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The perirhinal cortex (PRh) is widely accepted as having an important role in object recognition memory in humans and animals.
Contrary to claims that PRh mediates declarative memory exclusively, previous evidence suggests that PRh has a role in the perceptual
processing of complex objects. In the present study, we conducted an examination of the possible role of PRh in perceptual function in
rats. We examined whether bilateral excitotoxic lesions of PRh or PPRh (perirhinal plus postrhinal cortices) in the rat would cause deficits
in a zero-delay object-recognition task and a simultaneous oddity discrimination task. Both of these tasks measured spontaneous
(untrained, unrewarded) behavior, and the stimuli in these experiments were manipulated to produce varying levels of perceptual
difficulty. As predicted by simulations using a computational model, rats with PPRh lesions were impaired in object recognition when the
stimuli to be discriminated were manipulated to share many features in common. Furthermore, rats with PPRh and PRh lesions were
impaired in a simultaneous oddity discrimination task when the stimuli to be discriminated were manipulated explicitly to be more
perceptually similar. These findings provide support for the idea that PRh in the rat is important for the perceptual processing of complex
objects, in addition to its well established role in memory.
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Introduction
Electrophysiological data (Xiang and Brown, 1998; Brown and
Aggleton, 2001), cases of medial temporal lobe (MTL) amnesia
(Buffalo et al., 1998), neuroimaging studies (Pihlajamaki et al.,
2004), and animal lesion studies (Meunier et al., 1993; Suzuki et
al., 1993; Mumby and Pinel, 1994; Aggleton et al., 1997; Winters
et al., 2004) provide converging evidence that the perirhinal cor-
tex (PRh) is important for object recognition memory. Although
the role of the PRh in recognition memory is well established, it
has previously been suggested that the PRh is also involved in
perception (Eacott et al., 1994; Buckley and Gaffan, 1998; Murray
and Bussey, 1999; Bussey and Saksida, 2002; Bussey et al., 2003;
Norman and Eacott, 2004; Lee et al., 2006b). Others hold that
PRh mediates declarative memory exclusively and is not impor-
tant for object perception; impairments in performance on per-
ceptual tasks resulting from PRh lesions are often attributed to
TE damage (Buffalo et al., 1999; Stark and Squire, 2000; Levy et
al., 2005; Shrager et al., 2006) and are also sometimes viewed as

mnemonic deficits, for example, if the task involves pretraining,
the acquisition of a rule, or requires information to be remem-
bered over a short delay (Buffalo et al., 1998, 1999, 2000; Hold-
stock et al., 2000; Hampton, 2005; Levy et al., 2005; Shrager et al.,
2006; Squire et al., 2006).

The current series of experiments examined whether PRh le-
sions in the rat would cause deficits in object recognition and in
an oddity discrimination task when objects were manipulated to
produce pairs of stimuli with varying levels of perceptual similar-
ity. These tasks were designed specifically to minimize factors
such as pretraining, rule learning, and memory retention. Fur-
thermore, across the series of experiments, we developed increas-
ingly specific excitotoxic lesions restricted to the PRh, which pro-
duced no damage to area TE.

In experiment 1, simulations using a computational model
(Cowell et al., 2006) are provided to make explicit our predictions
and the reasons for them. In experiment 2, we examined the
behavior of rats with PPRh (perirhinal plus postrhinal cortex)
lesions in a modified spontaneous object recognition paradigm
(Ennaceur and Delacour, 1988). This modified paradigm allowed
us to test under conditions of zero delay, as the zero-delay con-
dition in object recognition experiments is usually considered to
have little or no memory load and has been used as an assay of
perceptual function (Eacott et al., 1994; Buffalo et al., 1999, 2000;
Holdstock et al., 2000; Levy et al., 2005). Finally, having estab-
lished sets of stimuli with different levels of perceptual difficulty
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using a simple visual discrimination task (experiment 3), we then
used these stimuli to examine the performance of PPRh- and
PRh-lesioned rats in a novel simultaneous oddity discrimination
task (experiment 4). During the oddity task, stimuli were pre-
sented to the rat simultaneously, so that stimuli were always
present and there was no requirement to remember the stimuli
across a delay. Performance was measured in four different per-
ceptual conditions (low, medium, medium-high, and high).

Materials and Methods
Experiment 1
It has been shown that PRh lesions can impair two-choice visual discrim-
ination tasks when there is sufficient perceptual overlap between the
stimuli (Bussey et al., 2003). This result was predicted from the theory
that PRh contains conjunctive representations of complex visual stimuli
(Bussey and Saksida, 2002). To illustrate how this putative property of
PRh leads to this prediction, Bussey et al. (2003) included simulations
using the connectionist “perceptual-mnemonic feature conjunction”
(PMFC) model of the PRh (Bussey and Saksida, 2002) to make these
predictions explicit. The pattern of data generated by the simulations
matched those from the monkey experiments.

Although these experiments and simulations addressed effects of PRh
lesions on visual discriminations specifically, the same predictions
should hold for the canonical test of PRh function, object recognition.
One such prediction is that, just as in the case of visual discriminations,
PRh damage should lead to impairments in object recognition when
there is sufficient perceptual overlap between the stimuli. Because, ac-
cording to the PMFC model, this is a perceptual rather than a mnemonic
effect, such effects should be seen even when mnemonic factors are min-
imized or even absent, that is, under conditions of zero delay or simul-
taneous presentation of sample and choice.

Cowell et al. (2006) have previously presented a connectionist model,
based on the same fundamental principles as the PMFC model, that
accounts for effects of PRh lesions on tests of object recognition, includ-
ing object recognition with variable delays and list lengths, and with
trial-unique versus repeating stimuli. In the present experiment, we
present simulations using this connectionist model to make explicit the
prediction that PRh lesions can impair object recognition at zero delay,
when stimuli are perceptually similar. The simulations show how per-
ceptual similarity between objects can be resolved through the use of
complex conjunctive representations in PRh.

Architecture of the model
This section provides a brief overview of the connectionist network (Fig-
ure 1 A) (for details, see Cowell et al., 2006). The model assumes that
regions of the ventral visual stream, including the PRh, contain visual
representations that are organized hierarchically, with simple features
being housed in caudal regions of the ventral visual stream, and repre-
sentations of the conjunctions of those features residing in more rostral
regions (Bussey and Saksida, 2002). In the connectionist network, this
system of representations is reduced to a two-stage scheme, in which the
first layer corresponds to a caudal region of the ventral visual stream, and
the second layer to the PRh.

The caudal layer of the model combines two stimulus dimensions into
a single representation; each two-dimensional combination corresponds
to a visual “feature” of an object. The PRh layer combines eight stimulus
dimensions into a single representation, forming a unique and fully spec-
ified representation of a visual object possessing four features. Both layers
of the model are implemented using Kohonen grids. The caudal layer
comprises four Kohonen grids, each of which receives two-dimensional
inputs, and the PRh layer comprises one Kohonen grid receiving an
eight-dimensional input. Thus, the PRh layer contains conjunctive rep-
resentations of those visual features that are represented individually in
the more caudal layer.

