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ABSTRACT: Evidence from a large body of research suggests that peri-
rhinal cortex (PrC), which interfaces the medial temporal lobe with the
ventral visual pathway for object identification, plays a critical role in
item-based recognition memory. The precise manner in which PrC codes
for the prior occurrence of objects, however, remains poorly understood.
In the present functional magnetic resonance imaging (fMRI) study, we
used multivoxel pattern analyses to examine whether the prior occur-
rence of faces is coded by distributed patterns of PrC activity that consist
of voxels with decreases as well as increases in signal. We also investi-
gated whether pertinent voxels are preferentially tuned to the specific
object category to which judged stimuli belong. We found that, when no
a priori constraints were imposed on the direction of signal change, activ-
ity patterns that allowed for successful classification of recognition-
memory decisions included some voxels with decreases and others with
increases in signal in association with perceived prior occurrence. More-
over, successful classification was obtained in the absence of a mean
difference in activity across the set of voxels in these patterns. Critically,
we observed a positive relationship between classifier accuracy and
behavioral performance across participants. Additional analyses revealed
that voxels carrying diagnostic information for classification of memory deci-
sions showed category specificity in their tuning for faces when probed with
an independent functional localizer in a nonmnemonic task context. These
voxels were spatially distributed in PrC, and extended beyond the contiguous
voxel clusters previously described as the anterior temporal face patch. Our
findings provide support for proposals, recently raised in the neurophysiolog-
ical literature, that the prior occurrence of objects is coded by distributed
PrC representations. They also suggest that the stimulus category to which an
item belongs shapes the organization of these distributed representations.
VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

A large body of research findings in humans, nonhu-
man primates, and rodents converge to suggest that
perirhinal cortex (PrC), a structure in the medial tem-
poral lobe (MTL) that is intimately connected with the
ventral visual pathway for object identification, plays a
critical role in the ability to discriminate between previ-
ously encountered and novel stimuli (i.e., recognition
of prior occurrence; Meunier et al., 1993; Eacott et al.,
1994; Brown and Aggleton, 2001; Eichenbaum et al.,
2007; Murray et al., 2007; Squire et al., 2007). In
humans, PrC has been implicated in recognition mem-
ory for many different stimulus classes, including
objects, faces, and words (see Diana et al., 2007; Kim
2013). A noticeable but less consistent body of research
also suggests that recognition of prior occurrence does
not require the integrity of the hippocampus, and can
proceed normally in the absence of recollection of con-
textual detail about specific past stimulus encounters
(see Montaldi and Mayes, 2010; Ranganath, 2010;
Wixted et al., 2010; Yonelinas et al., 2010, for review
and discussion). Such acontextual item-based recogni-
tion has been linked to phenomenological feelings of
familiarity. While numerous neuroimaging studies have
focused on dissociations between perirhinal and hippo-
campal contributions to recognition memory, the pre-
cise nature of PrC computations and representations
that support item-based recognition still remains poorly
understood. Important outstanding questions concern
how item-based familiarity is reflected in the functional
magnetic resonance imaging (fMRI) blood-oxygen-level
dependent (BOLD) response and whether pertinent sig-
nals in PrC show content specificity.

Electrophysiological evidence from a number of stud-
ies in rodents and in nonhuman primates suggests that
the mechanism by which PrC could code for recogni-
tion of prior occurrence is a decrease in neuronal firing
rate (i.e., repetition suppression; Zhu et al., 1995; Desi-
mone, 1996; Ringo, 1996; Xiang and Brown, 1998;
Aggleton et al., 2012). It has been reported that as
many as 25% of PrC neurons in macaque monkeys
show response decrements for familiar as compared to
novel objects in the context of delayed-matching to
sample, delayed nonmatching to sample, or continuous
recognition-memory tasks (Brown et al., 1987; Sobotka
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and Ringo, 1996; Xiang and Brown, 1998). It should be noted,
however, that not all studies with electrophysiological recordings
have revealed response reductions in PrC in association with the
repeated occurrence of objects. For example, H€olscher et al.
(2003) reported that the response of some PrC neurons in rhesus
monkeys showed a gradual increase in activity over hundreds of
presentations of the same objects in the context of a delayed
matching to sample task. Moreover, Thome et al. (2012) failed
to observe any reduction in PrC firing rates for stimulus repeti-
tions in a passive viewing experiment in rodents; the latter find-
ing has been interpreted to suggest that such signals could be task
dependent (Brown et al., 2012). Alternatively, this finding is
open to the interpretation that item-based recognition may not
be coded exclusively by a reduction in local firing rates but may
involve distributed coding over populations of neurons in PrC
(Thome et al., 2012; Burke et al., 2014). Evidence for such a
coding schema has been reported in physiological recordings of
activity in neighboring inferotemporal cortex, where it has been
found that object identity can be decoded from population activ-
ity (Hung et al., 2005).

Findings obtained with fMRI in humans have also linked
item-based recognition to differential PrC responses for previ-
ously studied as compared to novel items (see Diana, et al., 2007;
Kim, 2013, for review). Notably, several studies have demon-
strated a negative relationship between confidence in the per-
ceived “oldness” of test items, which is often assumed to track
item-memory strength, and the BOLD response in PrC (e.g.,
Gonsalves et al., 2005; Daselaar et al., 2006a,b; Montaldi et al.,
2006; Wang et al., 2014). Given that this decrease in response for
previously encountered items parallels the pattern of repetition
suppression in electrophysiological recordings, it has attracted
considerable attention in the literature. However, there are
numerous challenges associated with mapping repetition effects
in single-cell recordings onto fMRI BOLD signals (see Henson
and Rugg, 2003; Grill-Spector et al., 2006; Gotts et al., 2012, for
discussion). In fact, there is evidence to suggest that BOLD activ-
ity is more closely related to local-field potentials detected with
multiunit recordings than to neuronal spiking (Logothetis et al.,
2001; Logothetis, 2008; but, see Lee et al., 2010). Against this
background, it is interesting that some fMRI studies have also
revealed a relative increase in BOLD signal for familiar as com-
pared to novel items in PrC (e.g., Kafkas and Montaldi, 2012),
with some investigations even reporting increases and decreases
in distinct PrC clusters in the same study (Yassa and Stark, 2008;
Heusser et al., 2013). Such findings point to the possibility that
item-based recognition-memory signals are reflected in spatially
distributed patterns of decreases and increases in the fMRI
BOLD responses across PrC. We note that stimulus repetition
has also been linked to heterogeneous BOLD responses (i.e.,
decreases and increases) in other brain regions, including more
posterior aspects of the ventral visual pathway (e.g., de Gardelle
et al., 2013; see Segaert et al., 2013 for review).

