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Abstract

■ Damage to the medial temporal lobe (MTL) has long been
known to impair declarative memory, and recent evidence sug-
gests that it also impairs visual perception. A theory termed the
representational-hierarchical account explains such impair-
ments by assuming that MTL stores conjunctive representations
of items and events, and that individuals with MTL damage
must rely upon representations of simple visual features in
posterior visual cortex, which are inadequate to support mem-
ory and perception under certain circumstances. One recent
study of visual discrimination behavior revealed a surprising
antiperceptual learning effect in MTL-damaged individuals: With
exposure to a set of visual stimuli, discrimination performance
worsened rather than improved [Barense, M. D., Groen, I. I. A.,
Lee, A. C. H., Yeung, L. K., Brady, S. M., Gregori, M., et al. Intact
memory for irrelevant information impairs perception in amnesia.
Neuron, 75, 157–167, 2012]. We extend the representational-

hierarchical account to explain this paradox by assuming that
difficult visual discriminations are performed by comparing
the relative “representational tunedness”—or familiarity—of
the to-be-discriminated items. Exposure to a set of highly
similar stimuli entails repeated presentation of simple visual
features, eventually rendering all feature representations maxi-
mally and, thus, equally familiar; hence, they are inutile for solv-
ing the task. Discrimination performance in patients with MTL
lesions is therefore impaired by stimulus exposure. Because
the unique conjunctions represented in MTL do not occur re-
peatedly, healthy individuals are shielded from this perceptual
interference. We simulate this mechanism with a neural net-
work previously used to explain recognition memory, thereby
providing a model that accounts for both mnemonic and per-
ceptual deficits caused by MTL damage with a unified architec-
ture and mechanism. ■

INTRODUCTION

The medial temporal lobe (MTL) has long been asso-
ciated with declarative memory (Squire & Zola-Morgan,
1991; Scoville & Milner, 1957). Recent studies have impli-
cated MTL structures in other functions, such as high-
level perception (e.g., Lee et al., 2005; Buckley, Booth,
Rolls, & Gaffan, 2001), decision-making (Wimmer &
Shohamy, 2012), statistical learning (Schapiro, Kustner,
& Turk-Browne, 2012), and imagination (Maguire, Vargha-
Khadem, & Hassabis, 2010; Schacter & Addis, 2007). Thus,
although the notion of a declarative memory system in
the MTL (Squire & Wixted, 2011; Squire & Zola-Morgan,
1991) has provided critical insight into the organization of
memory, it no longer fully explains the role of the MTL in
cognition. The challenge, now, is to develop mechanistic
theories that explain why MTL structures are implicated
in both memory and other cognitive functions.
A theory termed the representational-hierarchical

account has been put forward to explain both mnemonic
and perceptual deficits caused by damage to different
structures within MTL (Kent, Hvoslef-Eide, Saksida, &
Bussey, 2016; Cowell, Bussey, & Saksida, 2006; Bussey
& Saksida, 2002). This account assumes that the ventral

visual stream contains a hierarchical organization of rep-
resentations that continues into the MTL. Early stages of
the pathway (e.g., V1, V2, V4) are assumed to represent
simple visual features (e.g., color, orientation), whereas
more anterior regions are assumed to bring simple fea-
tures together into conjunctions of increasing complexity
(Figure 1). The hierarchy culminates in the MTL, where
conjunctions correspond to whole objects, scenes, or com-
plex episodic events. The representational-hierarchical
account claims that conjunctive representations in the
MTL are important whenever a cognitive task—perceptual
or mnemonic—employs stimuli with overlapping fea-
tures, such that individual feature representations pro-
vide ambiguous information (Bussey & Saksida, 2002).

Paradoxical Finding of an Exposure-induced Deficit
in Visual Discrimination

A recent study by Barense et al. (2012) documented a
new and puzzling way in which MTL lesions impair visual
discrimination. MTL amnesics and healthy controls were
asked to judge whether pairs of simultaneously presented
abstract stimuli were the same or different (Figure 2A).
Stimuli were defined by three features: outer shape, inner
shape, and fill pattern. To ensure that participants couldUniversity of Massachusetts

© 2017 Massachusetts Institute of Technology Journal of Cognitive Neuroscience 29:6, pp. 1075–1088
doi:10.1162/jocn_a_01106



not perform the task based on pixel-wise differences
between stimuli, the discriminanda were rotated by a
random angle between 15° and 165°. The task required
participants to declare a mismatch if any of the three fea-
tures differed across the pair or a match if the two stimuli
were identical. In the High Ambiguity condition, each
pair of stimuli in a mismatch trial shared two of three fea-
tures, whereas in the Low Ambiguity condition, items in
a mismatching pair shared no features. Amnesic patients
were unimpaired at discriminating Low Ambiguity ob-
jects, but for High Ambiguity discriminations the perfor-
mance of MTL patients deteriorated in the second half of
trials (Figure 2B).

Barense et al. explained their data in terms of the
representational-hierarchical account: Individuals with
MTL damage lack the conjunctive representations of
objects usually found in perirhinal cortex (PRC), a struc-
ture in the MTL. Objects are instead represented as a
collection of features in posterior visual cortex. In the
task of Barense et al., each stimulus is a unique conjunc-
tion of features, but the features comprising the stimuli
repeat across trials. After viewing many items, feature
level interference renders the representations in poste-
rior visual cortex inadequate for solving difficult (High
Ambiguity) discriminations. Control participants resolve
this interference using the unique conjunction for each
stimulus represented in PRC, but when PRC is damaged,
performance suffers.

These results present a paradox: The decrease in MTL
amnesics’ performance with increasing exposure to task
stimuli contrasts with perceptual learning effects. Percep-
tual learning is often explained by assuming that experi-
ence increases the separability of stimuli, either because
stimulus representations become less overlapping (Yang

& Maunsell, 2004; Schoups, Vogels, Qian, & Orban, 2001;
Saksida, 1999) or because the weights via which stimulus
representations influence decision-making are optimized
(Liu, Dosher, & Lu, 2015; Kumano & Uka, 2013). But if
discrimination relies on the separability of stimulus rep-
resentations and exposure differentiates representations,
then it is not clear why brain damage should reverse this
effect, causing exposure to hurt performance. Put another
way, even if individuals with MTL damage possess only
feature representations, why should exposure should
cause feature representations to become more over-
lapping, rather than less?
In a previous neural network instantiation of the

representational-hierarchical account (Cowell et al.,
2006) impairments in recognition memory induced by
MTL damage were accounted for by considering the famil-
iarity signal evoked by stimulus representations in the
brain. Exposure to many items sharing visual features
entails frequent repetition of the features. Eventually,
the representations of all features in posterior visual
cortex bear the hallmarks of familiarity, causing indi-
viduals with MTL damage (who possess only feature rep-
resentations) to perceive all items as equally familiar,
impairing recognition memory. Here, we invoke the same
mechanism to explain the visual discrimination impair-
ments reported by Barense et al. To apply this account
to visual discrimination, we assume that participants use
a familiarity-based comparison to decide whether two

Figure 1. The organization of representations according to the
representational-hierarchical account. Simple visual features, such as
an oriented line or a color, are represented in early visual regions.
Features are combined into increasingly complex conjunctions going
from posterior to anterior regions. The MTL lies at the apex of the
hierarchy, where conjunctions correspond to whole objects (in PRC) or
to spatial scenes or episodic events comprising multiple objects and
their context (in hippocampus).