Kohonen grids are designed to model cortex, including computational
abstractions of cortical mechanisms such as lateral inhibition; this type of
network is therefore appropriate for the current investigation. Each Ko-
honen grid comprises a two-dimensional array of processing units that

receives stimulus inputs and is characterized by lateral inhibitory feed-
back between neighboring units. The grids are trained by the successive
presentation of a number of stimulus inputs; the weights of each unit are
incrementally adapted on each presentation. This results in an automatic
mapping of stimulus inputs onto a set of representations that possess the
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Figure 1. A, Illustration of the connectionist model. The input layer, containing eight nodes,
is shown on the far right; the two layers of stimulus representations (PRh and caudal) are shown
to the left of the input layer. Stimulus inputs to the network have eight “stimulus dimensions”
(attributes); each dimension is represented in the diagram by an individual input node. Stimu-
lus dimensions are paired into four features. Each feature is shown in a different shade of gray
and is represented individually on the caudal layer. On the perirhinal cortex layer, the four
features are combined into a conjunction, shown in gray, which represents the whole stimulus.
B, Performance of the model during a zero-delay object-recognition task with two conditions,
low and high perceptual similarity. Filled circles represent recognition of the control group and
open circles represent recognition scores of the lesion group. C, Stimulus representations on the
Kohonen grids of the model in the choice phase for the low (left) and high (right) object-
recognition conditions. The PRh layer comprises one Kohonen grid with a single conjunctive
representation of an object stimulus; the caudal layer comprises four Kohonen grids with sep-
arate representations of the individual features comprising the object stimulus. Small circles
indicate sharply tuned (“familiar”) representations, and large circles indicate coarsely tuned
(“unfamiliar”) representations. For discussion, see Materials and Methods, Architecture of the
model.
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same topological order as the stimuli, that is, similar stimuli are repre-
sented in neighboring locations on the grid. The self-organization pro-
cess involves the sharpening of representations of stimuli on which the
network is trained. A novel stimulus will elicit a moderate level of activity,
broadly distributed across a large number of units in the grid [Cowell et
al. (2006), their Fig. 3, top]; as that stimulus is presented repeatedly, the
activation pattern it elicits becomes more selective until only a small area
of the grid contains highly active units, producing a peak of activation
[Cowell et al. (2006), their Fig. 3, bottom]. The development of sharply
tuned representations can thus be used as the basis for familiarity judg-
ments: as a stimulus representation becomes sharper, so is it judged to be
more familiar (Norman and O’Reilly, 2003). The model may be used to
simulate the effects of damage to perirhinal cortex by removing the
perirhinal cortex layer so that object recognition performance depends
on the caudal layer alone.

Simulation methods
Stimuli. Object stimuli in this experiment were created by constructing
four-featured objects from a pool of 16 possible visual features. Each
feature comprises two stimulus dimensions or attributes and each four-
featured object comprises eight stimulus dimensions. On the caudal
layer, each two-dimensional feature is represented as a simple conjunc-
tion and a four-featured object is represented as four separate simple
conjunctions. On the PRh layer, a four-featured object is represented as a
single complex conjunction. Real-world objects may be thought to con-
tain more features than this, but the model is designed to illustrate a
principle rather than reproduce the real-world situation strictly
veridically.

Four pairs of stimuli were created for the present experiment; each pair
comprised a four-featured sample object and a four-featured novel ob-
ject. Two of the four stimulus pairs were assigned to the “low” condition
(that is, the sample and choice object comprising the pair are dissimilar
and therefore easy to discriminate) and two pairs were “high” (the sam-
ple and novel object are similar and therefore difficult to discriminate).
In the low pairs, the sample and novel object shared no features. In the
high condition, the sample and novel object shared three of four features.
Neither the sample nor the novel stimulus in any pair was replicated in
any other pair, but individual features were allowed to appear in more
than one object pair.

Simulation procedure. Two groups of 12 networks were tested: the
“control” group consisted of intact networks and the “PRh lesion” group
consisted of networks in which the PRh layer had been removed to sim-
ulate PRh lesions. Each network was tested on two object sets under each
condition, low and high, giving four trials per network. Networks were
initialized and pretrained before testing on the four trials [for details, see
Cowell et al. (2006), their Appendix 1]. On each trial, a network was
presented with the sample object and allowed to “encode” the object for
20 cycles; each cycle sharpened incrementally the peak of activation rep-
resenting the sample object [Cowell et al. (2006), their Appendix 1]. After
encoding, each network was presented with both the sample and the
novel object in a “choice” phase. No learning occurred in the choice
phase; the representations of the two objects were simply assessed to
obtain an index of their relative familiarity (the recognition score). At the
beginning of every new trial, each network was reset to the state it had
assumed at the end of pretraining.

Experiment 2
In experiment 2 we assessed the performance of PPRh-lesioned and con-
trol rats in a zero-delay object-recognition task under two different per-
ceptual conditions. Performance in a zero-delay object-recognition task
is regarded as an assay of perceptual (and not mnemonic) function (Ea-
cott et al., 1994; Buffalo et al., 1999, 2000; Holdstock et al., 2000; Levy et
al., 2005), as there is little or no memory demand. Because PRh has been
implicated in complex visual discrimination performance, and as illus-
trated in the simulations in experiment 1, we predicted that PPRh-
lesioned rats would be impaired in a zero-delay object-recognition task
when the novel stimulus was designed explicitly to resemble the sample
stimulus (high condition), but would perform similarly to the control
group when the novel stimulus did not share features in common with

the sample stimulus (low condition). Such a PPRh impairment with a
zero delay would suggest that PRh in the rat is not only important for
memory, but might also be necessary for the perceptual processing of
complex stimuli.

Subjects
The subjects were 24 adult male Lister hooded rats (Harlan Olac, Bices-
ter, UK) weighing 270 –320 g before surgery and housed in pairs in a
room with a 12 h light/dark cycle (lights on at 7:00 P.M.). All behavioral
testing was conducted during the dark phase of the cycle. These rats were
tested previously in a short object recognition pilot experiment; no ob-
jects from this pilot experiment were reused in the present experiment.
During testing, rats were fed �15 g of laboratory chow after daily behav-
ioral sessions to maintain weights at 85–90% of free-feeding body weight.
Water was available ad libitum throughout the experiment. All experi-
mentation was conducted in accordance with the United Kingdom Ani-
mals (Scientific Procedures) Act (1986).

Surgery
Rats were divided into two groups: PPRh lesions (n � 11) and surgical
controls (n � 13). Before surgery, all animals were deeply anesthetized by
intraperitoneal injection (60 mg/kg, i.p.) of sodium pentobarbital (Sa-
gatal; Rhône Mérieux, Essex, UK) and placed in a stereotaxic frame (Kopf
Instruments, Tujunga, CA) with the incisor bar set at �5.0. The scalp was
cut and retracted to expose the skull. Craniotomies were then performed
directly above the target region, and the dura was cut to expose the
cortex.

For the PPRh lesions, injections of 0.2 �l of 0.9 M NMDA (Sigma,
Poole, UK) dissolved in phosphate buffer, pH 7.4, were made through a
1 �l Hamilton syringe into five sites in each hemisphere. Each injection
was made gradually over a 2 min period, and the needle was left in situ for
an additional 4 min before being withdrawn. The stereotaxic coordinates
relative to ear-bar zero were as follows: anteroposterior (AP) �3.9, lat-
eral (L) �5.9, dorsoventral (DV) �2.0; AP �2.4, L �6.1, DV �1.6; AP
�0.6, L �6.2, DV �2.5; AP �0.8, L �6.2, DV �2.7; and AP �0.8, L
�6.2, DV �4.3.

