (because they
omit information), but in some sense their utility depends upon it.
That is, by attempting to include all known biological detail, the
modeler would be prevented from focusing upon the aspects of the
neural mechanism that are assumed to account for the effect of
interest. And it is by focusing on these key mechanistic aspects that
we can properly test our hypotheses, by ensuring that the model
predictions do indeed stem from the critical part of the hypothe-

sized mechanism.

Realistic models contrast with a connectionist approach to
cognitive neuroscience, in which models aim to simplify the prob-
lem under investigation. When seeking an explanation at the
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ystems-level or higher – as is often the case in cognitive and
ehavioral neuroscience – connectionist models, which capture the

mportant principles underlying brain function without incorporat-
ng all known neurobiological detail, are more useful than realistic

odels. Most connectionist models implement only the key mech-
nism of interest in order to simulate behavior. By deliberately
aring down the problem to a clear and comprehensible mecha-
ism, eschewing biological details that are not a necessary part of
he account, the hypothesized mechanisms are subject to the most
tringent test of their ability to explain the target data. Thus, sim-
lifying models can be used to test critical assumptions regarding
hich emergent properties of low-level mechanisms are impor-

ant for producing behavior at the level of the whole organism. As
autioned by Churchland and Sejnowski (1992),  critics of connec-
ionism should not assume that a high degree of realism always
quates to a high degree of scientific value.

An example of a common misunderstanding regarding the bio-
ogical plausibility of computational models is provided by the
ack-propagation algorithm. The criticism frequently arises that

 connectionist model can be disregarded as biologically implausi-
le if it uses back-propagation, since it is thought unlikely that the
ack-propagation of error could be implemented locally in biologi-
al neurons (e.g., Crick, 1989). If the model is couched at the systems
evel this criticism is inappropriate and likely stems from confusion
ver the model’s level of biological organization: back-propagation
s a neuron- or network-level mechanism, and so theories at the
ystems level need not be concerned with the biological plausibility
f back-propagation. It is possible that large ensembles of neurons
cting in concert at the network level could indeed effect some kind
f error-correcting learning process that would produce results at

 systems level that are akin to the systems-level mechanism being
roposed, so the model need not be dismissed wholesale on the
round that it could never be implemented in the brain. For exam-
le, Gluck et al. (2001) have discovered a circuit-level mechanism of

earning in the cerebellum and brain stem that can account for the
rror-correcting property of the Rescorla–Wagner rule. They state
hat “[the mechanism] is an emergent property of the organization
f the neural circuit itself rather than a specialized synaptic pro-
ess”. And, critically, a systems-level model need not concern itself
ith the details of that network-level process. Moreover, when

ttempting to understand the nature of a cognitive process at the
ystems level, the structure learned by a model employing back-
ropagation (or other biologically implausible mechanism) may  be

nteresting and plausible, even if the learning algorithm itself is not;
his holds particularly true in the light of the findings from Gluck
t al. (2001).

However, if one tried to devise a model at the network level
hat relied on back-propagation, then biological plausibility of the
lgorithm becomes a serious constraint. Similarly, a systems-level
odel that relied on direct connections between structure X and

tructure Y would be unworkable if such direct connections are
nown not to exist, since the connectivity of brain structures is an
spect of biological plausibility with which a systems-level model
ust be concerned.

.4. Parsimony

Following Occam’s Razor, a scientific model should aim to
rovide the simplest version of events that can account for the evi-
ence. For investigators of artificial intelligence, as well as purely
ognitive theorists who have no interest in the hardware used to
mplement the algorithms that they seek to understand, parsimony

hould always be a priority. Parsimony is also a sensible guiding
rinciple when engineering the most efficient machine. But the task
f the cognitive neuroscientist is instead one of reverse engineer-
ng: we are interested in how the evolving human brain came upon
vioral Reviews 36 (2012) 2371–2379 2377

solutions to the problems presented to our biological ancestors,
via natural selection. The process of natural selection does not, of
course, have an a priori purpose to build the most efficient machine,
with the end goal of modern humans in its sights; humans and
other animals are the product of an evolutionary process in which
our cognitive ability has been augmented in a step-wise manner by
building on pre-existing structures. This process does not necessar-
ily yield the most elegant computational solutions, and so we  must
be open to possible absences of parsimony in the brain’s design.
Cognitive neuroscientists should therefore be prepared to disre-
gard Occam’s Razor in the rare cases where the neurobiological or
behavioral evidence unambiguously counters the simplest possible
explanation.

