
RESEARCH ARTICLE Higher Neural Functions and Behavior

Feature-coding transitions to conjunction-coding with progression through
human visual cortex

Rosemary A. Cowell,1 Krystal R. Leger,1 and John T. Serences2,3

1Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts; 2Department of
Psychology, University of California, San Diego, La Jolla, California; and 3Neurosciences Graduate Program, University of
California, San Diego, La Jolla, California

Submitted 5 July 2017; accepted in final form 16 September 2017

Cowell RA, Leger KR, Serences JT. Feature-coding transitions to
conjunction-coding with progression through human visual cortex. J
Neurophysiol 118: 3194–3214, 2017. First published September 20,
2017; doi:10.1152/jn.00503.2017.—Identifying an object and distin-
guishing it from similar items depends upon the ability to perceive its
component parts as conjoined into a cohesive whole, but the brain
mechanisms underlying this ability remain elusive. The ventral visual
processing pathway in primates is organized hierarchically: Neuronal
responses in early stages are sensitive to the manipulation of simple
visual features, whereas neuronal responses in subsequent stages are
tuned to increasingly complex stimulus attributes. It is widely as-
sumed that feature-coding dominates in early visual cortex whereas
later visual regions employ conjunction-coding in which object rep-
resentations are different from the sum of their simple feature parts.
However, no study in humans has demonstrated that putative object-
level codes in higher visual cortex cannot be accounted for by
feature-coding and that putative feature codes in regions prior to
ventral temporal cortex are not equally well characterized as object-
level codes. Thus the existence of a transition from feature- to
conjunction-coding in human visual cortex remains unconfirmed, and
if a transition does occur its location remains unknown. By employing
multivariate analysis of functional imaging data, we measure both
feature-coding and conjunction-coding directly, using the same set of
visual stimuli, and pit them against each other to reveal the relative
dominance of one vs. the other throughout cortex. Our results reveal
a transition from feature-coding in early visual cortex to conjunction-
coding in both inferior temporal and posterior parietal cortices. This
novel method enables the use of experimentally controlled stimulus
features to investigate population-level feature and conjunction codes
throughout human cortex.

NEW & NOTEWORTHY We use a novel analysis of neuroimaging
data to assess representations throughout visual cortex, revealing a
transition from feature-coding to conjunction-coding along both ven-
tral and dorsal pathways. Occipital cortex contains more information
about spatial frequency and contour than about conjunctions of those
features, whereas inferotemporal and parietal cortices contain con-
junction coding sites in which there is more information about the
whole stimulus than its component parts.

visual cortex; feature; conjunction; neuroimaging; object representa-
tions

OBJECT PERCEPTION is underpinned by a hierarchical series of
processing stages in the ventral visual pathway (Felleman and
Van Essen 1991; Hubel and Wiesel 1965; Kobatake and
Tanaka 1994). At each successive stage from primary visual
cortex (V1) to anterior inferotemporal (aIT) cortex, the com-
plexity of the optimal stimuli increases: neurons in V1 are
tuned to simple stimulus attributes such as orientation (Hubel
and Wiesel 1965; Mazer et al. 2002); neurons in V4 and
posterior inferotemporal cortex (pIT) are selective for moder-
ately complex features (Brincat and Connor 2004; Kobatake
and Tanaka 1994; Pasupathy and Connor 1999; Rust and
DiCarlo 2010); and neurons in aIT prefer partial or complete
views of complex objects (Desimone et al. 1984; Kobatake and
Tanaka 1994; Tanaka 1996). Data from functional magnetic
resonance imaging (fMRI) in humans corroborate these find-
ings: the blood oxygenation level-dependent (BOLD) signal
exhibits selectivity for orientation, spatial frequency, and color
in early visual regions (Brouwer and Heeger 2009; Henriksson
et al. 2008; Kamitani and Tong 2005; Serences et al. 2009) but
is sensitive to object-level properties such as global contour or
object category in higher visual regions (Drucker and Aguirre
2009; Kanwisher et al. Chun 1997; Kriegeskorte et al. 2008;
Malach et al. 1995; Ostwald et al. 2008). It is widely assumed
that downstream, object-specific representations are con-
structed through combination of the simple feature representa-
tions upstream, but the manner in which this combination
occurs remains unknown.

There are at least three possible combination schemes. The
first assumes that downstream object-level representations per-
form “and-like” operations on upstream feature representations
(Rust and DiCarlo 2012), transforming the feature code into
conjunction-sensitive representations in inferotemporal (IT)
cortex. This feature-to-conjunction transition scheme is as-
sumed by many models of object processing (Bussey and
Saksida 2002; Cowell et al. 2010; Fukushima 1980; Perrett and
Oram 1993; Riesenhuber and Poggio 1999; Serre et al. 2007;
Wallis and Rolls 1997) and accords with electrophysiological
findings of IT neurons selective for complex objects (Desi-
mone et al. 1984; Fujita et al. Cheng 1992; Kobatake and
Tanaka 1994). However, when tested with large stimulus sets
many IT neurons show broad tuning, responding to multiple
complex objects (Desimone et al. 1984; Kreiman et al. 2006;
Zoccolan et al. 2007). Therefore, apparent object-level selec-
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tivity in an IT neuron tested with a small stimulus set might
instead reflect selectivity for a low-level feature possessed by
only a few objects in the set. Thus the data do not rule out a
second scheme: a global feature-coding hypothesis, in which
simple features are coded separately in visual cortex and are
bound by the synchronization of neural activity rather than by
convergence onto a cortically localized representation of the
conjunction (Eckhorn 1999a, 1999b; Singer and Gray 1995).
Finally, a third possible coding scheme is a global conjunction-
coding hypothesis, in which all stations in the hierarchy bind
simple features together nonlinearly to produce conjunctions
(Shigihara and Zeki 2013, 2014). Under this scheme, the
apparent feature selectivity of early visual cortex belies a
neural code that is optimized for discriminating complex ob-
jects that contain those features. Supporting this account,
several studies have reported coding of simple conjunctions of
features such as color, form, motion, and orientation in early
visual regions (Anzai et al. 2007; Engel 2005; Gegenfurtner et
al. 1997; Johnson et al. 2008; Seymour et al. 2009, 2010) and
coding of complex conjunctions in both early and higher-level
visual regions (Erez et al. 2016).

To differentiate between the three alternative schemes, we
must measure not just the presence of feature-coding and
conjunction-coding throughout visual cortex but the relative
contribution of each. Using fMRI in humans, we devised a
novel stimulus set and multivariate pattern analysis (MVPA)
technique to pit feature-coding against conjunction-coding. We
created stimuli by building conjunctions from binary features,
thereby allowing each cortical region to be probed for infor-
mation at two levels: features or conjunctions. Feature infor-
mation and conjunction information were assessed with the
same neuroimaging data set and placed in a ratio, allowing
direct comparison of the two coding schemes throughout cor-
tex.

MATERIALS AND METHODS

Methods Overview

Participants in the scanner viewed visual stimuli constructed hier-
archically from four binary features to give 16 unique, conjunctive
objects. We verified by means of a one-back repetition detection task
that participants were attending to the stimuli sufficiently well to
discriminate between distinct objects, i.e., between different unique
conjunctions of features (Table 1). We used a support vector machine
(SVM) to classify patterns of BOLD responses evoked by the stimuli.
For each session in each subject, we constructed four 2-way feature-
level SVM classifiers (1 classifier for each binary feature) and one
16-way object-level SVM classifier (Fig. 1). This yielded both fea-
ture- and object-level classification accuracy for a given region of
interest (ROI) (Tables 2 and 3). We next constructed a feature
conjunction index (FCI) for each ROI by comparing the output of the
feature- and object-level classifiers (Fig. 1; Table 4). A positive FCI
indicates that the ROI contains more information about individual
objects than is predicted from the information it contains about the
separate object features, suggesting that its activation pattern is
modulated by the presence or absence of specific objects rather than
by individual features. A negative FCI indicates that the ROI contains
more information about individual features than about whole objects,
suggesting that voxel activations are primarily modulated by individ-
ual feature dimensions rather than by whole object identity. These
interpretations of FCI were confirmed via analyses of synthetic data.

Participants, Stimuli, Task, and Data Acquisition

Participants. Eight healthy participants (4 women, 4 men) with
normal or corrected-to-normal vision completed two scan sessions.
All participants provided written informed consent to participate in
protocols reviewed and approved by the Institutional Review Board at
University of California, San Diego and were compensated at $20/h
for fMRI scan sessions and $10/h for behavioral test sessions.

Stimulus and task parameters. Motivated by evidence that the
integration of contour elements into global shape (Brincat and Connor
2004) and local image features into global texture (Goda et al. 2014;
Hiramatsu et al. 2011) are key mechanisms by which the ventral
pathway constructs complex object representations, we created novel
object stimuli by building conjunctions from binary features defined
by contour and spatial frequency (Fig. 1). To examine whether
conjunction-coding emerged from an upstream feature code, it was
important to choose stimulus features that are encoded by early visual
regions. Although shape contour is often considered a relatively
high-level property of a visual stimulus and is known to be repre-
sented in areas like lateral occipital cortex (LOC), the binary contour
features we used must be encoded as a collection of simple, oriented

Table 1. Behavioral performance in the scanner

Scan Session 1 Scan Session 2

Mean proportion correct 0.903 (�0.0185) 0.947 (�0.00894)
Mean arcsine(proportion correct) 1.27 (�0.0350) 1.35 (�0.0214)

Values are mean (�SE) accuracy on the 1-back repetition-detection task
performed in the scanner across subjects. A t-test comparing the arcsine-
transformed proportion correct scores indicated that performance was reliably
better in scan session 2 (P � 0.0138).

Fig. 1. Stimulus construction, task protocol, and multivariate pattern classifiers. A: stimulus construction. The 4 binary features from which the 16 object-level
stimuli are composed (full stimulus set shown in D). Each feature has 2 possible values, A and B. B: task protocol. In each scan session, participants completed
10 experimental runs, each lasting 264 s (44 trials of 6-s duration). A run contained 34–36 stimulus trials (2 presentations each of the 16 stimuli in the set, ordered
pseudorandomly, in addition to 2–4 stimuli chosen pseudorandomly from the set and inserted to create immediate repeats) and 8–10 null trials. On stimulus
presentation trials, the fixation point was red, stimulus duration was 3 s, and the interstimulus interval varied between 2.5 and 3.5 s; participants performed a
1-back repetition-detection task. On null trials, the fixation point changed to green; participants indicated by button press when they detected a slight dimming
of the fixation point, which occurred once or twice per null trial. Participants also completed several sessions of visual search training between the 2 scans, but
we detected no effect of training on our measure of feature- and conjunction-coding (feature conjunction index, FCI) in cortex. C: feature classification. Four
separate feature classifiers were trained, 1 for each binary feature defined in the stimulus set. The 4 feature classification problems are shown in the 4 panels (Right
Spatial Frequency, Right Outline, Left Spatial Frequency, Left Outline) in which the designation of stimuli to feature categories is indicated with red and green
boxes. Classifiers used a support vector machine trained with hold-one-out cross-validation. D: object classification. A single object-level classifier was trained
to classify the stimuli into 16 categories, each corresponding to a unique stimulus. E: calculation of the FCI. The product of the 4 feature-level accuracies was
used to predict—independently for each trial—the accuracy of a hypothetical object-level classifier whose performance depends only on feature-level
information. On each trial, the 4 feature-classifier responses (defined as 0 or 1 for incorrect or correct) were multiplied to produce a value of 0 or 1 (incorrect
or correct) for the hypothetical object-level classifier. Next, the empirically observed object-level classifier accuracy (derived from the 16-way conjunction
classifier) and the hypothetical object-level accuracy (predicted from the 4 feature classifiers) were averaged over trials and placed in a log ratio (Eq. 1). When
the empirically observed object classifier accuracy exceeds the hypothetical object accuracy predicted from feature classifier accuracies, FCI is positive; when
the feature classifier accuracies predict better object-level knowledge accuracy than is obtained by the object classifier, FCI is negative (see Fig. 2).
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line segments in early visual regions such as V1 and V2, because of
small receptive field (RF) size (see also Brincat and Connor 2006;
Yau et al. 2013). The sensitivity of neurons in early visual cortex to
spatial frequency is well documented (e.g., Foster et al. 1985; von der
Heydt et al. 1992). Stimuli subtended ~7–10° of visual angle, except
in one session in one participant (subject AF) in which they subtended
~5–7° (visual inspection of MVPA results did not give any indication
of greater between-session differences in any of the MVPA measures
for subject AF than for other subjects). Visual displays were presented
to participants via back-projection onto a screen at the foot of the
scanner bore, which was viewed in a mirror fixed to the head coil,
over a distance of ~380 cm. To ensure that all pixel locations emitted

the same average luminance over the course of a trial (and therefore
that all stimuli possessed the same average luminance), visual stimuli
cycled continuously from a positive to a negative image, with every
pixel oscillating from minimum to maximum luminance according to
a temporal sine wave with frequency of 2 Hz.