Control animals received sham PPRh surgeries. For sham surgeries,
the same initial surgery was performed (including craniotomy and inser-
tion of needle), but no injections were made. At the completion of sur-
gery, the skin was sutured, and an antibiotic powder (Acramide; Dales
Pharmaceuticals, Skipton, UK) was applied. Animals were then admin-
istered subcutaneously with 5 ml of glucose saline (Aquapharm; Animal-
care Limited, York, UK).

Histology
After behavioral testing, rats were anesthetized by intraperitoneal injec-
tion of 2 ml of Euthatal (Rhône Mérieux) and perfused transcardially
with 100 ml of PBS, pH 7.4, followed by 250 ml of 4% paraformaldehyde
(PFA), pH 7.4. The brains were removed, postfixed in 4% PFA at 4°C for
24 h, and then immersed in 25% sucrose in PBS until they sank. Coronal
sections (60 �m) were cut on a freezing microtome through the extent of
the lesioned area, and every fifth section was mounted on a gelatin-
coated glass slide and stained with cresyl violet. Slides were examined
under a light microscope to determine the extent of excitotoxin-induced
damage.

Spontaneous object recognition
Apparatus. Spontaneous object recognition was conducted in a Y-shaped
apparatus as described previously (Forwood et al., 2005). Briefly, the
Y-shaped apparatus had high, homogeneous white walls constructed
from Perspex (Lucite International, Southampton, UK) to prevent the
rat from looking out into the room and thereby maximizing attention to
the stimuli. All walls were 40 cm high and each arm was 27 cm in length
and 10 cm wide. The start arm contained a guillotine door 18 cm from the
rear of the arm. This provided a start box area within which the rat could
be confined at the start of a given trial. The floor and walls were wiped
down with a dry paper towel between trials but otherwise were not
cleaned during the experiment. A lamp illuminated the apparatus and a
white shelf 50 cm from the top of the apparatus created a ceiling on which
a video camera was mounted to record trials.
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Zero-delay object recognition. To facilitate immediate viewing between
test phases (0 s delay), modifications were made to the original
Y-apparatus (Fig. 2 A). Four metal posts (two per arm, each 33.4 cm in
height) were inserted and positioned 12 cm apart from each other, which
in turn created holders for one sliding door in each arm of the
Y-apparatus. The doors (composed of white Perspex) were 33 cm tall and
10 cm wide.

Lego objects. The Lego objects were composed entirely from Lego (Lego
Group, Billund, Denmark). All Lego objects were between 8.5 and 11.5
cm tall and 6.6 and 9.2 cm wide and were affixed to an 8.5 � 8.5 cm black
Lego sheet. Lego objects were secured to the floor of the apparatus with
Blu-Tack (Bostik, Stafford, UK). As far as could be determined, the Lego
objects had no natural significance for the rats, and they had never been
associated with a reinforcer.

General procedure. All rats were habituated in two consecutive daily
sessions in which they were allowed to explore the empty Y-apparatus for
5 min. For these habituation sessions, the rat was placed in the start box,
and the guillotine door was opened to allow the rat to explore the main
area of the apparatus. The guillotine door was lowered when the rat
exited the start box to prevent re-entry into this area of the apparatus.
The experimenter did not begin timing the trial until the rat exited the
start box. Testing began 24 h after the second habituation session. Rats
were given a series of test trials (one per day) with a minimum interval of
24 h between trials. A different object pair was used for each trial for a
given animal, and the order of exposure to object pairs as well as the
designated sample and novel objects for each pair were counterbalanced
within and across groups. The time spent exploring objects was assessed
from video recordings of the sample and choice phases. Data were col-
lected by scoring exploratory bouts using a personal computer running a
program written in Visual Basic 6.0 (Microsoft, Redmond, WA).

Object recognition test. All object sets used in a given trial were placed in
the apparatus before the rat was placed in the start box. The rat was then
placed in the start box with the guillotine door lowered. The guillotine
door was then raised to allow the rat into the exploration area of the
apparatus. When the rat exited the start box, the guillotine door was
lowered to prevent re-entry, and the test phases began. The time spent
exploring the two objects in a testing phase was scored by an experi-
menter viewing the rat on a video screen. The cumulative duration of
exploratory bouts, the beginning and end of which were indicated by
pressing a given key on the computer keyboard, was calculated by the
computer program. Exploration of an object was defined as directing the
nose to the object at a distance of �2 cm and/or touching it with the nose.

The sample phase ended when the rat had explored the identical ob-
jects for 25 s or when 5 min had passed. At the end of the sample phase,
the identical objects were removed and the door between the sample and
choice zones was immediately opened, thereby presenting the choice
objects to the rat. The choice phase contained an identical copy of the
sample (familiar) object in one arm and a novel object in the other. The
arm in which the novel object was placed was counterbalanced between
rats and across trials. The time spent exploring the novel and familiar
objects was recorded for 3 min of the choice phase, but attention was
focused on the first minute, during which object discrimination is typi-
cally greatest (Dix and Aggleton, 1999). We calculated a discrimination
ratio, the proportion of total exploration time spent exploring the novel
object (i.e., the difference in time spent exploring the novel and familiar
objects divided by the total time spent exploring the objects), for the first
minute of the choice phase on each object recognition trial. This measure
takes into account individual differences in the total amount of explora-
tion time.

Rats were tested in two conditions, low and high; the presentation
order of the two conditions was counterbalanced between rats and across
trials.

Low condition. In the low condition, two identical Lego objects (A1 and
A2) were presented in the sample phase. During the choice phase, the
apparatus contained an identical copy of the sample (familiar) object
(A3) in one arm and a new Lego object (B) in the other (see Experiment
3, Stimuli) (Fig. 2C). The novel Lego object was constructed to have
minimal perceptual similarity to the familiar object. The novel and fa-
miliar Lego objects were constructed to share minimal features in com-

mon with one another; minimal perceptual similarity was achieved by
minimizing the number of colors and features shared between the two
Lego objects.

High condition. The procedure in the high condition was identical to
that in the low condition, except that the novel Lego object was explicitly
constructed to share features in common with the familiar object (see
Experiment 3, Stimuli) (Fig. 2C).

Data analysis
Group means of three measures taken from object recognition testing
[duration of sample phase (i.e., the time taken to accumulate criterion
levels of exploration in the sample phase), total exploration time in the
choice phase, and the discrimination ratio] were analyzed. Means from
each of the three measures were submitted to a two-way ANOVA where
the first factor was the between-subjects factor of lesion group and the
second factor was the within-subjects factor of condition. Significant
interaction effects were further analyzed with independent sample t tests.
All tests of significance were performed at � � 0.05.

