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Abstract

■ We examined the organization and function of the ventral
object processing pathway. The prevailing theoretical approach
in this field holds that the ventral object processing stream has
a modular organization, in which visual perception is carried
out in posterior regions and visual memory is carried out, inde-
pendently, in the anterior temporal lobe. In contrast, recent work
has argued against this modular framework, favoring instead
a continuous, hierarchical account of cognitive processing in
these regions. We join the latter group and illustrate our view
with simulations from a computational model that extends the
perceptual-mnemonic feature-conjunctionmodel of visual discrim-
ination proposed by Bussey and Saksida [Bussey, T. J., & Saksida,
L. M. The organization of visual object representations: A connec-
tionist model of effects of lesions in perirhinal cortex. European
Journal of Neuroscience, 15, 355–364, 2002]. We use the ex-
tended model to revisit early data from Iwai and Mishkin [Iwai,
E., &Mishkin, M. Two visual foci in the temporal lobe of monkeys.

In N. Yoshii & N. Buchwald (Eds.), Neurophysiological basis of
learning and behavior (pp. 1–11). Japan: Osaka University Press,
1968]; this seminal study was interpreted as evidence for the
modularity of visual perception and visual memory. The model
accounts for a double dissociation in monkeysʼ visual discrimina-
tion performance following lesions to different regions of the
ventral visual stream. This double dissociation is frequently cited
as evidence for separate systems for perception andmemory. How-
ever, the model provides a parsimonious, mechanistic, single-
system account of the double dissociation data. We propose that
the effects of lesions in ventral visual stream on visual discrimina-
tion are due to compromised representations within a hierarchical
representational continuum rather than impairment in a specific
type of learning, memory, or perception. We argue that consid-
eration of the nature of stimulus representations and their pro-
cessing in cortex is a more fruitful approach than attempting to
map cognition onto functional modules. ■

INTRODUCTION

In the first empirical studies of the vastly complex pro-
cesses underlying human thought and behavior, pioneer-
ing 19th century psychologists sought to carve up the
nebulous subject matter of cognition into tractable por-
tions. Folk psychology and introspection suggested, not
unreasonably, the use of constructs like memory, percep-
tion, emotion, and attention. Much investigation of the
mind and brain, since the time of William James, has fol-
lowed a course that assumes functional modularity accord-
ing to these boundaries within cognition.

In no branch of cognitive neuroscience has the influence
of a modular approach been greater than in the study
of memory. Assumptions of functional modularity found
early support in the discovery of amnesic patient, H.M.,
whose bilateral removal of the medial-temporal lobes ren-
dered him unable to store new information about facts
and events (Bussey, Saksida, & Murray, 2002; Scoville &
Milner, 1957). This memory deficit was selective, however,
because H.M. did not appear to have any gross percep-

tual deficits and he even showed “perceptual priming”
(Warrington & Weiskrantz, 1968), which suggested pre-
servation of his perceptual capacities. Thus, Scoville and
Milnerʼs (1957) study of H.M. reinforced the already pop-
ular idea that the brain is organized into separable func-
tional systems, in this case for perception and memory.
This fascinating case study sparked much experimental
work aimed at investigating animal models of human am-
nesia (e.g., Squire & Zola-Morgan, 1983; Mishkin, 1982).
For the most part, experimental investigation was carried
out on the assumption that memory processes could be,
indeed should be, studied independently of perceptual pro-
cesses. Spelling out this assumption was barely considered
necessary because the notion of a distinction between per-
ception and memory went unchallenged.
More recently, some researchers have made this func-