Most studies on the role of PrC in recognition memory have
examined the neural correlates of item recognition with univari-
ate statistical analyses that probe for clusters of contiguous voxels
with homogeneous response profiles (e.g., Daselaar et al., 2006a)

or by averaging activity across all voxels in anatomically defined
regions of interest (e.g., Wang et al., 2014). Multivoxel pattern
analyses (MVPA) of fMRI data, by contrast, can detect informa-
tion carried in activity patterns distributed over multiple voxels
even when these voxels are not part of a contiguous cluster, and,
critically, even when they show a heterogeneous directional
response to an experimental manipulation such as stimulus repe-
tition (e.g., de Gardelle et al., 2013; for review, see Norman
et al., 2006; Rissman and Wagner, 2012; Tong and Pratte, 2012).
In an MVPA-based fMRI study, we recently revealed patterns of
BOLD activity in MTL structures that can distinguish between
subjectively familiar and novel items (Martin et al., 2013). Partic-
ipants were scanned while they made recognition-memory judg-
ments for visual stimuli from several different object categories.
Using a linear support vector machine (SVM) with separate
training for items from each stimulus category, we were able to
successfully classify the perceived familiarity of individual faces
and chairs from activity patterns in right PrC.

For the present report, we took advantage of the dataset col-
lected by Martin et al. (2013) and conducted new analyses that
aimed to address precisely how PrC may code for the prior occur-
rence of visual stimuli. Our primary goal was to determine
whether patterns of BOLD responses in PrC that allow for the
classification of the perceived familiarity of visual stimuli indeed
comprised voxels with heterogeneous response profiles in terms
of direction, and, if so, whether classification could still be suc-
cessful if patterns were restricted to include only voxels with
changes in one direction. To obtain further leverage on the issue,
we also investigated whether differences in classification accuracy
for any such voxel patterns are correlated with differences in
behavioral performance across participants.

Insight as to how PrC codes for the prior occurrence of visual
stimuli can also be gained from considering whether patterns of
PrC activity that carry information about familiarity show speci-
ficity in their response for particular stimulus categories (Cowell
et al., 2010; Graham et al., 2010). Inasmuch as item-based recog-
nition-memory signals are, by their definition, based on the
object itself rather than any contextual information about a perti-
nent prior encounter, the category to which an object belongs
may play an important role in their neural organization (Martin
et al., 2012, for further discussion). Prior fMRI research that has
examined category specific responses for visually presented stim-
uli in nonmnemonic tasks has revealed two types of effects in
more posterior occipitotemporal regions. First, studies based on
univariate analyses have revealed clusters of contiguous voxels in
the ventral visual pathway that show maximal responses for
exemplars from a specific visual category. Such clusters are often
referred to as category-selective regions and have been reported
for several ecologically relevant categories, including faces, body
parts, words, and places (see Op de Beeck et al., 2008, for
review). Second, MVPA-based studies have revealed patterns of
activity distributed across voxels in wider swaths of posterior ven-
tral temporal cortex that show category-specific responses even
when clusters with preferential responses are excluded, and even
for categories that are not associated with any contiguous clusters
in univariate analyses (see Grill-Spector and Weiner, 2014;
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Haxby et al., 2014, for review). For example, the latter types of
studies have revealed the presence of informational content rele-
vant for face identity in distributed patterns of activity in ventral
visual pathway regions that go beyond the classic lateral occipital
and posterior fusiform “face areas” previously identified in uni-
variate analyses (Haxby et al., 2001; Kriegeskorte et al., 2008;
Nestor et al, 2011). At present, it remains unknown whether pat-
terns of recognition-memory signals for faces in PrC show a simi-
larly distributed functional organization or are found, instead, in
a more circumscribed area. This issue is of particular interest
given that a category-specific region with a preferential response
for faces has recently been identified in the anterior collateral sul-
cus of PrC, a region sometimes referred to as the human homo-
logue of the anterior temporal face patch (ATFP), which is
situated more laterally in nonhuman primates (Rajimehr et al.,
2009; Nestor et al., 2011; Nasr and Tootell, 2012; Rossion et al.,
2012; O’Neil et al., 2013, 2014; Collins and Olson, 2014). As is
the case for other nodes that form the face processing network in
humans (Behrmann and Plaut, 2013), this region has most con-
sistently been identified in the right hemisphere.

In this study, we examined whether voxels in right PrC with
diagnostic relevance for classification of recognition-memory judg-
ments for faces show category specificity when probed with the
type of functional localizer that has been used to identify face-
specific responses in the ventral visual pathway under passive-
viewing conditions in many prior studies. We specifically focused
on faces because they are the category most widely studied in the
broader literature on category specificity in human brain responses,
and because an emerging body of research implicates aspects of
PrC (i.e., the ATFP) as part of the face processing network. We
pursued these issues within the context of our broader goal of char-
acterizing the nature of item-based recognition-memory signals in
human PrC, which, as discussed, also addressed whether these sig-
nals are reflected in distributed patterns of voxels that show
decreases and increases in response to prior exposure.

MATERIALS AND METHODS

Participants

Nineteen right-handed individuals participated in the study (21–
30 years of age, mean age 5 25.2 years; 12 females). All participants
were screened for the absence of a history of neurological disorders.
Data from one participant were excluded from all analyses due to
excessive head movement during scanning. Participants received
financial compensation for their participation and provided
informed consent according to procedures approved by the Univer-
sity of Western Ontario Health Sciences Research Ethics Board.

Stimuli and Behavioral Procedure

Stimuli were grayscale images depicting exemplars from three
different object categories (i.e., faces, chairs, and buildings),
although this study focused only on patterns of BOLD activity

related to the familiarity of face trials. Each target object was pre-
sented in isolation on a homogeneous, white background. The size
of each image was limited to be 375 3 250 pixels, with at least
one dimension corresponding to these limits. For the purpose of
counterbalancing, images from each stimulus category were
divided into three sets of 40 objects, two of which (i.e., 80 objects)
served as items presented prior to scanning during a study session,
and as corresponding targets in the scanned recognition-memory
test stage. The remaining 40 items served as novel lures in the rec-
ognition task. Assignment of item sets to either target or lure lists
was counterbalanced across participants.