Experiment 3
In experiment 2, impairments after lesions to PPRh were revealed in the
zero-delay object-recognition task, and these deficits emerged only when
the stimuli to be discriminated in the choice phase were perceptually
similar to one another, suggesting a perceptual impairment. However, it
might be argued that this was still a mnemonic impairment, albeit one
that is revealed only under conditions of high perceptual load, because
the stimuli to be discriminated were not presented simultaneously.
Therefore we tested the effects of PPRh and PRh lesions on a simulta-
neous oddity discrimination test; in addition, we added sets of objects to
provide a broader continuum of perceptual similarity (the results are
presented in experiment 4). Before experiment 4, however, we sought to
determine different levels of perceptual difficulty using a simple visual
discrimination task to ensure that stimuli that shared many features in
common were more difficult for rats to discriminate than the stimuli that
shared fewer features in common. Therefore, we pretested these sets of
stimuli with naive rats in a two-choice discrimination procedure to pro-
vide a measure of the subjective perceptual similarity of the object in each
pair. Naive rats were tested in four perceptual conditions: low, medium,
medium-high, and high. The low and high object sets were the same as
those used in experiment 2. The objects within each pair in the two new
sets were designed to have intermediate perceptual similarities.

Subjects
Sixteen experimentally naive Lister hooded rats (weighing 270 –320 g)
were used for experiment 3. The animals were housed and fed in the same
manner as the rats used in experiment 2. Four rats were tested per per-
ceptual condition.

Visual discrimination
Apparatus. The same Y-apparatus was used as in experiment 2. However,
modifications were made to the apparatus to accommodate discrimina-
tion testing. In each of the arms, a Foamalux insert (40 cm tall and 9.9 cm
wide) was added where there was previously a door between the sample
and choice zones. The insert blocked the areas of the apparatus that were
not used during testing. Small food wells (4.5 cm in diameter) were
placed 12 cm from the start of the Y-apparatus in each arm and were
located against the left side of both of the arms. Stimuli were placed
directly beside the food wells.

Stimuli. For pretraining two wooden blocks (one white and one black)
were used (9.5 cm tall and 9.5 cm wide). Wood was chosen because none
of the stimuli used in the discrimination experiment proper were made of
wood. For the discrimination experiment proper, four different stimulus
conditions were used: low, medium, medium-high, and high. The stim-
uli used for the low and high conditions were the same stimuli used
during the choice phase of experiment 2. For the new conditions, me-
dium and medium-high, new Lego objects were constructed with varying
levels of difficulty (Fig. 2C). Lego stimuli were constructed in a similar
manner to experiment 2. The stimuli in the medium condition were
constructed to share a few features in common whereas the stimuli in the
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medium-high condition stimuli were constructed to share more features
in common than medium, but fewer than the high condition.

Habituation. All rats were given four habituation sessions on separate
consecutive days, 24 h apart, before their first testing day. For habituation
sessions one and two, the rat was placed in the start box, the guillotine
door opened, and the rat was free to explore the apparatus for 5 min.
Nestlé (York, UK) Cheerios were scattered throughout the arms of the
apparatus. In habituation sessions three and four, food was placed only in
the food wells and the rat was left in the apparatus for 5 min; 24 h later,
testing began.

Pretraining. Pretraining sessions consisted of 25 trials each. Half of the
rats were rewarded for approaching the black wooden block and half
were rewarded for approaching the white wooden block. The side on
which the reward stimulus was presented on a given trial was determined
pseudorandomly. Each rat was placed in the start box at the beginning of
a trial; the guillotine door was raised and then shut after the rat entered
the exploration area of the apparatus. A response was scored as correct if
the rat approached (within 0.5 cm of the correct stimulus) and/or
touched the object with its nose. If the rat chose correctly, one half of a
Cheerio was placed in the food well directly in front of the stimulus. The
experimenter waited for the rat to finish eating, then placed the rat back
in the start box. The guillotine door was then raised to continue to the
next trial. If a rat performed incorrectly, the rat was placed in the start box
for 15 s, and then the same trial was repeated until the correct choice was
made. However, only the first choice on a given trial was scored, not the
correction trials. The animals had to reach a criterion of 75% correct (19
of 25) on 2 consecutive days before the discrimination experiment
proper began. Discrimination testing did not occur until all rats reached
criterion. Because some rats reached criterion before day 11 (after a rat
reached criterion, pretraining ended), all rats were run on the pretraining
discrimination 1 d before the visual discrimination experiment, to ensure
that they could still perform at criterion (all rats attained 19 of 25 or
better).

Visual discrimination. The visual discrimination task consisted of nine
sessions of 25 consecutive trials daily, plus correction trials. Four rats
were assigned to each stimulus condition (low, medium, medium-high,
and high). The side on which the reward stimulus was presented on a
given trial was determined pseudorandomly. The experimental testing
procedure was identical to the pretraining testing phase.

Data analysis
Data were analyzed in blocks of three for a total of nine sessions. The
average number correct (of 25) was calculated for each group and was
analyzed using a univariate analysis of the four means. Significant effects
of group were further analyzed with Tukey’s honest significant difference
(HSD) post hoc tests. All tests of significance were performed at � � 0.05.

Experiment 4
Experiment 4 was designed to replicate and extend the findings of exper-
iment 2. Although recognition was tested using a zero-delay condition in
experiment 2, it might be argued that there was still a mnemonic com-
ponent because, although there was no delay, the rat had to remember
the familiar object from the sample phase during the time of the discrim-
ination (in the choice phase) to discriminate the novel stimulus. There-
fore, in experiment 4, animals were tested in a novel behavioral para-
digm, the simultaneous oddity discrimination task (S. E. Forwood, S. J.
Bartko, L. M. Saksida, and T. J. Bussey, unpublished observations), in
which all objects were presented simultaneously. Rats were presented

4

arm. B, The spontaneous oddity apparatus used for experiment 4. All stimuli (two identical and
one odd object) were placed in the apparatus before testing began. At the beginning of a trial,
the rat was released from the start box when the experimenter raised the guillotine door.
Exploration of the two identical objects and the one odd object was recorded by the experi-
menter. The odd object could appear in any of the three locations; here, it is shown in the center
location. C, Examples of stimuli from experiments 2– 4; clockwise from top left: low (1), me-
dium (2), medium-high (3), and high (4). For experiment 2, only low and high stimuli were
used. All four stimulus conditions were used in experiment 3 and 4.

Figure 2. A, Illustration of the apparatus and representative stimuli used in the zero-delay
object-recognition task in experiment 2. The figure illustrates examples of stimuli that could
appear in the low condition during a given trial. The nearest wall appears transparent for
illustrative purposes and the guillotine door is shown raised. The sample objects are closest to
the rat; the choice objects comprise the next set of objects behind the sample objects. The door
behind the choice objects remained closed during all testing. All stimuli (sample and choice
objects) were placed in the apparatus before testing began. At the beginning of a trial, the rat
was released from the start box when the experimenter raised the guillotine door. In the sample
phase, the rat was exposed to identical versions of the same object. At the end of the sample
phase, the objects were removed and the door between the sample and choice objects was
immediately raised. In the choice phase, the rat was exposed to a third, identical copy of the
sample at the end of the one exploration arm and a novel Lego object at the end of the other
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with two copies of one object and one copy of another object; that is,
three objects were presented, an odd object and two identical objects. We
predicted that the rat would divide its exploration between the two iden-
tical objects, resulting in an overall “preference” for the odd object. The
stimulus pairs identified in experiment 3 as having four different levels of
perceptual difficulty served as stimuli for the oddity discrimination task
in experiment 4. Two lesion groups, PPRh and PRh, were tested in addi-
tion to a control group. The PRh-only lesion group was added to localize
the lesion to PRh and to reduce and possibly eliminate any effects attrib-
utable to area TE damage.