tional distinction an explicit and a central aspect of theories
of memory. Squire and Zola-Morgan (1991), for example,
claimed a functional and an anatomical distinction between
visual perception and declarative memory. In this highly in-
fluential article, the authors proposed that human declara-
tive memory is mediated by a group of brain structures in
the medial-temporal lobe (MTL). They also claimed there1University of California, San Diego, 2University of Cambridge, UK
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is a functional dissociation between areas in inferotemporal
cortex (IT) thought to mediate perception and structures
within MTL that are said to support declarative memory
(Shrager, Gold, Hopkins, & Squire, 2006; Levy, Shrager, &
Squire, 2005; Buffalo, Ramus, Squire, & Zola, 2000; Stark
& Squire, 2000; Buffalo et al., 1999; Suzuki, Zola-Morgan,
Squire, & Amaral, 1993). The MTL memory system rapidly
became the dominant theoretical construct in memory re-
search (Squire, Stark, & Clark, 2004). Through the wide ac-
ceptance of this theory, the assumption of dissociable
systems for perception and memory continues to prevail
and has found support outside of neuropsychology in the
domain of neurophysiology.

A Modular Approach to Visual Perception and
Visual Memory

The work by Warrington and Weiskrantz (1968), Scoville
and Milner (1957), and Squire et al. (2004) was interpreted
as evidence for separate systems underlying visual percep-
tion and “declarative” or “episodic”memory. In this article,
we examine the specific case of visual memory and per-
ception, which are widely assumed to be functionally and
anatomically distinct.
The empirical origins of this assumption lie in a substan-

tial literature from the 1960s and 1970s, in which monkey
researchers used a task known as “visual discrimination
learning” and investigated the effects of lesions in both
anterior and posterior areas of the ventral visual stream
(VVS). Many studies revealed a dissociation between the
behavioral effects of damage to the two regions, anterior
and posterior. This dissociation was repeatedly interpreted
as support for a functional distinction, with memory medi-
ated in anterior areas and perception in posterior areas.
Some of the visual discrimination learning studies inter-

preted as evidence for such a functional distinction found
only single dissociations. In some cases, this was because
authors included in their experimental design lesions
of only one area instead of several; in other cases, only
one type of discrimination task was used rather than two
(Kikuchi & Iwai, 1980; Dean, 1974; Butter, 1972; Iversen
& Humphrey, 1971; Manning, 1971a, 1971b; Wilson &
Kaufman, 1969). Notably, even these authors interpreted
their data in terms of the (widely assumed) functional dis-
tinction between “perception” and “associative memory.”
However, critical to any account of cognitive function in
which different brain regions are said to mediate distinct
functions is the demonstration of a double dissociation
within one experiment. Several authors did find double dis-
sociations within one study, by using two or more lesion
groups with ablations at different points in the VVS and
two or more discrimination tasks or experimental manipu-
lations (Blake, Jarvis, & Mishkin, 1977; Wilson, Kaufman,
Zieler, & Lieb, 1972; Gross, Cowey,&Manning, 1971; Cowey
& Gross, 1970; Iwai & Mishkin, 1968). This work well char-
acterizes the theoretical approach that led to the modular
view of memory and perception that continues to prevail

in modern neuroscience and psychology (e.g., Buffalo
et al., 1999; Sakai & Miyashita, 1993; Tulving & Schacter,
1990).

THE PERCEPTUAL-MNEMONIC
FEATURE-CONJUNCTION MODEL OF
PERIRHINAL CORTEX FUNCTION

Recently, some have begun to question the modular ap-
proach to visual cognition in favor of continuous accounts
of temporal lobe function, in which memory and percep-
tion interact (e.g., Palmeri & Tarr, 2008; Bussey & Saksida,
2007; Palmeri & Gauthier, 2004; Gaffan, 2002).

