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According to a “Swiss Army Knife” model of the brain, cognitive functions such as episodic memory and face perception map onto
distinct neural substrates. In contrast, representational accounts propose that each brain region is best explained not by which
specialized function it performs, but by the type of information it represents with its neural firing. In a functional magnetic resonance
imaging study, we asked whether the neural signals supporting recognition memory fall mandatorily within the medial temporal lobes
(MTL), traditionally thought the seat of declarative memory, or whether these signals shift within cortex according to the content of
the memory. Participants studied objects and scenes that were unique conjunctions of pre-defined visual features. Next, we tested
recognition memory in a task that required mnemonic discrimination of both simple features and complex conjunctions. Feature
memory signals were strongest in posterior visual regions, declining with anterior progression toward the MTL, while conjunction
memory signals followed the opposite pattern. Moreover, feature memory signals correlated with feature memory discrimination
performance most strongly in posterior visual regions, whereas conjunction memory signals correlated with conjunction memory
discrimination most strongly in anterior sites. Thus, recognition memory signals shifted with changes in memory content, in line with
representational accounts.
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Introduction
The Swiss Army knife analogy of brain function (Cosmides and
Tooby 1994) asserts that the human mind contains many func-
tionally distinct cognitive “tools”—e.g. for language acquisition,
reinforcement learning, visual perception—each employing dif-
ferent mechanisms that emerged as independent adaptive spe-
cializations. This analogy has greatly influenced cognitive neu-
roscience, encouraging researchers to focus on the separability
of cognitive functions and map them to distinct neuroanatom-
ical substrates (e.g. Aggleton and Brown 1999; Kanwisher 2006;
Duncan et al. 2019). Applied to memory, the Swiss Army knife
analogy manifests as the “Multiple Memory Systems” view, under
which theories of memory posit multiple separable systems for
different modes of learning and storage, underpinned by distinct
neural substrates (Sherry and Schacter 1987; Tulving 1987; Tulving
and Schacter 1990; Nadel 1992). More recently, some theories
derived from this general framework have rejected one-to-one
mappings between cognitive functions and focal brain structures,
instead mapping mnemonic functions to distributed networks
(Ranganath and Ritchey 2012; Rugg and Vilberg 2013; Thakral
et al. 2017; Hebscher and Voss 2020). However, an important legacy
of the Swiss Army knife view is that most research questions
still center on a cognitive function, such as episodic memory
retrieval, and ask which brain region, distributed network, or
neural mechanism supports it. That is, cognition is still carved

into subdomains that correspond to functional “tools,” and these
tools still serve as the cognitive constructs whose (putatively
fixed) neural substrates must be identified (Cowell et al. 2019).

A partial departure from this approach has been made by
theories that invoke information content to explain the roles of
different brain regions in memory (e.g. Davachi 2006; Diana et al.
2007; Shimamura 2011). But many such accounts still explain
brain regions’ contributions via a combination of function and con-
tent, e.g. claiming the hippocampus (HC) underpins recollection
(a mnemonic function) of contextual details (a type of content;
Davachi et al. 2003; Eichenbaum et al. 2007; Staresina et al. 2011;
Staresina et al. 2013; Bastin et al. 2019). We and others have
suggested that “content” is more than just a label to be used
in combination with mnemonic functions or processes, such as
recollection; instead, content may be the primary principle driving
how memory and perception map onto the brain at the systems
level (Bussey and Saksida 2002; Graham et al. 2010; Nadel and
Peterson 2013; Cowell et al. 2019).

One theory that departs fully from the Multiple Memory Sys-
tems approach is the representational-hierarchical account of
perception and memory (Bussey and Saksida 2007; Cowell et al.
2010). This account proposes that the role of each brain region
within the ventral visual-medial temporal lobe (MTL) pathway is
best explained not by which cognitive function it performs, but by
the type of information it represents. Building on well-established
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evidence for a hierarchy of increasingly complex stimulus repre-
sentations in visual cortex (Hubel and Wiesel 1965; Felleman and
Van Essen 1991; Kobatake and Tanaka 1994; Malach et al. 1995;
Kanwisher et al. 1997; Kamitani and Tong 2005; Henriksson et al.
2008; Kriegeskorte et al. 2008; Ostwald et al. 2008; Brouwer and
Heeger 2009; Drucker and Aguirre 2009; Serences et al. 2009b;
Cowell et al. 2017), this account suggests that the representational
hierarchy extends beyond visual cortex into the MTL. Thus, the
pathway houses a graded continuum of representations, begin-
ning with simple visual features such as oriented lines in V1 and
culminating in complex multi-modal conjunctions corresponding
to episodes or events in HC. Under this account, any region in the
pathway should contribute to any perceptual or mnemonic func-
tion—e.g. visual discrimination, mnemonic encoding, or retrieval
from declarative memory (including via familiarity signaling or
pattern completion-like recall)—if it contains neural representa-
tions that are useful for the task.

One prediction of this account is that the MTL contributes to
perception of complex stimuli such as three-dimensional (3D)
objects and complex spatial scenes—this contradicts the “Mul-
tiple Memory Systems” notion that the MTL specializes in long-
term, declarative memory (Squire and Zola-Morgan 1991). Much
empirical work now supports this prediction (e.g. Buckley et al.
2001; Lee et al. 2005; Bartko et al. 2007; Lee et al. 2012). Indeed, the
multi-faceted functional contributions of the MTL are now known
to extend to statistical learning (e.g. Schapiro et al. 2014), decision-
making (e.g. Palombo et al. 2015), and future simulation (e.g.
Thakral et al. 2020)—notably, almost always for tasks involving
complex or associative stimuli.

Thus, a key plank of the evidence for a one-to-one mapping
between long-term, declarative memory and the MTL has been
eroded: we know that the MTL performs non-mnemonic func-
tions. The complementary plank of evidence for this one-to-one
mapping concerns whether long-term, declarative memory can be
supported by structures outside of the MTL. The representational-
hierarchical account suggests that it can, but this prediction
has not been thoroughly tested. Some recent studies suggest
support for it: early visual regions underlie recognition memory
for orientation (Cooke et al. 2015) and spatial location (Thakral
et al. 2013; Karanian and Slotnick 2018); pattern completion-
based recollection occurs outside of HC for stimuli that do not
contain rapidly learned associations (Ross et al. 2018; Gardette
et al. 2022). But, to our knowledge, no study has examined whether
recognition memory signals can be made to shift location within
the brain by manipulating the complexity of the representations
that must be recognized.

We tested this prediction with an fMRI study of recognition
memory in humans. We constructed visual objects and scenes
defined by unique conjunctions of precisely specified features.
This allowed us to manipulate the complexity (i.e. simple, feature-
level vs. complex, conjunction-level) of the representations
that need to be retrieved for recognition. We used objects and
scenes with the expectation that both stimulus sets would
engage a range of brain regions along the ventral visual-MTL
pathway, with the possibility that the transition from feature to
conjunction representations would occur slightly earlier in the
pathway for objects than for scenes (e.g. Lee et al. 2012; Erez
et al. 2016; Cowell et al. 2017). Our key manipulation was the
contrast between feature memory and conjunction memory,
for both stimulus sets. During recognition memory retrieval
in the scanner, we measured feature-based and conjunction-
based mnemonic discrimination performance, along with blood
oxygenation level-dependent (BOLD) signatures of feature-based

Fig. 1. Fribble stimulus set examples. Left: a whole, conjunctive Fribble
(top) and its tail, body and head features (bottom, left to right); Right: a
family containing eight unique Fribbles, constructed from three binary
features (tail, body, and head).

and conjunction-based memory. We predicted, following the
representational-hierarchical account, that manipulating the
complexity of mnemonic information would shift the location
of memory signals within the ventral visual-MTL pathway, for
both stimulus sets, from posterior visual regions for feature
memory to anterior regions for conjunction memory. Further,
we predicted that posterior, feature-based memory signals would
be most predictive of feature-based mnemonic discrimination
performance, whereas anterior, conjunction-based memory
signals would best predict the mnemonic discrimination of
conjunctions.