Subjects
Forty-two experimentally naive Lister hooded rats (weighing 270 –320 g)
were used for experiment 4. The animals were housed and fed in the same
manner as the rats used in experiments 2 and 3.

Surgery
Rats were divided into three groups: PPRh lesions (PPRh) (n � 14), PRh
lesions (PRh) (n � 14), and surgical controls (control) (n � 14). Surger-
ies for the PPRh and control groups were identical to those in experiment
2 except no needle was inserted into the lesion site for the control group
(only a craniotomy was performed).

For the PRh lesions, injections of 0.2 �l of 0.9 M NMDA (Sigma)
dissolved in phosphate buffer, pH 7.4, were made through a 1 �l Ham-
ilton syringe into three sites in each hemisphere. Each injection was made
gradually over a 2 min period, and the needle was left in situ for an
additional 4 min before being withdrawn. The stereotaxic coordinates
relative to ear-bar zero were as follows: AP �3.9, L �5.9, DV �2.0; AP
�2.4, L �6.1, DV �1.6; and AP �0.6, L �6.2, DV �2.5.

Histology
The same histological protocol was used as described previously for ex-
periment 2.

Oddity task
Apparatus. The oddity apparatus incorporated the same considerations
used to design the Y-apparatus (Forwood et al., 2005) (Fig. 2 B). The
exploration area was triangular in shape. The oddity apparatus had high,
homogenous white walls constructed from Perspex (Lucite Interna-
tional) to prevent the rat from looking out into the room. All walls were
40 cm high and the start box contained a guillotine door 25 cm from the
rear of the box, providing a start box area within which the rat could be
confined at the start of a trial. The back wall (bottom part of the triangle)
was positioned 19.5 cm from the guillotine door. The back wall was 35 cm
long with four 3 cm wide dividers positioned between the three 10 cm
spaces (where the objects were placed) along the back wall.

Lego objects. Four different perceptual conditions were tested in exper-
iment 4. These were the low, medium, medium-high, and high condition
stimulus pairs identified in experiment 3.

General procedure. All rats were habituated in two consecutive daily
sessions in which they were allowed to explore the empty oddity appara-
tus for 5 min. For these habituation sessions, the rats were placed in the
start box and the guillotine door was opened to allow the rat to explore
the main area of the apparatus. The guillotine door was lowered when the
rat exited the start box to prevent re-entry into this area of the apparatus.
The experimenter did not begin timing the trial until the rat exited the
start box. Testing began 24 h after the second habituation session. Rats
were given a series of test trials (one per day) with a minimum interval of
24 h between trials. A different object trio was used for each trial for a
given animal, and the order of exposure to object pairs, the designated
repeated objects and odd object for each pair, and the odd object location
were counterbalanced within and across groups. The time spent explor-
ing objects was assessed from video recordings of the trials. Data were
collected by scoring exploratory bouts using a personal computer run-
ning a program written in Visual Basic 6.0 (Microsoft).

Oddity test. All object sets used in a given trial were placed in the
apparatus before the rat was placed in the start box. The rat was then
placed in the start box with the guillotine door lowered. The guillotine
door was then raised to allow the rat into the exploration area of the
apparatus. When the rat exited the start box, the guillotine door was

lowered to prevent re-entry, and testing began. The time spent exploring
the three objects during a testing phase was scored by an experimenter
viewing the rat on a video screen. The cumulative duration of exploratory
bouts, the beginning and end of which were indicated by pressing a given
key on the computer keyboard, was calculated by the computer program.
Exploration of an object was defined as directing the nose to the object at
a distance of �2 cm and/or touching it with the nose.

Exploration of two identical and one odd object was recorded for 5
min. We calculated an oddity preference percentage score, the explora-
tion of the odd object divided by the total exploration of the odd and
identical objects. Using this score, an oddity preference score of 33.0%
would indicate chance performance (the rat explored all objects equally).
An oddity preference score of 100.0% would indicate total preference for
the odd object. Although an oddity preference score of 100.0% indicates
maximum preference for the odd object, this score is not a realistic score
because a score this high can only be revealed if the rat only explores the
odd object. In reality, the rat must explore all objects before preference
will occur for the odd object. Therefore, an oddity preference score sig-
nificantly �33.3% (or chance performance) would represent a meaning-
ful score on this task.

Rats were tested in four conditions: low, medium, medium-high, and
high. The presentation order of the four conditions was counterbalanced
between rats and across trials.

Data analysis
Total object exploration during the oddity task (total exploration of the
odd and identical objects) was analyzed because a difference in explora-
tion could affect oddity preference. Preference for the odd object (explo-
ration of the odd object divided by total exploration) was also analyzed.
Means from each of these measures were submitted to a two-way
ANOVA where the first factor was the between-subjects factor of lesion
group and the second factor was the within-subjects factor of condition.
Significant interaction effects were further analyzed with independent
samples t tests. All tests of significance were performed at � � 0.05.

Results
Experiment 1
As shown in Figure 1B, networks in both the control group and
lesion group performed well on object recognition in the low
perceptual difficulty condition. Both groups performed more
poorly in the high perceptual difficulty condition than in the low
condition. However, a clear group difference, not seen in the low
condition, was revealed between the groups in the high condi-
tion: the control group was still able to discriminate the novel and
familiar stimuli whereas networks in the lesion group were un-
able to make the discrimination. Thus, the model predicts that
introducing a high level of perceptual similarity between the sam-
ple and choice objects will cause impairments in the object rec-
ognition performance of subjects with PRh lesions relative to the
performance of control subjects. This prediction of the model
arises because, whereas the intact networks can represent the
conjunction of features of a stimulus as well as the individual
features, the lesioned networks can represent only the individual
stimulus features (Fig. 1C). In the low condition, two dissimilar
objects are presented to networks in the choice phase, one of
which is familiar and one of which is novel, and both layers of the
model are able to discriminate the stimuli on the basis of famil-
iarity. On the caudal layer, where individual features of stimuli
are represented separately, all four features are sharply tuned for
the familiar stimulus whereas all four are coarsely tuned for the
novel stimulus. On the PRh layer, the single conjunctive repre-
sentation of the familiar stimulus is sharply tuned and can be
discriminated from the coarsely tuned conjunctive representa-
tion of the novel stimulus. However, in the high condition the
novel and familiar objects share three features. This means that
on the caudal layer of the model, three of the four features pos-
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sessed by the novel stimulus appear famil-
iar because their representations have been
tuned through encoding of the sample
stimulus; the stimulus representations are
therefore much less discriminable on the
basis of familiarity. In contrast, on the PRh
layer, the two conjunctive representations
of the familiar and novel stimuli are dis-
tinct so that only the familiar representa-
tion is sharply tuned and, therefore, the
novel and familiar objects are readily dis-
criminable. One can see from Figure 1C
that removing the rostral (PRh) layer,
leaving only the caudal layer to solve the
discrimination, will result in a behavioral
impairment.

Experiment 2
Histology
Throughout this study, histological assess-
ment was made with reference to the ana-
tomical designations of Burwell (2001). In
the PPRh group, extensive cellular loss was
revealed through the perirhinal and pos-
trhinal cortices (Fig. 3). The lesion was ob-
served in the rostral border of PRh and
continued caudally throughout perirhinal
and postrhinal cortices. The lesion also ex-
tended ventrally to include the lateral en-
torhinal cortex and the piriform cortex in
all PPRh animals. There was some unilat-
eral sparing of the most rostral PRh in one
animal. Minor unilateral damage to area
CA1 in the ventral hippocampus was ob-
served in one animal.