Bussey and Saksida (2002) and Murray and Bussey
(1999) have presented a new theoretical framework for
visual object processing and visual recognition memory.
They have focused on perirhinal cortex (PRh), which lies
adjacent to anterior IT and receives most of its input from
visual areas (Suzuki & Amaral, 1994). The role of PRh in
recognition memory is well established (Eacott, Gaffan,
& Murray, 1994; Meunier, Bachevalier, Mishkin, & Murray,
1993; Suzuki et al., 1993; Gaffan & Murray, 1992). How-
ever, Bussey and Saksida and Murray and Bussey proposed
that PRh can be thought of as part of the VVS, suggesting
an additional role for PRh in perception. The proposed sys-
tem contains hierarchically organized representations of
visual objects (Desimone & Ungerleider, 1989). Progressing
through the hierarchy from posterior to anterior regions,
simple features are combined into complex conjunctions
(Figure 1), with the most complex representations—at the
level of complexity corresponding to real-world objects—
contained in PRh. Deficits in perception arising from PRh
lesions are assumed to be due to the loss of conjunctive rep-
resentations. Bussey and Saksida instantiated this idea in a
connectionist model (Figure 2); PRh lesions were simulated
by removing the component of the network corresponding
to PRh. The perceptual-mnemonic feature-conjunction
(PMFC) model accounted for a puzzling set of findings con-
cerning the effects of PRh lesions on visual discrimination.

Figure 1. The hierarchical organization of stimulus representations
in VVS. Each letter represents a visual feature. The number of features
combined conjunctively into a single representation increases with
progression through the hierarchy: simple patterns are represented
in posterior regions and complex objects in anterior areas.
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Further, it made novel predictions that were supported
by visual discrimination learning experiments in monkeys
(Bussey, Saksida, & Murray, 2003; Bussey et al., 2002). Re-
cently, Cowell, Bussey, and Saksida (2006) have extended
this view to account for deficits in recognition memory fol-
lowing lesions to PRh.

Since publication, the PMFC model of PRh function has
been the center ofmuch controversy. It has been challenged
by proponents of the modular view (Hampton, 2005; Squire
et al., 2004). A considerable body of empirical research has
emerged on the basis of the PMFC model, over and above
experimental tests of the model authored by Bussey and
Saksida (2002). Many authors have either tested the predic-
tions of the PMFC model directly or examined the validity
of the general framework advocated by the PMFC model.
These studies have included work with rodents (Norman
& Eacott, 2004; Gilbert & Kesner, 2003), nonhuman pri-
mates (Baker, Behrmann, & Olson, 2002), and human sub-
jects (Preston &Gabrieli, 2008; van Strien, Scholte, &Witter,
2008; Barense, Gaffan, & Graham, 2007; Devlin & Price,
2007; Hartley et al., 2007; Lee, Bandelow, Schwarzbauer,
Henson, & Graham, 2006; Lee, Buckley, et al., 2006; Shrager
et al., 2006; Levy et al., 2005; Moss, Rodd, Stamatakis, Bright,
& Tyler, 2005; Tyler et al., 2004; Stark & Squire, 2000). Of
these studies, several support the modular view (Shrager
et al., 2006; Levy et al., 2005; Stark & Squire, 2000) and the
remainder are either in favor of or consistent with the PMFC
model. Because of the challenge these ideas and findings
have presented to traditional modular theory, three re-

cent articles debate the pros and the cons of this new view
(Baxter, 2009; Suzuki, 2009; Suzuki & Baxter, 2009).

Extending the PMFC Model Account

The PMFC model proposes that PRh plays an important
role in perception by providing complex conjunctive rep-
resentations of stimuli that are necessary for visual discrimi-
nations in which the stimuli possess ambiguous features.
These high-level representations are thought to help re-
solve what has been referred to as feature ambiguity.
However, we do not claim that PRh is the only region of
the brain in which conjunctive representations exist and
play a role in cognitive function. We argue that there is
an important role for conjunctive representations in other
areas, such as those of lesser complexity than those in PRh,
residing in regions upstream of the VVS. In this article, to
investigate the contributions of these simpler conjunctive
representations, we extend the PMFC model in a pos-
terior direction. We use the extended model to account
for data from studies in which posterior VVS has been
lesioned.
The focus of the present article is the function of the

whole of VVS and not just PRh. The critical aim of extend-
ing the model is to demonstrate that the relative differ-
ence in the complexity of representations in any two brain
regions can be mapped onto the relative difference in the
functional contributions of those two regions. That is, if the
first brain region contains more complex representations
than the second, it will play a more important role in dis-
criminating more complex objects than the second region.
In contrast, the second region will play a more critical role
in discriminating simpler objects than the first region. In all
simulations, the difference in functional role of the ante-
rior “complex” layer relative to posterior “simple” layers
remains the same, whether the anterior layer is intended
to correspond to area TE (e.g., Simulation 1) or PRh (e.g.,
Simulations 2 and 3).