The experimental task consisted of two discrete stages: an
encoding session and a subsequently scanned recognition-memory
test. The initial encoding session was separated into six blocked
sequences that were counterbalanced across participants. Each
block consisted of 40 trials corresponding to one target list. Stimuli
were presented for 3,000 ms with a 2,000 ms fixation inter-stimu-
lus interval, and participants were asked to rate the relative attrac-
tiveness of each face, comfort of each chair, or value of each
building using a five-point scale.

Participants subsequently completed a scanned recognition-
memory test consisting of 80 previously studied targets and 40
lures from each category, for a total of 360 trials distributed over
eight functional runs of equal length and composition. Of these
trials, 120 corresponded to presentation of face stimuli (i.e., 80
studied and 40 novel lures). Stimuli were presented for 2,500 ms,
with a jittered fixation-baseline separating trials (jitter sequence
was optimized using the OptSeq2 algorithm; http://surfer.nmr.
mgh.harvard.edu/optseq/). While in the scanner, participants
viewed the stimulus display through a mirror at a distance that
yielded an approximate object size of 18 3 138 visual angle. For
their recognition judgments, participants were instructed to pro-
vide a rating of perceived familiarity on a scale between one (least
familiar) and four (most familiar), with a fifth response option cor-
responding to recollection. Critically, they were asked to respond
with a fast and intuitive assessment of their perceived item familiar-
ity and to avoid attempting to recollect contextual details from the
encoding stage of the experiment (see Dobbins and Han, 2006;
Montaldi et al., 2006; Quamme et al., 2010; Martin et al., 2013,
for further discussion). However, they could indicate recollection if
it occurred unintentionally. Recollection of contextual details was
defined as any situation that involved conscious awareness of infor-
mation about the past item encounter that was independent of per-
ceptual details of the stimulus itself, such as internal thoughts and
associations that were formed during the initial item encounter.

Functional Localizer Tasks

Subsequent to the experimental task, each participant com-
pleted two independent functional localizer scans (which were
not considered in our initial report, Martin et al., 2013). The
localizer task followed a protocol that has previously been used
in several other studies from our lab (e.g., Ganel et al., 2006;
O’Neil et al., 2009; Cate et al., 2011; O’Neil et al., 2013) and
is similar to that used in many other studies in the visual
neuroscience literature more broadly. It involved presentation of
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grayscale faces, common objects, and places (scene landscapes
and buildings with naturally occurring background) under pas-
sive viewing instructions. Importantly, stimuli employed in the
localizer task were different from those comprising the experi-
mental recognition-memory task. Stimuli from each category
were presented in a blocked manner with alternating blocks of
scrambled images corresponding to each stimulus category.

fMRI Acquisition Protocol

All magnetic resonance imaging (MRI) data were acquired on a
Siemens TIM Trio 3-Tesla scanner with a high-resolution fMRI
protocol optimized for MTL examination. Functional MRI vol-
umes were collected using a T2*-weighted single-shot gradient-
echo-planar acquisition sequence (repetition time (TR) 5 2,500
ms, echo time (TE) 5 26 ms, slice thickness 5 2 mm, in-plane res-
olution 5 2 3 2 mm, field of view (FOV) 5 220 mm 3

220 mm, flip angle 5 908). Each functional volume included 37
contiguous slices collected in an interleaved manner. For each
experimental run (n 5 8 per participant), 176 volumes were col-
lected. Each localizer scan (n 5 2 per participant) consisted of 150
functional volumes. To optimize MR signal in the anterior tempo-
ral lobes, a transverse orientation was chosen with the effort to
include the entire temporal lobes and as much visual cortex as pos-
sible. This slice selection resulted in full coverage of the ventral
aspects of occipital and full coverage of the entire temporal lobes
in all participants, with exclusion of the most dorsal aspects of
frontal and parietal cortices, as well as occipital cortex in some par-
ticipants. A saturation band was applied during functional runs to
minimize artifacts related to eye-movements and the sinus cavity.
T1-weighted anatomical images were obtained using an ADNI
MPRAGE sequence (192 slices, TR 5 2,300 ms, TE 5 4.25 ms,
1 mm isotropic voxels, FOV 5 240 3 256 mm, flip angle 5 98).

fMRI Data Preprocessing

fMRI data were preprocessed in native space using BrainVoy-
ager QX version 2.3 (Brain Innovation). Functional images were
slice-scan time corrected, 3-D motion corrected with reference
to the functional volume taken just prior to the anatomical scan,
and high-pass filtered using a Fourier basis set of 2 cycles/run
(including linear trend). Images were then coregistered with the
anatomical image and aligned with the anterior commisure–
posterior commisure (AC–PC) plane. For the purpose of
MVPA, experimental data were minimally smoothed using a 3-
D Gaussian kernel with a full-width at half maximum of 3 mm.
Functional data from the localizer experiment were smoothed
using a 3-D Gaussian kernel with a full-width at half maximum
of 8 mm. Functional data were convolved using a standard dou-
ble gamma hemodynamic response function (Friston, 1998).
Participant-specific general linear models (GLM) of experimental
data allowed for extraction of z-scored trial-specific beta esti-
mates in all voxels of interest. Beta estimates derived from a
modeled HRF were chosen as target measure for the MVPA
(i.e., as classifier input) because they are particularly well suited
to account for overlap in the hemodynamic response in fast-
event-related designs (Misaki et al., 2010). Changes in mean

intensity across runs were modeled by including them as predic-
tor of no interest in the participant-specific GLMs.

Identification of the ATFP in Functional
Localizer Scans

This region of interest was defined functionally, for individual
participants, in the right hemisphere, using data from the local-
izer scans. A general linear model was specified for each localizer
run with faces, scenes, and objects as predictors. Scrambled
images served as the baseline condition. Participants’ ATFPs were
derived from the contrast (faces> scenes) in a subject-specific
fixed-effects model. ROIs were defined based on activation maps
that were thresholded using a liberal statistical criterion (uncor-
rected P-value< 0.05), respecting anatomical boundaries for PrC
as described by Pruessner et al. (2000, 2002).

Anatomical Definition of PrC for MVPA of
Recognition Signals in Experimental Task

To conduct MVPA, an anatomically defined ROI for PrC in the
right hemisphere was created in native MRI space with manual trac-
ing separately for each participant, again using anatomical land-
marks for demarcation of PrC from surrounding cortical structures
in the MTL as described by Pruessner et al. (2000, 2002).