Materials and methods
Design overview
We used novel objects and novel, everyday scenes, with each item
composed of the conjunction of three binary features (see Figs. 1
and 2, and the Stimuli section). We tested each participant on
two separate days, one for each stimulus set (objects, scenes).
The order of stimulus sets across the 2 days was counterbal-
anced across participants. Participants first entered the scanner
and viewed a stream of stimuli [functional magnetic resonance
imaging (fMRI) data from this “study phase” are not presented in
this report]. Participants exited the scanner for a short break, then
returned to the scanner for a recognition memory task involving
the stimuli they had just viewed in the study phase. For both
objects and scenes, test stimuli were either Novel, Recombination,
or Familiar. In Novel stimuli, all individual features and conjunc-
tions of features were entirely novel. In Familiar stimuli, both the
individual features and the conjunction of those three features
had been seen in the study phase. In Recombination stimuli, the
individual features were familiar from having been studied as
parts of other items, but the conjunction of those three features
was novel.

We assessed feature memory and conjunction memory—in
terms of both behavioral performance and neural signals—by
comparing different pairs of memory trial types. To assess behav-
ior, we used d’, calculated from hits and false alarms using Sig-
nal Detection Theory, to measure mnemonic discriminability. To
assess neural memory signals, we used a BOLD signal contrast. We
assessed feature memory by measuring d’ and the BOLD contrast
for Novel versus Recombination trials. This is because the novel-
ty/familiarity of individual features is the only mnemonic factor
discriminating these two trial types (both Novel and Recombina-
tion stimuli possess a novel conjunction, but only Novel stimuli
possess novel features). We assessed conjunction memory via d’ and
the BOLD contrast for Recombination versus Familiar trials. Here,
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Fig. 2. Scene stimulus set examples. A: a conjunctive Scene (top) and
its features, furniture, color, and room shape (bottom, left to right); B: a
family containing eight unique conjunctive Scenes composed using three
binary scene features.

the novelty/familiarity of the conjunction of features is the only
mnemonic factor discriminating the two trial types (both Recom-
bination and Familiar possess familiar features, but only Recom-
bination stimuli possess a novel conjunction). This approach tests
feature memory divorced from conjunction memory, and con-
junction memory divorced from feature memory, which delivers
finer control of the content of mnemonic representations than,
for example, earlier work demonstrating cortical reinstatement
in early visual areas during retrieval of visual information (e.g.
Thakral et al. 2013).

Participants
A total of 23 participants were recruited from the University
of Massachusetts Amherst community and gave their written
informed consent. All participants spoke English fluently, had
normal or corrected-to-normal vision, no history of neurological
illness, and no contraindications for MRI scanning. Participants
were compensated $25/h with an additional performance-based
bonus up to $10 per scan session.

Stimuli
Two distinct stimulus sets were created using graphical software:
novel 3-D objects and scenes. The novel 3-D objects, called Frib-
bles, were created using Strata Design 3D CX 7.5 (Williams and
Simons 2000; Barry et al. 2014). Each Fribble was a unique con-
junction of three features (3-D components referred to as “tail,”
“body,” and “head”) and belonged to a “family” (Fig. 1). Within a
family, there were two possible variants for each feature and those
variants were unique to that family. Therefore, a family contained
eight unique Fribbles corresponding to all possible conjunctions
of that family’s binary features. We created four Fribble families in
total.

Novel scenes were created using Sweet Home 3D, an indoor
planning software. Each Scene was a unique conjunction of three
features (“room shape,” “color,” and “furniture”) and belonged to a
“family” (Fig. 2). Within a family, there were two possible variants
for each feature and those variants were unique to that family.
Consequently, each family comprised eight unique Scenes and we
created four Scene families.

Task
During the study phase, participants completed a 1-back repeti-
tion detection task. Some inter-stimulus intervals (ISIs) between
study trials contained null trials, during which participants saw
a white central fixation cross that dimmed briefly, either once or
twice, and participants could press either response key whenever
it occurred. No response to 1-back repetitions was required on
the first trial of a run, or on trials immediately following a null.
Before entering the scanner, participants practiced this task on
a laptop computer by completing a series of 32 trials (including
three immediate repeats) with stimuli that were subsequently
never seen during the experiment.

During the break between study and test, participants received
instructions on how to distinguish between the three mnemonic
stimulus classes (Familiar, Recombination, and Novel). During
test, participants indicated the class of the stimulus on the screen
using three button box keys: (i) “Familiar” (studied in the previous
session); (ii) “Recombination” (made of features studied in the
previous session, combined in a new way); or (iii) “Novel” (not
studied in the previous session in any form). In the test phase,
null trials occurred during every ISI.

For both study and test, participants were instructed to respond
as accurately as possible while the stimulus was still on the
screen and were informed that a performance-based bonus was
available.

Experimental design
Each participant completed ten study scans, or “runs” (fMRI data
not presented here), and six test scans (Fig. 3). Stimuli were dis-
played on a 32′ ′ liquid crystal display monitor positioned at the
head end of the magnet bore, which participants viewed via a
mirror on the head coil.

In the study phase, stimulus presentation order was blocked
by family within each run (e.g. stimuli from one Familiar family
were presented in even-numbered study runs, and from the other
Familiar family in odd-numbered runs), but stimuli within a run
were presented in random order. Within each study run there were
35 stimulus trials: four repetitions each of eight stimuli from a
Familiar family, presented singly on a gray background, plus three
items repeated a fifth time to create “immediate repeats” for the 1-
back task. Each stimulus was presented for 2,000 ms, immediately
followed by an ISI of between 2,000 ms and 8,000 ms, during which
a white central fixation cross appeared on a gray background. The
response window for stimulus trials began 500 ms after stimulus
onset and extended 1,000 ms into the ISI.

This design resulted in the presentation of each stimulus at
least 20 times for study (four repetitions of all family members
per run, five runs per family). This was done in part to increase
memory strength (e.g. Atkinson and Juola 1973; Ratcliff et al. 1985;
Ratcliff et al. 1990; Jacoby et al. 1998) and in part to increase the
precision of BOLD estimates (although neuroimaging data from
the study phase are not presented here). As many as 20 repetitions
have been used in prior studies of declarative memory, where
they were found to dramatically enhance learning and retention
(Walsh et al. 2023).

At least 500 ms after the end of the response window, for 15
of the 35 ISIs in each study run, a null trial occurred. Null trials
occurred only during ISIs of between 3,000 ms and 8,000 ms in
length. During a null trial, the white cross dimmed to gray for
250 ms, either once (for ISIs under 6,000 ms) or twice (for ISIs
6,000–8,000 ms). We randomized the exact onset of the dimming
event(s) within the ISI, with constraints to keep dimming events
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Fig. 3. Experimental design. During the study phase, participants indicated if the current image was identical to the previous image (i.e. 1-back repetition
detection task). During the test scan, participants discriminated between Familiar, Novel, and Recombination stimuli. Both the study phase and test
scans featured null trials in which participants indicated when a fixation cross dimmed. Images are presented here in grayscale but appeared in color
for participants.

separate and sufficiently distant from the start or end of the ISI.
Null trials measured participants’ attention and provided gaps in
the sequence with minimal “mind-wandering” (Stark and Squire
2001). After completion of 10 study runs, participants exited the
scanner and took a self-paced break before re-entering for the six
test runs.