Empirical Data: Iwai and Mishkin (1968)

The optimal empirical data against which to test the con-
tinuous processing account would come from groups of
human patients with brain damage in sequential regions
of the VVS. The account predicts that a continuous pattern
of deficits in discrimination and memory performance
would be revealed across the groups by careful choice of
stimulus material. There is a paucity of patients with clean
focal damage in these areas; however, a rich source of data
of exactly the type required is available in the monkey
literature. Of the research cited above, Iwai and Mishkin
(1968) is the ideal example: a comprehensive study in
which both anterior and posterior lesions were tested on
two different tasks and a double dissociation found.
Iwai and Mishkin (1968) took five groups of monkeys,

retaining one group as unoperated controls and giving le-
sions to four other groups. One of the four operated groups

Figure 2. Architecture of the PMFC model. The network consists of two
layers of nodes and a single outcome node whose activation represents
an event, for example, reward. Active units are shown in gray. Feature
layer units are connected to units in the feature-conjunction layer via
fixed weights. Both layers are connected to the outcome node via weights
that are adjustable by an associative mechanism. For simplicity, only
four nodes are shown in each layer, although each layer has up to
100 nodes in total, and only two feature layer nodes are shown as
active, although stimuli contained at least 10 active nodes.
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received sham lesions as a control; the second group were
lesioned in anterior VVS, starting 10 mm anterior to the
inferior occipital sulcus and extending 10 mm anteriorly
from this point (Group III + IV); a third group received
a more posterior lesion extending from the inferior occipi-
tal sulcus to a line 10 mm anterior to it (Group I + II); a
fourth group received a posterior lesion overlapping with
the last, which included the convexity posterior to the in-
ferior occipital sulcus, and the region of cortex between
the inferior occipital sulcus and a line 5 mm anterior to it
(Group O + I).
The monkeys were trained on several different visual

discrimination tasks, two of which are of interest here: a
task termed “pattern relearning” and another named “con-
current object discrimination learning.” Pattern learning
was first presented to all groups preoperatively. Monkeys
were trained on a single-pair discrimination of two white
patterns—a plus sign and the outline of a square—on a
gray background, until attainment of criterion. After sur-
gery, animals were retrained on the same problem to a
criterion of 90 correct responses in 100 trials, yielding a
“relearning” score. In the concurrent object discrimination
learning task, subjects were trained on eight object-pair
discriminations concurrently, with five randomly ordered
daily presentations of each pair, until a criterion of 39 cor-
rect responses in a session of 40 trials was attained.
The results of this study are shown in Figure 3, which

indicates that the two posterior groups (O + I and I +
II) relearned the pattern discrimination task more slowly
than the anterior group (III + IV). Statistical tests revealed
that all group differences in the “trials to criterion” score

were significant, except those between the two posterior
groups (O + I and I + II) and between the two control
groups. On the concurrent object discrimination task, the
trend was reversed: monkeys with anterior lesions learned
more slowly than animals in groups I + II and O + I. The
difference between the most anterior (III + IV) and the
most posterior (O + I) groups was significant but that
between the anterior group and the adjacent posterior
group (I + II) was not.