Minor, incidental TE damage was observed in all PPRh ani-
mals (bilateral in six PPRh rats and unilateral in five PPRh rats).
However, comparison of the mean discrimination ratios between
rats with unilateral TE damage or rats with bilateral TE damage
showed no significant group effect (F(1,9) � 2.02) and no inter-
action with condition (F � 1).

Histological analysis revealed no cellular loss in the perirhinal
and postrhinal cortices of the control group. However, unilateral
cortical damage was observed in two control rats, visible in the
frontal and parietal cortices from 0.49 to 3.60 mm posterior to
bregma. The damage is possibly a result of the craniotomies or
from inserting the needle.

Spontaneous object recognition
Duration of the sample phase. In the present study, all animals
explored the sample for 25 s in under 5 min on all trials. The total
time required to complete 25 s of exploration in the sample
phase was analyzed significant group differences at this stage
of a trial might lead to differences in subsequent recognition
performance. This analysis revealed no significant difference
between the groups (F(1,22) � 1.7) and no significant effect of
condition (F(1,22) � 1.92). The interaction of group by condi-
tion was also not significant (F � 1). The mean sample phase
duration (�SEM) for groups in each condition was as follows:
low condition, PPRh, 103.50 � 11.0 s, control, 92.50 � 5.60 s;
high condition, PPRh, 95.10 � 8.40 s, control, 85.30 � 3.90 s.

Object exploration during choice phase. Analysis of the total
mean object exploration during the choice phase revealed no

significant group effect (F � 1). The PPRh and control groups
combined explored the novel and familiar choice objects more in
the low condition than in the high condition (F(1,22) � 8.03 s; p �
0.01) (low condition: PPRh, 9.46 � 0.71 s, control, 10.08 � 0.86 s;
high condition: PPRh, 8.11 � 0.77 s, control, 7.97 � 0.42 s).
Importantly, however, the interaction of group by condition was
not significant (F � 1).

Recognition during the choice phase. The PPRh group per-
formed significantly worse than the control group in the high
condition but not in the low condition (Fig. 4). A two-way
ANOVA with repeated measures conducted on the discrimina-
tion ratio revealed main effects of group (F(1,22) � 26.17; p �
0.0001), condition (F(1,22) � 35.95; p � 0.0001), and a significant
group by condition interaction (F(1,22) � 15.88; p � 0.001). Post
hoc comparisons with independent samples t tests revealed no
significant effect in the low condition (t(22) � 1.52) but a highly
significant effect in the high condition (t(22) � 0.80; p � 0.0001).
Moreover, PPRh performance in the high condition was signifi-
cantly lower than chance (a discrimination ration of zero) (t(10) �
�3.40; p � 0.05). Thus, PPRh-lesioned rats were unable to rec-
ognize the novel stimulus in the choice phase and were impaired
relative to controls, only when the stimuli were perceptually sim-
ilar. When the stimuli were perceptually dissimilar, the PPRh and
the control groups did not differ: both groups could discriminate
the novel from the familiar stimulus in the choice phase.

A relatively minor yet intriguing aspect of the data in the
present study is the finding that rats with PPRh lesions performed
significantly below chance in the high perceptual similarity con-
dition. Although this result is not without precedent (Mumby et

Figure 3. Coronal sections illustrating the extent of the largest (gray) and smallest (black) lesions of the perirhinal and
postrhinal cortex in experiment 2, from 3.14 to 8.72 mm posterior to bregma (Paxinos and Watson, 1997).
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al., 2002), the reason for it is not immediately obvious. An obser-
vation that may be relevant, however, is our finding from pilot
studies that during the choice phase, once rats have explored the
novel object for a certain amount of time, the novel object be-
comes more familiar than the previously more familiar (sample)
object; the rat then switches its exploration toward the sample
object, and the discrimination ratio becomes, at that point, neg-
ative. Eventually, the sample object again becomes familiar, and
so the rat switches exploration back to the (originally) novel ob-
ject. We found that rats may cycle through this pattern indefi-
nitely. Thus, it is conceivable that a lesion, which alters the degree
to which the novel and familiar objects are perceived as such,
might, under certain conditions, lead to the lesioned rats’ cycles
being “out of phase” with that of the control rats and, depending
on the time point at which the discrimination score is calculated,
result in a negative discrimination score. As might be expected,
negative discrimination scores occur rarely after PRh lesions, and
so an account such as this, although obviously speculative, seems
to us more likely to be correct than the alternative suggestion that
PRh lesions reverse an animal’s natural preference for novel ob-
jects to a preference for more familiar ones (Mumby, 2001).
Moreover, a general shift of preference to more familiar objects
would be expected to be revealed at short delays as well as long
delays, which it is not.

Experiment 3
A univariate analysis of the four means on the third block of the
nine sessions revealed a highly significant effect of group
(F(1,15) � 27.03; p � 0.0001) (Fig. 5). Analysis using a Tukey’s
HSD post hoc test revealed that performance of the naive rats in
the high condition was significantly lower than performance
in the low condition ( p � 0.0001). Discrimination performance
in the medium condition was higher than performance in the
medium-high condition ( p � 0.05). Furthermore, discrimina-
tion performance in the medium-high condition was signifi-
cantly lower than performance in the low condition ( p � 0.0001)
and discrimination performance in the medium condition was
significantly higher than performance of rats in the high condi-
tion ( p � 0.0001). Thus, the highest discrimination accuracy in
the visual discrimination performance was in the lower percep-
tual difficulty conditions (low and medium) and the poorest dis-
crimination performance was in the higher perceptual difficulty
conditions (medium-high and high). The discrimination perfor-

mance of naive rats in this task confirmed that the stimuli, which
shared more perceptual features in common, were more difficult
for rats to discriminate than stimuli sharing fewer features in
common. These four perceptual conditions were tested in an
oddity discrimination task in experiment 4.

Experiment 4
Histology
Histological analysis revealed no cellular loss in either perirhinal
or postrhinal cortices of the control group. However, unilateral
(n � 2) and bilateral (n � 2) cortical damage was observed in four
control rats, visible in the frontal and parietal cortices from 0.49
to 3.14 mm posterior to bregma.

In the PPRh group, extensive cellular loss was revealed
throughout the perirhinal and postrhinal cortices. The lesion was
observed at the rostral border of PRh and continued caudally
throughout the perirhinal and postrhinal cortices. There was
some unilateral sparing of the most rostral PRh in two animals.
Cortical damage was observed in three (unilateral, n � 2; bilat-
eral, n � 1) animals, similar to the damage in the control group,
possibly caused during the craniotomy. Minor, incidental TE
damage was observed in seven animals. Four PPRh-lesioned rats
did not sustain substantial damage bilaterally to the perirhinal
and postrhinal cortices and were therefore omitted from data
analyses.

In the PRh group (Fig. 6), cellular loss was revealed through-
out PRh. No TE damage was observed in any of the PRh-lesioned
animals (Fig. 7). The lesion was limited to PRh and extended
approximately from 3.14 to 7.04 mm posterior to bregma in most
animals. There was some unilateral sparing of the most rostral
PRh in three animals. Four PRh-lesioned rats did not incur sub-
stantial damage to PRh and were omitted from behavioral
analyses.