Each scan session contained 10 experimental task runs. Each task
run lasted 274 s (44 trials lasting 6 s each, in addition to a 10-s
posttask scanning window). Participants were instructed to fixate a
circular colored fixation point that appeared at the center of the screen
throughout all trials. Each run comprised 32 “stimulus” trials, 2–4
“immediate-repeat” trials, and 8–10 “null” trials. On stimulus and
immediate-repeat trials, the fixation point was red and stimulus onset
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began 0.2–0.7 s after the start of the trial (with exact onset randomly
jittered within that window); stimulus presentation lasted 3 s and was
followed by a 2.3- to 2.8-s response window in which only the fixation
point appeared, to give a total trial duration of 6 s. The variable cue
onset time produced an interstimulus interval that varied between 2.5
and 3.5 s. The 32 stimulus trials comprised two pseudorandomly
ordered presentations of each of the 16 unique stimuli. To generate
immediate-repeat trials, a pseudorandomly chosen stimulus was in-
serted into the sequence such that it created a repeat of the stimulus in
the immediately preceding trial; functional data from these trials were
removed from multivariate analyses. On null trials, the fixation point
changed from red to green and participants were required to press any
button whenever they detected a slight dimming of the green fixation
point, which could occur once or twice per null trial; a response was
required within 1 s of each dimming event for a trial to be scored as
correct. This task was designed to reduce the tendency for mind-
wandering, known to affect baseline measures of BOLD (Stark and
Squire 2001). Accuracy on null trials was monitored to ensure
participant wakefulness, and the degree of fixation point dimming was
adjusted between runs to produce below-ceiling performance such
that attention was maintained. Participants performed a one-back
repetition detection task, indicating by button press whether the
stimulus was the same as (button 2) or different from (button 1) that
of the previous trial. Good performance on this task required wake-
fulness and attention to the stimuli. All participants were familiarized
with the stimuli and task in a brief practice session before the first
scan.

Visual search training. All subjects completed several daily ses-
sions of discrimination training on the set of 16 stimuli, interposed
between the two scan sessions. These behavioral training sessions
were conducted outside of the scanner. The task was adapted from a
visual search task used by Shiffrin and Lightfoot (1997). On each trial,

a target stimulus chosen pseudorandomly from the set of 16 was
displayed singly, in the center of the screen, for 3 s. Immediately after
stimulus offset a search array appeared, which contained between one
and eight stimuli located at eight equally eccentric spatial locations
(the assignment of stimuli to locations was random, with slots left
empty when the search array comprised �8 stimuli). Participants were
allowed up to 20 s to indicate by button press whether the target was
present or absent in the display. Feedback in the form of a low or high
auditory beep indicated whether the response was correct or incorrect,
respectively. In each daily session, participants completed 10 blocks
of 32 trials, comprising 2 trials with each of the 16 stimuli serving as
target. Accuracy and response time (RT) data were collected. This
visual search task required that participants attend to the specific
conjunction of visual features comprising the target, in order to
discriminate the target from the distractor stimuli, which shared
features with the target. In conjunctive visual search, which requires
inspection of each stimulus in series, RTs are typically longer when a
subject must search a display containing more stimuli; this produces
a positive slope for the relationship between search display set size
and RT (Treisman and Gelade 1980). However, Shiffrin and Lightfoot
(1997) showed that training on a conjunctive visual search task causes
RT-set size slopes to decrease in magnitude, presumably as the
conjunctions become unitized such that “pop-out” occurs, obviating
the need for serial search. Because our aim was that participants’
representations of the stimulus conjunctions would become unitized,
the dependent variable of interest was the RT-set size slope and how
it changed across daily training sessions. Accordingly, training was
terminated for each subject when the RT-set size slope appeared to be
approaching an asymptotically low value (mean 11.1 days; range 7–15
days). Participants completed their second scan within 3 days of the
last training session.

Table 2. Feature-level classifier accuracy for each feature type and mean across all feature types

Ventral Stream Dorsal Stream

V1 V2v V3v LOC V2d V3d

Feat 1 (SF1) 0.791 (�0.0261) 0.722 (�0.0254) 0.686 (�0.0178) 0.516 (� 0.0051) 0.689 (�0.0237) 0.652 (�0.0195)
Feat 2 (Outline1) 0.864 (�0.0163) 0.675 (�0.0188) 0.609 (�0.0186) 0.550 (�0.0101) 0.777 (�0.0239) 0.618 (�0.0203)
Feat 3 (SF2) 0.773 (�0.0235) 0.679 (�0.0204) 0.658 (�0.0178) 0.526 (�0.0092) 0.685 (�0.0211) 0.653 (�0.0206)
Feat 4 (Outline2) 0.853 (�0.0160) 0.678 (�0.0223) 0.657 (�0.0176) 0.557 (�0.0062) 0.736 (�0.0240) 0.692 (�0.0280)
Overall mean acc. 0.820 (�0.0186) 0.688 (�0.0186) 0.653 (� 0.0121) 0.537 (�0.00266) 0.722 (�0.02) 0.653 (�0.0146)
95% CI around overall mean [0.815, 0.825] [0.682, 0.695] [0.646, 0.659] [0.530, 0.544] [0.716, 0.728] [0.647, 0.66]

In both ventral and dorsal streams, 1st 4 rows show mean (�SE) across subjects of the feature-level classifier accuracy for each feature type across subjects.
Chance � 0.5. SF, spatial frequency. Fifth row shows overall mean � SE accuracy across all 4 feature-level classifiers across subjects. Sixth row shows 95%
CIs around the overall mean accuracy determined by within-subject bootstrap resampling with replacement over 10,000 iterations. All data were averaged over
2 sessions for each subject. Overall mean accuracy scores for each session in each subject were transformed into a log-likelihood ratio (log odds; chance � 0)
and submitted to a 2-way repeated-measures ANOVA, with factors Scan Session (1, 2) and ROI (V1, V2v, V3v, V2d, V3d, LOC), revealing a main effect of
ROI [F(5,35) � 83.14, P � 0.001, �2 � 0.922], no significant effect of Scan Session [F(1,7) � 0.860, P � 0.39, �2 � 0.109], and a nonsignificant interaction
[F(5,35) � 2.367, P � 0.06, �2 � 0.253]. Accuracy was lowest in region LOC, but a 1-sample t-test revealed that the log odds of LOC accuracy (collapsed over
sessions) exceeded chance performance (mean � 0.1486, SD � 0.0303, t[7] � 13.89, P � 0.001).

Table 3. Object-level classifier accuracy

Ventral Stream Dorsal Stream

V1 V2v V3v LOC V2d V3d

Mean accuracy 0.292 (�0.0272) 0.200 (�0.0163) 0.154 (�0.0101) 0.0926 (�0.00701) 0.204 (�0.0208) 0.155 (�0.0131)
95% CI [0.280, 0.304] [0.189, 0.210] [0.144, 0.164] [0.0848, 0.101] [0.193, 0.215] [0.145, 0.164]

Values are mean (�SE) accuracy of object-level classifier by ROI (average over 2 sessions for each subject) across subjects and 95% confidence intervals (CIs)
around the mean, determined by within-subject bootstrap resampling with replacement over 10,000 iterations. Chance � 0.0625. Accuracy scores for each session
in each subject were transformed into a log-likelihood ratio (log odds; chance � �2.71) and submitted to a 2-way repeated-measures ANOVA, with factors Scan
Session (1, 2) and ROI (V1, V2v, V3v, V2d, V3d, LOC), revealing a main effect of ROI [F(5,35) � 61.96, P � 0.001, �2 � 0.90], no significant effect of Scan
Session [F(1,7) � 0.312, P � 0.59, �2 � 0.043], and no significant interaction [F(5,35) � 1.61, P � 0.183, �2 � 0.187]. Accuracy was lowest in region LOC,
but a 1-sample t-test revealed that the log odds of LOC accuracy (collapsed over sessions) exceeded chance performance (mean � �2.30, SD � 0.2321,
t[7] � 4.95, P � 0.001).
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Acquisition of fMRI data. Each scan session lasted 2 h and included
10 experimental runs and 2 retinotopic localizer runs. We scanned
participants on a 3-T GE MR750 scanner at the University of Cali-
fornia, San Diego Keck Center for Functional Magnetic Resonance
Imaging, using a 32-channel head coil (Nova Medical, Wilmington,
MA). Functional data were acquired with a gradient echo planar
imaging) pulse sequence with TR � 2,000 ms, TE � 30 ms, flip
angle � 90°, voxel size 2 � 2 � 3 mm, ASSET factor � 2,
19.2 � 19.2-cm field of view, 96 � 96 matrix size, 35 slices of
33-mm thickness with 0-mm spacing, slice stack obliquely oriented
passing through occipital, ventral temporal, inferior frontal, and pos-
terior parietal cortex. The oblique orientation (i.e., tilted downward at
the front of the brain) ensured good coverage of ventral temporal and
posterior parietal cortices and the medial temporal lobe. One conse-
quence was incomplete coverage of prefrontal cortex, meaning that
stimulus representations in prefrontal cortex could not be examined.
Anatomical images were acquired with T1-weighted sequence (TR/
TE � 11/3.3 ms, TI � 1,100 ms, 172 slices, flip angle � 18°, 1-mm3

resolution).

fMRI Data Analyses

fMRI data preprocessing. Preprocessing of anatomical and func-
tional images was carried out with BrainVoyager (Brain Innovations)
and custom MATLAB scripts. Preprocessing included coregistration
of functional scans to each individual’s anatomical scan, slice-time
correction, motion correction, high-pass filtering (cutoff: 3 cycles/
run), transformation to Talairach space (Talairach and Tournoux
1988), and normalization (z scoring) of the functional time series data
within each voxel for each run. Functional data from immediate-
repeat trials were removed from all MVPAs. BOLD data for subse-
quent MVPA were extracted by snipping out the z-scored functional
time series data for each stimulus trial from the third and fourth TRs
after stimulus onset (i.e., the period 4–8 s after stimulus onset) and
averaging over the two data points.