During test runs, 48 Novel, 48 Recombination, and 48 Familiar
stimulus trials were presented, with 16 unique stimuli from each
mnemonic stimulus class shown three times each. Participants
performed the same memory task (response options: Familiar,
Recombination, or Novel) for every presentation of a test stimulus,
including test-phase repeats. The question always asked about
the item’s novelty with respect to the study phase, i.e. a “Novel”
response meant the item had never been seen in the study
phase, although it may have been seen once or twice in the test
phase. (Given the large number of study repetitions, familiarity
acquired from the study phase always greatly exceeded familiar-
ity acquired from the test phase). Novel and Recombination stim-
uli were created by combining two features of one family (unstud-
ied for Novel or studied for Recombination) with a third feature
of the other unstudied/studied family (Fig. 4). Implementing all
possible “1 + 2” feature combinations yielded 48 unique stimuli
for both Novel and Recombination stimulus classes. However, to
match the Familiar stimuli, of which there were only 16 unique
exemplars, only 16 out of the 48 possible stimuli were presented
for each of Novel and Recombination classes. The subset of 16
stimuli was counterbalanced across participants.

Trial order and spacing of the three stimulus types was deter-
mined using the easy-optimize-x MATLAB tool, with the con-
straints that the three stimulus types appeared equally across the
six test runs (i.e. eight of each type per run) and repetition was
blocked (i.e. all 48 stimuli were shown once before any stimulus
was presented a second time). Each test stimulus appeared for
2,500 ms, with a randomly assigned ISI between 4,000 ms and
12,000 ms. The response window extended 1,000 ms into the ISI.
During every ISI, the null trial commenced only after the response
window had elapsed (3,500 ms after stimulus onset).

Image acquisition
Scanning was performed on a Siemens 3 T Skyra scanner
equipped with a 64-channel head coil at the University of
Massachusetts-Amherst’s Human Magnetic Resonance Center.
Functional images were acquired using a T2-weighted EP2D-BOLD
sequence (TR: 1,250 ms; TE: 33 ms; flip angle: 70o; Field of View
(FOV): 210 mm; 2.5mm3 voxels) and 42 axial slices were acquired
during each functional scan. Whole-brain anatomical images
were acquired in the middle of the study functional scan session
using a T1-weighted MP-RAGE sequence (208 sagittal slices; TR:
2,000 ms; TE: 2.13 ms; flip angle: 9o; 1 mm3 voxels). Functional
scans included 20 study runs, 12 test scans, and two localizer
runs per participant; we used only the data from test runs in the
present report.

Data analyses
fMRI data preprocessing
After fMRIPrep’s preprocessing pipeline (see Supplementary
Materials for details), functional data was high-pass filtered
with a 128 s cutoff and functional data from test scan sessions
underwent smoothing with a 5 mm Full Width at Half Maximum
(FWHM) Gaussian kernel. The data were analyzed with custom
MATLAB scripts using SPM 12 software.

Definition of regions of interest
Despite collecting localizer scans, we ultimately used probabilistic
atlases to define ventral visual stream areas (i.e. V1, V2, V3,
V3AB, hV4, ventral occipital cortex, lateral occipital cortex [LOC],
temporal cortex; Wang et al. 2015) and MTL areas (i.e. perirhinal
cortex [PRC], parahippocampal cortex [PHC], HC; Ritchey et al.
2015; https://identifiers.org/neurovault.collection:3731). Proba-
bilistic definitions were adequate, or perhaps even preferable,
given our theoretical framework: our hypothesis predicted a
continuum of memory signals ranging from feature-based in
more posterior regions of interest (ROIs) to conjunction-based
in more anterior ROIs, rather than effects localized to specific,
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Fig. 4. Scene stimulus set Recombination example. Top: the three mnemonic stimulus classes differed according to whether features and the conjunction
of features were studied in the study phase; Bottom: counterbalanced across participants, two of the Scene families were designated to be studied (i.e.
presented in the study phase). In this example, a Recombination stimulus is created by combining the color feature from the first family with the room
shape and furniture features from the second family. All potential 1 + 2 feature combinations within a given pair of families yielded 48 Recombination
stimuli. A Fribble Recombination example is shown in Fig. S1.

neatly circumscribed regions. In all analyses, data from left
and right hemispheres were combined into a single ROI. A
subset of representative ROIs was selected for analysis, namely,
V1, V2, V3, LOC, PRC, PHC, and HC. LOC was chosen as an
intermediate station primarily for its well-established role in
representing local contours and object form, without having been
routinely implicated in recognition memory (Malach et al. 1995;
Grill-Spector et al. 2001; Güçlü and van Gerven 2015).

fMRI memory score analysis
To analyze test phase fMRI data, for each separate test run we
constructed a generalized linear model with 10 regressors: correct
responses to each of Familiar, Recombination, and Novel stimulus
types; incorrect responses; and six motion nuisance regressors.
Each non-motion regressor combined a variable boxcar model of
the stimulus time-series, with the boxcar beginning at stimulus
onset and ending at response time, convolved with a canonical
hemodynamic response function. For each participant, the model
estimated activation as beta weights (β) for every voxel in each of
the four conditions.

Memory signal indices were derived from two contrasts,
defined in (1) and (2). To index feature memory, we contrasted beta
weights from Novel and Recombination correct trials because the
novelty/familiarity of individual features is the mnemonic factor
discriminating these trial types (both Novel and Recombination
stimuli possess a novel three-feature conjunction, but only Novel
stimuli possess novel features). To index conjunction memory, we
contrasted the beta weights from Recombination and Familiar
correct trials because the novelty/familiarity of the conjunction
is the mnemonic factor discriminating these trial types (both
Recombination and Familiar stimuli possess familiar features,
but only Recombination stimuli possess a novel three-feature
conjunction). For feature memory, the beta weights for correct
Recombination trials (βRecombination) were subtracted from the
beta weights for correct Novel trials (βNovel). For conjunction

memory, the beta weights for correct Familiar trials (βFamiliar) were
subtracted from the beta weights for correct Recombination trials
(βRecombination).

For both memory contrasts we obtained a directional Cohen’s
d effect size, to allow comparison of the magnitude of effects
across ROIs with different numbers of voxels and different signal-
to-noise levels (Rosenthal 1994; Lakens 2013; Erez et al. 2016).
Note that beta weights were calculated per run in each voxel
individually. Thus, to obtain Cohen’s d for a given ROI, beta weights
were first averaged across all voxels within the ROI, and then
Cohen’s d was taken as the mean difference in average beta
weights between the two conditions (paired by run), divided by
the standard deviation of this difference across runs. Hence:

Feature Memory Score = Cohen′s dFeature = xβNovel−βRecombination

sdβNovel−βRecombination

(1)

Conjunction Memory Score = Cohen′s dConjunction = xβRecombination−βFamiliar
sdβRecombination−βFamiliar

(2)

Where βNovel −βRecombination is a subscript denoting the difference
of two vectors:βNovel is a vector of beta weights corresponding
to “Novel” trials that were responded to correctly, from all runs;
and βRecombination is a vector of beta weights for correct “Recom-
bination” trials, from all runs. Thus, xβNovel−βRecombination is the mean
βNovel −βRecombination difference vector for an ROI, and sdβNovel−βRecombination

is the standard deviation of the βNovel − βRecombination difference
vector for that ROI. Analogously, βRecombination − βFamiliar denotes
the difference of two vectors: βRecombination is a vector from all
runs for correct “Recombination” trials; and βFamiliaris a vector
from all runs for correct “Familiar” trials. Thus, xβRecombination−βFamiliar

is the mean βRecombination − βFamiliar difference vector for an ROI,
and sdβRecombination−βFamiliar is the standard deviation of the βRecombination −
βFamiliar difference vector.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/17/9835/7217129 by U

niversity of C
olorado Boulder user on 05 D

ecem
ber 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad248#supplementary-data


9840 | Cerebral Cortex, 2023, Vol. 33, No. 17

Table 1. Discriminability of mnemonic stimulus classes for Fribbles.