Figure 2. (A) Stimuli from Experiment 3 of Barense et al. (2012). Pairs
of stimuli were presented simultaneously. Each stimulus was defined
by three features: inner shape, outer shape, and fill pattern. High
Ambiguity mismatching pairs shared two of these features, but Low
Ambiguity mismatching pairs share zero feature. (B) Empirical data
from Experiment 3 of Barense et al. (2012). Participants with perirhinal
(PRC) lesions were impaired at discriminating High Ambiguity stimuli
in the second half of trials. Significance was assessed via Crawford’s
t test for each lesion participant separately (Control, n = 8; Lesion,
n = 2; error bars = SEM ). (C) Simulated data for Experiment 3 of
Barense et al. (2012). As in the empirical data, networks with PRC
lesions were impaired at discriminating High Ambiguity stimulus pairs
in the second half of trials. Error bars = SEM.
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items are identical (Macmillan & Creelman, 2005; Dai,
Versfeld, & Green, 1996). Although the term “familiarity”
provides an intuition as to how a model of memory can
be applied to visual discrimination, a more accurate and
theory-neutral description of the mechanism underlying
both tasks is given by the terms “sharpness” (Norman &
O’Reilly, 2003) or “representational tunedness” (Cowell
et al., 2006).

Resolving the Paradox: Visual Discrimination
Based on Representational Tunedness

We assume that, for difficult discrimination tasks like that
of Barense et al. (2012), participants search for a mis-
match between the two stimuli (Dai et al., 1996). To do
so, they visually scan back and forth between stimuli in a
pair; if the second item appears less tuned than the item
just examined, this provides evidence for a mismatch in
identity. That is, the new item appears novel to the extent
that it differs from the item just inspected. This forms the
critical basis of the discrimination mechanism: If switch-
ing between items elicits a novelty signal (i.e., a decrease
in representational tunedness) the two stimuli are judged
to mismatch; if not, the two stimuli are judged to match.
Just as in the memory simulations of Cowell et al.

(2006), representations in the model can saturate (i.e.,
reach a maximum) in terms of tunedness. In a discrimi-
nation task in which all stimuli are similar, the stimulus
features appear repeatedly, resulting in all feature rep-
resentations becoming highly tuned. After sufficient rep-
etitions, the representations of all object features are
equally, maximally, tuned—rendering the tunedness-
based comparison inutile. In contrast, because individual
objects do not repeat across trials, object level repre-
sentations (in PRC) do not saturate and so remain useful
for discrimination. When conjunctive representations are
compromised by MTL damage, visual discrimination is
impaired. A central assumption of the representational-
hierarchical framework is that memory and percep-
tion share common neural mechanisms. Our model
embodies this by using a mnemonic signal—familiarity
or tunedness—to solve a visual perceptual task.

GENERAL METHODS

Model Architecture

We use the model of Cowell et al. (2006) with minor
modifications. The network contains a PRC layer and a
layer corresponding to posterior ventral visual stream
(Figure 3). Visual objects are instantiated as 8-D vectors.
We assume that posterior regions represent simple
conjunctions of two visual dimensions, so the posterior
layer is divided into four grids: posterior grid units re-
ceive two input dimensions and combine them into a
simple conjunction, termed a “feature.” Because PRC is
assumed to represent whole objects, all eight input di-

mensions converge into a single 8-D conjunction in the
PRC layer. Thus, PRC contains unique, conjunctive rep-
resentations of objects, whereas the posterior layer rep-
resents the four 2-D features separately. The posterior
layer does not input to the PRC layer; the two layers’ rep-
resentations are independent. This parallel architecture
greatly simplifies the model. Although the ventral visual
pathway contains many serial connections (Desimone &
Ungerleider, 1989), mapping the transfer of information
across serial layers of the hierarchy would add extra
complexity without contributing to the mechanism that
accounts for the target effects. We instead opt for parsi-
mony, choosing a simple parallel architecture that allows
us to focus on our central hypothesis concerning the
consequences of removing high-dimensional, conjunctive
representations.

All model layers are constructed from Kohonen grids,
which mimic information processing mechanisms of
cortex such as Hebbian learning and lateral inhibition
(Kohonen, 1984). A Kohonen grid (or self-organizing
map) is trained by presenting a series of stimulus inputs
and incrementally adapting the weights of grid units on
each presentation. During learning, stimulus representa-
tions are sharpened such that they are more tuned to a
particular stimulus. Once a stimulus has been encoded,
its representation on the grid is more selective: A smaller
region of the grid is active, but the magnitude of that
activation is greater (Figure 4). In simulations of memory
tasks, the sharpness or “tunedness” of a representation
provides an index of familiarity (e.g., Cowell et al.,
2006; Norman & O’Reilly, 2003).

Each input dimension can take one of four values:
0.05, 035, 0.65, or 0.95. This scheme yields 48 = 65,536
unique objects on the PRC layer, but only 42 = 16 unique
2-D features on each posterior grid, reflecting a key as-
sumption of the representational-hierarchical account: that

Figure 3. Model architecture. An object stimulus has eight input
dimensions, paired into four 2-D “features.” The PRC layer is a single
Kohonen grid, representing an object as a unique conjunction.
The posterior layer is composed of four Kohonen grids, which each
represent one visual feature. Encoding and retrieval are identical
on posterior and PRC layers; the layers differ only in the complexity
of representations.
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there is a vast number of possible visual objects in the
world, composed from a small number of visual elements.

Simulating Visual Discrimination Behavior

Fixations

In Barense et al., participants decided whether two simul-
taneously presented stimuli were the same or different.
Eye-tracking data revealed that, on trials ultimately de-
clared as a “match,” control participants made approxi-
mately 25 and 20 fixations at High and Low Ambiguity,
respectively. These fixations were distributed across the
two stimuli, as participants looked back and forth be-
tween them. Participants exhibited a higher ratio of
within-stimulus to between-stimulus fixations in High
Ambiguity (∼1.2) than in Low Ambiguity trials (∼0.6).
Barense et al. conjectured that this reflected a greater
tendency to bind features together in the High Ambiguity
condition. Accordingly, we hypothesized that fixation
ratios might contribute to task performance (e.g., sam-
pling with a higher within/between ratio may facilitate
the formation of conjunctive representations in PRC)
and aligned simulation parameters with these empirical
data. In the model, stimuli are “sampled” via fixations.
On each fixation, the network encodes the stimulus for
20 encoding cycles (see Appendix). During each encod-
ing cycle, the representation of the sampled stimulus is
tuned. A probabilistic rule governs how the network
switches back and forth between sampling the two items

in a pair, with the probability of a switch derived from the
empirical within/between ratio for each experimental
condition (1.2 or 0.6).