MVPA of fMRI Data

For the purpose of classification, data were collapsed across
response options such that the familiar class of face trials corre-
sponded to hits and false alarms at the two highest levels of
familiarity (i.e., response options 3 and 4) and the novel class
of face trials comprised hits and false alarms at the two lowest
levels of familiarity (i.e., response options 1 and 2). To elimi-
nate potential classifier bias related to unequal trial numbers
we used a pseudorandom sampling procedure that equated the
number of trials between the familiar and novel classes. This
procedure was repeated over 10 iterations to ensure that all tri-
als for a given participant were included in the classification
analysis at least one time. Accordingly, 10 separate instances of
the classification analysis (i.e., cross-validated classifier training
and testing) were completed and inferential statistical analyses
were performed on classifier accuracy averaged over these 10
iterations. Across participants, the average number of trials
included for the classification of faces at each familiarity level
(i.e., familiar vs. novel) was 39.8 (range 5 24–56).

Pattern classification analyses were conducted using the Prince-
ton MVPA toolbox (http://www.pni.princeton.edu/mvpa) and cus-
tom MATLAB code (The MathWorks, Natick, MA). As a first
step, we performed feature selection in order to minimize the influ-
ence of noise in the functional data. The feature selection procedure
used here allowed for multivariate classification of perceived famili-
arity of faces based on activity within a subset of PrC voxels that
were not necessarily clustered in any systematic manner and showed
either homogeneous or heterogeneous response profiles. Specifi-
cally, feature selection was based on voxel-wise measures of discrim-
inability (i.e., t-tests between familiar and novel). When contrasted
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with multivariate feature selection procedures, such as a multivari-
ate searchlight which considers weighted combinations of voxel
responses for class separation, the primary advantage of the current
approach pertains to increased sensitivity for detection of cognitive
states coded in activity patterns comprised of spatially distributed
voxels. Accordingly, this approach is sensitive to meaningful pat-
terns that are distributed beyond the spatial scale of a searchlight.

Feature selection was performed in each participant sepa-
rately by choosing the subset of voxels in right PrC that
appeared most informative for classification based on an initial
univariate statistical analysis (see Norman et al., 2006, for dis-
cussion). Specifically, a t-test was conducted between beta val-
ues for familiar and novel trials in all voxels in right PrC for
SVM training data for each cross-validation separately. All vox-
els were subsequently rank ordered according to their obtained
t-statistic and those corresponding to the top 10% of that
ranking were selected as features included for SVM classifica-
tion (see below for additional detail regarding directional and
nondirectional feature selection procedures). For all familiar-
novel classifications, this analysis was also performed separately
for each of the 10 iterations of item sampling. This feature
selection procedure yielded an average of 55.1 functional voxels
(2 3 2 3 2 mm) in right PrC across participants.

A linear SVM (libSVM, http://www.csie.ntu.edu.tw/~cjlin/
libsvm) was used for classification of beta values with a linear ker-
nel function and a constant cost parameter of C 5 1. For each
cross-validated classification analysis, the SVM was trained on all
but two face trials; those trials not included in the training dataset
(i.e., one familiar and one novel trial) subsequently served as test
trials for assessment of classifier performance. This train and test
procedure was completed in a fully cross-validated manner such
that every trial served as the test stimulus for classification. For
each trial in the test set, the classifier returned a probability esti-
mate that indicated the likelihood that the activity pattern corre-
sponded to either the familiar or novel class that was used for
SVM training purposes. Probability estimates were then binar-
ized in a winner takes all manner; classification was either correct
(i.e., when the “true” experimental condition was assigned the
highest probability) or incorrect. Averaged across all 10 itera-
tions, classifier accuracy for the perceived familiarity of faces
reflects the percentage of test trials that were classified correctly in
this binary manner. To obtain inferential statistics, we examined
whether average classification performance was above chance

(i.e., >0.5). For this purpose, we used a single sample t-test to
test against a population mean of chance level.

RESULTS

As summarized in our initial report (Martin et al., 2013),
the behavioral accuracy of item-based recognition decisions was
quantified using d0 based on response options 1–4 (i.e., least to
most familiar), and corrected assuming independence between
familiarity and recollection (Yonelinas, 1999). Although per-
formance levels were low, as expected due to the high similarity
between all faces, item-based discrimination was above chance
(d05 0.64, t17> 4.81, P< 0.001). We note that behavioral
data did not allow us to constrain fMRI analyses to more spe-
cific response options (e.g., level 1 vs. level 4, rather than levels
1 and 2 vs. 3 and 4) due to restrictions in item numbers in
participants’ response distributions. Similarly, the limited num-
ber of R responses (collapsed across hits and false alarms
M 5 9.56) did not allow for any investigation of associated
fMRI responses. The observed distribution of recognition
responses is presented in Table 1.

As previously reported, MVPA-based analyses of right PrC
activity allowed us to successfully decode the perceived famili-
arity or novelty of individual faces with a mean classifier accu-
racy of 57% (Bonferonni corrected P< 0.001), and 14/18
participants showed activity patterns that could be classified
with numerical above chance performance (i.e.,> 50%). By
contrast, classifier accuracy in left PrC was not significantly
different from chance performance level (51%). Thus, we
specifically focused only on right PrC in all further analyses.

Direction of Signal Change in PrC Activity
Patterns That Allow for Decoding of
Recognition-Memory Decisions for Faces

Successful decoding of recognition-memory decisions, as
summarized above, indicates greater within- than between-class
similarity in PrC activity patterns for subjectively familiar as
compared to novel trials. To characterize precisely how these
class differences are reflected in BOLD activity we first exam-
ined the extent to which voxels with diagnostic relevance for
classification showed the same or a varied response with respect

TABLE 1.

Recognition-Response Distribution and Discrimination Estimate for Faces

Percentage responses to novel items Percentage responses to studied items
Discrimination

1 2 3 4 R 1 2 3 4 R Familiarity d’

Mean 42.9 30.9 16.3 8.0 2.0 21.9 26.7 20.8 19.4 11.2 0.64

SEM 5.1 3.1 1.8 1.9 0.9 3.1 2.1 1.4 2.1 2.0 0.08

For behavioral signal-detection and fMRI analyses, novel responses correspond to 1 and 2 collapsed, with familiar responses corresponding to 3 and 4 collapsed. R
corresponds to recollection trials not considered in the current analyses.
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to familiarity in terms of direction. Decoding results from our
previous investigation (Martin et al., 2013) were obtained
following a commonly used nondirectional feature selection
procedure that was based on initial voxelwise measures of
experimental effects in a GLM-derived test statistic (i.e., t-val-
ues for contrast between familiar and novel). Specifically, voxels
were rank ordered according to the absolute value of their
obtained t-statistic (without consideration of any statistical
threshold), and the top 10% of voxels were selected for the
purpose of SVM training and classification. With the feature
selection described, voxels in which activity decreased with
familiarity, as well as others in which activity increased with
familiarity could be included in the resulting patterns. The spa-
tial distribution of voxels with diagnostic relevance for the clas-
sification of face recognition decisions is displayed in Figure 1,
color-coded for direction of change.