The authors interpreted this double dissociation in terms
of “two qualitatively different disorders: (1) a sensory, per-
ceptual, or attentional loss and (2) a defect in memory or
associative learning.” As discussed above, this modular in-
terpretation has prevailed, and a version of it is currently
the textbook view. However, does this modular model
provide the only account of these data? In the present arti-
cle, we explore the possibility that the effects of VVS le-
sions on visual discrimination learning performance are
due to the animals possessing compromised representa-
tions of visual stimuli rather than an impairment of a spe-
cific type of learning, memory, or perception.

THE EXTENDED PMFC MODEL OF
VVS FUNCTION

Our goal was to test whether the function of not only PRh
but also the whole of VVS can be understood in terms of
conjunctive representations and the resolution of feature
ambiguity. We have extended the PMFC model to allow
simulation of the effects of lesions in both anterior and
posterior VVS. In the original PMFC model, there is only
one layer containing conjunctive representations, so the
model cannot account for the effects of using stimuli with a
lesser level of complexity. In the PMFC model simulations,
it was simply assumed that stimuli for which “perirhinal”
layer lesions induced discrimination impairments were of
a complex level. In the extended PMFC model, additional
layers representing different levels of stimulus complexity
allow explicit simulation of lesion effects on discrimination
of different stimulus types.

The extended PMFC model continues to assume a hier-
archical organization of representations in VVS, with sim-
ple visual features represented in posterior regions and
more complex conjunctions of those features represented
in anterior areas. However, the new model has three im-
portant alterations. First, we have added a further layer
so that there are representations of intermediate complex-
ity as well as simple and complex representations. Second,
we have added an input layer to the front of the model
allowing convergence of visual features in even the sim-
plest layer. Third, the lateral inhibition function that was
applied only to the conjunction layer of the PMFC model
is now applied to all three layers.

At all layers in the network, visual features converge into
conjunctions; the number of features integrated into a
conjunction increases through the layers. In each layer,

Figure 3. Data from Iwai and Mishkin (1968). Median trials to
criterion made by monkeys in each of the three lesion groups on
two visual discrimination learning tasks. Note that data for the two
tasks are not shown on the same axis.
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conjunctive combinations of the 32 input features are re-
presented on the basis of the assumption that an adult ani-
mal has learned about conjunctions of features occurring
commonly in real-world patterns and objects. Weights con-
necting Layers 1, 2, and 3 to the outcome node are learned,
reflecting an animalʼs ability to learn associations of real-
world objects with events such as reward.

In Layer 1, input stimuli are represented as conjunctions
of two stimulus dimensions or “visual features” (Figure 4).
These correspond to representations of simple stimulus
properties found in posterior regions of the VVS (Hubel
& Wiesel, 1962). In Layer 2, the stimulus representations
combine three visual features into a conjunction, and in
Layer 3 they reach a maximum of complexity with four
visual features brought together. This organization re-
flects the increasing complexity of neural representations
found in VVS (Desimone & Ungerleider, 1989; Desimone
& Schein, 1987; Desimone, Albright, Gross, & Bruce, 1984).
In the input layer of the model, there are 32 input units,
hence 32 available “visual features.” Because the number
of possible feature combinations in each successive layer
increases exponentially and yet there does not exist a com-
binatorial explosion of the number of neurons at successive
stations of the VVS, we chose to keep the number of units in
each layer approximately equal. Specifically, in Layer 1, we
created a unit for all possible two-feature conjunctions of
the 32 input stimulus dimensions, giving a tractable number
of 496 units. In Layers 2 and 3, to keep the number of units
in each layer equal, we initialized units for only a subset of
the possible permutations of feature conjunctions at the
level of complexity assigned to that layer. That is, in Layer 2,
we again created 496 units, each one representing a three-
feature conjunction; these conjunctions were selected at
random from the total 4960 possible ways of combining
32 features into a three-feature conjunction. In Layer 3, we
created 496 units—approximately 1% of the 35,960 pos-
sible four-feature combinations of 32 features. This initiali-