Discrimination Decisions

To perform a discrimination task, a network must make a
“match/mismatch” response; the mechanism by which it
does so is as follows. On each trial, two stimuli are pre-
sented to the network, but only one stimulus is sampled
(i.e., its representation “activated”) at a time. One stimu-
lus is arbitrarily selected first (Item A), and the network
samples it via successive fixations until switching to the
other stimulus (Item B). Upon switching, the model as-
sesses evidence for a mismatch by computing a novelty
score and comparing it to a criterion. The novelty score
is obtained by taking the tunedness of Item A and sub-
tracting the tunedness of Item B. When the two items
are identical, the novelty score is zero; when they are
different, Item B is slightly less well tuned than Item A
(because Item A has just been encoded, whereas Item B
has not), yielding a positive novelty score. If the novelty
score in any individual grid (any of the four posterior
grids or the PRC layer) exceeds the criterion, the items
are declared to “mismatch.” If the network finds no evi-
dence for a mismatch after this switch, fixations continue.
In the next comparison, Item B serves as the previously
inspected stimulus and Item A as the newly fixated stim-
ulus. Comparisons proceed until either a mismatch is de-
clared or the maximum number of fixations is reached,
whereupon a match is declared.
We note that this mechanism disregards any informa-

tion about the perceptual identity of the object and its
features, which would be indexed in this model by the
location (rather than the tunedness) of the peaks in the
grid. As such, it is an unconventional mechanism for per-
forming “match/mismatch” discriminations; we return to
this issue in the Simulation 1 Discussion and Interim Dis-
cussion, below.
Reaching the maximum number of fixations corresponds

to the model “giving up” on the search for a mismatch.
Human control participants fixated longer on matching
High Ambiguity pairs as compared with matching Low
Ambiguity pairs. The study design was blocked, with High
versus Low Ambiguity trials being presented in separate
blocks. We assume that the blocked format allowed par-
ticipants to perceive that differences between the two
stimuli in a pair were subtler on High Ambiguity trials,
leading participants to exercise extra caution in declar-
ing a match and resulting in a greater total number of
fixations on matching High Ambiguity trials. We instantiate
this cautiousness by setting the maximum number of
fixations in the model to the values observed in control
participants—25 and 20 in the High and Low Ambiguity
conditions, respectively.
Finally, as in Barense et al. (2012), hit rates of 1.0 and

false alarm rates of 0.0 (where “hit” and “false alarm” refer

Figure 4. Schematic illustration of activations in the network. Left
column: Activation due to a novel stimulus (top panel shows PRC layer,
bottom panel shows posterior layer). Right column: Activation due
to a stimulus that has been encoded, that is, sampled many times.
The novel stimulus elicits a broadly distributed pattern of activity across
the grid, whereas the encoded stimulus elicits a highly selective
activation pattern with a peak over a subset of grid units.
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to declaring “mismatch” and “match” to a pair of mis-
matching stimuli, respectively) were adjusted by subtract-
ing or adding half a trial, respectively.

Criterion Shift

We assume that participants adjust their decision rule
as their representations adapt: if participants begin to
perceive all items as more similar, they require less evi-
dence to declare that two items are mismatching. To
effect this, the criterion value of novelty required to
declare a pair of items as mismatching (i.e., the decision
criterion) is allowed to shift by equating it to the average
of the novelty score on the previous six trials. In the pres-
ent task, the assumption of a criterion shift is necessary
to prevent an unrealistic scenario in which participants
declare all pairs of items as matching, as interference
accrues. However, in the absence of noise, the criterion
shift would give rise to unrealistically perfect discrimi-
nation performance for all participants. Therefore, on
each trial, noise drawn from the uniform distribution
(±1e−6) is added to the criterion. The properties of the
noise distribution are not critical to the representational-
hierarchical account; a uniform distribution was chosen
for simplicity. This noise—which may encompass neural
noise, attentional fluctuations, item differences, etc.—
adds randomness to the decision process. In doing so,
it more effectively obscures the novelty signal produced
by switching between two stimuli when their tunedness
difference is minimal. The starting criterion value (i.e.,
on Trial 1) is set to twice the maximum noise: 2e−6.

SIMULATION 1

We simulated the paradoxical finding that visual dis-
crimination performance worsens with exposure to the
task stimuli after damage to MTL. In Experiment 3 of
Barense et al., participants indicated whether two simul-
taneously presented visual stimuli were a match or a mis-
match. Stimuli were trial-unique items composed of
three features (Figure 2A). In High Ambiguity mismatch
trials the items shared two of three features, whereas in
Low Ambiguity mismatch trials the items shared none.
Individuals with PRC damage performed like controls at
Low Ambiguity, but at High Ambiguity their performance
was intact initially, then fell sharply in the second half of
trials (Figure 2B).

Simulation 1 Methods

All stimuli were trial-unique. Stimulus pairs in the Low
Ambiguity condition shared no 2-D features, whereas
High Ambiguity pairs shared three of four features. (The
stimuli in Barense et al. contained three explicitly defined
features, but we used four features for consistency with
Cowell et al., 2006; the total number of features does

not qualitatively affect simulation results). Because the
representational-hierarchical account assumes that ob-
jects are composed from a limited pool of visual fea-
tures, there are many possible unique objects, but the
features comprising them appear repeatedly. For this
simulation, we further constrained the feature set to re-
flect the high feature-overlap among the stimuli of Barense
et al. by constructing four featured objects using only
6 of the 16 possible 2-D features for each posterior grid.
This yielded 64 = 1296 unique objects.

Networks were initialized and pretrained (see Appendix)
before performing visual discrimination in two conditions:
High and Low Ambiguity. As in Barense et al., each con-
dition contained 36 “match” and 36 “mismatch” trials.
Control networks comprised both posterior and PRC
layers, whereas “PRC Lesion” networks possessed only a
posterior layer. We simulated 48 networks in each group,
corresponding to six networks per human control partici-
pant in Barense et al. (2012).

Simulation 1 Results and Discussion

Networks with no PRC layer, like humans with PRC dam-
age, were impaired relative to controls at High but not
Low Ambiguity (Figure 2C), and the impairment was
worse in the second half of trials. We do not report sta-
tistics on simulated data because significance scales arbi-
trarily with the number of networks run. Instead, we
focus on qualitative patterns, which match those of the
patient data, including the critical interaction between
Lesion Group, Ambiguity, and First/Second Half.