Comparison condition d’ Trial types Hit/Correct rejection Miss/False alarm

Familiar vs. Novel (I) 4.44 Familiar “Familiar” & “Recombination” “Novel”
Novel “Novel” “Familiar” & “Recombination”

Familiar vs. Novel (II) 3.22 Familiar “Familiar” “Novel” & “Recombination”
Novel “Novel” & “Recombination” “Familiar”

Familiar vs. Recombination 2.26 Familiar “Familiar” “Recombination” & “Novel”
a.k.a. Conjunction Memory d’ Recombination “Recombination” & “Novel” “Familiar”

Recombination vs. Novel 4.33 Recombination “Recombination” & “Familiar” “Novel”
a.k.a. Feature Memory d’ Novel “Novel” “Recombination” & “Familiar”

Note: Behavioral d’ scores for four pairwise comparisons of trial types. In each comparison, only two of the three trial types were compared, while trials of the
third trial type were removed from the analysis. (Trial types included are indicated in the “Trial Types” column). However, because there were three possible
responses on a given trial, responses that referred to the third outstanding trial type (i.e. the trial type not shown in the “Trial Types” column) were binned as a
hit, miss, false alarm, or correct rejection, depending on the comparison. The treatment of responses referring to the outstanding trial type is indicated in the
“Hit/Correct Rejection” or “Miss/False Alarm” columns. For example, in the first comparison, Familiar versus Novel (I), only Familiar and Novel trials were
included, but a participant could still respond “Recombination.” If a participant responded “Recombination” to a Familiar trial, it was counted as “Familiar,”
and contributed to the hit rate; if a participant responded “Recombination” to a Novel trial, it was again counted as “Familiar” and contributed to the false
alarm rate. In the second comparison, Familiar versus Novel (II), the same two trial types were considered, with an alternative treatment of “Recombination”
responses: a “Recombination” response to a Familiar trial counted as a miss, and a “Recombination” response to a Novel trial as a correct rejection. We
computed only one version of the “Familiar vs. Recombination” and “Recombination vs. Novel” comparisons, because there was only one sensible way to treat
the outstanding response type.

Table 2. Discriminability of mnemonic stimulus classes for Scenes.

Comparison condition d’ Trial types Hit/Correct rejection Miss/False alarm

Familiar vs. Novel (I) 4.37 Familiar “Familiar” & “Recombination” “Novel”
Novel “Novel” “Familiar” & “Recombination”

Familiar vs. Novel (II) 3.50 Familiar “Familiar” “Novel” & “Recombination”
Novel “Novel” & “Recombination” “Familiar”

Familiar vs. Recombination 2.37 Familiar “Familiar” “Recombination” & “Novel”
a.k.a. Conjunction Memory d’ Recombination “Recombination” & “Novel” “Familiar”

Recombination vs. Novel 4.12 Recombination “Recombination” & “Familiar” “Novel”
a.k.a. Feature Memory d’ Novel “Novel” “Recombination” & “Familiar”

Correlation of neural memory scores and behavioral
memory performance
We assessed recognition memory performance using d’. Because
there were three trial types (and three possible responses), Famil-
iar, Recombination and Novel, d’ was calculated for each possible
pairwise comparison of trial types, yielding four d’ scores (Tables 1
and 2). In each pairwise comparison, trials of the third outstand-
ing trial type were removed from the analysis. Any (erroneous)
responses to the two remaining trial types that invoked the out-
standing trial type were binned as a hit, miss, false alarm, or
correct rejection, depending on the comparison.

Two of the four d’ scores were analogous to the neural feature
and conjunction memory scores—Novel versus Recombination
and Recombination versus Familiar. For these comparisons, we
measured the correlation between neural memory scores and
recognition memory d’ scores. For feature memory, we used the
Recombination versus Novel comparison: only Recombination
and Novel trials were included, and a “Familiar” response counted
as a hit for Recombination stimuli, but a false alarm for Novel
stimuli. For conjunction memory, we used the Familiar versus
Recombination comparison: only Familiar and Recombination
trials were included, and a “Novel” response counted as a cor-
rect rejection for Recombination stimuli, but a miss for Familiar
stimuli.

Bayes factor analyses
For analyses in which the data allowed for parametric statistical
tests, we replaced traditional frequentist tests with Bayes Factors
(BFs), to assess statistical reliability. Bayesian hypothesis test-
ing offers several advantages over null hypothesis significance
testing, including that BFs quantify the relative evidence of the
alternative hypothesis over the null (rather than simply specifying
the null and determining whether to reject it); they allow quanti-
tative assessment of the likelihood that the null hypothesis is true
(rather than just determining whether it can be rejected); they
are not biased against the null hypothesis; and interpretation of a
BF is unaffected by the sampling intentions of the experimenter
(Wagenmakers et al. 2018).

A Bayes Factor (BF) is the relative probability of observed data
(D) under two alternative theoretical claims (e.g. M1, M2). Although
any two hypotheses can be compared, here it is a likelihood ratio
of the data under the assumption of the presence of an effect or
the absence of an effect (BF = P [D | M1]/P [D | M2]; see Schmalz
et al. 2023 for a detailed overview). For example, when testing
the significance of a positive correlation, the BF compares the
likelihood of the observed data under the alternative hypothesis
that the true linear correlation is greater than 0, to the likeli-
hood of the observed data under the null hypothesis that the
true linear correlation is equal to or less than 0. In general, BFs
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close to 1 indicate that the data are equally likely under both
hypotheses, while values much larger than 1 or much smaller
than 1 indicate evidence favoring one hypothesis over the other.
Categorical guidelines for the interpretation of BFs suggest that
values greater than 3 indicate “moderate” or “substantial” evi-
dence for a hypothesis, greater than 10 “strong evidence,” greater
than 30 “very strong” evidence, and greater than 100 “decisive”
or “extreme” evidence (the same guidelines can be applied to the
hypothesis in the denominator by making these values fractions;
Jeffreys 1961; Raftery 1995).

We used the BayesFactor R package (Morey et al. 2015) with
default input values for the number of Monte Carlo simulations
(10,000) and for the medium scale values of priors (ANOVA: 1/2

g-prior; t-test:
√ 2/2 Cauchy prior; correlation: 1/3 beta prior). The

null hypothesis lies in the denominator of the BF; therefore, values
larger than 1 provide evidence for the alternative hypothesis, e.g.
for correlation t-tests, BF > 1 provides evidence for the alterna-
tive hypothesis that there is a significant positive relationship
between the two variables. Where we report a BF in the form 1/x,
x corresponds to the BF in standard format (alternative model in
the numerator, null in the denominator) but x is < 1, indicating
greater evidence for the null, so we have inverted the BF to report
evidence for the null. For ANOVA designs with nested models (i.e.
a full model containing all main effects and their interactions,
as well as restricted models with fewer effects) all models are
compared against the null (i.e. a model with only random subject
effects). Because BFs from these nested model comparisons share
a common denominator, we can directly compare nested models
by taking the ratio of their BFs.

Nonparametric permutation tests
For analyses in which nonparametric tests were required by the
structure of the data we used permutation and shuffling to gener-
ate nonparametric null distributions and subsequently assessed
whether the statistic produced by the true (unshuffled) data fell
in the extreme (>0.95) of the generated distribution.