Definition of ROIs. Retinotopic mapping was performed to define
visual areas V1, V2v, V2d, V3v, and V3d (Engel et al. 1994; Sereno
et al. 1995). Data were collected in one or two scans per participant,
with a flickering checkerboard wedge (8-Hz flicker, 60° of polar
angle) alternately presented at the horizontal and vertical meridians
(20-s duration at each presentation). Because we did not collect
functional localizer data for area LOC, we took an approximate—and
therefore conservative—approach of defining a spherical ROI of
radius 7 mm centered upon the mean of the Talairach coordinates in
each of left and right LOC reported by a set of seven studies (Epstein
et al. 2006; Grill-Spector 2003; Grill-Spector et al. 1998; Large et al.
2005; Lerner et al. 2001; Song and Jiang 2006; Xu 2009). Coordinates
were converted from MNI to Talairach where necessary, yielding

mean values in Talairach coordinates of left LOC center [�44 �70
�4] and right LOC center [43 �67 �4]. Voxels were further screened
for inclusion into each ROI (V1 through LOC) by taking the func-
tional data from the 10 experimental runs and performing a simple
contrast of stimulus on vs. stimulus off, testing against a liberal
threshold of P � 0.05, uncorrected. In all ROI-based multivariate
analyses, data from left and right hemispheres were combined into a
single ROI, but the dorsal and ventral portions of areas V2 and V3
were kept separate.

Multivariate pattern analyses. After preprocessing, classification
analyses were carried out with the LIBSVM software package (Chang
and Lin 2011) publicly available at https://www.csie.ntu.edu.tw/
~cjlin/libsvm/. We used default parameters (e.g., cost parameter � 1)
and a linear kernel. For multiclass classification problems, LIBSVM
uses a one-versus-one method, the performance of which is compa-
rable to a one-versus-all method (Hsu and Lin 2002). All classifier
analyses were performed on each session in each subject individually;
reported classifier accuracies are averaged over both sessions in each
subject unless otherwise indicated. To ensure that overfitting did not
contribute to classifier performance, we used hold-one-out cross-
validation: classifiers were trained with BOLD data from nine (all but
1) runs and tested with the tenth (held out) run, with the process
repeated 10 times such that each run served as the test set once.

Comparing feature- and conjunction-coding: the feature conjunc-
tion index. To determine how the relative levels of feature-based vs.
conjunction-based knowledge varied across brain regions, we devised
a novel measure—the FCI—by placing classifier accuracies in a ratio
(Fig. 1). Positive FCI values indicate conjunction-coding, negative
values indicate feature-coding, and zero values—provided classifier
performance is above chance, which we ensured was the case by
screening voxels or ROIs according to classifier performance—likely
indicate a transition zone in which neither feature- nor conjunction-
coding is strongly dominant (see RESULTS and Fig. 2 for a demonstra-
tion and discussion of these properties of the FCI).

Examining the coding of midlevel conjunctions. In addition to
measuring decoding accuracy for simple features and for four-fea-
tured conjunctions, we also assessed four-way classification of
“midlevel” conjunctions, i.e., combinations of just two of the four
binary features possessed by each stimulus. There are six possible
midlevel conjunctions: feature 1 with feature 2 (“Global Shape”),
feature 3 with feature 4 (“Texture”), feature 1 with feature 3 (“Right
Component”), feature 2 with feature 4 (“Left Component”), and two
less plausible, unnameable conjunctions, feature 1 with feature 4 and
feature 2 with feature 3. The midlevel conjunction classification
accuracy (see Table 5) allowed us to construct two further indexes, by
entering it into two ratios, 1) comparing feature vs. midlevel conjunc-
tion knowledge in a feature vs. midlevel conjunction index (FMI) and
2) comparing midlevel conjunction vs. whole object conjunction

Table 4. Feature-conjunction index in visual cortical ROIs

Ventral Stream Dorsal Stream

V1 V2v V3v LOC V2d V3d

Subject 1 �0.564 �0.081 �0.308 0.080 �0.207 �0.088
Subject 2 �0.467 �0.271 �0.137 0.188 �0.207 �0.085
Subject 3 �0.425 �0.251 �0.110 0.366 �0.298 �0.284
Subject 4 �0.476 �0.161 �0.284 0.391 �0.440 �0.313
Subject 5 �0.453 �0.301 �0.319 0.102 �0.497 �0.222
Subject 6 �0.464 �0.151 �0.148 �0.145 �0.396 �0.276
Subject 7 �0.584 �0.304 �0.209 �0.091 �0.345 0.055
Subject 8 �0.494 0.089 �0.133 �0.181 �0.418 �0.431
Mean FCI �0.491 �0.179 �0.206 0.089 �0.351 �0.206
SE 0.020 0.048 0.030 0.078 0.038 0.055
95% CI [�0.545, �0.442] [�0.252, �0.110] [�0.292, �0.125] [�0.0558, 0.192] [�0.422, �0.284] [�0.293, �0.122]

Values are individual subjects’ FCI by ROI (average over 2 sessions for each subject), with mean and SE across subjects and 95% CIs determined by
within-subject bootstrap sampling with replacement over 10,000 iterations (see MATERIALS AND METHODS). Mean values are also shown graphically in Fig. 3.
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knowledge in a midlevel vs. whole object conjunction index (MCI).
These indexes were constructed analogously to the FCI (Fig. 1).
Calculation of FMI was performed separately for each unique,
midlevel conjunction. For each midlevel conjunction, feature-classi-

fier outputs were used to predict midlevel conjunction accuracy on a
trial-by-trial basis, using only the two features that comprised the
midlevel conjunction. Next, the predicted midlevel accuracy was
compared with the empirical midlevel accuracy in a log ratio. The
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Fig. 2. Classifier accuracy and FCI for syn-
thetic data. Top and bottom: simulation results
for synthetic data generated with feature-
coded and conjunction-coded activation pat-
tern templates, respectively. Results shown
are from method 1 of generating synthetic
data; method 2 results are not shown but were
very similar and produced the same conclu-
sions from statistical tests. Error bars show
SE for FCI. Gray box for each data set shows
the range of SNR values that produced mean
classifier accuracies falling within the range
observed in ROI-based analyses of the empir-
ical data (see Tables 2 and 3). We focus upon
FCI values within the gray box as being
representative of plausible outcomes from
empirical BOLD data for each underlying
template. The lower bound of each gray box
is set to exclude from the box all SNR values
at which neither the feature nor the 16-way
conjunction classifier accuracy exceeded the
lowest accuracy observed in the empirical
ROIs (0.537 for feature classification, 0.0926
for conjunction classification; see Tables 2
and 3). The upper bound of each gray box is
set to exclude all SNR values at which either
the feature or the conjunction classifier accu-
racy exceeded the maximum accuracy ob-
served in classifiers trained on empirical ROI-
based data (0.864 for feature classification,
0.292 for conjunction classification; see Ta-
bles 2 and 3). The extremely high FCI values
produced by synthetic conjunction-coded data
were never observed in the empirical data;
this may be due in part to the fact that the high
SNR required to produce high positive FCI
values in the synthetic data does not exist in
cortical regions that exhibit conjunction-cod-
ing (i.e., regions exhibiting positive FCI val-
ues yield lower accuracy, presumably because
of lower SNR).

Table 5. Midlevel conjunction classifier accuracies

Ventral Stream Dorsal Stream

V1 V2v V3v LOC V2d V3d

Midlevel conjunction 1 (Global Shape) 0.689 (�0.029) 0.473 (�0.021) 0.400 (�0.012) 0.327 (�0.010) 0.573 (�0.025) 0.494 (�0.017)
Midlevel conjunction 2 (Texture) 0.610 (�0.036) 0.517 (�0.026) 0.471 (�0.023) 0.281 (�0.007) 0.491 (�0.031) 0.453 (�0.023)
Midlevel conjunction 3 (Right Component) 0.666 (�0.032) 0.493 (�0.021) 0.413 (�0.017) 0.296 (�0.007) 0.562 (�0.028) 0.469 (�0.027)
Midlevel conjunction 4 (Left Component) 0.645 (�0.033) 0.463 (�0.025) 0.433 (�0.015) 0.293 (�0.006) 0.504 (�0.028) 0.475 (�0.029)
Overall mean acc. 0.653 (�0.031) 0.487 (�0.022) 0.429 ( �0.015) 0.299 (�0.005) 0.533 (�0.026) 0.473 (�0.021)

Values are mean (�SE) accuracy of the midlevel conjunction classifiers, by ROI, across subjects. Data were averaged over 2 sessions for each subject.
Chance � 0.25. Overall mean accuracy scores for each session in each subject were transformed into a log-likelihood ratio (log odds; chance � �0.477) and
submitted to a 2-way repeated-measures ANOVA, with factors Scan Session (1, 2) and ROI (V1, V2v, V3v, V2d, V3d, LOC), revealing a main effect of ROI
[F(5,35) � 76.65, P � 0.001, �2 � 0.92], no significant effect of Scan Session [F(1,7) � 0.939, P � 0.37, �2 � 0.12], and no significant interaction
[F(2.272,35) � 3.12, P � 0.067, �2 � 0.31; Greenhouse-Geisser correction for violation of sphericity]. Accuracy was lowest in region LOC, but a 1-sample t-test
revealed that the log odds of LOC accuracy (collapsed over sessions) exceeded chance (mean � �0.370, SD � 0.010, t[7] � 10.68, P � 0.001). FMI and MCI
values derived with these classifier accuracies (in combination with feature and whole object classifier accuracies, respectively) are shown in Figs. 8 and 9,
respectively. Note that before deriving FMI and MCI with classifier accuracies, we removed any session-subject-ROI instances for which no classifier exceeded
chance, as determined by a binomial test (see MATERIALS AND METHODS).
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mean FMI value was an average over the four plausible midlevel
conjunctions. For calculation of MCI values, we took the four plau-
sible midlevel conjunction accuracies (i.e., outputs of 4 of the 4-way
midlevel conjunction classifiers) and combined them into two pairs to
make two separate predictions for the whole conjunction accuracy
(Feat1-Feat2 combined with Feat3-Feat4 and Feat1-Feat3 combined
with Feat2-Feat4), on a trial-by-trial basis. Reported MCI values were
obtained by averaging across the two predictions and comparing this
with the empirical whole object conjunction accuracy in a log ratio.

Screening to remove ROIs with chance-level classifier accuracy.
For both ROI-based and searchlight analyses, before computing the
FCI we screened out ROIs in any session in any subject in which
accuracy did not exceed chance for either feature-based or object-
based classification. Analogously, for the FMI and MCI, we screened
out any ROIs in which accuracy did not exceed chance for any of the
classifiers contributing to the ratio. Chance level was determined with
a binomial test, with binomial distribution parameters n � 320 trials,
P � 0.5 for the 2-way feature classifiers and P � 0.0625 for the
16-way object classifier, and with a statistical threshold � � 0.05. The
� level was adjusted for multiple comparisons by the Sidak method of
assuming independent probabilities: �SID � 1 � (1 � �)^(1/n)
(where n � 4 in the case of the 4 feature classifiers). For the
object-level object classifier, �SID � 0.05 because there is only one
classifier. For each of the four feature classifiers, �SID � 0.0128 (i.e.,
�SID � 1 � (1 � �)^(1/n), where � � 0.05 and n � 4). Because
above-chance performance in either the object classifier or any of the
four feature classifiers qualified an ROI for inclusion, Sidak correction
among the feature classifiers ensured that screening was unbiased with
respect to feature-based vs. object-based classifier accuracy. Binomial
P values and Sidak adjustment were computed analogously for the
FMI and MCI, according to the number of classifier outcomes and the
number of comparisons in each case. The accuracy screening proce-
dure ensured that ROIs with below-chance performance in all classi-
fiers—from which computed FCI values are meaningless—were re-
moved from the analysis. We did not correct for multiple comparisons
when performing the binomial screening tests because the outcomes
of these tests were not our results of interest; they merely served to
remove noise from the measure of interest, the FCI. In the searchlight
FCI analyses, screening resulted in the removal of many centroid
voxels. In the ROI-based analyses, for the FCI, screening resulted in
the removal of one data point from a single session in one subject, in
region LO (but removal of this data point did not significantly affect
the results); for the FMI, screening resulted in the removal of several
data points in region LO, described in RESULTS; and for the MCI,
screening resulted in the removal of no data points.