The simulation of a lesion-induced deficit in discrimi-
nating High Ambiguity stimuli in the second half of trials
hinges on three assumptions: (1) participants solve the
task using a tunedness-based differencing rule, (2) the
stimuli contain many low-level features that repeat over
trials so that eventually all stimulus features are highly
tuned, and (3) the stimuli are represented in PRC as
whole conjunctions but in posterior regions as individual
features. Together, these assumptions provide that, fol-
lowing PRC damage, discrimination performance is im-
paired once all features are maximally tuned.

Consider a lesioned network, in which performance
relies on feature representations because it possesses
only a posterior layer. At the start of the task, individual
features are not highly tuned. On each new trial, as the
network encodes the first stimulus, the features of that
stimulus are tuned. When the network switches to the
second stimulus, if it is not identical to the first its fea-
tures appear novel and a mismatch is correctly declared.
However, after many trials, all features have been re-
peatedly encoded by the network. Now, at the start of
a new trial, there can be no increase in tunedness of
the feature representations when the network inspects
the first stimulus. Next, when the network switches
to the second stimulus, even if that stimulus differs in
identity from the first, its features are just as tuned as
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those of the first, and the tunedness-based differencing
rule cannot reliably detect a mismatch.

The feature level interference has more effect at High
than Low Ambiguity for two reasons. First, networks
perform more encoding on any given mismatch trial in
the High than in the Low Ambiguity condition. This is
because the network spends longer searching for a dif-
ference between the two stimuli on High Ambiguity trials
than on Low Ambiguity trials. The longer search time is
produced by the higher ratio of within/between fixations
on High Ambiguity trials (see Fixations). In searching
longer for a mismatch, more encoding occurs, and stim-
ulus representations undergo more tuning. Consequently,
the tunedness of features rises more steeply across trials
in the High Ambiguity condition. Although—as Barense
et al. claimed—the use of a higher within/between fixa-
tion ratio may be useful for binding features into a con-
junction, that strategy ultimately proves detrimental to
the lesioned model: Inspecting each stimulus more closely
leads to faster buildup of interference. Evidence that
humans with brain damage nevertheless adopt this dis-
advantageous strategy is provided by Erez, Lee, and
Barense (2013), in which patients with PRC damage ex-
hibited the same viewing patterns as control participants.
The second reason that lesioned networks’ performance
deteriorates faster at High Ambiguity is that mismatching
High Ambiguity pairs share three of four features, whereas
Low Ambiguity pairs share no features. In seeking a mis-
match, the network searches for any pair of features across
the two stimuli that differ. In Low Ambiguity pairs, there
are four mismatching features; therefore, a network has
four opportunities to discover a feature that has not yet
reached maximum tunedness, which can be used to de-
clare the two items a mismatch. In High Ambiguity pairs,
there is only one mismatching feature, and so the chance
of discovering a mismatch is greatly reduced.

Performance in control networks, by contrast, is main-
tained throughout the task, because they possess con-
junctive representations in the PRC layer. Individual
stimuli are trial-unique (i.e., whole conjunctions are
never repeated) so whole-object representations in PRC
never reach maximum tunedness. At the start of each
new trial, the PRC representation for the first stimulus
inspected always becomes more selective as it is in-
spected. When the network switches to the second
stimulus, if the second differs from the first, the second
will be less tuned and the pair will be declared to
mismatch.

This mechanism for performing visual discrimination is
radically different from traditional conceptions of how
same/different (“match/mismatch”) judgments are made.
Traditional theories of discrimination typically assume
that match/mismatch responses are based on the per-
ceived identity of the objects or their features—when
the identity is the same, a match response is declared.
The alternative, “tunedness”-based mechanism of the
present model is perhaps counterintuitive: for example,

does it lead to the implausible prediction that two com-
pletely physically different stimuli will be called “same” if
they have the same tunedness? In practice, the answer is
“no.” If two items differ in identity, the chance that their
familiarity values—which are determined by the net-
work’s prior experience with these and other items—will
be similar enough to elicit a “match” response is vanish-
ingly small (except in the posterior layer after sufficient
interference). Indeed, this phenomenon is the crux of
the mechanism: The model exploits the fact that different
objects elicit different levels of familiarity, interpreting
the differing levels of familiarity as indicative of different
objects. This phenomenon breaks down in exactly the
scenario that causes impairments in human participants:
when only posterior representations are available and
interference has built up. Moreover, as explained in the
Interim Discussion below, we do not suggest that the
tunedness-based discrimination heuristic is used by
human participants for all discrimination tasks (including
those in which paired items differ greatly in identity),
rather only for very difficult discriminations employing
highly similar stimuli.
These simulations demonstrate an explicit mechanism

by which perceptual interference can cause MTL amne-
sics to show worsening visual discrimination with increas-
ing stimulus exposure. However, in Barense et al.’s
Experiment 3, perceptual interference was incidental
rather than explicitly manipulated—its effects were
examined by comparing the first and second halves of
the study, which confounded degree of interference with
order of presentation. Thus, although interference was
hypothesized to account for the patients’ greater impair-
ment in the second half of trials, a potential alternative
explanation was that patients grew relatively more fa-
tigued than controls as the task wore on, rendering their
performance in the harder (High Ambiguity) condition
more impaired. To test directly the hypothesis that per-
ceptual interference is central to MTL patients’ deficits,
Barense et al. conducted another study—Experiment 4—in
which perceptual interference was explicitly manipulated.

SIMULATION 2

In Experiment 4, participants completed three blocks in
strict order: Low Interference 1, High Interference, and
Low Interference 2. The High Interference block con-
tained 88 trials (44 match, 44 mismatch) identical to
the High Ambiguity trials of Experiment 3, in which pairs
of abstract stimuli shared two of three features. In Low
Interference blocks, High Ambiguity and photographic
trials were interleaved: each of 30 High Ambiguity trials
(15 match, 15 mismatch) was followed by two trials con-
taining a pair of color photographs of real-world objects
(58 trials in total; 29 match, 29 mismatch). Critically, per-
formance was assessed only on every third trial, which
was always a High Ambiguity trial. Photographic stimuli
shared few low-level features with the abstract stimuli
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of High Ambiguity trials (Figure 5A). Therefore, Low
Interference blocks entailed less feature level interfer-
ence than High Interference blocks, and MTL patients
were predicted to be less impaired at Low Interference.
Experiment 4 replicated the results of Experiment 3:
MTL-damaged patients showed impaired discrimination
at High but not Low Interference, even in the second
Low Interference block (Figure 5B). This suggested that
the impairment seen in Experiment 3 was caused by the
cumulative effect of perceptual interference within a
block, rather than increasing fatigue in the MTL patients.