Nonetheless, a theorist must have a good, empirically justified
reason to construct a model that is more complex than is necessary
to explain the primary target data. It is inappropriate to insist upon
the inclusion of biological facts not relevant to the phenomenon
being modeled and unnecessary to the proposed mechanism for
cognition. In fact, the pitfall of over-adherence to biological detail
illustrates the intimate links between parsimony, problem space,
levels of biological organization and biological plausibility. Inap-
propriate insistence upon adherence to biological detail can arise
in some cases from failing to appreciate the defined problem space
of the model in terms of the level of biological organization at which
the model is formulated. In other cases it might stem from confus-
ing the need to ensure that there is no evidence indicating that a
systems-level model could not be implemented in biological tis-
sue, with the need to demonstrate how a lower-level model likely
is implemented in biological tissue. The interaction of these issues
underlines the importance of clearly defining (for model builders)
and fully appreciating (for model evaluators) the model’s intended
problem space. There exists a trade-off between the parsimony
of a model and the size of its problem space, which is intimately
linked to the level of biological organization of the model and the
constraints imposed by biological plausibility at that level.

5.5. Parameters

One final area we will discuss, in which misconceptions con-
cerning computational models can arise, concerns the parameters
and output of the models. A perhaps counter-intuitive heuristic
with regard to computational models in cognitive and behavioral
neuroscience is that the absolute values of the simulation results
produced by a model, and their variability, are often unimportant.
In simulating a given task, a computer program might take 200 tri-
als to learn a problem and a rat 54. This result is hardly surprising,
since the model is likely addressing only one, or a very few, aspects
of behavior (e.g., a computational model of reversal learning may
not model attention, decision making, locomotion or motivation
in the animal performing the task). The key property of the simu-
lations is the qualitative trend or trends in the data that emerge,
for example in comparing a lesioned version of the model with an
intact version to simulate the effects of brain damage, or comparing
the model’s performance on different task conditions. If the trends
in the simulation data are qualitatively the same as the trends in
the behavioral data, the model is valuable because its mechanism
may  be the correct one for explaining the trends in the behavioral
data.

In support of this argument, consider the use of different ani-
mal  species to study the same behavioral phenomenon. Many
behavioral tasks have been adapted for use across species and
are deemed analogous if the trends that emerge are the same;

we would not necessarily reject an analogy between tasks mea-
suring rat and monkey reversal learning because the rat takes
longer to learn it than the monkey does. The rat has entirely dif-
ferent physical and cognitive parameters, in terms of locomotion,
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otivation, attention, decision making and perhaps even reversal
earning itself. The discrepant learning rates may  arise because of
hese different parameters, rather than because the task measures
omething qualitatively different in the two species. Indeed, in this
eal-world example, despite the differences in acquisition rates it
as been determined that reversal learning in mice, rats, monkeys
nd humans relies on similar brain regions and neurotransmit-
er systems, for example the orbitofrontal cortex (e.g., Iversen
nd Mishkin, 1970; Butters et al., 1973; Birrell and Brown, 2000;
choenbaum et al., 2002; McAlonan and Brown, 2003; Izquierdo
nd Murray, 2004; Izquierdo et al., 2004; Boulougouris et al., 2007;
ait and Brown, 2007; Bissonette et al., 2008; Rudebeck and Murray,
008; Boulougouris and Robbins, 2009; Hampshire et al., 2012).
ust as qualitatively similar findings across different species have
een interpreted convincingly within the same framework, com-
arison between qualitative patterns of data from computational
odels and animal experiments can be appropriate, regardless of

uantitative identity of the outputs.
Of course, sometimes the results of computational models