Minor, incidental entorhinal damage was observed in all
PPRh animals (bilateral in three PPRh rats and unilateral in seven
PPRh rats). However, comparison of the mean odd object per-
centage scores between rats with unilateral entorhinal damage or
rats with bilateral entorhinal damage showed no significant
group effect (F(1,8) � 1.97) and no interaction with condition
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Figure 4. Performance on zero-delay spontaneous object recognition (experiment 2). Data
are presented as average discrimination ratio � SEM. **p � 0.0001.

Figure 5. Visual discrimination performance during the four different conditions (low, me-
dium, medium-high, and high) by naive rats in experiment 3. Data are presented as average
number correct for nine sessions (presented in blocks of 3 sessions) � SEM. **p � 0.05;
***p � 0.0001.
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(F � 1). Six rats from the PRh group (bi-
lateral in two rats, unilateral in four rats,
and no damage in four rats) incurred en-
torhinal damage from the PRh lesions.
However, comparison of the mean odd
object percentage scores between rats with
unilateral entorhinal damage, rats with bi-
lateral entorhinal damage, and rats with no
damage to entorhinal cortex showed no
significant group effect (F � 1) and no in-
teraction with condition (F � 1). Further-
more, analysis using a Tukey’s HSD post
hoc test revealed that the oddity discrimi-
nation performance of PRh rats with uni-
lateral, bilateral, and animals without
damage to entorhinal cortex was not sig-
nificantly different from one another ( p �
0.05 in all cases).

Oddity
Object exploration during the oddity task.
Total exploration of the odd and the iden-
tical objects during the oddity task was not
affected by lesion. ANOVA revealed no
significant interaction of group by condi-
tion (F(6, 93) � 1.53), and no main effects of
group (F � 1) or condition (F(3, 93) �
1.92). The mean exploration during the
oddity discrimination task (�SEM) for
each group in each condition was as fol-
lows: low, control, 52.08 � 1.84 s, PRh,
45.74 � 2.92 s, and PPRh, 48.93 � 4.93 s;
medium, control, 47.74 � 2.82 s, PRh,
43.64 � 2.64 s, and PPRh, 48.21 � 4.71 s;
medium-high, control, 43.52 � 2.20 s,
PRh, 42.74 � 2.74 s, and PPRh, 48.70 �
3.92 s; and high, control, 41.17 � 2.95 s,
PRh, 45.67 � 3.71 s, and PPRh, 47.91 �
3.61 s.

Preference for the odd object. The odd
object preference score for each group was
analyzed for the third minute of explora-
tion during the oddity task, because this
was the first time point at which the con-
trol group showed a significant preference
for the odd object in all conditions. Anal-
ysis of the percent preference for the odd
object at 3 min revealed a significant main
effect of condition (F(3, 93) � 18.47; p �
0.0001) and a significant group effect
(F(1,31) � 5.29; p � 0.003). The interaction
of group by condition was also significant
(F(6,93) � 1.67; p � 0.05) (Fig. 8). Post hoc
analysis of the group effect with Tukey’s
HSD revealed that both the PRh and PPRh
group were significantly impaired relative
to the control group (PRh, p � 0.05; PPRh,
p � 0.05). The two lesion groups, PPRh
and PRh, did not differ from one another
( p � 0.05).

Post hoc comparisons of condition with
independent samples t tests revealed no
significant difference of the groups in the

Figure 6. Coronal sections illustrating the extent of the largest (gray) and the smallest (black) lesions of the perirhinal cortex in
experiment 4, from 3.14 to 8.72 mm posterior to bregma (Paxinos and Watson, 1997).

Figure 7. A–D, Photomicrographs illustrating lesions from the PPRh (A, B) and PRh (C, D) groups from experiment 4. A, Typical
PRh damage from the PPRh lesion, shown here at �4.8 mm posterior to bregma (Paxinos and Watson, 1997). B, Postrhinal cortex
damage from the PPRh lesion at �8.0 mm posterior to bregma. C, Perirhinal cortex damage from the PRh lesion, shown here at
�4.8 mm posterior to bregma. D, Intact postrhinal cortex after PRh lesion, shown here at �8.12 mm posterior to bregma. Note
that there is no damage to postrhinal cortex after a PRh-only lesion. In the panels to the right of the lettered sections, the PPRh
cortices are 2� the magnification of the original.
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low, medium, or medium-high conditions. However, both PPRh
and PRh groups were significantly impaired relative to the con-
trol group in the high condition (t(22) � 2.53; p � 0.05) and
(t(22) � 2.31; p � 0.05), respectively. The difference between both
lesion groups and the control group in the medium-high condi-
tion came very close to reaching significance (PPRh, t(22) � 1.92,
p � 0.06; PRh, t(22) � 1.86, p � 0.07).

Although analysis of the odd object preference score revealed
a significant group by condition interaction at 3 min, the control
group showed significant preference for the odd object in the
high condition even after only 2 min (t(13) � 2.50; p � 0.05)
(control, 36.91 � 2.33 s). Neither lesion group showed a signifi-
cant odd object preference score for the odd object in the high
condition at 2 min (PRh, t(9) � �1.76, p � 0.05; PPRh, t(9) �
�0.63, p � 0.05) (PRh, 29.62 � 2.07 s; PPRh, 32.80 � 1.82 s), and
this impairment remained throughout the entire 5 min. Further-
more, it is striking that the control rats showed preference for the
odd stimulus after 2 min in the apparatus, as this corresponds to
only �25 s of object exploration by the rat (24.30 � 0.07 s; object
exploration did not significantly differ between groups).

Discussion
The present results provide evidence that PRh has a critical role in
the perceptual processing of complex objects, in addition to its
well established role in memory. Although perceptual manipula-
tions have been shown to affect performance on complex visual
discrimination tasks in monkeys and humans, the effect of such
manipulations has not been previously explicitly tested in rats.
We have shown that, as predicted and as made explicit by the
simulations in experiment 1, PRh lesions can produce perfor-
mance deficits in spontaneous object recognition and oddity dis-
crimination paradigms when stimuli are perceptually similar,
even under zero-delay or simultaneous conditions, in which
there are little or no long-term memory demands. These deficits
were robust, because the performance of rats with PPRh or PRh
damage was no better than chance level when the perceptual
demand of the tasks were high.

Levy et al. (2005) and Squire et al. (2006) argue that to deter-
mine whether perception is impaired during an object-
recognition task, it is important to test animals using no delay
between sample and choice. Therefore, in experiment 2, we ex-
amined recognition performance of PPRh-lesioned and control

rats in a zero-delay object-recognition task using two different
levels of perceptual difficulty. When the novel stimulus was not
explicitly constructed to resemble the sample stimulus (low con-
dition), the PPRh group was not impaired and performed simi-
larly to the control group. However, when the novel stimulus was
constructed to share features in common with the familiar stim-
ulus in the high condition, the PPRh group was impaired relative
to the control group. Therefore, the PPRh group was only im-
paired when the novel object and the familiar object were percep-
tually similar, necessitating, in our view, the use of conjunctive
representations to facilitate recognition. How exactly these con-
junctive representations might facilitate recognition is illustrated
by the computational model and simulations presented in exper-
iment 1.