Simulation 2 Methods

As in Simulation 1, we modeled abstract stimuli by using
6 of the 16 possible “features” on each posterior grid
to construct four-featured stimulus wholes with high
feature-overlap. Reflecting the assumption of Barense
et al. that abstract stimuli shared few low-level features
with photographic stimuli, we used the remaining ten
features (i.e., an independent set) to construct photo-
graphic inputs.
Networks performed three discrimination blocks, each

containing 88 trials. Every third trial in all blocks was a
critical comparison trial, in which the two stimuli were
abstract stimuli (15 matching, 15 mismatching). On mis-
matching critical comparison trials, the stimuli shared
two of three features. In High Interference blocks, the re-
maining 58 trials contained extra pairs of High Ambiguity
abstract stimuli. In Low Interference blocks, the remain-
ing 58 trials contained pairs of photographic stimuli. As
in Barense et al., in both High and Low Interference

blocks, performance was judged only on critical compari-
son trials: the trials occurring at every third position. The
key difference between High and Low Interference was
that, for Low Interference, the trials interposed between
critical trials contained items sharing no features with crit-
ical trial stimuli whereas, for High Interference, interposed
trials contained items similar to critical trial stimuli.

Simulation 2 Results and Discussion

Mirroring the data from MTL amnesics, lesioned networks
were unimpaired relative to controls in the Low Inter-
ference blocks, but impaired in the High Interference
block (Figure 5C).

The same mechanism that impaired lesioned networks
in Simulation 1 drives the impairments in Simulation 2. In
the High Interference condition, because all trials contain
the same class of stimuli, stimulus features appear re-
peatedly and posterior feature representations reach
maximum tunedness. Once this saturation occurs, the
tunedness of posterior, feature-based representations
cannot increase substantially when the network inspects
a new stimulus at the start of a trial. Consequently, a net-
work with no PRC layer cannot detect novelty (a drop in
tunedness) upon switching to the other stimulus in the
pair, and a tunedness comparison no longer discrimi-
nates the two stimuli. In contrast, in the Low Interference
condition, two thirds of trials contain photographs com-
posed of different features than the critical trial stimuli.
The critical trial stimulus features repeat too infrequently
for the tunedness of their representations to saturate,
and lesioned networks remain unimpaired.

Figure 5. (A) Stimuli from
Experiment 4 of Barense et al.
(2012). Low interference blocks
used photo stimuli in 2/3 of
trials, which shared few features
with the abstract stimuli used
on critical comparison trials.
High interference blocks
used abstract stimuli on every
trial. (B) Empirical data from
Experiment 4 of Barense
et al. (2012). (C) Model
simulations for Experiment 4.
Error bars = SEM.
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Notably, the discrimination scores of lesioned net-
works improved in the final Low Interference block, rel-
ative to the previous High Interference block. This
improvement suggests a release from built-up inter-
ference, despite the fact that—to mirror the cumulative
effects of fatigue or interference experienced by MTL
patients—networks’ weights were not reset to their initial
values between blocks. The improvement can be attri-
buted to the interposition of stimuli composed of very
different visual features on two thirds of trials. That is,
because the posterior layer was required to alternate
between encoding the features of the abstract stimuli (on
critical trials) and a very distinct set of features of photo-
graphic stimuli (on interposed trials), the representations
of abstract stimulus features became partially “detuned”
between critical trials, such that the tunedness-based dif-
ferencing rule for discriminating two abstract stimuli was
effective, even based only upon feature representations.

INTERIM SUMMARY: ACCOUNTING FOR
VISUAL DISCRIMINATION

Barense et al. (2012) reported a striking perceptual defi-
cit in patients with MTL damage: The accumulation of
perceptual experience impairs visual discrimination. This
result is paradoxical because perceptual discrimination
typically improves with exposure to the stimuli. Barense
et al. argued that MTL-lesioned patients suffer from accu-
mulated feature level interference, which—in the ab-
sence of conjunctive MTL representations—cannot be
overcome by feature representations in posterior visual
cortex. Although we concur with this explanation, we
suggest that it is incomplete.

Standard theories of perceptual learning claim that
experience improves discrimination performance by re-
ducing the overlap between stimulus representations
(i.e., training increases representational separation). In
such theories, the assumed mechanism for visual dis-
crimination is that discriminability is proportional to the
overlap between representations (Schoups et al., 2001;
Saksida, 1999). But this mechanism cannot account for
the data of Barense et al.: If exposure separates rep-
resentations, even feature-based discrimination should
improve with exposure, because even feature represen-
tations should become less overlapping with exposure.
To explain why the performance of MTL patients in
Barense et al. worsened after exposure, a theory based
on representational overlap would require the counter-
intuitive assumption that—although cortical representa-
tions of stimuli underlying perceptual learning typically
become less overlapping with exposure (e.g., Jenkins,
Merzenich, Ochs, Allard, & Guíc-Robles, 1990)—posterior
feature representations become more so.

In the account provided by Simulations 1 and 2, we
eschew representational overlap as the mechanism for
visual discrimination. Instead, we take the explanation
offered by Barense et al.—that amnesics suffer from

compromised conjunctive MTL representations—and
combine it with a less commonly invoked discrimination
mechanism: a familiarity-based differencing rule, which
capitalizes on differences in the tunedness of represen-
tations caused by moment-to-moment encoding. Under
this account—as in prior instances of the representational-
hierarchical account applied to memory (Cowell et al.,
2006)—representations of features, but not conjunc-
tions, reach maximum tunedness as interference accrues.
Thus, after MTL damage, perceptual experience impairs
visual discrimination.
Two aspects of the mechanism for visual discrimina-

tion require clarification. First, although we simulate just
two layers of the ventral pathway, this comprises only a
subset of the full hierarchy of representations in the
brain, which includes lower-dimensional layers before
the model’s posterior layer and higher-dimensional
layers, such as hippocampus, after PRC. Other tasks with
different representational requirements may require
other layers (Cowell, Bussey, & Saksida, 2010). For exam-
ple, a discrimination task involving whole objects that
repeat would require hippocampal representations
capable of combining objects with contextual or tempo-
ral information to shield participants from object level
interference that cannot be resolved in PRC (see Simu-
lation 5). Second, we do not suggest that a tunedness-
based differencing rule is used in all discrimination tasks.
Dai et al. (1996) point out that a differencing rule is
optimal (and adopted) when familiarity signals for the
to-be-discriminated stimuli are highly correlated. Famil-
iarity signals would be less correlated in easy discrimina-
tion tasks in which the stimuli differ in terms of salient
features like color. Such tasks could be solved by a more
traditional discrimination mechanism that assesses items’
perceptual identity, rather than their familiarity. In our
model, perceptual identity corresponds to the location
of a representation in the grid, rather than its tunedness,
and a traditional discrimination mechanism would in-
volve assessing the representational overlap between
two stimuli. The alternative, tunedness-based differing
rule that is critical to producing the pattern of data ob-
served in the MTL patients of Barense et al. (2012) is thus
an unconventional mechanism, and it likely only applies
when differences in perceptual identity between stimuli
are small and familiarity signals are highly correlated. In
other words, we do not doubt that conventional, percep-
tual identity-based discrimination mechanisms are em-
ployed by human participants in many discrimination
tasks; we suggest only that participants use a tunedness-
based differencing rule for discriminating highly similar
stimuli in very difficult tasks.
In summary, themodel of Cowell et al. (2006)—originally