It is possible that the diagnostic voxels selected and depicted
in Figure 1 showed a difference in mean (when averaged across
voxels), and that successful decoding reflected SVM leveraging
of this spatially distributed mean difference (see Coutanche,
2013, for further discussion). To evaluate this possibility, we
calculated mean beta values for subjectively familiar and novel
trials based on activity in voxels that survived feature selection
in the majority of classification analysis iterations (i.e., included
in a minimum of 6 out of 10 trial sampling iterations). Mean

beta values, collapsed across participants, are presented in the
left-most bars of Figure 2. At the group level, no significant
difference was observed between beta values that corresponded
to familiar and novel trials (t17 5 0.21, P 5 0.83, d 5 0.10). Of
the voxels included, only 46% showed a numerical decrease in
activation for familiar trials, indicating that both response
directions were strongly represented in the selected voxel popu-
lations. At the single subject level, only 5 of 18 participants
had a significant mean difference (P< 0.05) between both
types of trials; moreover, only two of these five participants
showed a decrease (familiar< novel) in beta values when aver-
aged across the selected PrC voxels. Although these mean dif-
ferences between classes were clearly limited and not consistent
across participants, we also sought to determine whether classi-
fication would still be successful after demeaning familiar and
novel beta values. Specifically, in this analysis, beta values across
all voxels that survived feature selection were z-scored for each
trial and participant separately; this ensures that mean differen-
ces are exactly zero. Critically, we found that classifier perform-
ance remained above chance in this scenario (M 5 56%,
t17 5 5.04, P< 0.001, d 5 2.44). Decoding results obtained
with and without z-scored beta values are presented in the left-
most bars of Figure 3 for comparison. These results suggest
that successful decoding of recognition-memory decisions does
not rely on the presence of a mean difference. In turn, they

FIGURE 1. Spatial distribution of voxels with diagnostic rele-
vance for decoding of item-recognition decisions in each partici-
pant. For illustrative purposes, the data presented for each
participant refer to one representative, fully cross-validated itera-
tion of the classification analysis. Blue coloring denotes voxels that
showed response decrements to familiar as compared to novel

faces. Yellow coloring denotes voxels that showed response incre-
ments to familiar as compared to novel faces. Red color patches
correspond to the ATFP in those participants for whom one could
be identified using independent functional localizer data (faces >
scenes). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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suggest that feature selection that is blind to direction yields
successful classification of recognition decisions based on pat-
terns of voxels that have heterogeneous response profiles.

Decoding of Recognition-Memory Decisions
from PrC Activity Patterns When Direction of
Signal Change Is Constrained

We next sought to determine whether successful classification
of recognition decisions necessitates consideration of voxels
with heterogeneous response profiles. We addressed this ques-
tion using MVPA based on a feature selection approach that
allowed for inclusion of voxels with a change in signal in only
one direction. Toward this end, we ran two separate analyses
with feature selection constrained to be based on voxels with
decreases or increases in signal, respectively. Voxels were rank
ordered according to raw, rather than absolute, t-values and
those corresponding to the top or bottom 10% of these rank-
ings were selected for the two separate MVPAs. Thus, in the
first set, all voxels showed a decrease in response for familiar as
compared to novel trials, while voxels in the second set showed
the opposite response profile.

Mean beta values for voxels that survived this directionally
constrained feature selection are presented in the center (famili-
ar< novel; i.e., decrease only) and right-most (familiar> novel;
i.e., increase only) bars in Figure 2 collapsed across partici-
pants. Notably, directionally constrained feature selection still
resulted in classifier accuracy that was significantly greater than
chance for both types of analyses (see Fig. 3; decrease only
M 5 63%, t17 5 11.67, P< 0.001, d 5 5.66; increase only
M 5 63%, t17 5 10.32, P< 0.001, d 5 5.01). These results
suggest that information pertaining to item recognition deci-
sions can also be successfully decoded from patterns of voxels
with a homogeneous response profile between familiar and
novel trials, regardless of whether this difference reflects a
decrease or an increase.

Relationship Between Classifier Accuracy for
PrC Activity Patterns and Behavioral
Recognition-Memory Performance

Taken together, the results of the analyses presented thus far sug-
gest that recognition decisions can be successfully decoded from
distributed activity patterns in PrC regardless of whether signal
changes are constrained in terms of direction or not. Is it possible
to determine which of these different patterns in PrC is most rele-
vant for successful behavior, that is, memory accuracy? Note that
all analyses presented involve classification of recognition decisions
without taking their accuracy, on a trial-by-trial basis, into account.
This approach was chosen so as to maximize the number of trials
available for training of the classifier. To get leverage in answering
questions about behavioral performance, however, one can also
examine the relationship between classifier performance and
behavioral accuracy on a subject-by-subject basis (i.e., by focusing
on interindividual differences). Accordingly, we assessed this rela-
tionship for each of the three feature selection procedures previ-
ously described. To obtain an estimate of behavioral performance,
we calculated familiarity-based discrimination between targets and
lures using a measure derived from signal-detection theory (d 0).
The results of these correlation analyses are plotted in Figure 4.
Critically, we found a significant positive correlation (r 5 0.47,
P< 0.05) between familiarity-based discrimination and classifier
performance for voxel patterns in PrC using the unconstrained
feature-selection procedure that allowed for the inclusion of voxels
with decreases or increases in their response. In other words, those
participants in whom classification of recognition decisions from
patterns of activity in PrC was more successful tended to perform
better in familiarity-based discrimination of faces. By contrast,
classifier accuracy and behavioral performance were not signifi-
cantly correlated when feature selection was constrained to include
only voxels with changes in signal in one direction (for voxels
showing familiar< novel: r 5 0.16, P 5 0.27; for voxels showing

FIGURE 2. Mean beta values in right PrC for familiar and
novel trials. Mean beta values were calculated across participants
based on voxels that were reliably selected for classification follow-
ing nondirectional and directional feature selection procedures.
Reliable voxels were those that survived feature selection in at least
6 out of 10 analysis iterations. All error bars indicate the SEM cal-
culated across participants.