ROI-based statistical tests. Differences in classifier accuracy per se
were not of primary interest; our main goal was to calculate FCI by
placing classifier accuracies in a ratio, in order to determine how the
relative levels of feature-based vs. conjunction-based knowledge var-
ied across brain regions. Therefore, we examined differences in
classifier accuracy only to provide preliminary descriptive character-
ization of the data, to verify that classifier performance was above
chance, and to investigate whether there was an effect of scan session
on the multivariate results. To test for differences in classifier accu-
racies across ROIs and sessions, accuracy scores for both feature and
object classifiers in each session and subject separately were trans-
formed into log-likelihood ratios {log odds; LLR(Acc) � ln[Acc/(1 �
Acc]}. Log odds accuracy values for both feature and object classi-
fiers were submitted to a two-way repeated-measures ANOVA with
Scan Session (1, 2) and ROI (V1, V2v, V2d, V3v, V3d, LOC) as
factors. Because this ANOVA revealed a significant effect of ROI for
both feature- and object-classifier accuracy, we checked for adequate
classifier performance in the lowest-accuracy ROI (area LOC) by
comparing LLR(Acc) in LOC to chance performance [for features,
chance LLR(Acc) � 0; for objects, chance LLR(Acc) � �2.71] via a
one-sample t-test (1-tailed, � � 0.05). Ninety-five percent confidence
intervals (CIs) for classifier accuracies and FCI (Tables 2–4), were

determined by 10,000 iterations of bootstrap resampling with replace-
ment. Resampling of classifier accuracy was conducted within sub-
jects, separately for each classifier and hold-out run, and these resa-
mpled values were averaged over the 10 hold-out runs. To compute
classifier accuracy CIs, the classifier accuracies were averaged across
the two sessions and all subjects for each iteration and compiled into
a distribution of mean classifier accuracies. To compute CIs for the
FCI mean, an FCI value was computed from the classifier accuracies
for each iteration (separately for each classifier and ROI) and aver-
aged across the two sessions and across subjects before being com-
piled into a distribution of mean FCI values. Finally, 95% CIs were
drawn from these distributions by taking the 250th- and 9,750th-
ranked values. Comparison of CIs between pairs of ROIs provides an
assessment of differences in classifier accuracy or FCIs between
ROIs.

The FCI is a log ratio centered on zero; therefore we performed no
further transformation before submitting it to a two-way repeated-
measures ANOVA with factors Scan Session (1, 2) and ROI (V1,
V2v, V2d, V3v, V3d, LOC). Because there was a significant effect of
ROI, we performed Sidak-adjusted pairwise comparisons to test for
differences between ROIs. For the FCI, 95% CIs (Fig. 2; Table 4)
were determined by 10,000 iterations of bootstrap resampling with
replacement, providing a secondary assessment of differences be-
tween ROIs. We also performed two-way repeated-measures ANO-
VAs on the FMI and MCI values, but in the case of the FMI we tested
only five ROIs, excluding LOC, because of missing data points for
LOC after screening.

Searchlight analyses. To assess the relative dominance of feature-
vs. conjunction-coding throughout all of visual cortex we computed
FCI with a searchlight approach (Kriegeskorte et al. 2006). The
imaged volume in each session in each subject was first screened with
a subject-specific gray matter mask encompassing occipital, temporal,
and posterior parietal cortices; the approximate volume encompassed
for each participant can be seen in Fig. 4. A sphere of radius 5
functional voxels was sampled around each voxel in this volume (any
sphere containing �100 voxels falling within the gray matter mask
was excluded); feature and object classifiers were trained on the
BOLD data from the spherical ROI, and the resulting FCI was
recorded at the centroid voxel in the map. To create the group average
FCI map in Fig. 4, we first took the FCI map for each session and
subject and performed spatial smoothing using a Gaussian kernel with
full width at half maximum (FWHM) of 2. The spatially smoothed
FCI value at each voxel was computed by performing spatial smooth-
ing of 1) object classifier accuracy and 2) feature-predicted object
classification accuracy, and placing the two smoothed values into a
log ratio, as in Eq. 1 in Fig. 1. At each voxel, any neighboring voxels
that were disqualified from inclusion in the analysis by our standard
criteria—falling outside of the anatomical mask, possessing �100
voxels in their associated spherical ROI, or yielding above-chance
classifier accuracy for neither features nor objects—were treated as
missing values in the Gaussian averaging calculation. Next, for each
subject, the smoothed maps were averaged over two sessions. [The
collapsing of data across two sessions was justified because in the
ROI-based analyses we found no effect of session on FCI and no
interaction of session with ROI; see RESULTS. In addition, for the
single-session FCI maps generated by searchlight analysis we con-
ducted a group-level t-test at each voxel for a difference of FCI across
sessions and found no voxels passing a false discovery rate (FDR)-
corrected threshold of � � 0.05]. Finally, the group average FCI map
(Fig. 4) was constructed by averaging over all subjects’ smoothed
session-averaged FCI values at each voxel, with the constraint that for
a voxel to appear in the map it had to possess a numeric FCI value
(rather than a missing value, indicating that the voxel had been
screened out) for at least five of the eight subjects.

Group-level statistical tests on searchlight data. To find cortical
locations of reliably nonzero FCI values—either positive indicating
conjunction-coding or negative indicating feature-coding—we per-
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formed a group-level t-test at each voxel in the searchlight analysis,
comparing the group mean FCI to zero. To do so, we took FCI maps
from individual subjects and sessions that had been spatially
smoothed with a Gaussian kernel with FWHM of two functional
voxels and averaged over the two sessions for each subject, as
described above. We tested only voxels that were associated with
numeric FCI values for all eight subjects (i.e., voxels that did not
contain an empty value after spatial smoothing, owing to disqualifi-
cation during the screening process). We used an FDR-corrected �
level of 0.05 (2-tailed) against a t-distribution with 7 degrees of
freedom. Anatomical labels for identified sites in cortex were derived
from the Automated Talairach Atlas available at www.talairach.org
(Lancaster et al. 2000).

Quantifying the transition from feature- to conjunction-coding. To
quantify the transition from feature- to conjunction-coding along the
ventral and dorsal pathways, we examined the FCI as a function of
location along each pathway. To specify the location of a voxel in the
ventral and dorsal pathways, we first defined three vectors in Talaraich
coordinates: 1) a “Posterior Ventral” vector with its origin in the
occipital pole (Tal co-ords, L: [�8 �101 �6]; R: [8 �101 �6])
extending to the center of LOC (Tal co-ords, L: [�44 �70 �4]; R:
[43 �67 �4]); 2) an “Anterior Ventral” vector with its origin at the
center of LOC, extending to the anterior tip of the temporal pole (Tal
co-ords, L: [�35 28 �29]; R: [35 28 �29]); and 3) a “Dorsal” vector
with its origin in inferior posterior occipital cortex (Tal co-ords L:
[�10 �99 �14]; R: [10 �99 �14]) extending to the most superior/
anterior point of the dorsal pathway contained in the scanned volume,
in Brodmann area 7 (Tal co-ords L: [�14 �67 53]; R: [14 �67 53]).
The goal was to project the Talairach coordinates of each voxel in the
dorsal and ventral pathways onto the three vectors we defined, to produce
a single, scalar metric specifying the location of each voxel along each
pathway. To include only voxels in the appropriate cortical regions for
each vector (e.g., to exclude anterior voxels from the Posterior Ventral
vector and ventral voxels from the Dorsal vector), we defined a bounding
box around each vector, outside of which voxels were excluded from the
analysis (see Fig. 6). In all cases, the bounding box for each hemisphere
terminated at X � 0 (the midline). For the Posterior Ventral vector, the
boundaries of the box were X � 0 to X � the lateral extent of the
Talairach bounding box; Y � �55 to the posterior extent of the Talairach
bounding box; Z � 7 to Z � the inferior extent of the Talairach bounding
box. For the Anterior Ventral vector, the bounding box dimensions were
X � 0 to X � the lateral extent of the Talairach bounding box;
Y � �70 to the anterior extent of the Talairach bounding box; Z � 7
to Z � the inferior extent of the Talairach bounding box. For the
Dorsal vector, the bounding box dimensions were X � 0 to X � the
lateral extent of the Talairach bounding box; Y � �57 to the posterior
extent of the Talairach bounding box; Z � �14 to the posterior extent
of the Talairach bounding box. In addition, for the Posterior Ventral
vector, we excluded any voxels with a scalar projection value beyond
the end of the vector, which terminated at the center of LOC (i.e., any
voxels within the bounding box located at a more extreme point along
the vector than the center of LOC).

Having derived a metric specifying the location of each voxel in
each of the three pathways, we plotted FCI values as a function of
voxel location. FCI values were not spatially smoothed but were
averaged over the two sessions for each voxel, within each subject.
Separate plots were made for each subject and hemisphere, for each of
the three defined pathways (Posterior Ventral, Anterior Ventral, and
Dorsal). For each plot, we assessed the correlation between voxel
location and FCI and found the best-fitting straight line describing the
relationship by a least-squares method. The best-fitting straight lines
for all subjects and hemispheres in all three pathways are shown in
Fig. 6. We assessed differences in the slope of the best-fitting straight
lines for the three pathways by performing a 2 � 3 repeated-measures
ANOVA with factors Hemisphere (left, right) and pathway (Posterior
Ventral, Anterior Ventral, Dorsal).

Evaluating the Properties of the Feature Conjunction Index with
Synthetic Data

Construction of synthetic data. To evaluate the FCI metric we
created synthetic BOLD data sets. We used two different templates—
feature-coded and conjunction-coded—to generate the signal that
defined distinct patterns for the 16 stimuli in the set. In the feature-
coded template, artificial voxels were switched “on” or “off” accord-
ing to the presence or absence of a particular value of one of the four
binary features, with all feature values represented by an equal
number of voxels. In the conjunction-coded template, artificial voxels
were switched “on” or “off” according to the presence or absence of
a specific object stimulus from among the set of 16, with all objects
represented by an equal number of voxels. All data sets possessed 256
voxels in total. We generated synthesized data sets in two ways: 1) by
selecting a signal value from a range of magnitudes (between 0.01 and
0.5), applying this signal to “active” voxels according to the template,
and superimposing this pattern of activation on top of a constant
background of uniform random noise (range 0–1, standard deviation
0.289), resulting in two families of data sets (feature and conjunction
coded) possessing signal-to-noise ratios (SNRs) ranging from 0.0012
to 3; and 2) by using a constant signal value of 1, applying this signal
to “active” voxels according to the template, and superimposing this
pattern on top of a background of uniform random noise whose
amplitude was systematically manipulated (the range of the noise
varied from a minimum range of 0–2, with standard deviation 0.5774,
to a maximum range of 0–30, with standard deviation 8.66), resulting
in two families of data sets (feature and conjunction coded) that
possessed SNRs ranging from 0.0133 to 3. For both data synthesizing
methods, data were normalized on a “per run” basis exactly as
empirical BOLD data were normalized before analysis (grouping
“trials” into sets of 32 containing 2 presentations per stimulus—a
single scanner run—and normalizing across all trials in a run for each
voxel).