developed to explain recognition memory—accounted
for deficits in perceptual discrimination observed in pa-
tients with PRC damage. Critically, themechanismbywhich
lesioned networks are impaired at visual discrimination is
the same mechanism that causes deficits in recognition
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memory. In both cases, lesioning the PRC layer removes
the conjunctive representations that ordinarily shield
the network from feature level perceptual interference.
In both cases, the remaining posterior, feature-based rep-
resentations reach an asymptotic level of tunedness, ren-
dering them incapable of solving the task.

A UNIFIED MODEL OF MNEMONIC AND
PERCEPTUAL DEFICITS

Barring some minor modifications, the network that
accounted for visual discrimination in Simulations 1 and
2 retained the architecture and parameters of the recog-
nition memory model of Cowell et al. (2006). Nonethe-
less, to verify that the modifications did not qualitatively
change the predictions for recognition memory, we re-
simulated the three key findings concerning deficits in
recognition memory caused by PRC lesions: (1) the deficit
is delay-dependent: it worsens as the retention interval
increases; (2) the deficit is exacerbated by increasing the
length of the list of studied items; and (3) recognition
memory for repeatedly presented stimuli is not impaired
by PRC lesions.

General Methods for Simulating
Recognition Memory

Following Cowell et al. (2006), these deficits were ac-
counted for by simulating an object recognition task akin
to the spontaneous object recognition (SOR) and de-
layed non-match-to-sample tasks (DNMS) used in animals
(Ennaceur & Delacour, 1988; Mishkin & Delacour, 1975).
In these tasks, participants are presented with a list of
items (the “study” or “sample” phase). After a retention
delay, a copy of each studied item is presented, paired
with a novel item. In the SOR task, healthy animals spon-
taneously spend more time exploring the novel than the
familiar item, yielding a “recognition score.” In DNMS,
the animal is rewarded for choosing the item that was
not previously encountered. Both tasks require the detec-
tion of a difference in familiarity between the novel and
familiar items.
To simulate recognition memory, we follow the pro-

tocol of Cowell et al. (2006). Accordingly, aspects of
Simulations 1 and 2 that were intrinsic to visual discrim-
ination behavior (e.g., fixations, criterion shifts) are not
included. Briefly, a pretrained network encodes a list of
stimuli during the study phase and judges the familiarity
of studied and novel objects at test. In tasks involving a
delay between study and test, we assume that forgetting
is caused by visual interference, which is simulated by
presenting a series of randomly selected stimuli. In the
test phase, the network is presented with the list of
sample stimuli, each paired with a novel item. An index
of familiarity—“tunedness”—is calculated for both sam-
ple and novel items, and a recognition score is derived
by combining them into a normalized difference score

(Appendix, Equation 5). A higher recognition score indi-
cates greater familiarity of the sample than the novel
item, that is, better recognition memory performance.
Empirical SOR and DNMS tasks typically use a diverse
sample of everyday objects as stimuli, and so we con-
structed stimuli using all possible visual features (16 per
posterior grid; 16 × 4 = 64 in total) to reflect the greater
variation among stimuli than in Barense et al. (2012). As in
Simulations 1 and 2, we assess model performance by
examining qualitative trends in the simulation results.

SIMULATION 3: DELAY-DEPENDENT DEFICITS
IN RECOGNITION MEMORY

In a recognition memory task, increasing the delay be-
tween study and test is assumed to increase the load
on memory, and so manipulating the delay length varies
the extent to which a putative memory system is taxed
(Cowell et al., 2006; Gaffan, 1974). Animals with PRC le-
sions exhibit worsening recognition memory deficits with
increasing delay, strongly implicating PRC in recognition
memory (Malkova, Bachevalier, Mortimer, & Saunders,
2001; Buffalo, Ramus, Squire, & Zola, 2000; Buffalo, Reber,
& Squire, 1998; Eacott, Gaffan, & Murray, 1994; Mumby &
Pinel, 1994; Meunier, Bachevalier, Mishkin, & Murray,
1993).

Simulation 3 Methods

There were four trials, each comprising three phases:
study, delay, and test. Delay was simulated by presenting
interfering stimuli, which were randomly selected, with
replacement, from the pool of all possible stimuli
(65,536 objects), and presented to the network for one
encoding cycle each. More interfering stimuli corre-
sponded to a longer delay; delays ranged from 0 to
8000 stimuli.

Simulation 3 Results and Discussion

Removing the PRC layer of the network caused deficits
in recognition memory that worsened with lengthening
delay (Figure 6A). The mechanism underlying the deficit
is shared with Simulations 1 and 2 of the Barense et al.
data. The interfering items encountered during a delay
are composed of a limited number of features: Individual
features appear repeatedly, whereas the unique conjunc-
tions of features corresponding to whole objects do not.
Consequently, feature-based representations on the
posterior layer are rendered familiar by interference,
whereas conjunctive PRC representations are not. In
the test phase, after a delay, the posterior represen-
tations of both the sample and the novel object appear
familiar, because all features have appeared repeatedly.
Lesioned networks, which possess only the posterior
layer, can no longer adequately discriminate the items on
the basis of tunedness.
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SIMULATION 4: THE EFFECT OF LIST LENGTH

Increasing list length, like increasing delay, is assumed to
increase the memory load in a recognition memory task
(Gaffan, 1974). Therefore, a second piece of evidence
that PRC is critical to recognition memory is that longer
sample lists exacerbate the deficit caused by PRC lesions
(Malkova et al., 2001; Eacott et al., 1994; Meunier et al.,
1993).

Simulation 4 Methods

We used lists of 1, 6, 12, or 18 pairs of unique stimuli. The
sample and novel items in each pair shared no features,
but features appeared repeatedly across items within a
list. As in animal studies of the list length effect, networks
encoded all sample items in the list before proceeding
to the test phase. To simulate simultaneous retention
of all sample items in memory, network weights were
not reset between encoding each successive sample
item in the list.

Simulation 4 Results and Discussion

The recognition memory impairment in lesioned net-
works increased as a function of list length (Figure 6B).
As in Simulation 3, lesioned networks are impaired by the

accumulation of feature level interference: With longer
lists, networks are more likely to repeatedly encounter
all possible visual features during the study phase; at
subsequent test, feature-based representations of all
objects—including novel items—appear familiar, render-
ing the sample and novel items indiscriminable.