We used such nonparametric tests to ask whether the linear
trend in memory signal (Cohen’s d) across the ventral visual-
MTL pathway differed between feature and conjunction memory.
In this analysis, we took the feature and conjunction Cohen’s d
values within each ROI (V1, V2, V3, LOC, PRC, PHC, HC), multiplied
these by weights describing opposite linear trends for feature
memory (decreasing from early visual areas to MTL) and con-
junction memory (increasing from early visual areas to MTL) and
summed the resulting products. Next, we generated null distri-
butions for each ROI by shuffling the ROI labels associated with
each participant’s set of seven Cohen’s d values and repeating this
10,000 times. Using the resulting seven ROI null distributions, we
performed the difference of linear trends computation described
above 10,000 times, to generate a null distribution for the dif-
ference of linear trends. If the true trends in correlation across
ROIs are similar for feature and conjunction memory, the Cohen’s
d values multiplied by opposite-trending weights should sum to
zero, but if there are opposite trends in correlation across ROIs,
the sum should be greater than zero. We conducted further per-
mutation analyses to test whether each linear trend in isolation
was significant, i.e. to ask separately whether there is a significant
descending linear trend for feature memory and ascending linear
trend for conjunction memory.

Similarly, we evaluated the pattern of correlations across ROIs
by testing whether the linear trends in correlation coefficients sig-
nificantly differed between feature and conjunction memory. For
this, we took the inverse normal transformation of correlations

Fig. 5. Memory scores for Fribbles. Memory scores were derived by
calculating the effect size, measured by Cohen’s d, for the contrast of
Novel versus Recombination trials (feature memory) and for the contrast
of Recombination versus Familiar trials (conjunction memory). Error bars
are within-subject Standard Error of the Mean (SEM).

within each ROI, multiplied these by weights describing opposite
linear trends for feature memory (i.e. decreasing from early visual
areas to MTL) and conjunction memory (i.e. increasing from
early visual areas to MTL), and summed the resulting products.
Next, we generated null distributions for each ROI by shuffling
participant Cohen’s d and d’ values, computing their correlation,
taking the inverse normal transformation of the correlation score,
and repeating this 10,000 times. Using the resulting seven ROI
null distributions, we performed the difference of linear trends
computation 10,000 times, to generate a null distribution for
the difference of linear trends. If the true trends in correlation
across ROIs are similar for feature and conjunction memory, the
transformed correlation values multiplied by opposite-trending
weights should sum to zero; however, if there are opposite trends,
the sum should be greater than zero. Finally, we tested each linear
trend in isolation: descending for feature memory and ascending
for conjunction memory.

Results
Behavioral analysis
Performance on the 1-back task during the study phase, measured
as the discriminability between same and different trials (d’), was
good, with a mean d’ of 3.21 for Fribbles and 3.26 for Scenes.

Memory discrimination performance in the test phase
(Tables 1 and 2) was also good for all comparison types (Familiar
vs. Novel (I); Familiar vs. Novel (II); Familiar vs. Recombination;
Recombination vs. Novel). For Fribbles and Scenes separately,
we explored differences in memory discrimination performance
with a BF analysis akin to a one-way ANOVA. For both stimulus
sets, we found extreme evidence for a main effect of comparison
type, indicating that d’ differed between pairwise comparisons
(BF > 150). As expected, d’ scores were lowest, but still above
chance, in the comparison of Familiar and Recombination trials—
trials in which all features were familiar, making mnemonic
discrimination difficult.

fMRI memory score analysis
To interpret the neural memory scores (Cohen’s d), for each stimu-
lus set, we computed BFs to compare nested models in an analysis
equivalent to a two-way (7 × 2) ANOVA with factors of ROI (V1, V2,
V3, LOC, PRC, PHC, HC) and memory score type (Feature Memory,
Conjunction Memory). Memory scores are shown in Figs. 5 and 6
(see Supplementary Figs. S2–S5 for root mean beta weights and
individual data points).

For Fribbles, BFs reflected extreme evidence in favor of
the interactive model (ROI × memory type) over the null
(BF > 150) and over the next two most favored models (additive
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Fig. 6. Memory scores for Scenes. Memory scores were derived by calcu-
lating the effect size, measured by Cohen’s d, for the contrast of Novel
versus Recombination trials (feature memory) and for the contrast of
Recombination versus Familiar trials (conjunction memory). Error bars
are within-subject SEM.

[ROI + memory type]: BF = 1.16 × 1043/3.98 × 1032 > 150; memory
type only: BF = 1.16 × 1043/4.41 × 1024 > 150). Numerically, the
signal for feature memory was greatest in ROIs in early and
mid-ventral visual stream (V1, V2, V3, and LOC), and decreased
moving anteriorly toward MTL, whereas the conjunction memory
signal was greatest in late-stage ventral visual stream (LOC)
and MTL (PHC, PRC, HC) and decreased moving posteriorly.
We explored the interaction by separating the data for feature
and conjunction memory and performing two separate model
comparisons, finding extreme evidence for a main effect of ROI
for feature memory (BF > 150) and moderate evidence against a
main effect of ROI for conjunction memory (BF = 1/.27 = 3.71; but
see the linear trend analysis, below).

Conjunction memory scores for Fribbles clustered near zero,
and so we tested whether any significantly exceeded zero, in
line with our a priori predictions. For Fribbles, there were five
ROIs with numerically positive conjunction memory scores, all
relatively anterior (V3, LOC, PRC, PHC, HC). The alternative hypoth-
esis, H1, was defined as Cohen’s d > 0, and the null hypothesis,
H0, as Cohen’s d ≤ 0. We found either anecdotal evidence in
favor of the null (i.e. conjunction memory ≤ 0; BF V3 = 1/.34 = 2.95;
BF PRC = 1/.45 = 2.23) or almost no evidence for either the alter-
native or the null (BF LOC = 1/.96 = 1.04; BF PHC = 1/.70 = 1.42; BF

HC = 1/.61 = 1.63). It is instructive that in all anterior ROIs (i.e.
LOC, PRC, PHC, and HC), conjunction memory was numerically
greater than zero, but we found neither substantial evidence for,
nor substantial evidence against, the presence of conjunction
memory. Because BFs can impart evidence for both the alternative
and the null, the lack of evidence either way suggests insufficient
power to detect conjunction memory signals at the group level
with Fribbles. This was not the case with Scenes (see below).

We next used nonparametric permutation tests to ask whether
there were differing linear trends in the memory signals across
the ventral visual-MTL (descending for features and ascending
for conjunctions), as described in Materials and methods. For
Fribbles, we included weights for just six ROIs, omitting HC, and
we weighted PRC and PHC equally (feature memory [3 2 1 –1
–2.5 –2.5]; conjunction memory [–3 –2 –1 1 2.5 2.5]). We excluded
HC for the Fribbles dataset because we did not predict, a priori,
that object conjunctions would be represented as far anterior
as HC, and indeed we had no predictions for the type of code
(feature versus conjunction) that HC might contribute for objects.
We weighted PRC and PHC equally because both form part of
the parahippocampal gyrus and project to HC via the entorhi-
nal cortex (Naber et al. 1997; Burwell 2000). The true weighted
linear sum was significantly greater than zero for Fribbles data
(P < 0.001), indicating that the linear trend of Cohen’s d across
ROIs differed for feature and conjunction memory. We conducted

further permutation analyses to test whether each linear trend
in isolation (descending for feature memory; ascending for con-
junction memory) was significant. For Fribbles, the descending
linear trend for feature memory was highly significant (P < 0.001)
and the ascending linear trend for conjunction memory was
borderline significant (P = 0.0498).