FIGURE 3. Decoding accuracy for perceived familiar versus
novel trials from raw and z-scored patterns of activation across
feature selection approaches. z-scoring was performed on beta
values across all voxels for each trial and participant separately to
ensure that familiar and novel trials were equated at the level of
mean activation. Dashed line indicates chance level for classifica-
tion. All error bars indicate the SEM calculated across partici-
pants. *** P < 0.001.
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familiar> novel: r 5 0.11, P 5 0.33). These data suggest that,
although successful decoding of recognition-memory decisions
from activity patterns in PrC can be obtained in multiple ways,
only decoding with patterns that consist of voxels with increases
and decreases in signal shows a relationship to behavioral memory
performance.

The ATFP and Item-Based Recognition-Memory
Signals for Faces

To characterize the relationship between recognition-memory
signals for faces in PrC and the ATFP, we first assessed the
extent to which voxels with diagnostic relevance for the classifi-
cation of recognition-memory decision for faces in PrC over-
lapped with the ATFP. For this purpose, we concentrated on
the MVPA approach with a feature-selection procedure that
allowed for inclusion of voxels with either direction of signal
change. Of the right PrC voxels that were selected in the major-
ity of iterations for successful classification of recognition deci-
sions, 17.7% (averaged across participants; range 5 10.4–
25.3%) overlapped with the ATFP in those participants for
whom it could be defined (13 of 18 participants in the sample).
This overlap is illustrated in Figure 1. Thus, the majority of
voxels that were part of the patterns that allowed for successful
classification of recognition-memory decisions for faces were
located outside of the ATFP, even when the latter was defined
at the individual subject level. Next, we performed MVPA to
determine whether recognition decisions for faces could be
decoded from activity restricted to voxels comprising the ATFP
in each participant, without any additional feature selection.
Notably, even though the average number of voxels that entered
these analyses was comparable (M 5 49.7) to that which entered
our MVPA that were based on GLM-derived feature selection
without any constraints in spatial distribution (M 5 55.1), clas-
sifier performance did not exceed chance level with this
approach (M 5 51%, t12 5 0.87, P< 0.20, d 5 0.42). In a third
step, we also conducted a complementary MVPA excluding PrC
voxels that were part of the contiguous clusters that defined the
ATFP in these 13 participants. Critically, this analysis revealed

above chance classifier performance (M 5 57%, t12 5 2.29,
P< 0.05, d 5 1.11). Taken together, the results from these anal-
yses converge to suggest that voxels carrying information perti-
nent to recognition-memory decisions for faces are spatially
distributed in PrC, and not confined to the ATFP.

Category Specificity of Responses in PrC Voxel
Patterns That Allow for Classification of
Recognition-Memory Decisions for Faces

Although the results of the previous analyses suggest that face
familiarity signals are spatially distributed and extend beyond the
ATFP, this finding does not refute the notion that these patterns of
distributed activity may code for familiarity in a category-specific
manner. To address the issue of category specificity, we first exam-
ined whether PrC voxels that form the patterns allowing for classi-
fication of recognition decisions for faces show a preferential
response to face stimuli when probed with an independent func-
tional localizer. Specifically, we examined localizer activity in voxels
that were consistently included in feature selection in at least 6 of
our 10 classification iterations for decoding of recognition-
memory decisions when no constraints in signal direction were
imposed. A histogram of mean difference scores (averaged across
blocks) for faces as compared to common objects, and faces as
compared to scenes, are shown in Figure 5. Notably, the distribu-
tion is visually skewed toward positive values, hinting at predomi-
nant preferential tuning for faces in these voxel populations.
Statistically, the mean difference score was indeed different from
zero in both comparisons with other stimulus categories (faces
> objects, M 5 0.19, t17 5 3.35, P< 0.01, d 5 1.62; faces>
scenes, M 5 0.28, t17 5 4.95, P< 0.001, d 5 2.40). A comparable
pattern of results was obtained even after exclusion of voxels that
overlapped with the ATFP (faces> objects, M 5 0.12, t17 5 2.31,
P< 0.05, d 5 1.12; faces> places, M 5 0.16, t17 5 3.09,
P< 0.01, d 5 1.49). These data suggest that the voxels in patterns
of PrC activity that allow for decoding of recognition-memory
decisions for faces do indeed show a modest tuning preference for
faces in a classic functional-localizer paradigm.

FIGURE 4. Pearson correlations between classifier accuracy and familiarity-based behavioral
discrimination (d0) across participants. (A) Correlation obtained following nondirectional feature
selection. (B) Correlation obtained following directional feature selection of voxels that showed
activity reductions for familiar relative to novel trials. (C) Correlation obtained following direc-
tional feature selection of voxels that showed increased activity for familiar relative to novel trials.
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Distributed Category-Specific Localizer
Responses and Item-Based Recognition-Memory
Signals for Faces

In a third set of analyses that addressed category-specificity,
we examined whether voxels that showed preferential responses
to faces in the passive viewing localizer task could be used to
decode face recognition decisions from our experimental data.
Thus, we first used MVPA to identify voxels in PrC that show

a preference for face stimuli, without any requirement to be
part of a contiguous voxel clusters, and after exclusion of the
ATFP (in those participants for whom one could be identified).
For feature selection, we selected the top 10% of voxels that
were preferentially tuned to faces in the two critical contrasts
of our localizer data, that is, (faces> objects) and (faces
> scenes), respectively. Using this approach, we were able to
classify stimulus category robustly, with above chance accuracy,
in both comparisons (faces vs. objects: M 5 0.74, t17 5 7.51,
P< 0.001, d 5 3.64; faces vs. scenes: M 5 0.79, t17 5 8.22,
P< 0.001, d 5 3.99).