Assessment of FCI. Our goals were 1) to assess the intuition that
feature-coded activation patterns produce negative FCIs and conjunc-
tion-coded patterns produce positive FCIs, when classifier perfor-
mance is above chance, and 2) to examine the extent to which
qualitative or quantitative shifts in FCI are produced by varying levels
of noise. Following procedures identical to those used for empirical
BOLD data, taking 100 synthetic data sets from each template—
feature coded and conjunction coded—we ran feature- and conjunc-
tion-level classifiers and computed FCI values from the classifier
outputs. We then plotted FCI values and classifier accuracies against
SNR, for both data templates. Critically, we aimed to evaluate the FCI
metric against the results from data sets that produced classifier
accuracies in line with the range of accuracies seen in our empirical
data. This is important because FCI values necessarily tend to zero
when both feature- and object-level classifiers either know nothing
(below-chance performance) or have perfect knowledge (approaching
100% accuracy). We emphasize that in our empirical data classifier
accuracies never approached ceiling, and below-chance classification
accuracies always disqualified an ROI from inclusion in the assess-
ment of FCI.

RESULTS

FCI Reflects the Relative Contribution of Feature- vs.
Conjunction-Coding in a Cortical Region

As seen in Fig. 2, analyses of synthetic data constructed
according to a feature code and a conjunction code yielded FCI
values that confirmed the interpretation of FCI outlined in
MATERIALS AND METHODS. Focusing on the data points within the
gray boxes (for which mean classifier accuracies fell within the
range observed in ROI-based analyses of the empirical data),
when FCI values from each set of 100 simulations were
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compared with zero with a one-sample t-test (� � 0.05), it was
confirmed that all feature-coded data sets produced negative
FCI values and all conjunction-coded data sets produced sig-
nificantly positive FCI values. We emphasize two key features
of these simulation results. First, positive FCI values were
never produced by a feature-coded template, and negative FCIs
were never produced by a conjunction-coded template. Second,
for both templates, increasing noise tended to push the FCI
toward zero, making it less negative for feature-coded data and
less positive for conjunction-coded data. However, in these
simulations, FCI values derived from above-chance, empiri-
cally plausible classifier accuracies were always statistically
distinguishable from zero (i.e., significantly negative or posi-
tive). Taken together, the simulations demonstrate that a region
containing only object-sensitive voxels cannot produce a neg-
ative FCI and a region containing only feature-sensitive voxels
cannot produce a positive FCI, precluding qualitatively mis-
leading results. When the FCI takes near-zero values, in the
presence of above-chance classifier accuracy, this likely rep-
resents a transition zone containing some mixture of feature-
and conjunction-sensitive voxels, such that neither coding type
is dominant. In the presence of high noise levels zero FCIs are
harder to interpret, because they may reflect noise rather than
a balance of feature and conjunction-coding. It is for this
reason that, in the empirical analyses (both ROI based and
searchlight), we screened out any ROIs for which classifier
accuracy did not exceed chance. Despite this caveat regarding
near-zero FCIs, it is nonetheless instructive that, even at high
noise levels, numerically positive FCIs never emerged from a
feature code and numerically negative FCIs were never pro-
duced by a conjunction code. The simulations thus reinforce
the a priori intuition that the FCI indicates whether the voxel-
level population code is relatively dominated by a feature code
(negative FCI) or a conjunction code (positive FCI).

An intuitive understanding of the pattern of FCI values
derived from synthetic data can be gained by considering how
individual voxel activations map onto category identities, for
each underlying coding type and classifier type. All classifiers
used a linear kernel. First, consider that for hypothetical acti-
vation patterns with zero noise, both feature and conjunction
knowledge would be perfect regardless of the underlying code
(feature based or conjunction based) and FCI values would be
zero. However, empirical BOLD data contain noise, which
produces incomplete knowledge. In the case of noisy feature-
coded data, reliable information is present for some but not all
of the features (i.e., noise obscures the signal in some but not
all of the feature-sensitive voxels). Each feature classifier must
map feature-sensitive voxels onto feature categories, but these
mappings are independent for the different categories: different
voxels carry the information for each category. Although some
voxels’ signal is obscured, reducing the feature classification
accuracy for the feature categories coded by those voxels, the
feature categories for which reliable information is present can
still be classified because mappings from the reliable voxels to
feature categories are unaffected by noise in the unreliable
voxels. In contrast, the conjunction classifier must map feature-
sensitive voxels onto object categories, which requires com-
bining information from all features; therefore all voxel-to-
category mappings are affected by the loss of information in
some voxels. Consequently, object classification accuracy
drops further than feature classification accuracy, and FCI is

negative. In the case of noisy conjunction-coded data, the
reverse scenario applies. Since the conjunction classifier learns
independent mappings of conjunction-sensitive voxels to ob-
ject categories (separate voxels in each case), noise on some
but not all voxels reduces accuracy for some but not all
categories. In contrast, the feature classifier must perform
combinatorial mappings of conjunction-sensitive voxels onto
feature categories, so the presence of noise on some voxels
affects all voxel-to-feature category mappings. Hence, noise
affects feature classifier accuracy more than conjunction clas-
sifier accuracy, producing positive FCI values.

What does this imply for the nature of the neural code?
Positive FCIs are taken as indicating conjunction-coded acti-
vation patterns. In our simulations, this amounted to voxels in
which the signal varied with the presence or absence of an
object, without regard to its component features. That is, the
intersection of the features comprising the object created a
wholly new pattern, distinct from the pattern due to other
objects sharing some of those features. A conjunction code is
thus a nonlinear combination of features for which the whole is
greater than the sum of the parts.

Transition from Feature- to Conjunction-Coding in
Occipito-Temporal Cortex

We investigated whether early visual cortex employs fea-
ture-coding or conjunction-coding, and whether one scheme
transitions to the other with progression toward the temporal
lobe, by examining FCI in a series of functionally or anatom-
ically defined ROIs: V1, V2, V3, and LOC. Taking stimulus-
evoked activation patterns from across each ROI, we trained
the classifiers using hold-one-out cross-validation and com-
puted FCI for each subject and session separately (Fig. 3; Table
4). FCI differed significantly across ROIs [F(5,35) � 15.78,
P � 0.001, �2 � 0.693] but not across sessions [F(1,7) �
0.004, P � 0.95, �2 � 0.001], with no interaction between
Scan Session and ROI [F(5,35) � 0.133, P � 0.984,
�2 � 0.019]. Ordering the ROIs as [V1, V2v, V2d, V3v, V3d,
LOC] revealed a significant linear trend [F(1,7) � 37.34, P �
0.001; �2 � 0.842], suggestive of a transition from feature-
coding toward conjunction-coding along early stages of the
visual pathway. Regions V1 through V3 exhibited negative
FCIs indicative of feature code dominance, while LOC re-
vealed a numerically positive FCI that was significantly greater
than in all other ROIs (revealed by nonoverlapping 95% CIs;
Table 4). In our analysis of synthetic data, neither purely
feature-based nor purely conjunction-based data (at SNR levels
that yielded classifier accuracy within the range observed in the
empirical ROI-based analyses) produced zero FCIs. We there-
fore interpret the near-zero, numerically positive FCI for LOC
in terms of a hybrid code that contains both feature- and
conjunction-coding, in contrast to the strong feature-coding
detected in early visual cortex. In favor of this interpretation,
we note two points. First, both feature and object classifier
accuracy exceeded chance in LOC (see Tables 2 and 3). Given
this above-chance classifier performance, and the simulation
results reported above, it would not be possible to derive a
numerically positive FCI if the true underlying code in LOC
were as strongly feature based as in regions V1 through V3
(indicated by their very negative FCI values). Second, region
LOC showed a significantly positive FMI for the midlevel
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conjunction of global shape (reported below), indicating that
the quality of BOLD in LOC, in this data set, is sufficient to
produce nonzero indexes when the information present in the
activation patterns warrants such values.

Feature- and Conjunction-Coding Throughout Visual Cortex

To assess feature- and conjunction-coding in cortical repre-
sentations of objects beyond region LOC, and in the dorsal
visual pathway, we examined all of visual cortex, using a
searchlight approach (Kriegeskorte et al. 2006). At each spher-
ical ROI, we performed classifier analyses (using hold-one-out
cross-validation and screening out spheres in which classifier
accuracy did not exceed chance) and computed the FCI,
mapping the FCI value back to the centroid voxel of the sphere.
In the group-averaged FCI map (Fig. 4), occipital regions
exhibit the most negative FCIs indicative of feature-coding.

With progression into regions anterior and superior to the
occipital pole, the FCI first becomes less negative—suggesting
a transition or “hybrid” region—and then becomes positive in
occipito-temporal and posterior parietal regions, indicating the
emergence of conjunction-coding in both ventral and dorsal
pathways. Examination of FCI maps in individual subjects
revealed the same pattern in every subject in both sessions:
strongly negative FCIs in occipital regions with a transition to
positive FCIs toward temporal and parietal regions (Fig. 5).

Quantifying the Transition from Feature- to
Conjunction-Coding

Next, we sought to quantify the relationship between cortical
location and FCI in both ventral and dorsal pathways. To do so,
we devised a metric to specify the location of the voxels in
each pathway by defining three vectors in Talaraich coordi-
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Fig. 3. Feature conjunction indexes (FCIs) derived from ROI-based analyses:
mean FCI (averaged over 2 sessions in each subject) for ROIs in early ventral
visual stream (V1, V2v, V3v, LOC, top) and early dorsal stream (V1, V2d
V3d, bottom). V1 is duplicated in top and bottom plots for ease of comparison.
FCI is the natural logarithm of the ratio of object classifier accuracy to the
product of the 4 feature classifier accuracies (see Fig. 1 and MATERIALS AND

METHODS). Positive FCI reflects conjunction-coding; negative FCI reflects
feature-coding. Gray bars show group mean; plotted points show individual
subjects, where each unique marker corresponds to the same individual subject
across ROIs. See Table 4 for bootstrapped 95% confidence intervals (CIs)
around the means. n � 8 subjects, 2 scan sessions each.
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Fig. 4. FCI derived from whole brain searchlight analyses: group mean FCI
produced by a searchlight MVPA assessing conjunction- vs. feature-coding
throughout visual cortex. A sphere of radius 5 functional voxels was swept
through the imaged volume, constrained by a subject-specific gray matter mask
encompassing occipital, temporal, and posterior parietal cortex. Taking each
voxel in turn as the centroid of a spherical ROI, the feature and object
classifiers were trained and their accuracies combined to produce a FCI that
was entered into the map at the location of the centroid voxel. Orange indicates
positive FCI (conjunction-coding); blue indicates negative FCI (feature-cod-
ing). Centroid voxels for which classifier performance did not exceed chance,
as determined by a binomial test, were removed from individual subject maps
(see MATERIALS AND METHODS). FCI maps were constructed for each subject
and scan session individually (see Fig. 5), then spatially smoothed with a
Gaussian kernel (FWHM � 2 functional voxels). Smoothed maps were aver-
aged across 2 sessions for each subject and across subjects. Scale is truncated
at �0.25 for optimal visualization of the data; some voxels possess FCI values
�greater than �0.25 or less than �0.25.
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nates: a Posterior Ventral vector with its origin in the occipital
pole extending to the center of LOC; an Anterior Ventral
vector with its origin in LOC extending to the anterior tip of the
temporal pole; and a Dorsal vector with its origin in inferior
posterior occipital cortex extending to the most superior/ante-
rior point of the dorsal pathway in the scanned volume (in
Brodmann area 7). For each vector we defined a bounding box
around the vector to constrain the anatomical region from
which voxels were drawn (Fig. 6) and projected the Talairach
coordinates of voxels within the box onto the vector, yielding
a scalar value for each voxel that specified its location along
the vector. Finally, for each subject, for all three vectors in
each hemisphere separately, we computed 1) the correlation
between the location of a voxel and the FCI of the spherical
ROI centered on that voxel and 2) the slope of the best-fitting
regression line relating voxel location to FCI (Fig. 6). The
correlation between location and FCI was positive and highly
significant in all eight subjects in both hemispheres for the