Although experiment 2 examined recognition performance at
zero delay, it might be argued that the PRh impairment was
caused by a mnemonic failure rather than a perceptual processing
failure. Although there was no delay, the rat had to remember the
familiar object from the sample phase during the time of the
discrimination (in the choice phase) to recognize that the choice
object was novel. For this reason, we devised a novel behavioral
paradigm, the simultaneous oddity discrimination task, in which
two identical stimuli and an odd stimulus are presented to the rat
simultaneously, thereby minimizing any memory component in
the task. This task was based on the automated oddity task devel-
oped by Buckley et al. (2001), on which monkeys with PRh le-
sions were impaired. Oddity tasks have also been used to assess
perceptual deficits in humans with MTL damage (Lee et al., 2005,
2006a) and have shown that damage including the PRh in hu-
mans, as in animals, impairs perceptual discrimination of non-
spatial stimuli. In experiment 4 of the present study, we examined
the performance of rats with lesions of PPRh or PRh and control
rats in the simultaneous oddity discrimination task using four
different levels of perceptual similarity. [The stimuli used for
experiment 4 were first assessed for subjective perceptual similar-
ity in a two-choice visual discrimination experiment (experiment
3).] Both PPRh and PRh groups were impaired relative to the
control group in the high condition of the spontaneous oddity
task (experiment 4). Thus, even when stimuli were presented
simultaneously, the rats with PRh and PPRh lesions could not
discriminate the objects in the high condition. However, when
the odd object and the identical objects were not perceptually
similar, the performances of both lesion groups were indistin-
guishable from controls. These results extend the findings from
experiment 2. The failure of the PPRh and PRh groups to show
preference for the odd object can be viewed as a primarily a
perceptual, rather than a mnemonic deficit because all of the
information necessary to make the oddity judgment was available
to the animal simultaneously. The finding that PRh in the rat has
not only mnemonic, but perceptual functions that are similar to
those performed in PRh in the primate, introduces the rat as a
convenient model for studying the mechanisms of perception
within the MTL.

Because the zero-delay recognition and simultaneous oddity
experiments did not have an explicit control for difficulty, one
might argue that performance of any difficult discrimination
might be compromised in the rats with PRh lesions. Previous
controls for difficulty in complex visual discriminations (Bussey
et al., 2002, 2003; Gilbert and Kesner, 2003), oddity tasks (Buck-
ley et al., 2001), and object recognition (Norman and Eacott,
2004) have used size, colors, shapes, or numbers of stimuli as a
control for difficulty and have consistently revealed that simply
increasing the difficulty of a task is not sufficient to produce PRh
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Figure 8. Spontaneous oddity preference performance by control, PPRh, and PRh groups in
experiment 4. Data are presented as 3 min cumulative average oddity preference scores (the
exploration of the odd object divided by the total exploration of the odd and identical objects
combined) � SEM. **p � 0.05.
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impairments. In all of these cases, the critical factor determining
impairments in PRh-lesioned rats was the stimulus material, or
more accurately, the representations necessary for optimal solu-
tion of the task (Bussey and Saksida, 2005).

Previous findings from nonhuman primates indicating per-
ceptual impairments after PRh lesions have been criticized on
several grounds. Reports of PRh impairments in perceptual pro-
cessing (Eacott et al., 1994; Buckley and Gaffan, 1997, 1998) have
been discounted by claims that the impairment was caused by
inadvertent TE damage (Buffalo et al., 1999; Stark and Squire,
2000; Levy et al., 2005). The PPRh and PRh impairments ob-
served in the present experiments cannot be attributed to TE
damage. Furthermore, rats in the PRh group, which were signif-
icantly impaired in the oddity task, had no TE damage whatso-
ever. It could also be argued that the deficits produced in exper-
iments 2 and 4 could additionally be attributed to inadvertent
damage to entorhinal cortex. However, this is probably not the
case because PRh animals with bilateral or unilateral damage to
entorhinal cortex did not perform significantly differently from
animals without damage to entorhinal cortex in the simultaneous
oddity discrimination task. Furthermore, it has been shown that
monkeys with ablations to PRh alone can cause severe deficits in
visual object recognition memory whereas ablations to entorhi-
nal cortex alone cause only mild deficits (Meunier et al., 1993).

Buffalo et al. (1999) argued that impairments after PRh le-
sions in a matching-to-sample object-recognition task tested
with a zero delay (Eacott et al., 1994) could have been caused by
an impairment in the animals with PRh lesions in the retention of
the matching rule. The present study replicates the finding of
Eacott et al. (1994), in a spontaneous object-recognition task in
which there was no matching (or any other) rule to retain; rats
perform the task spontaneously. Thus, the interpretation by Ea-
cott et al. (1994) that the impairments produced by PRh lesions
were caused by a perceptual impairment is supported by our
present findings.

Other criticisms of previous studies include the suggestion
that because the oddity task used by others such as Buckley et al.
(2001) and Lee et al. (2005, 2006a) involved reward and/or re-
peated presentation of stimuli, learning across trials may occur in
these paradigms and, therefore, deficits on these tasks may be
interpreted as impairments in learning (Levy et al., 2005; Shrager
et al., 2006; Squire et al., 2006). However, because the spontane-
ous oddity task used in the present study is a nonrewarded,
single-trial paradigm, these criticisms do not apply to the present
study.

It might be argued, however, that it does take time for the
oddity preference to be expressed in the present paradigm; how-
ever, analysis indicates this takes �25 s of total object explora-
tion. Furthermore, it is to be expected that it takes some time for
object representations to develop and “tune” before difficult per-
ceptual discriminations can effectively be made. Indeed, this is
the basic mechanism at work in the model used to generate the
simulations in experiment 1. This development and tuning of
representations for perceptual discrimination is often referred to
as “perceptual learning,” and is thought to be an example of
nondeclarative memory (Squire and Zola-Morgan, 1991;
Schacter et al., 1993). Our view is that perceptual learning can
indeed occur in PRh. Evidence suggests it also does in the hip-
pocampus (Graham et al., 2006).

In summary, the present study shows that PRh lesions in rats
can produce impairments in object recognition and oddity dis-
criminations when items are perceptually similar, even under
conditions of zero-delay or simultaneous stimulus presentation,

in which there is little or no long-term memory demand. This
series of experiments therefore supports the idea that PRh does
not contribute solely to long-term declarative mnemonic pro-
cessing, but has a role in both perception and memory. Thus, the
results raise the possibility that, in general, the program of at-
tempting to map psychological concepts such as “perception”
and “memory” onto anatomically segregated modules in the
brain may not be the best way to understand brain organization
(Gaffan, 2002; Bussey and Saksida, 2005). However, when we
attempt to describe, at a more mechanistic level, the putative
functions of brain regions, it is still important to strive to relate
that description to our more everyday understanding of our psy-
chological lives, hence the continued use of terms like perception
and memory, even in the present article. Moreover, we will always
want to relate our understanding to the way in which neuropsy-
chological patients and their families describe their problems,
which is inevitably in psychological terms such as perception and
memory (Bussey, 2004). Thus, we may eventually need to em-
brace a new level of understanding in which psychological termi-
nology is used but only with the understanding that it is appro-
priate at an abstract level only, whereas a more comprehensive,
accurate, and useful account of certain brain functions may be
found at a lower, neural network level.
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