Importantly, the distributed voxel patterns that yielded above
chance classification of stimulus category in our localizer data
overlapped considerably with those that allowed for decoding
of face recognition decisions in our experimental task (when
examined with nondirectional feature selection). The overlap
was 68% and 70%, respectively. Given this substantial overlap,
we also evaluated whether we could directly decode face recog-
nition decisions in the experimental task employing the
MVPA-based localizer data for initial feature selection. Crit-
ically, we were successful with this approach; voxels that
allowed for the decoding of faces versus objects in our localizer
data could also be used to classify face familiarity (M 5 0.58,
t17 5 3.17, P< 0.001, d 5 1.54). We obtained a similar result
when we focused on voxels that allowed for classification of
faces versus scenes (M 5 0.59, t17 5 3.09, P< 0.001, d 5 1.50).
Overall, the results of the different sets of analyses we used to
compare activity in the functional localizer task and the experi-
mental task converge to suggest category specificity in item-
based recognition-memory signals in PrC that is spatially dis-
tributed beyond the ATFP.

DISCUSSION

We used fMRI-based MVPA to characterize the patterns of
activity in right PrC that allow for successful classification of
item-based recognition-memory decisions for faces (i.e., per-
ceived face familiarity). When no constraints for the direction
of signal change were imposed in feature selection, these pat-
terns included voxels with decreases as well as voxels with
increases in signal. Moreover, successful classification was
obtained in the absence of a mean difference in activity across
the entire set of voxels in the patterns. While we also found
above chance classification when analyses were constrained to
include only voxels with signal changes in one direction,
decoding accuracy was related to memory performance only
when decreases and increases in signal were considered. At
another level, comparison with data from an independent func-
tional localizer revealed that the patterns in PrC that allowed
for classification of the perceived familiarity of faces comprised
voxels that show category specificity in their response. These
voxels were found to be spatially distributed, and extended
beyond the ATFP.

FIGURE 5. Category preference revealed with functional local-
izer data in right PrC voxels with diagnostic relevance for decod-
ing of face recognition-memory decisions. Histograms depict the
proportion of voxels that show a preference for either (A) faces
(shaded bars) or objects (open bars), and (B) faces (shaded bars)
or scenes (open bars). Difference scores were calculated based on
activity from the functional localizer scans in voxels with diagnos-
tic relevance for decoding of recognition decisions for each partici-
pant separately (faces—objects; faces—scenes). These values were
then collapsed across participants and plotted as a percentage of
the total number of voxels.
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Extant fMRI evidence obtained with univariate statistical
analyses has typically linked item-based familiarity to mean
activity differences in clusters of contiguous PrC voxels with
the same direction of signal change. Such effects have most
often been associated with relative decreases in activity for old
as compared to novel stimuli at the time of retrieval (Henson
et al., 2003; Gonsalves et al., 2005; Daselaar et al., 2006a,b;
Montaldi et al., 2006; Danckert et al., 2007; Wang et al.,
2014), a finding that has attracted considerable attention due
to its parallels in neurophysiological recordings in PrC. How-
ever, some fMRI studies have also reported relative increases in
activity, or both types of effects for different clusters in the
same study (e.g., Yassa and Stark, 2008; Kafkas and Montaldi,
2012; Heusser et al., 2013). Against this background, analytical
approaches that focus on patterns of increases and decreases
can offer a clear advantage for probing the role of PrC in
memory processing. Indeed, while above chance classification
of recognition decisions could still be observed in the current
study when feature selection in MVPA was constrained to
include only PrC voxels with decreases in signal, classification
accuracy was related to the accuracy of corresponding behavior
only when patterns included voxels with decreases as well as
voxels with increases in their response.

That we revealed a relationship to memory performance
only when increases and decreases in PrC signal were consid-
ered together, in the absence of significant mean-activation dif-
ferences across all voxels in the patterns, suggests that these
patterns could carry behaviorally relevant information over
and above what individual voxels carry. Put another way, our
data suggest that the pattern context in which voxels that
show a response to prior exposure are embedded is of func-
tional relevance for item-based recognition-memory decisions.
Accordingly, these data can be seen as support for the notion
that recognition-memory signals in PrC involve a distributed
code that is carried over populations of elements, as has been
suggested in the neurophysiological literature (Thome et al.,
2012; Burke et al., 2014; see also Hung et al., 2005, for
object coding in inferotemporal cortex). From a computational
perspective, two models of recognition memory in PrC (or in
MTL neocortex, including PrC) have also shown that it is
possible to simulate stimulus familiarity via a mechanism in
which stimulus representations become “sharpened” during
encoding, manifested as an increase in the activation of some
neural units and a relative decrease in the activation of others
(Norman and O’Reilly, 2003; Cowell et al., 2006). Of course,
even though the current fMRI data were obtained at very high
resolution (voxel size of 2 mm in each dimension), every voxel
would still comprise hundreds of thousands of neurons. As
long as the mapping of signals from neurons to voxels remains
incompletely understood, any fMRI evidence must ultimately
be considered indirect as to the code used for neuronal
signaling.

We also caution that the present fMRI results do not permit
for inferences as to the dimensionality of the signal carried by
voxel patterns of PrC activity that allow for decoding of item
familiarity. A multidimensional code is typically characterized

with respect to multiple psychological or behavioral dimensions
that are reflected in neural response patterns (see Diedrichsen
et al., 2013; Davis et al., 2014, for discussion). Further
research is required to specify these dimensions in relation to
item-based recognition decisions, to probe how they map onto
increases and decreases in signal, and to relate them to specific
sources of stimulus information that could guide these memory
decisions (Henson and Gagnepain, 2010).

A second question about item familiarity signals in PrC that
was addressed in this study was whether diagnostic voxels in
the activity patterns that allow for successful decoding are
tuned to the specific stimulus category to which a judged
object belongs. Results from several analyses we present, which
compared data from the experimental task with data from an
independent classic functional localizer of the kind typically
used in research on category-specific responses in more poste-
rior temporal and occipitotemporal region, suggest that this is
indeed the case. Most notably, those PrC voxels that consti-
tuted the patterns that allowed for decoding of the perceived
familiarity of faces responded preferentially to faces as com-
pared to common objects, and faces as compared to scenes,
when probed with the independent functional localizer (Fig.
5). Furthermore, we were also able to decode the perceived
familiarity of faces from those voxels in PrC that constituted
patterns with face-specific responses as identified with MVPA-
based analyses of our functional localizer. Results from both
types of analyses converge to suggest that recognition-memory
signals in PrC adhere to a category-specific organization.