Dorsal vector (P � 0.0001) and the Posterior Ventral vector
(P � 0.01), reflecting a robust transition from feature-coding at
the occipital pole to representations more dominated by con-
junction-coding in lateral occipital and superior parietal corti-
ces, respectively. For the Anterior Ventral vector, the correla-
tion was positive and significant (P � 0.01) in both hemi-
spheres for five of eight subjects; in one subject (yellow in Fig.
6) the left hemisphere was negatively correlated (a decrease in
FCI with anterior progression; P � 0.05) and the right was
positively correlated (P � 0.001); in the two remaining sub-
jects (black and magenta in Fig. 6), the left hemisphere was
significantly negatively correlated (P � 0.0001) and the right
was not correlated (P � 0.2). The slopes of the best-fitting
regression lines differed for the three vectors [F(2,14) � 23.71,
P � 0.001] but did not differ by hemisphere [F(1,7) � 0.026,
P � 0.877], with no hemisphere � vector interaction
[F(2,14) � 2.889, P � 0.089]. Slopes for the Anterior Ventral
vector were smaller than for the Posterior Ventral (P � 0.001)
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Fig. 5. Individual subject FCI maps: raw FCI values plotted separately for the 2 scans (1, 2) in 3 individual subjects (G, H, and N). The 2 left columns correspond
to the first scan, and the 2 right columns correspond to the second scan; each row depicts an individual subject. Color of a voxel indicates FCI for the spherical
ROI surrounding it. Absence of color indicates the voxel was screened out because 1) it was not included in the anatomical (gray matter) mask, 2) the sphere
surrounding the voxel contained too few voxels, or 3) accuracy for none of the classifiers exceeded threshold. There are many more absent voxels here than in
the group mean FCI map (Fig. 4) because the spatial smoothing and averaging used in creating the group mean map eliminated many absent voxels. Scale is
truncated at �0.5 for optimal visualization; some voxels possess FCI values greater than �0.5 or less than �0.5. The scale differs from that of Fig. 4 because
data within individual maps span a greater range.
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and Dorsal (P � 0.0001) vectors, which did not differ from
each other (P � 0.62). These results suggest that, for the
present stimulus set, the greatest transition from feature-coding
to conjunction-coding occurs in posterior regions, in both
ventral and dorsal pathways. A possible reason for the shal-
lower transition toward conjunction-coding in the anterior
ventral pathway is that the object-level conjunctions compris-
ing these simple, novel objects may be fully specified in
relatively posterior sites, just beyond the occipito-temporal
junction (Figs. 4 and 7). Indeed, the stimuli with which Erez et
al. (2016) revealed conjunction-coding in anterior temporal
regions were three-dimensional, colored objects that likely
better engaged anterior visual regions.

Cortical Sites of Extreme Feature- and Conjunction-Coding

Finally, to search for cortical sites demonstrating statis-
tically reliable extremes of feature- or conjunction-coding,
we compared the group mean FCI at each voxel to zero
(2-tailed t-test, FDR corrected; positive t-values indicate
conjunction-coding, and negative t-values feature-coding).
This analysis assumes anatomical and functional correspon-
dence of points in Talairach space across subjects; it is
therefore conservative, particularly for conjunction-coding,
the cortical sites of which are likely more widely and
variably distributed across subjects. Nonetheless, we re-
vealed a large occipital region of feature-coding along with
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Fig. 6. Quantification of the transition from feature- to conjunction-coding in the ventral and dorsal streams. Insets show the approximate extent and
position of the 3 defined vectors Posterior Ventral, Anterior Ventral, and Dorsal in pink; the projection of a voxel location onto the vector to derive a
scalar value for the voxel position in blue; and the bounding box defining the brain region included as part of each pathway in green (a subject-specific
anatomical mask including only gray matter in occipital, temporal, and parietal lobes was also applied). Plots show the best-fitting regression lines relating
the location of a voxel in each of the 3 pathways to the FCI for the spherical ROI surrounding the voxel. Each line shows 1 subject in 1 hemisphere; colors
indicate different subjects; solid and dashed lines show left and right hemispheres, respectively. The far end point of the vector is more distant from
occipital cortex (i.e., the vector is longer) for the Dorsal than the Posterior Ventral pathway; this may account for the higher FCI value at the vector end
point in the Dorsal than the Posterior Ventral pathway, given that regression line slopes in the Dorsal and Posterior Ventral pathways were similar (x-
and y-axes use the same scale for all 3 plots).
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multiple conjunction-coding sites throughout occipito-tem-
poral, ventral temporal, and parietal cortices, extending into
the parahippocampal gyrus, medial temporal lobe, and an-
terior temporal pole (Fig. 7). We note the lower prevalence
of above-threshold voxels contributing to each subject’s FCI
map in regions toward the anterior temporal lobes (see Fig.
5), and we therefore interpret our findings in these regions with
caution; in contrast, data in the occipital, posterior temporal,

and posterior parietal lobes were much less sparse, and so
findings in these regions can be interpreted with greater con-
fidence. Most important is the overall pattern at the group
level: in line with a feature-to-conjunction transition hypothe-
sis, all conjunction-coding sites were located anterior or supe-
rior to the feature-coding sites, which were confined to the
occipital lobe (excepting a single more anterior feature-coding
voxel at [10 �51 5], in the inferior posterior cingulate).
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Fig. 7. Cortical sites of feature- and conjunction-coding observed at the group level. Statistical map shows the results of a t-test at each voxel comparing
the group mean FCI value associated with the spherical ROI surrounding that voxel to zero. The map was thresholded at P � 0.05, 2-tailed (FDR corrected
for multiple comparisons). Blue voxels possess FCI values significantly less than zero (feature-coding); orange voxels possess FCI values significantly
greater than zero (conjunction-coding). All but 1 voxel with statistically reliable negative FCI values were located in occipital cortex, whereas all voxels
with statistically reliable positive FCI values were located anterior or superior to the occipital feature-coding regions. Voxels exhibiting significant
conjunction-coding appeared in multiple sites bilaterally, including posterior parietal lobe, fusiform gyrus, parahippocampal gyrus (including left
perirhinal cortex), hippocampus, and anterior temporal pole. Axial slices are radiologically flipped (left hemisphere appears on right). In sagittal slices,
positive X coordinates indicate right hemisphere.
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No Effect of Visual Search Training on Feature- or
Conjunction-Coding as Measured by FCI

We detected no effect of visual search training on the
prevalence of feature- vs. conjunction-coding, as measured by
the FCI, in participants’ cortical activation patterns. As re-
ported above, there was no main effect of Session and no
Session � ROI interaction on the critical FCI measure (where
Session is the factor partitioning data collected before vs. after
visual search training). Because the visual search task required
object individuation, any observed change in neural represen-
tations was expected to increase conjunction-coding. There are
several possible explanations for the absence of an observed
training effect on the neural representations. First, in our
training procedure, daily sessions were terminated for each
subject when the RT-set size slope appeared to be approaching
an asymptotically low value (mean 11.1 days; range 7–15
days). This relatively short training duration may have been
insufficient to produce full unitization of the conjunctive stim-
uli, a notion in line with the fact that RT-set size slopes were
still significantly positive in the final training session (Table 6).
Second, the stimuli were perceptually simple and devoid of
semantics, and the task did not involve naming; thus our
training may have failed to engage the learning mechanisms
known to influence neural representations in visual cortex for
richer, more meaningful objects (e.g., Folstein et al. 2013;
Gauthier et al. 1999). A third possibility is that cortical repre-
sentations did change with training, but the data were too noisy
to allow detection of these changes at the individual subject
level and the sites at which changes occurred varied in location
across participants, obscuring findings at the group level.

Coding of Midlevel Conjunctions

We examined the extent to which ROIs in the ventral and
dorsal pathways coded for simple features vs. midlevel con-
junctions (FMI; Fig. 8), and coded for midlevel conjunctions
vs. whole object conjunctions (MCI; Fig. 9). We found the
same trend as revealed by the FCI analysis: both FMI and MCI
measures took negative values in posterior regions such as V1
(indicating that feature-coding dominates over midlevel con-
junction-coding and midlevel conjunction-coding dominates
over whole object conjunction-coding) but increased toward
positive values in more anterior regions such as V3d and LOC.

Statistical assessment of FMI by ANOVA excluded LOC
because of missing cells. Specifically, screening (to remove
any session-subject-ROI data point for which no classifier exceeded chance as determined by a binomial; see MATERIALS

AND METHODS) resulted in the removal of several data points in
LOC only, such that midlevel conjunctions 1 and 3 were
determined on the basis of six and seven subjects, respectively,
and the mean over all conjunctions was determined on the basis
of six subjects (i.e., only those individuals who contributed a
data point for all 4 midlevel conjunctions). ANOVA performed
on the remaining ROIs revealed that FMI differed significantly
across ROIs [F(4,28) � 21.07, P � 0.001, �2 � 0.751] and
across sessions [F(1,7) � 11.96, P � 0.011, �2 � 0.631], with
no interaction between Scan Session and ROI [F(4,28) � 1.54,
P � 0.219, �2 � 0.180]. The small but significant difference
across sessions was due to a decrease of 0.015 in FMI from the
first to the second scan session, i.e., a change after visual search
training toward feature-coding and away from midlevel con-
junction-coding. Since visual search training focused on the

Table 6. Behavioral performance during training on conjunctive
visual search task

Accuracy on Final
Session

RT-Set Size Slope
First Session,

ms/item

RT-Set Size Slope
Final Session,

ms/item

Mean (�SE) 0.893 (�0.020) 297 (�37) 200 (�20)

Accuracy on the final session (and in all earlier sessions, not reported) far
exceeded the chance performance level of 50%. RT-set size slopes decreased
significantly from the first to the final session (P � 0.05) but were still
significantly �0 in the final session (P � 0.0001). Shiffrin and Lightfoot
(1997) trained subjects for many more sessions of conjunctive visual search
(~50 days compared with 11.1 days in present study) and observed RT-set size
slopes as low as 50 ms/item on the final session.
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Fig. 8. Feature vs. midlevel conjunction indexes (FMI) derived from ROI-
based analyses: mean FMI (averaged over 2 sessions in each subject) for ROIs
in early ventral visual stream (V1, V2v, V3v, LOC, top) and early dorsal
stream (V1, V2d V3d, bottom). V1 is duplicated in top and bottom plots for
ease of comparison. FMI is the natural logarithm of the ratio of the midlevel
conjunction classifier accuracy to the product of the 2 feature classifier
accuracies for the features defining that midlevel conjunction (see MATERIALS

AND METHODS). Positive FMI reflects a preference for coding midlevel con-
junctions over features; negative FMI reflects the reverse preference. Gray bars
show group mean; plotted points show individual subjects, where each unique
marker corresponds to the same individual subject across ROIs.
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unique identity of the whole object, it is not clear what should
have been expected for any shift in neural coding of midlevel
conjunctions. This shift toward more negative FMIs might
result from increased attention to individual features over

midlevel conjunctions after training, but the shift was small in
magnitude.

Statistical assessment of MCI by ANOVA revealed that
MCI differed significantly across ROIs [F(5,35) � 17.79, P �
0.001, �2 � 0.718] but not across sessions [F(1,7) � 0.026,
P � 0.876, �2 � 0.004], with no interaction between Session
and ROI [F(5,35) � 0.72, P � 0.613, �2 � 0.093].