For Scenes, BFs reflected extreme evidence in favor of
the interactive model (ROI × memory type) over the null
(BF > 150) and over the next two most favored models (additive
[ROI + memory type]: BF = 1.74 × 1035/4.91 × 1022 > 150; memory
type only: BF = 1.74 × 1035/2.37 × 1017 > 150). Numerically, the
signal for feature memory was greatest in ROIs in early and mid-
ventral visual stream (V1, V2, V3, and LOC), and decreased moving
anteriorly toward MTL (Fig. 6); the greatest signal for conjunction
memory occurred in MTL (PHC, PRC, HC) and late-stage ventral
visual stream (LOC) and decreased moving posteriorly toward
early visual areas. We explored this interaction by separating
the data for feature and conjunction memory and performing
two separate model comparisons examining the effect of ROI.
We found extreme evidence for a main effect of ROI for feature
memory (BF > 150) and anecdotal evidence against a main effect
of ROI for conjunction memory (BF = 1/.47 = 2.13; but see the linear
trend analysis, below).

Conjunction memory scores for Scenes also clustered near
zero, and thus we tested whether they exceeded zero in ROIs with
positive scores (again, H1 was Cohen’s d > 0 and H0 was Cohen’s
d ≤ 0). Of the four ROIs with numerically positive conjunction
memory scores (LOC, PRC, PHC, and HC), there was anecdotal
evidence in favor of the null in LOC (i.e. conjunction memory ≤ 0;
BF LOC = 1/.50 = 2.02), a lack of evidence for either the alternative
or the null in PHC and HC (BF PHC = 1/.55 = 1.82; BF HC = 1.27),
and substantial evidence in favor of conjunction memory scores
greater than zero in PRC (BF PRC = 5.68).

In a final assessment of Cohen’s d for Scenes, we used nonpara-
metric permutation tests to ask whether feature and conjunction
memory signals exhibited different linear trends across the ven-
tral visual-MTL pathway (descending for features and ascending
for conjunctions) as described in Materials and methods. For
Scenes, we included weights for all seven ROIs (i.e. including HC),
with PRC and PHC weighted equally, resulting in feature weights
of [3 2 1 0 –1.5 –1.5 –3] and conjunction weights of [–3 –2 –1 0 1.5
1.5 3]. The true weighted linear sum of the difference in linear
trends was significantly greater than zero for Scenes (P < 0.001),
indicating that the linear trends across ROIs differed for feature
and conjunction memory signals. Examining each linear trend in
isolation, both the descending linear trend for feature memory
(P < 0.001) and the ascending linear trend for conjunction memory
(P = 0.02) were significantly different from zero.

Correlation of neural memory scores and
behavioral memory performance
To assess whether the observed neural signals for feature and con-
junction memory in Scenes are implicated in recognition mem-
ory decisions, we correlated neural memory scores (Cohen’s d)
with recognition memory performance (d’) across participants,
in each ROI. Specifically, we correlated (i) conjunction memory
scores with conjunction memory d’ (both obtained by comparing
Familiar and Recombination trials) and (ii) feature memory scores
with feature memory d’ (both obtained by comparing Novel and
Recombination trials) for each ROI (V1, V2, V3, LOC, PRC, PHC, HC),
separately.

In Fribbles, Pearson correlation coefficients were numerically
as predicted by a representational account: greatest in posterior
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Fig. 7. Correlations between memory scores and d’ for Fribbles. Memory scores derived from effect sizes (Cohen’s d) in the neural data were correlated
with d’ scores from corresponding behavioral data for feature memory (left column; Novel versus Recombination trials) and conjunction memory (right
column; Recombination versus Familiar trials). Regression lines are displayed with 95% confidence intervals. Pearson’s R is shown in each panel. HC
was not included in linear trend analyses for Fribbles (see text) but is shown here for completeness.

areas of the ventral visual-MTL pathway for feature memory, and
greatest in more anterior regions, LOC and PRC, for conjunction
memory (Fig. 7). We tested whether the linear trends in correla-
tion coefficients for Fribbles significantly differed between feature
and conjunction memory. As with the linear trends in Cohen’s
d, for Fribbles we omitted HC and set weights for PRC and PHC
equal (feature memory: [3 2 1 –1 –2.5 –2.5]; conjunction memory:
[–3, –2 –1 1 2.5 2.5]). The true weighted linear sum of the difference
in trends was borderline significantly greater than zero (P = 0.06).
We also examined the linear trend for each memory type in
isolation in Fribbles: there was no significant linear trend for
either feature memory (P = 0.10) or conjunction memory (P = 0.18).
Together, these results—which are numerically in line with pre-
dictions and with the results for Scenes (see below)—accord with
the notion that the experimental design for Fribbles stimuli was
underpowered.

Finally, in Fribbles, we computed BFs to assess the evidence
for a positive brain-behavior correlation in each ROI. For each
ROI, H1 was defined as Pearson’s R > 0, and H0 as Pearson’s R ≤
0. Feature memory correlations yielded the largest BFs in the
four posterior, visual brain regions, where evidence was strong
(Table 3). In contrast, the MTL ROIs showed either anecdotal
evidence in favor of a positive feature memory correlation (PHC),
no evidence in favor or against a positive correlation (PRC), or
anecdotal evidence in favor of the null (HC). For conjunction
memory, the evidence for a brain-behavior correlation in Frib-
bles was strong in LOC (13.36), an intermediate visual region
known for processing objects holistically (e.g. Malach et al. 1995;

Grill-Spector et al. 1998), and approaching strong in PRC (9.73),
another region heavily implicated in whole-object processing (e.g.
Buckley et al. 2001; Barense et al. 2007).

For Scenes, Pearson correlation coefficients for feature mem-
ory were greatest in posterior areas of the ventral visual-MTL
pathway, and correlation coefficients for conjunction memory
were greatest in MTL regions (Fig. 8). We evaluated the pattern
of correlations across ROIs by testing whether the linear trends
in correlation coefficients significantly differed between feature
and conjunction memory (see Materials and methods). As with
the linear trends in Cohen’s d for Scenes, we included weights
for all seven ROIs with PRC and PHC weighted equally (feature
memory: [3 2 1 0 –1.5 –1.5 –3]; conjunction memory: [–3 –2 –1 0
1.5 1.5 3]). The true weighted linear sum of the difference in linear
trends was significantly greater than zero for Scenes (P = 0.007),
indicating that the linear trend of correlation coefficients across
ROIs differed for feature and conjunction memory. We next exam-
ined the linear trend in each memory type in isolation, finding
a borderline significant linear trend in the descending direction
for feature memory (P = 0.05) and a significant linear trend in the
ascending direction for conjunction memory (P = 0.03).

In a final assessment of the relationship between neural mem-
ory scores and behavioral memory performance for Scenes, we
calculated BFs to assess the evidence for a positive correlation in
each ROI for each memory type (Table 4). Again, H1 was defined as
Pearson’s R > 0, and H0 as Pearson’s R ≤ 0. For feature memory, the
strongest evidence for a brain-behavior correlation was found in
posterior, visual ROIs, especially V2 and V3. In MTL regions, there
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Table 3. BFs for correlations between memory scores and d’ for Fribbles.