SIMULATION 5: TRIAL-UNIQUE VERSUS
REPEATED STIMULI

PRC lesions impair recognition memory only when stimuli
are trial-unique; when stimuli are presented repeatedly,
animals with PRC damage are unimpaired (Eacott et al.,
1994). In the extreme version of repeated-items rec-
ognition, the stimulus set comprises only two stimuli,
which appear on every trial. Under these conditions,
PRC-lesioned animals are unimpaired, and in addition,
neither lesioned nor control animals perform well at a
short study test delay of 30 sec.

Simulation 5 Methods

Two sets of 30 pairs of stimuli were created: In the “trial-
unique” set, no item appeared more than once; in the
“repeating” set, the same pair of items appeared 30 times,
with sample and novel status assigned randomly on each

Figure 6. (A) Simulation of
a delay-dependent deficit
in recognition memory
(Simulation 3). The impairment
in recognition memory is
evident in the lower recognition
scores for lesioned networks,
and this impairment increases
as the delay between study and
test increases. Abscissa indicates
number of interfering stimuli
sampled during the delay.
(B) Simulation of the effects
of list length on recognition
memory (Simulation 4).
Recognition scores decrease
as the sample list length
increases, and the rate of
decrease is faster rate for
networks without a PRC layer.
(C) Simulation of the effects
of trial-unique versus repeated
stimuli (Simulation 5).
Recognition scores are lower
in lesioned networks when
sample and novel stimuli are
trial-unique. There is no group
difference in recognition
memory when stimuli are
repeated because scores in
both groups are equally
poor. These data replicate
Cowell et al. (2006).
Error bars = 95% CIs.
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trial. In both conditions, networks completed 30 trials,
with each trial comprising sample presentation, a brief
delay (200 interfering items, one encoding cycle each)
and test phase. To allow the cumulative effects of stimulus
type (trial-unique vs. repeated) to influence performance,
network weights were not reset between successive trials.

Simulation 5 Results and Discussion

Lesioned networks were impaired when stimuli were trial-
unique, but when stimulus items were repeated the rec-
ognition scores of lesioned and control networks did not
differ (Figure 6C). The poor performance even in control
networks for repeated-items recognition illustrates an
important tenet of the representational-hierarchical
account of cognition: that different tasks require con-
junctive representations at different levels of the hierar-
chy. In the delay-dependent and list length simulations
above, repeatedly occurring features created feature level
interference that was resolved by conjunctions in PRC. In
repeated-items recognition, whole objects occur repeat-
edly: Now, even the PRC layer suffers from interference,
in that all objects possess highly tuned representations.
The resolution of interference now requires an even
higher-dimensional layer (not simulated here), in which
objects are combined with time or context to form more
complex conjunctions that enable recency judgments. As
argued in Cowell et al. (2006), a candidate brain region is
the hippocampus.

GENERAL DISCUSSION

The goal of this study was to investigate whether deficits
in both memory and perception caused by MTL damage
can be accounted for by the same model employing a
single mechanism. Using the model of recognition mem-
ory from Cowell et al. (2006), we simulated the impaired
performance of patients with PRC damage on two visual
discrimination tasks (Barense et al., 2012). We then rep-
licated the recognition memory simulations of Cowell
et al. (2006) using model parameters identical to those
of the discrimination simulations. To our knowledge, this
represents the first computational model to explicitly
simulate both mnemonic and perceptual deficits caused
by PRC damage using a unified architecture and a com-
mon mechanism.
There exist numerous models of the role of MTL struc-

tures in memory (e.g., Cowell et al., 2006; Norman &
O’Reilly, 2003; Bogacz, Brown, & Giraud-Carrier, 2001;
Linster & Hasselmo, 1997; McClelland, McNaughton, &
O’Reilly, 1995; Treves & Rolls, 1994; Marr, 1971). More
recently, theoretical accounts of how MTL structures con-
tribute to perception have been proposed (Clark &
Maguire, 2016; Elfman, Aly, & Yonelinas, 2014; Yonelinas,
2013; Cowell et al., 2010; Bussey & Saksida, 2002). A
detailed comparison of the present model to other for-
mal models of PRC function can be found in Cowell

(2012). Here we discuss one model that, to our knowl-
edge, is the only other formal account of deficits in both
perception and memory following MTL damage (Elfman
et al., 2014). Elfman et al. propose that the hippocampus
contributes to perception in a graded manner whenever
high-resolution representations of relational information
are required and to memory in a thresholded manner
whenever retrieval based on a partial cue necessitates
pattern completion. The model we present contrasts
with Elfman et al. (2014) in two key ways. First, Elfman
et al. address the effects of focal hippocampal damage,
whereas we address the effects of focal perirhinal damage.
Second, Elfman et al. postulate distinct processes in per-
ception versus memory, localized to distinct hippocampal
subregions: CA1 is the primary locus of the graded percep-
tual signal, whereas CA3 is uniquely suited to providing the
“attractor” representations required for pattern comple-
tion. In contrast, the present model deliberately avoids
mapping processes onto neuroanatomical regions, instead
explaining mnemonic and perceptual tasks with a single
mechanism that operates on common representations.

By doing so, the model not only provides a parsimoni-
ous account of PRC function but also raises a deeper
question about cognition in the brain. The model claims
that more than one cognitive function—in this case, rec-
ognition memory and visual discrimination—can depend
on the same brain structure. When this occurs, should
that structure’s function be characterized as dichoto-
mous, as in Elfman et al., or should we reconsider how
its function is defined? We argue for a reconsideration.

Consider this study: We simulated two tasks, one tradi-
tionally defined as a perceptual task (the discrimination
of simultaneously presented stimuli, without the need
to retain information while stimuli are absent), and the
other as a memory task (requiring the retention of infor-
mation over a delay). One might interpret the simulation
results as suggesting that the PRC can support two dis-
tinct cognitive functions. On the other hand, the mecha-
nism that accounted for both tasks involved a judgment
of familiarity or novelty detection process, which is tradi-
tionally associated with memory (Bogacz et al., 2001;
Mandler, 1980). So one might instead interpret the model
as suggesting that the visual discrimination task of Barense
et al. was in fact a memory task and that PRC specializes in
making familiarity judgments. We reject both interpreta-
tions, advocating a very different alternative: that cognition
in the brain is best explained in terms of representations
and representational changes. Accordingly, traditionally
intuitive labels for cognitive processes—such as memory
and perception, or familiarity and recollection—should be
eliminated from accounts of cognitive function. Although
the term “familiarity” describes intuitively how represen-
tations in the model change with experience, a more accu-
rate description is given by “representational tunedness.”
Exposure to a stimulus causes its representation to be-
come tuned; the relative tunedness of two representa-
tions provides a means of discriminating the items. Just
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as we could describe this as “novelty detection” in the
visual discrimination task (proposing a mnemonic mecha-
nism for a perceptual task), we could call it “perceptual
learning” in the recognition memory task (a perceptual
mechanism for a memory task). The most accurate
characterization of the model avoids process-based labels
altogether, replacing them with a parsimonious, single-
system account in terms of representations.