Together, the FMI and MCI results yield three notable
insights. First, the FMI analysis demonstrates that when simple
conjunctions (rather than whole object conjunctions) are pitted
against the basic features, the zero point of the transition from
feature-coding to conjunction-coding occurs earlier in both
visual pathways, near area V2. Second, the combination of
FMI and MCI results for area V3d suggests that it codes
primarily for midlevel conjunctions in the present stimulus set:
in V3d, the FMI (features vs. midlevel conjunctions) was
significantly positive (1-sample t-test compared with zero, P �
0.001) whereas the MCI (midlevel vs. whole object conjunc-
tions) was significantly negative (1-sample t-test, P � 0.0016),
suggesting that midlevel conjunction-coding dominates over
both feature-coding and whole object conjunction-coding.
Third, the FMI values for area LOC suggest that the extent to
which this region codes for conjunctions relies heavily upon its
coding of shape. As seen in Table 7, which shows FMI values
for individual midlevel conjunctions, LOC yielded a signifi-
cantly positive value only in the case of conjunction 1—the
combination of Left and Right outlines corresponding to the
global form of the stimulus (t-test, P � 0.0019). (We note that,
even though the contour features each possess their own
“global” shape, a positive FMI value for conjunction 1 none-
theless indicates that the brain region codes for the intersection
of the two contour features. If the activation patterns comprised
only a linear combination of the separate representations of
each contour feature, the conjunction classifier would show no
performance advantage over the feature classifiers.) In contrast,
for conjunction 2 (the combination of 2 spatial frequencies, or
“texture”), LOC yielded a significantly negative FMI (t-test,
P � 0.0388) indicative of dominant feature-coding.

DISCUSSION

Several recent fMRI studies have examined conjunction-
coding in humans (Baeck et al. 2013; Baumgartner et al. 2013;
Erez et al. 2016; MacEvoy and Epstein 2009; Pollmann et al.
2014; Seymour et al. 2009, 2010; van den Honert et al. 2017;
Zhang et al. 2015). Two of these studies revealed conjunction-
coding for combinations of static, abstract features (e.g., color,
form) into visual objects, in the ventral pathway (Erez et al.
2016; Seymour et al. 2010). However, neither study was able
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Fig. 9. Midlevel conjunction vs. whole object conjunction indexes (MCI)
derived from ROI-based analyses: mean MCI (averaged over 2 sessions in
each subject) for ROIs in early ventral visual stream (V1, V2v, V3v, LOC, top)
and early dorsal stream (V1, V2d V3d, bottom). V1 is duplicated in top and
bottom plots for ease of comparison. MCI is the natural logarithm of the ratio
of the whole object classifier accuracy to the product of the accuracies of each
pair of midlevel conjunction classifiers that define the whole object (see
MATERIALS AND METHODS). Positive MCI reflects a preference for coding whole
objects over midlevel conjunctions; negative MCI reflects the reverse prefer-
ence. Gray bars show group mean; plotted points show individual subjects,
where each unique marker corresponds to the same individual subject across
ROIs.

Table 7. Feature midlevel conjunction index for the four plausible midlevel conjunctions separately

Ventral Stream Dorsal Stream

V1 V2v V3v LOC V2d V3d

Midlevel conjunction 1 (Global Shape) 0.0005 (�0.026) �0.0419 (�0.039) �0.044 (�0.035) 0.181 (�0.038) 0.056 (�0.031) 0.195 (�0.060)
Midlevel conjunction 2 (Texture) �0.089 (�0.024) 0.117 (�0.028) 0.086 (�0.035) �0.095 (�0.036) �0.037 (�0.027) �0.003 (�0.048)
Midlevel conjunction 3 (Right Component) 0.076 (�0.017) 0.0029 (�0.028) �0.108 (�0.024) 0.116 (�0.063) 0.157 (�0.023) 0.090 (�0.035)
Midlevel conjunction 4 (Left Component) �0.148 (�0.026) �0.0016 (�0.024) 0.061 (�0.024) �0.044 (�0.053) �0.134 (�0.021) 0.110 (�0.049)
Overall mean FMI �0.040 (�0.005) 0.019 (�0.011) �0.001 (�0.008) 0.041 (�0.023) 0.011 (�0.012) 0.098 (�0.016)

Values are mean (�SE) FMI for each midlevel conjunction separately, by ROI, across subjects. Mean values over all 4 midlevel conjunctions for each ROI
are also shown in Fig. 8. Data were averaged over 2 sessions for each subject.
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to definitively rule out an explanation of the observed conjunc-
tion code in terms of feature-coding combined with saturation
of the BOLD signal; that is, because both studies presented the
critical conjunctions by temporally interleaving subsets of
features that comprise the conjunction, rather than by present-
ing the whole conjunction simultaneously, the presence of
neurovascular nonlinearities (i.e., saturation of BOLD) for
some features more than others may have given the appearance
of a conjunction code even in feature-coding voxels. Two
further studies in this set (Baumgartner et al. 2013; Pollmann et
al. 2014) used a method more similar to ours, measuring
whether classification accuracy for two feature dimensions
together was superadditive compared with the classification of
each dimension alone. However—perhaps related to the use of
multiple-object stimulus displays and a visual search task—
these studies revealed conjunction-coding only in parietal re-
gions. Moreover, no study of object processing that we know
of has explicitly investigated the complement to conjunction-
coding, namely, feature-coding—that is, the extent to which
neural representations are more informative about individual
features than conjunctions of those features (but see van den
Honert et al. 2017 for a slightly different definition of feature-
based representations in a study of scene-level conjunctions).
Without directly comparable measures of feature-coding and
conjunction-coding, the evidence for a transition from one to
the other cannot be assessed. Therefore, three important ques-
tions remain unresolved: Is there evidence for a conjunction-
based object code in the human ventral visual stream, when an
explanation in terms of BOLD signal saturation is ruled out? If
the answer is yes, is conjunction-coding dominant even early in
the ventral stream or does it emerge along the pathway? If it
emerges, at what point does the transition from feature- to
conjunction-coding occur?

To answer these questions, we measured the relative domi-
nance of feature- vs. conjunction-coding throughout visual
cortex by directly comparing evidence for the two coding
schemes in each cortical region. Critically, evidence for both
schemes was derived from a common neuroimaging data set
acquired while participants viewed systematically constructed
conjunctive visual stimuli. We revealed a transition from
feature-dominated to conjunction-dominated coding, with pro-
gression from primary visual cortex into temporal cortex (Figs.
3, 4, and 6). This provides the first direct evidence in humans
for an object representation scheme in the ventral pathway that
is characterized by a transition from feature- to conjunction-
coding. Strikingly, the same shift from feature- to conjunction-
coding was evident in the dorsal pathway, where it was as steep
and robust as in the posterior ventral pathway (Figs. 3 and 6).

The results are incompatible with a global feature-coding
hypothesis, which predicts the feature-coding we observed in
early regions but not the conjunction-coding that we saw in
both parietal and anterior ventral sites (Fig. 7). Similarly, the
results are incompatible with a global conjunction-coding hy-
pothesis, which predicts the conjunction-coding seen in down-
stream sites but cannot accommodate the findings in V1,
where—regardless of whether feature-coding was compared
with the coding of midlevel conjunctions (FMI) or whole
conjunctions (FCI)—the index was always negative, reflecting
more information about features than about the conjunctions of
those features (Figs. 8 and 3). Thus the explicit measurement of

feature-coding via negative FCI values was critical to distin-
guishing between the alternative theoretical accounts.

We revealed significant conjunction-coding in a range of
sites bilaterally, including posterior parietal cortex, fusiform
and parahippocampal gyri, medial temporal lobes, and anterior
temporal poles (Fig. 7). These findings concur with prior
reports of conjunction-coding throughout the ventral visual
stream and perirhinal cortex (Erez et al. 2016) and in parietal
lobe (Baumgartner et al. 2013; Pollmann et al. 2014). In
addition, we provided a systematic investigation of feature-
coding across human visual cortex, revealing significant selec-
tivity for features over conjunctions in retinotopically defined
V1 (Figs. 8 and 9) and across posterior occipital regions more
generally (Fig. 7). For the present stimulus set, the transition
from feature-coding to conjunction-coding—the zero point of
the FCI—occurred in the ventral pathway near the occipito-
temporal junction and in the dorsal pathway at approximately
the superior border between Brodmann areas 18 and 19 of the
occipital lobe (Fig. 4).

We also examined coding for intermediate-complexity stim-
ulus components, by pitting features against midlevel conjunc-
tions (in the FMI) and midlevel conjunctions against whole
object conjunctions (in the MCI). These measures suggested
that the transition from feature- to conjunction-coding occurs
earlier in the visual pathway for simpler conjunctions, that V3d
may preferentially code for midlevel conjunctions, and that
conjunction-coding in LOC may be driven by coding of shape,
or global form, in line with prior reports (Drucker and Aguirre
2009; Malach et al. 1995; Ostwald et al. 2008). The midlevel
conjunction findings also corroborated our interpretation of the
main FCI measure, as discussed below.

Transition from Feature- to Conjunction-Coding: Gradual
or Abrupt?

Because feature-coding dominates in V1 and conjunction-
coding sites exist in fusiform gyrus and posterior parietal lobe
(Fig. 7), we can conclude that somewhere between early visual
areas and later stages of both the ventral and dorsal pathways
a transition from feature- to conjunction-coding occurs. Fig-
ures 4, 5 (whole brain analyses), and 6 (correlation analysis)
imply a gradual transition. However, it is not possible to
conclude definitively from the FCI that the transition from
feature- to conjunction-coding in the brain is gradual rather
than abrupt. A graded change in the FCI is somewhat guaran-
teed for the whole brain, searchlight analyses by the spatially
overlapping spherical ROIs and for the correlations by the
assumed linear relationship between FCI and voxel location.
We note that this guarantee does not apply to the ROI results
in Fig. 3, which reflect the same gradual transition, because we
did not perform any spatial averaging of the data in this
analysis. However, even in this case, it is possible that a
reduction in SNR from V1 toward higher visual regions (V3,
LOC) induced FCI values to increase toward zero, without an
underlying gradual shift from feature-coded toward conjunc-
tion-coded representations (see simulations, Fig. 2). Thus it
may be that the cortical code shifts abruptly from feature to
conjunction based somewhere between V3 and IT, and the
appearance of a gradual transition from V1 through LOC is
caused by increasing noise. However, we think this unlikely
given the FMI values that were derived from the same BOLD
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data (Fig. 8). Specifically, the FMI increased from negative
values in V1, through zero in V2, to positive values in V3d.
That is, for simpler conjunctions a similarly gradual transition
in coding occurs across the same brain regions, but the steady
increase in FMI values does not stop at zero (as it would if
driven by noise alone) but instead pushes through to positive,
conjunction-coding values in V3d. Thus for FMI an explana-
tion involving increasing noise with progression up the path-
way cannot explain the pattern of results.

Conjunction-Coding in the Dorsal Pathway

The emergence of conjunction-coding in the dorsal pathway
was perhaps more unexpected than in the ventral pathway.
However, this finding aligns well both with the documented
role of parietal cortex in feature binding (Ashbridge et al. 1997;
Cohen and Rafal 1991; Friedman-Hill et al. 1995; Humphreys
et al. 2000; Muggleton et al. 2008) and with recent claims that
the role of the dorsal stream in vision extends beyond spatial
processing or attentional binding. That is, our observation of
object-specific coding in parietal cortex—elicited while par-
ticipants discriminated highly similar visual objects—suggests
that the dorsal pathway constructs content-rich, hierarchical
representations containing information that is critical for object
identification, in parallel with the ventral stream (Jeong and Xu
2016; Konen and Kastner 2008). Given that feedback from
parietal cortex has been shown to shape visual representations
in the ventral processing pathway (e.g., Hopfinger et al. 2000;
Parks et al. 2015; Rowe et al. 2005), it is possible that
interactions between dorsal and ventral regions increased the
similarity of representations across the two streams.