A more subtle aspect of our findings on category specificity
is that we were able to decode the perceived familiarity of faces
from widely distributed voxel patterns in PrC with faces-
specific responses, but not when examination of voxel patterns
was restricted to the ATFP. It is interesting to note the parallel
between this finding and those in more posterior aspects of the
ventral visual stream, where it has been found that spatially dis-
tributed voxel patterns in inferotemporal and occipitotemporal
cortex carry information about faces even after exclusion of the
fusiform face area (Haxby et al., 2001; Kriegeskorte et al.,
2008). Our results suggest that even though this general repre-
sentational structure in the ventral visual pathway (i.e., category
specificity in contiguous local clusters and in spatially distrib-
uted patterns) is preserved in PrC, corresponding recognition-
memory signals appear to be reflected primarily in the spatially
distributed patterns.

Most prior fMRI literature on category-specific effects has
focused on functional differences between distinct MTL struc-
tures, such as between PrC and the hippocampus (Lee et al.,
2006; Barense et al., 2010; Graham et al., 2010), or between
PrC and parahippocampal cortex (Staresina et al, 2011; Martin
et al., 2013). Some research, however, has also revealed evi-
dence for category specificity in distributed response patterns
within PrC. For example, Liang et al. (2013) used MVPA in
the context of a target detection task and found that distrib-
uted patterns of BOLD activity in PrC honored differences
between faces, scenes, words, and sounds, with face representa-
tions being significantly different from all other types of
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stimulus categories examined (see also Diana et al., 2008; Huff-
man and Stark, 2014). Our study extends this prior research by
showing category specificity in memory signals at retrieval that
are directly related to participants’ recognition-memory
responses. That such spatially distributed signals in PrC show
category-specificity in their organization is also suggested by the
lack of successful cross-classification across different stimulus cat-
egories that we noted in our initial report on this study (Martin
et al., 2013). Specifically, these earlier analyses revealed that the
linear classifier that had been trained successfully for classification
of the familiarity of faces was unsuccessful when tested for classi-
fication of the familiarity of chairs even though the familiarity of
chairs could be decoded based on right PrC activity when a classi-
fier was directly trained with stimuli from this category. Further,
our earlier analyses (unreported results) also showed that when
trials with stimuli from both categories were combined during
training and test, we were unable to classify corresponding
recognition-memory decisions.

Our findings on category-specific recognition-memory sig-
nals in PrC are of direct relevance for a representational frame-
work of MTL organization as proposed in various theoretical
accounts (Murray and Bussey, 1999; Bussey and Saksida, 2007;
Graham et al. 2010; Cowell et al. 2010). Within this frame-
work, PrC is considered to be the apex of the ventral visual
pathway in that it carries information about complex objects at
the highest level of specificity. From this perspective, the link
between PrC functioning and familiarity arises due to the
nature of stimuli used, and due to the fidelity of stimulus rep-
resentations required to succeed with item-based memory dis-
criminations in typical recognition-memory tasks. However,
PrC should also play a role in nonmnemonic task contexts
when they involve the representation of objects at a comparable
level of specificity. Indeed, to the extent that our functional
localizer task did not have explicit mnemonic demands, the
current findings point to correspondence between voxel pat-
terns that code the perceived familiarity of faces and the repre-
sentation of faces more generally. Past fMRI research provides
additional support for this interpretation (see Collins and
Olson, 2014, for review), including several studies that revealed
an involvement of PrC in the perceptual discrimination of
faces under conditions that required fine-grained distinctions
between multiple exemplars, as well as in perceptual learning
of faces (Lee et al., 2008; O’Neil et al. 2009; Barense et al.,
2010; Mundy et al., 2012, 2013; O’Neil et al., 2013). For
example, O’Neil et al. (2009) reported that activity in right
PrC is related not only to the accuracy of forced-choice recog-
nition-memory judgments, but also to the accuracy of percep-
tual oddity judgments for faces.

The fact that we were able to train a linear classifier to decode
the perceived familiarity of faces on a set of trials with old and new
faces, and then perform accurately in classification on other non-
trained test trials implies that activity patterns in PrC generalize, at
least in part, across different exemplars of familiar and different
exemplars of novel faces, respectively. This regularity may, at first
glance, appear difficult to reconcile with the representational
account of PrC functioning, which, as discussed, emphasizes a role

of this structure in the representation of objects and faces at a high
level of specificity (Bussey and Saksida, 2007; Graham et al. 2010;
Cowell et al. 2010). We note, however, that the generalization we
observed does not imply that the specificity required for recogni-
tion of unique face exemplars could not be retained in PrC activity.
Overlap in PrC response patterns for different face exemplars with
the same memory status may have been large but incomplete.
Indeed, previous fMRI studies that required discrimination
between a much smaller set of stimuli, each presented many times,
have shown that it is possible to decode the identity of specific face
exemplars from activity patterns in the anterior temporal lobe,
including from a region in the anterior collateral sulcus that is part
of PrC (Kriegeskorte et al., 2007; Nestor et al., 2011; Anzellotti
et al., 2013; Anzellotti and Caramazza, 2014; Ramon et al., 2015).
Future research can build on the present findings and track how
the patterns of activity that we report emerge as specific faces
change from being perceived as novel to being familiar.

A final issue that warrants consideration is whether the coding
properties we revealed in the current study generalize to situations
in which targets and distractors (i.e., old vs. new items) have dis-
tinct semantic meaning as in classic word-list learning experiments.
Notably, the majority of previous fMRI studies that have linked
item recognition to response reductions in contiguous PrC clusters
at retrieval have used stimuli with semantic meaning that had dis-
criminative value for the task at hand (see Diana et al., 2007; Kim,
2013, for reviews). By contrast, the faces used in this study were
completely novel to all participants and were not directly associated
with any semantic knowledge that would easily allow for their dis-
crimination (i.e., they were not faces of famous individuals). The
relatively consistent decrease in focal PrC signal revealed in prior
studies on recognition memory with words may be a reflection of
the influence of semantic knowledge on discrimination. Such an
interpretation would be in line with the proposal that the PrC
response reductions reported in these studies may reflect conceptual
fluency (Voss et al., 2009; Wang et al., 2010; Dew and Cabeza,
2013; Heusser et al., 2013; Wang et al., 2014). Against this back-
ground, it is possible that the extent to which item-recognition sig-
nals in PrC are reflected in distributed response patterns or in more
focal clusters (with a homogeneous direction of response to recent
exposure) relates to whether recognition decisions are based primar-
ily on perceptual or conceptual stimulus properties, respectively.
This notion could be evaluated in future fMRI research with a
direct comparison of the coding properties of recognition-memory
signals for stimuli that vary with respect to the discriminative value
of perceptual and conceptual item features.
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