In summary, we present a unified account of the mne-
monic and perceptual deficits caused by PRC damage,
in which the contribution of a brain region to cognition
is determined by the representations that it contains.
Cognitive functions are realized through operations upon
those representations and are influenced by changes to
those representations. Representational changes can be
critical to the performance of a cognitive task, or they
can be disadvantageous. In the visual discrimination
and recognition memory tasks simulated here, represen-
tational changes in PRC critically support performance in
healthy participants, but representational changes in pos-
terior visual cortex disrupt performance when a person
has PRC damage. Although a complete understanding
of MTL function—to include decision-making, imagina-
tion, and spatial navigation—requires much future inves-
tigation, we suggest that a representational approach to
theory building may prove fruitful in this endeavor.

APPENDIX

Initialization and Pretraining

Each grid (four in the posterior layer and one in the PRC
layer) contains 200 × 200 nodes whose weights are ini-
tialized to random values from 0 to 1. For all simulations,
networks are pretrained for 500 cycles according to the
learning rule,

wi t þ 1ð Þ ¼ wi tð Þ þ f r; tð Þ � stim−wi tð Þð Þ (1)

in which

f r; tð Þ ¼ η tð Þ � ν r; tð Þ (2)

where wi refers to the weights of node i, t is the current
cycle, stim is stimulus input, η(t) is the learning rate, r is
the city-block distance of node i from the most strongly
active (winning) node, and ν(r,t) is a neighborhood
function that scales the learning rate. Equation 1 en-
sures that learning on a given cycle brings a node’s
weights closer to the stimulus input being presented.
Equation 2 ensures that the degree to which a node’s
weights are moved closer to the stimulus decreases
with distance from the winning node. In the pretraining
phase, both η and ν decrease with each cycle. The
neighborhood function ν(r,t) is defined by a Gaussian
function:

ν r; tð Þ ¼ exp −
r

G tð Þ
� �2

 !
(3)

where G(t) = 0.5 + 10t−B and B is a constant determin-
ing the rate of shrinkage of the neighborhood function.
The learning rate decreases as η(t) = t−A, where the
constant A determines the rate of decrease. On each
pretraining cycle, the network is exposed to a different,
unique stimulus, and its weights are updated. Because
the weights of a node determine the stimulus to which
it is best tuned, pretraining a Kohonen grid with a
shrinking neighborhood function globally organizes
the nodes, such that nodes near each other are tuned to
similar stimuli (Kohonen, 1984). In our model, pretraining
reflects the general, preexperimental visual experience of
participants. Because all grids in the network operate
independently during experimental simulations, grids were
pretrained independently.
In all simulations, networks begin each task condition

(e.g., Low Ambiguity vs. High Ambiguity in Simulation 1
or 0 delay vs. 2000 delay in Simulation 3) by assuming the
weight state reached at the end of pretraining, unless
otherwise indicated.

Encoding a Stimulus

In Simulations 1 and 2, stimuli are encoded during each
trial as the network fixates on one stimulus at a time.
Each fixation of a stimulus entails encoding it for 20 cycles,
following Equations 1, 2, and 3, except that η and ν are con-
stants fixed at the values of the final pretraining cycle (η =
η(500); G = G(500)). After a between-stimulus fixation,
the network calculates a novelty score, which is the tuned-
ness of current stimulus subtracted from the tunedness of
the other stimulus. If the novelty score exceeds criterion
(see main text), the stimuli are declared to mismatch and
a new trial begins. If a mismatch is not declared, encoding
proceeds on the current stimulus and fixations continue
until either a mismatch is declared or the maximum num-
ber of fixations is exceeded.
In Simulations 3, 4, and 5, a sample stimulus is en-

coded following Equations 1, 2, and 3 (with fixed η and
ν) for 500 encoding cycles. This reflects the encoding
that would be achieved through multiple fixations, but
fixations are not critical to the mechanism and so are
not modeled. Because trials in Simulations 1 and 2 in-
clude multiple fixations with 20 cycles per fixation, all
simulations use a similar number of encoding cycles
per trial. Qualitative patterns in the results do not depend
on the exact number of encoding cycles.

Measuring Tunedness

In Simulations 1 and 2, the “representational tunedness”
(intuitively, “familiarity”) of both stimuli is assessed when-
ever the network switches from fixating one stimulus to the
other. In Simulations 3, 4, and 5, the tunedness of both
stimuli is assessed during the test (choice) phase. We
define tunedness according to the pattern of activation
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elicited by a stimulus. Activation a of node i is determined
by the sigmoid function:

ai ¼ 1
1þ exp −k� ln 1

distð Þð Þð Þ
.

(4)

where k is a constant determining the steepness of the
sigmoid function and dist is the mean squared error
between a node’s weightswi and the stimulus input vector.
The tunedness, T, of a stimulus is calculated separately

in each grid. Tunedness is the activation of the peak (the
summed activation of the winning node and its nearest
four neighbors) divided by the summed total activation
of the grid. Tunedness is measured separately in each
grid in the network, yielding a single, object level tuned-
ness score from the PRC layer and four separate feature
level tunedness scores in the posterior layer. When com-
paring two stimuli in Simulations 1 and 2, posterior tun-
edness scores are compared separately for each pair of
features. Stimulus representations are not updated dur-
ing the choice phase of recognition memory simulations
(Simulations 3–5).

Recognition Score

For Simulations 3, 4, and 5, the recognition score, R, is
calculated as:

R ¼ Tsamp− Tnov
Tsamp þ Tnov

(5)

where Tsamp is the tunedness of the sample stimulus rep-
resentation and Tnov is the tunedness of the novel stimulus.
R is calculated using Tsamp and Tnov values that are averaged
over the separate grids of the network. In control net-
works, which possess a PRC grid, T is computed by first
averaging across all four posterior t values, then taking
the mean of the posterior and PRC t values. In lesioned
networks, T is the average of the posterior t values.

Parameters

In all simulations, k = 0.08, B = 0.3, and A = 0.6. As in
Cowell et al. (2006), we simulated six networks per group
in the recognition memory simulations (Simulations 3, 4,
and 5). In the simulations of Barense et al., the stochastic
nature of the decision rule rendered simulation results
more variable; to account for this, we simulated six con-
trol networks for each of the eight control participants
tested in the empirical study and the same number of
lesioned networks, giving 48 networks per group.
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