V2: Coding of Features and Simple Conjunctions

The negative FCI recorded for V2 suggests feature-coding
(Fig. 3), which might appear to contradict previous reports of
conjunction-coding in this region for stimuli comprising com-
binations of simple features (Anzai et al. 2007; Seymour et al.
2010). However, negative FCI values in V2 do not rule out the
existence of conjunction-based information altogether; they
merely imply that any conjunction code is relatively swamped
by a stronger feature code. Moreover, the complementary FMI
metric that assesses coding of simpler conjunctions—similar in
complexity to the stimuli of Anzai et al. and Seymour et
al.—revealed near-zero (numerically positive) scores in V2.
These FMI values imply an intermediate code in V2 that
includes a substantial subset of voxels sensitive to midlevel
components. A strength of the present method, whether used to
compare features with midlevel conjunctions (FMI) or with
whole object conjunctions (FCI), is that it reveals the relative
dominance of feature-based vs. conjunction-based information
in each case, rather than simply detecting the presence or
absence of only one type of information.

Interpreting the FCI

An analysis of synthetic data supported our interpretations of
the FCI metric (Fig. 2). Across a range of SNR values for
which classifier performance was within the range observed in
empirical ROIs (and thus, also, above chance), negative FCIs
were produced only by synthetic feature-coded data and posi-
tive FCIs emerged only from synthetic conjunction-coded data.
These properties held true whether we synthesized data by

holding noise constant and manipulating signal strength or by
holding signal constant and manipulating noise. Thus the sign
of the FCI reliably indicates the relative dominance of feature-
vs. conjunction-coding, and varying noise levels do not pro-
duce distortions in the FCI that lead to qualitatively erroneous
conclusions. Accordingly, the method mitigates somewhat
against the problem of varying noise levels that has compli-
cated prior attempts to use fMRI to compare the neural code
across diverse brain regions. For example, if a standard MVPA
method detects greater classification accuracy for simple visual
features in early visual cortex than in later visual regions, this
could be because the neural representations in early visual
regions exhibit stronger feature-coding or because early visual
cortex, situated peripherally, produces a BOLD signal with
greater SNR. In the present method, because the feature- and
conjunction-coding measures are placed in a ratio, and both
measures are affected by the noise in each cortical region, the
relative dominance of feature- vs. conjunction-coding in a
region maps consistently to negative vs. positive FCI values in
the face of varying noise.

In sum, the simulations demonstrate that the FCI can be used
to determine which regions exhibit feature- vs. conjunction-
coding and approximately localize the region in cortex where
the code transitions from one to the other, for a given stimulus
set.

Potential Influence of Sensitivity to Midlevel Conjunctions on
the FCI

Because the binary features used in our data set included two
shape outlines and two spatial frequencies, the intersection of
any two of these features created incidental, novel shapes and
textures that correspond to “midlevel conjunctions” like those
we decoded for entering into the FMI and MCI (for example,
in Fig. 1D: the global outline shared by stimuli 1, 3, 9, and 11
or the central texture shared by stimuli 1, 2, 5, and 6). Consider
a brain region containing voxels sensitive to these midlevel
conjunctions, rather than to the binary features or the whole
object (4 featured) conjunctions on which classifiers are trained
to generate the FCI: would this spuriously bias FCI toward
either positive or negative values? For the whole object con-
junction classifier, when voxels possess reliable information
about just one of these midlevel conjunctions, the 16-way
problem is reduced to a 4-way problem, facilitating above-
chance classification and inflating the FCI toward more posi-
tive values. However, the feature classifiers would also benefit
from midlevel conjunction-coding voxels: reliable information
about one midlevel conjunction fully specifies two of the four
binary features when classifying any of the 4 stimuli that
possess that midlevel conjunction and provides a heuristic for
classifying the other 12 stimuli that do not possess that
midlevel conjunction (namely, “predict the feature values not
included in the midlevel conjunction”) that is neutral for 8 of
those stimuli and helpful for the other 4. On average across all
stimuli, feature classification performance would be boosted by
midlevel conjunction-coding voxels, reducing the FCI toward
more negative values. The net effect, across both classifier
types and all stimuli, is that midlevel conjunction-sensitive
voxels in an ROI should boost feature- and conjunction-
classifier performance equally, pushing any nonzero FCI, ei-
ther negative or positive, toward zero.
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Multiple Possible Routes to a Hybrid Code

We suggested earlier that zero FCI (in the presence of
above-chance classifier accuracy) might be produced by
hybrid-coded activation patterns, a mixture of feature-sen-
sitive and whole object-sensitive voxels. However, given
the presence of midlevel conjunctions in the stimuli it is
equally possible that zero FCI is produced by voxels sensi-
tive to those midlevel conjunctions. Importantly, this alter-
native interpretation of a zero FCI is still in keeping with the
spirit of the measure: whether a cortical region exhibits zero
FCI because of a heterogeneous mix of feature- and con-
junction-coding voxels or because of midlevel conjunction-
coding, that coding scheme should be considered interme-
diate, lying between strongly feature-coded and strongly
whole object-coded representations. In line with the idea
that sensitivity to midlevel conjunctions tends to yield FCIs
close to zero, whole brain analyses revealed that the zero
point in FCI lies near area LOC— known to represent global
shape (Drucker and Aguirre 2009; Malach et al. 1995;
Ostwald et al. 2008)—and area V4 — known to exhibit
texture-selective responses (Arcizet et al. 2008; Dumoulin
and Hess 2007; Hanazawa and Komatsu 2001). Global
shape and texture constitute midlevel conjunctions in the
present stimulus set.

A further possibility is that a hybrid code, comprising a
mixture of feature- and conjunction-sensitive responses, is
generated not by combining spatially adjacent voxels of
each type within an ROI but rather by combining temporally
adjacent responses of each type within the same neurons.
Connor and colleagues (Brincat and Connor 2006; Yau et al.
2013) recorded activation in monkey visual cortex and
reported a dynamic neural code that evolved over time.
Immediately after stimulus onset neurons in pIT and V4
were tuned to simple features, but ~50 – 60 ms later the same
neurons responded nonlinearly to multipart configurations
of those features (simple orientations were combined into
multiorientation curves in V4 and simple curved contour
fragments into multipart configurations in pIT). Because the
BOLD signal has insufficient temporal resolution to distin-
guish between response types that evolve on the order of
milliseconds, we cannot determine whether the hybrid code
we observed was generated by a transition from feature- to
conjunction-coding over time, but it is interesting that the
areas producing zero FCI values in our data (occipito-
temporal regions) lie near the regions identified in these
electrophysiological studies (pIT and V4).

Changes in Receptive Field Size with the Emergence of
Conjunction-Coding

The emergence of conjunction-coding in the ventral and
dorsal pathways is accompanied by a systematic change in
another property—RF size. This is relevant to measuring
feature- and conjunction-coding with our stimulus set, because
the total stimulus area containing conjunction information is
smaller than the area containing information about features. If
larger RFs (which capture the whole stimulus) capture con-
junction and feature information to a similar extent, whereas
smaller RFs (which capture small stimulus subsections) cap-
ture relatively more feature information on average, does this
bias small-RF brain regions toward feature-coding? Even with

a small RF it is possible to capture conjunction information in
this stimulus set, since each stimulus contains numerous points
of intersection of the two outlines and fill patterns that uniquely
define the stimulus. Moreover, even neurons with RFs in
peripheral regions might code conjunction information through
collateral interactions or feedback from higher regions, such
that the feature information across a combination of neurons is
pooled to construct the conjunction. So, in regions with small
RFs there is not a total absence of neurons that capture
conjunction information, just a greater number of neurons able
to capture feature information. Thus the question of whether
the greater spatial extent of feature than conjunction informa-
tion in the stimuli biases regions with small RFs toward
feature-coding rests upon whether the conjunction classifier in
such a region is impeded by receiving inputs from a large
number of voxels that code nondiagnostic information (fea-
tures) along with inputs of diagnostic information (conjunc-
tions). Empirically, it is not always the case that including less
informative voxels in an ROI causes classifier performance to
drop, relative to when a smaller subset of more informative
voxels are used (e.g., Filimon et al. 2015).

In addition, although increasing RF size could be described
as a potential confound that shifts the balance of coding toward
conjunctions in higher cortical areas, this “confound” may in
fact be part of the (adaptively evolved) brain mechanism by
which conjunction-coding emerges in higher regions. In other
words, part of the function of large RF sizes may be to enable
conjunction-coding. Real-world objects at real-world viewing
distances are most often captured by the visual system at sizes
that afford apprehension of the whole object by an IT neuron,
and apprehension of only small subsections of the object by a
neuron in V1, and this is likely not an accident of natural
selection. Thus although an experimenter might seek to rule
out any influence of RF size by presenting very small stimuli
that are captured entirely by the RFs of V1 neurons, this
scenario would not mimic natural viewing conditions. More-
over, the use of very small stimuli would introduce other
systematic biases: small, centrally presented stimuli would be
captured in V1 by only a small set of neurons with foveally
located RFs but by almost all neurons in IT, so that the
recorded activation data would exclude any contribution from
peripheral RFs in early brain regions but not in later regions;
and small stimuli might be rendered at such low resolution that
the fine details of the conjunction are not perceived and stimuli
are instead encoded as featurelike approximations in all brain
regions.

Generalization to Coding for Other Visual Features and
Their Conjunctions

We examined conjunctions of spatial frequency and con-
tour. Spatial frequency is represented in V1 (Foster et al.
1985), whereas shape contour is represented in higher re-
gions such as V4, pIT, and LOC (Brincat and Connor 2004,
2006; Drucker and Aguirre 2009; Yau et al. 2013). How-
ever, classification of our binary contour features was good
in V1 and V2 (Table 2), implying that, given the small RF
sizes, these regions represented the contour features in terms
of small, local oriented segments. To what extent do these
findings generalize to conjunctions of other features such as
orientation, color, and motion? Orientation, like spatial
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frequency, is an elemental building block of vision, well
represented in V1 (Hubel and Wiesel 1968). We suggest that
shape is a visual attribute somewhat analogous to color and
motion: for all three attributes, some information supporting
classification is available in V1, but more holistic or cate-
gorical information emerges in higher regions—V4 for color
(Brouwer and Heeger 2013) and V3 or V5/MT for motion
(Gegenfurtner et al. 1997; Movshon et al. 1985). Thus the
feature conjunctions we examined may be typical of the
part-to-whole integration operations putatively performed
across the visual hierarchy. In line with this, empirical
results for other conjunction types are relatively consistent
with the present findings: conjunction-coding for two-fea-
tured conjunctions (of complexity similar to our FMI) was
reported in V2, V3, and parietal sites (Anzai et al. 2007;
Baumgartner et al. 2013; Gegenfurtner et al. 1997; Pollmann
et al. 2014). These prior studies did not examine feature-
coding (as we define it) or the evidence for a transition from
feature- to conjunction-coding. However, we tentatively
suggest that the posterior-to-anterior transition we observed
is likely to apply for conjunctions of many flavors, because
electrophysiology studies point to this conclusion (Kobatake
and Tanaka 1994; Rust and DiCarlo 2010, 2012). An im-
portant caveat is that we do not claim that specific, quanti-
tative aspects of our results can be generalized, such as the
cortical locations of the transition point and of conjunction-
coding sites. Quantitative details are likely specific to each
stimulus set, and the present study merely provides a tool for
their investigation.

Conclusions

Our novel method permits the systematic investigation of
feature- and conjunction-coding and may be applicable not just
to vision but to other modalities such as audition or motor
action (Lee et al. 2012; Wurm and Lingnau 2015). Within
vision, the method will enable future investigation of a range of
features not included in our stimulus set (including color,
orientation, and motion), to examine how conjunction-coding
emerges for different feature types and combinations. The
present finding of a transition from feature- to conjunction-
coding along both ventral and dorsal visual pathways has
implications for theories of the functional architecture of visual
object processing.
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