Correlation type ROI BF

Feature Memory Score vs. Feature Memory d’ V1 10.60∗∗∗

V2 13.34∗∗∗

V3 26.60∗∗∗

LOC 14.74∗∗∗

PRC 1/0.94 = 1.06
PHC 2.77∗

HC 1/0.34 = 2.94†

Conjunction Memory Score vs. Conjunction Memory d’ V1 1.19∗

V2 3.97∗∗

V3 2.84∗

LOC 13.36∗∗∗

PRC 9.73∗∗

PHC 4.19∗∗

HC 3.83∗∗

Note: Superscript symbol next to BFs indicates which hypothesis is supported by the evidence, and how strongly. ∗Indicates support for the alternative
hypothesis, i.e. correlation > 0 (∗anecdotal; ∗∗substantial; ∗∗∗strong; ∗∗∗∗very strong). †Indicates support for the null hypothesis, i.e. correlation ≤0 (†anecdotal;
††substantial, etc.). No symbol indicates support for neither hypothesis (BF ≈ 1). HC was not included in the linear trend analysis for Fribbles (see text) but is
shown here for completeness. ROI, region of interest; BF, Bayes Factor; LOC, lateral occipital cortex; PRC, perirhinal cortex; PHC, parahippocampal cortex; HC,
hippocampus.

Fig. 8. Correlations between memory scores and d’ for Scenes. Memory scores (Cohen’s d) in the neural data were correlated with d’ scores
from corresponding behavioral data for feature memory (left column; Novel versus Recombination trials) and conjunction memory (right column;
Recombination versus Familiar trials). Regression lines are displayed with 95% confidence intervals. Pearson’s R is shown in each panel.

was a lack of evidence to weak anecdotal evidence in favor of
the null, i.e. correlation ≤ 0. For conjunction memory, evidence
for a correlation was absent to anecdotal in posterior regions
but increased along the pathway until it reached “very strong” in
HC, suggesting that the conjunction memory signals in HC are
the ones most related to the mnemonic discrimination of scene
conjunctions.

Discussion
We tested the hypothesis that the neural signals supporting
recognition memory shift within the brain according to the com-
plexity of information that participants are asked to recognize.
This hypothesis stems from representational accounts, in which
the neuroanatomical organization of perception and memory
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Table 4. BFs for correlations between memory scores and d’ for Scenes.

Correlation type ROI BF

Feature Memory Score vs. Feature Memory d’ V1 3.52∗∗

V2 9.77∗∗

V3 11.07∗∗∗

LOC 7.29∗∗

PRC 1/0.63 = 1.59†

PHC 1.06
HC 1/0.69 = 1.45†

Conjunction Memory Score vs. Conjunction Memory d’ V1 1.84∗

V2 1.21∗

V3 1.71∗

LOC 3.86∗∗

PRC 14.03∗∗∗

PHC 8.89∗∗

HC 49.42∗∗∗∗

Note: Superscript symbol next to BFs indicates which hypothesis is supported by the evidence, and how strongly. ∗Indicates support for the alternative
hypothesis, i.e. correlation > 0 (∗anecdotal; ∗∗substantial; ∗∗∗strong; ∗∗∗∗very strong). †Indicates support for the null hypothesis, i.e. correlation ≤0 (†anecdotal;
††substantial, etc.). No symbol indicates support for neither hypothesis (BF ≈ 1). ROI, regions of interest; BF, Bayes Factors; LOC, lateral occipital cortex; PRC,
perirhinal cortex; PHC, parahippocampal cortex; HC, hippocampus.

is governed by the information each brain region represents,
rather than—as under a “Multiple Memory systems” view—by
the perceptual or mnemonic function each region performs.
In this neuroimaging study, we used a recognition memory
task that assessed mnemonic discrimination at two levels, one
requiring simpler, feature-based representations and the other
more complex, conjunction-based representations. These levels
were created by testing participants’ memory for visual stimuli
constructed from conjunctions of pre-defined, binary features.
We assayed simple memory by contrasting stimuli that were
discriminable only by the familiarity of their features, and we
measured more complex memory by contrasting stimuli that
were discriminable only by the familiarity of their conjunctions.

We report three main findings. First, the strongest neural sig-
nals for long-term (i.e. longer than 30 s) mnemonic discrimina-
tion of visual features lie outside of MTL, in visual cortex. Sec-
ond, the locus of neural recognition memory signals shifted with
the complexity of the stimulus representations required for the
mnemonic discrimination: the strongest feature memory signals
lay posterior to the strongest conjunction memory signals (when
they were detected, i.e. for Scenes) within the ventral visual-
MTL pathway. Third, these memory signals predicted participants’
memory performance, and the strongest brain-behavior corre-
lations for feature-based memory emerged in posterior, visual
regions, whereas the strongest correlations for conjunction-based
memory emerged in anterior regions, mostly MTL. Linear trend
analyses of these brain-behavior correlations revealed trends of
opposite direction for feature versus conjunction memory, in the
Scenes dataset (and a numerically similar pattern in Fribbles that
was borderline significant).

The locations of the neural memory signals and the correla-
tions of those signals with mnemonic performance indicate that
the ventral visual-MTL pathway supports recognition memory
behavior as the representational-hierarchical account predicts
it should. Moreover, as predicted by representational accounts,
the cortical sites most associated with feature-based versus
conjunction-based memory performance are the same sites
previously found to support feature-based versus conjunction-
based visual perception. We highlight here three findings that
illustrate this claim. First, we observed in both objects (Fribbles)
and Scenes that evidence for a correlation between feature-based

memory signals and feature-based mnemonic discrimination
was substantial or strong in visual regions (V1 to LOC), and
anecdotal or absent in MTL regions, which accords with findings
from perceptual studies that feature-based representations
reside in early visual regions (e.g. Hubel and Wiesel 1965;
Kobatake and Tanaka 1994; Mazer et al. 2002; Kamitani and
Tong 2005; Henriksson et al. 2008; Brouwer and Heeger 2009;
Serences et al. 2009b). Second, for Fribbles—which are novel,
visual objects without semantic meaning, but defined by their
unique conjunction—we found the strongest evidence for a brain-
behavior correlation for conjunction memory in LOC (BF = 13.36)
and PRC (BF = 9.73). LOC and PRC are the two regions among
those we tested that have been most clearly implicated in holistic
visual object-processing as measured with perceptual tasks (e.g.
Malach et al. 1995; Grill-Spector et al. 1998; Barense et al. 2007).
Third, for Scenes, evidence for a conjunction memory correlation
was absent to anecdotal in early visual cortex (V1, V2, V3) and
increased with anterior progression, reaching a maximum later
in the pathway than for Fribbles, in HC. These patterns accord
with previous findings that complex conjunctive representations
reside in anterior sites during perceptual tasks (e.g. Desimone
et al. 1984; Kobatake and Tanaka 1994; Kanwisher et al. 1997;
Kriegeskorte et al. 2008; Ostwald et al. 2008; Drucker and Aguirre
2009; Cowell et al. 2017), and that the perception of scenes engages
HC, particularly when the task demands require conjunctive
representations (Lee et al. 2005, 2006, 2007, 2008). In sum, the
cortical sites most associated with feature- or conjunction-based
discrimination in this memory task were the same as those
previously found to underpin feature- or conjunction-based
processing in perceptual tasks.

To our knowledge, this is the first report of a within-study
manipulation of the level of complexity of representations
required for a long-term memory discrimination. That is, using
the same stimuli and a single task—stimuli comprising binary
features combined into conjunctions, along with discrimination
between Old, Recombined, and Novel memory statuses—
we teased apart feature- and conjunction-based memory in
terms of both neural signals and behavioral performance. This
allowed direct comparison of the two types of memory content,
demonstrating that manipulating the level of complexity leads to
shifts in the locus of long-term memory signals. Furthermore,
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the presence of significant brain-behavior correlations for
both feature- and conjunction-based memory, in the locations
expected based on prior literature, suggests that these BOLD
signatures of memory relate to behavioral responses in a long-
term recognition memory task.