o provide quantitative predictions, and here the numerical val-
es emerging from the models may  be important. For example,
osofsky et al. (1992) compared three models of category learning
n their accuracy in simulating empirical data. All three models pro-
uced an output value corresponding to the probability of correct
lassification, which varied from 0 to 1 in all simulations. Behavioral
ata from human subjects performing categorization tasks were
lso recorded as probability of correct classification. The authors
ere therefore able to compare the models’ performance not only

n their ability to reproduce qualitative trends in the data, but also
n their quantitative fit to the empirical data. This analysis allowed

 more sensitive model comparison than would have been possible
y considering only qualitative trends, since the models produced
ualitatively similar results in many of the tasks simulated. Thus, in
valuating the output of a computational model, we must first con-
ider whether it is the quantitative or qualitative trends (or both)
hat are important.

Another criticism of connectionist models often heard is that
odelers are simply “playing the parameter game”. Connection-

st models have many degrees of freedom, both in the architecture
f the model and in other parameters that determine the learn-
ng processes within the model; critics argue that, given sufficient
weaking of the parameters, any behavioral phenomenon could be

odeled, so the eventual discovery of a solution with one particu-
ar set of parameters is inevitable and therefore uninteresting (see
lso O’Reilly and Munakata, 2000). However, this tweaking process
ecomes less and less powerful (or the degrees of freedom of the
odel become fewer) as the problem space is enlarged. If a model

s required simultaneously to account for a number of behavioral
henomena across more than one subject group (e.g., brain dam-
ged and intact), and if the model makes novel predictions that
re tested experimentally, it becomes less likely that any arbitrary
echanism would be successful, given the right set of parame-

ers. This argument requires, however, that the same set of model
arameters is used across all of the phenomena, task conditions
nd subject groups modeled. An example of a model whose mech-
nism is rendered convincing by the sheer number of phenomena
ccounted for is given by Bowman and Wyble (2007),  who present

 connectionist model of temporal attention and working mem-
ry that accounts for the well-documented “attentional blink” (AB).
he AB is observed when a participant views a rapid sequence
f visual stimuli presented at the same spatial location, and is
equired to detect certain target items within the stream. Typ-

cally, when two target items are presented in succession, the
articipant will fail to detect the second item if it appears within
00–500 ms  after the first (Raymond et al., 1992). The AB provides

 window into the mechanisms of temporal attention and has thus
vioral Reviews 36 (2012) 2371–2379

been extensively investigated. Bowman and Wyble accounted for
seven documented empirical phenomena related to the AB with
their model, and made three further, novel predictions, which were
tested and confirmed with new experiments. The model does not
produce a perfect quantitative fit to behavioral data for every simu-
lated phenomenon. But the impressive breadth of empirical trends
qualitatively reproduced mitigates any potential concern that the
mechanism is an arbitrary one that was made to fit the data via
excessive parameter tweaking. Rather, because so many empiri-
cally observed phenomena emerge from this mechanism it seems
likely to have captured at least some key properties of temporal
cognition. This consideration renders it useful in advancing our
understanding of temporal attention.

6. Conclusions

We  believe that much can be done to facilitate the use of com-
putational models in cognitive and behavioral neuroscience. First,
it is the responsibility of the modeler to clearly define, for every
model constructed: the level of biological organization at which
the model is couched; the problem space of the model; the degree
of biological plausibility, or realism, for which the model strives;
the importance or otherwise of parameters and absolute numer-
ical values to the model’s account; and, lastly, where sacrifices
have been made in any of these areas for the sake of parsimony,
or if there is a deliberate lack of parsimony in line with biologi-
cal constraints. These definitions are critical to ensuring the model
is comprehensible and valuable to empirical neuroscientists. It is
then the responsibility of the model appraiser to take into consid-
eration the five key issues discussed, in order to ensure constructive
and reasonable criticisms of brain-based computational models of
cognition. Under conditions of good communication and mutual
understanding, modelers and empiricists should between them be
able to decide which models are useful and which are too wrong to
be useful. In this way, effective communication between empiricist
and theorist can be achieved, so that the two can work in tandem
toward a better understanding of the brain basis of cognition.
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