zation was based on the assumption that an adult animal
possesses a set of well-established visual representations
in VVS commensurate with its visual experience. Because
simpler conjunctions occur frequently in visual objects, rep-
resentations of all such conjunctions exist in the adult brain
(and in Layer 1 of themodel). However, as the complexity of
a conjunction increases, the likelihood of an animal having
seen that particular conjunction enough for its representa-
tion to become established in visual cortex reduces. In line
with evidence for the establishment of new visual represen-
tations in cortex during visual discrimination learning (Baker
et al., 2002), we allowed a unit for a particular conjunction
of features to be “recruited” in Layer 2 or Layer 3 on presen-
tation of that exact conjunction during training.
We noted that constraining all layers in themodel to con-

tain approximately the same number of units has no signifi-
cance for the “computational” or “algorithmic” levels (to
use Marrʼs terms) of our theory. This constraint has some
influence on the equations used to calculate the lateral
inhibition function. However, we could have implemented
the lateral inhibition function in any one of several differ-
ent ways, each of which would have been in line with the
neurobiological data; we are not wedded to the implemen-
tational details that we present here. We used this con-
straint because the lack of a combinatorial explosion of
the number of units in each layer reflects the properties
of the brain.

The VVS Hypothesis

The extended connectionist network now has three layers
of stimulus representations; each can resolve feature ambi-
guity at a certain level of stimulus complexity. The central
tenet of our account of VVS function is that representations
at a given stage of processing in the VVS provide the opti-
mal solution for a givendiscriminationproblem, according to

Figure 4. Architecture of the
extended PMFC model. The
network consists of an input
layer, three layers of units and a
single outcome node. Layer 1
units represent the conjunction
of two visual features, Layer 2
units the conjunction of three
visual features, and Layer 3 units
the conjunction of four visual
features. Active units are shown
in gray; darker shading indicates
higher activation. A “simple,”
two-featured stimulus is shown.
Weights from the input layer
to Layers 1, 2, and 3 are fixed.
Layers 1, 2, and 3 are connected
to the outcome node via
weights that are adjustable by
an associative mechanism.
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the level of complexity of the stimuli in that problem (Zhang
& Cottrell, 2005; Ullman, Vidal-Naquet, & Sali, 2002). How-
ever, other processing stages contained in regions outside of
the optimal processing stage may also provide suboptimal
solutions for the discrimination; the closer a region lies
to the optimal stage, the better its solution will be. Thus,
there is a continuous gradation in the ability of different
VVS regions to solve a particular discrimination, reflecting
the continuous gradation in the complexity of stimulus
representations along the VVS (Tanaka, Saito, Fukada, &
Moriya, 1991).
Lesion effects can be explained according to this scheme

as follows. If, when a monkey performs a particular dis-
crimination, the “optimal” stage in the VVS for solving
the discrimination lies within the animalʼs brain lesion,
discrimination performance will be severely impaired. In
general, the closer the lesion falls to the processing stage
best able to represent unambiguously the discriminanda,
the worse an animalʼs performance will be. This property
allows us to simulate the data from Iwai and Mishkin
(1968). These authors reported not an “all-or-nothing”
double dissociation but an increasing and graded deficit
in visual discrimination learning in both the anterior-to-
posterior and the posterior-to-anterior directions.

Biological Plausibility

The present model is constrained and inspired by anatom-
ical and physiological properties of visual cortex. For ex-
ample, the existence of the “whole-preferring” conjunctive
representations critical to the modelʼs mechanism was
supported by data from Baker et al. (2002). In addition,
lateral inhibition is known to occur in visual cortex and
can be critical to the selective responses of visual neurons
(Eysel, Worgotter, & Pape, 1987; Sillito, Kemp, Milson, &
Berardi, 1980; Sillito, 1979).
Neurophysiological work revealing properties of indi-