Many recent empirical studies have demonstrated a critical
role for visual cortical representations in visual short-term mem-
ory (Harrison and Tong 2009; Serences et al. 2009a; Christophel
et al. 2012; Jerde et al. 2012; Riggall and Postle 2012; Sprague
et al. 2014; Christophel et al. 2017). But the length of the retention
delay in those studies was on the order of seconds, whereas in
the current paradigm, the delay between study and recognition
test was a minimum of 20 min. This suggests that visual cortex
is involved in memory not just over brief periods in which active
maintenance is required, but for longer periods in which synaptic
changes are likely to underlie the observed behavioral changes
(Clarke et al. 2010; Cooke and Bear 2010; Banks et al. 2014; Cooke
and Bear 2015).

Another literature that has shown a role for sensory cortices
in long-term memory retrieval has couched that role as “corti-
cal reinstatement,” with the reinstatement typically said to be
mediated or triggered by the HC (Le Bihan et al. 1993; Eichen-
baum 2000; Johnson and Rugg 2007; Bosch et al. 2014; Danker
et al. 2017). To be clear, we do not contest the existence of
cortical reinstatement, which clearly plays an important role—
complementary to the role of signal strength in familiarity judg-
ments—in part-cued retrieval of complex, associative memories.
Here, we simply ask whether hippocampally triggered cortical
reinstatement is mandatorily involved in all retrieval, including
recognition memory for simple, low-dimensional, visual informa-
tion. Our interpretation of the present results is guided by par-
simony: given that familiarity/novelty signals provide a powerful
mechanism for recognition memory (e.g. Rutishauser et al. 2006),
and given that in the feature-based memory task part-to-part
retrieval of high-dimensional representations was not required,
we prefer not to invoke hippocampally triggered reinstatement.
In support of this parsimonious interpretation, for feature-based
mnemonic discrimination we found that memory signals within
MTL regions do not robustly predict behavior, even though signals
from these same regions were strongly correlated with behavior
for conjunction-based discriminations. That is, in the present
data, the involvement of MTL memory signals appears to come
and go with manipulations in the content of the memory, just as
was found in recent neuroimaging studies of visual recall (Ross
et al. 2018; Gardette et al. 2022). Moreover, in Scenes, feature mem-
ory was better predicted by visual cortical signals than by MTL
signals (and the same trend was found numerically in Fribbles).
This pattern fits the notion that the signals underlying recognition
memory lie distributed along the ventral visual-MTL pathway
according to the content of the memory, rather than the notion
of mandatory hippocampally triggered cortical reinstatement.
However, there exist other measures of reinstatement, including
multivariate effects, or hippocampal-cortical connectivity, which
we did not compute. Without investigating these measures, a
cortical reinstatement account cannot be ruled out.

We note here three limitations to the present findings. First,
the sample size was relatively small (data collection was curtailed
by the COVID-19 pandemic), meaning that these results require
replication in future work. Second, in Fribbles, we detected very
little evidence either for or against the presence of conjunction
memory, and linear trends across ROIs in conjunction memory for
Fribbles were either borderline (for the conjunction memory BOLD
contrast) or not significant (for the brain-behavior correlation).

Thus, although data patterns in Fribbles were numerically in the
predicted directions, our experiment appears to have been under-
powered for this stimulus set. Third, in the Scenes dataset, we
found substantial evidence for above-zero conjunction memory
only in PRC. While this aligns with the prediction that conjunction
memory signals should reside in MTL rather than visual cortex,
the prior literature dissecting specific MTL contributions impli-
cates HC and PHC in scene processing, and PRC in object process-
ing (e.g. Lee et al. 2005, 2008; Staresina et al. 2013). It is unclear
why the most robust conjunction memory for Scenes was found
in PRC and not HC. One possibility is that the experiment was
slightly underpowered even for Scenes (e.g. we found evidence
neither for nor against the presence of conjunction memory in HC),
another factor may have been imprecise ROI definitions from the
probabilistic atlas, and finally it is possible that PRC in fact plays a
role in representing conjunctions for scenes (see, e.g. Buffalo et al.
2006; Hannula et al. 2013; Ross et al. 2018 for engagement of PRC
by scenes). Interestingly, although the group mean conjunction
memory signal in HC did not exceed zero, the strongest brain-
behavior correlation for Scene conjunction memory was found
in HC (BF of 49.42; see Table 4). So, although a hippocampal
conjunction memory signal was not present in all subjects, where
it was present it was very strongly to related conjunction memory
discrimination.

Finally, we discuss two unusual aspects of the experimental
design. First, we used three presentations of each item in the
test phase (48 trials for each of Novel, Recombination, and Old).
This may have led to test-based interference: the familiarity
differential that can solve the task (Old > Recombination > New)
is greatest immediately after study but diminishes as test pre-
sentations are repeated. To investigate test-based interference, we
examined whether performance changed from the 1st to the 3rd
test presentation, finding no overall change in d’ in Fribbles, and a
slight increase in d’ in Scenes (in contrast to the decrease expected
from interference). Thus, test-based interference was minimal,
either because the familiarity differential was not impacted by
repeated test presentations (even on the 3rd presentation, Old
items have been seen many more times than New items), or
because interference was offset by non-mnemonic task-practice
effects, or by relying on source memory (e.g. for a Novel item: “this
item was seen recently in the test phase, but not during the study
phase”). Importantly, however, reliance on source memory should
only dampen the predicted neural effects: if responses to all items
begin to invoke source memory, all theories of memory would pre-
dict hippocampal engagement for all items, which should reduce
the BOLD contrasts for both feature and conjunction memory and
attenuate any gradient of memory signals across the brain. The
presence of detectable gradients, in opposite directions, suggests
that participants did not rely upon source memory alone.

A second unusual aspect was that, because Recombination
stimuli combined features from different families, participants
could exploit the familiarity/novelty of two-feature conjunctions
to identify Old or Recombination items. Furthermore, because
each two-feature conjunction appeared in two different items at
study, one might argue that they are acquired through “statistical
learning” (in contrast to individual items, which resemble episodic
“instances”). However, both three-feature conjunctions (individual
items) and two-feature conjunctions are shown many times at
study, and both constitute a complex representation relative to
individual features. Although repetition is a hallmark of statistical
rather than episodic learning, the strongest episodic memories are
those that have been rehearsed or repeated (Mayes and Roberts
2001; Bird et al. 2015), e.g. by prior recounting, internal rehearsal,
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or repeated viewing of a photograph—a process that surely ren-
ders them independent of much of their original context. Thus,
to distinguish “episodic” from “statistically learned” memories, we
can rely upon neither the number of repetitions, nor the degree
of original context retained. Here, we eschew the difficult task of
defining these classes of memory: rather than claiming to have
created episodic instances, we claim only to have created long-
term (i.e. far exceeding 30 s), declarative memory.

To conclude, the present findings suggest that the neural sub-
strates of long-term, declarative memory may lie outside of the
MTL when the to-be-remembered content is sufficiently simple
and purely visual. This finding concurs with other recent studies
examining long-term visual memory for simple, visual stimuli
(López-Aranda et al. 2009; Thakral et al. 2013; Gavornik and Bear
2014; Cooke et al. 2015; Karanian and Slotnick 2018; Ross et al.
2018). Further, we have demonstrated that recognition memory
signals can be made to shift location within the brain by sys-
tematically manipulating the complexity of the representations
needed for recognition. Together, these results erode the “Multi-
ple Memory systems” notion of a one-to-one mapping between
distinct memory systems and distinct neural substrates. Instead,
they support a representational account of cognition, in which
regions of the ventral visual-MTL pathway do not specialize in
circumscribed cognitive functions but contribute flexibly to cog-
nition whenever their representations are important for solving
the task.
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