vidual neurons in the VVS has been the key to the notion
of hierarchical organization of representations in visual
cortex (e.g., Desimone & Ungerleider, 1989; Desimone
& Schein, 1987; Desimone et al., 1984; Hubel & Wiesel,
1962). Anatomical data on the connectivity of the VVS
also provide support for the architecture of the model.
Desimone and Ungerleider (1989) summarized the inter-
connections between cortical visual areas in the macaque.
Neurons project from occipital V1 directly to V2 and to V3;
in addition, there are interconnections from V2 to V3.
From V2 and V3, projections carry visual information
further forward still, to V4, from where projections to both
anterior and occipital TE are reported. Thus, visual in-
formation travels through a series of cortical stations in
a posterior-to-anterior direction from the occipital to the
temporal lobe. In addition, there is evidence that “jump-
ing” connections in the VVS are also abundant, for exam-
ple, between area V1 and V3, bypassing area V2 (Lennie,
1998), from V2 to TEo (Nakamura, Gattass, Desimone, &

Ungerleider, 1993), and from V4 to posterior TE (Saleem,
Tanaka, & Rockland, 1992). Given the evidence for jump-
ing projections, which convey information in the absence
of intermediate cortical stages, we chose to model only
the jumping projections rather than the serial ones be-
cause it vastly simplifies the mechanism of the model. This
simplification allows us to focus on our central hypothe-
sis concerning the consequences of damage to stimulus
representations. Because we can account for the data with
a simple, parallel architecture and because cortical sta-
tions are connected to some extent in parallel, we opt for
parsimony.

There is neurobiological evidence to justify the associa-
tion of representations at each layer of the model, including
the earlier layers, with reward. It seems likely that represen-
tations throughout extrastriate visual cortex can influence
behavior directly because the primate extrastriate visual
cortex projects directly to the tail of the caudate nucleus
(Wilson, 1995), which in turn projects to regions involved
in executive control and motor responding (e.g., the pre-
frontal and premotor cortices via the globus pallidus and
thalamus). However, we made no explicit claims about the
brain location of the “outcome node” in our model.

Although the network architecture is inspired by anatomy
and neurophysiology, our account of visual cognition re-
mains abstract. The organization of representations and
the learning mechanisms are putatively mediated at the
level of anatomical systems. Activation of a unit does not rep-
resent firing in an individual neuron nor is the idea of a
“grandmother cell” endorsed. The neural entity most prob-
ably corresponding to a unit in the network is a population
of interconnected neurons that code for a given visual
representation.

We make no attempt to include low-level properties of
neurons that are not necessary to the proposed mecha-
nism for visual discrimination, for example, back projec-
tions or “repetition suppression” in IT neurons. This is
intentional. We aim first to define our target data (i.e.,
our problem space) and then to account for those data
using the simplest possible model and the appropriate
level of analysis. We define our problem space as the data
from neuropsychological studies investigating the role of
VVS in visual discrimination. In accordance with Occamʼs
razor, we use the simplest model possible to explain
the data. That is, we have not included details of top–down
processing from higher cortical areas because they are not
necessary to capture the important patterns in the target
data. Further, because our account of the target data hinges
on the complexity of stimulus representations at different
points in the brain, we have chosen the level of analysis
most appropriate to this: a simple connectionist network
in which the properties of the representations are clearly
defined and play a critical role in determining discrimina-
tion performance. To include details of top–down process-
ing known to exist in the brain would expand our problem
space. This is, of course, a legitimate step, but we choose
not to take it because it would decrease the parsimony of
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the account and obscure the key mechanism at work in the
model.

Other Computational Models of the Object
Processing Pathway

Gaffan, Harrison, and Gaffan (1986) presented a computa-
tional model that simulated monkeysʼ acquisition of visual
discrimination problems. Attributes of visual stimuli were
schematically represented and associated with “good” or
“bad” outcomes to examine the hypothesis that elemen-
tary visual features rather than an integrated object whole
may have an important role in visual discrimination perfor-
mance. This model has parallels with the extended PMFC
model. However, an important difference is that Gaffan
et al. did not include conjunctive representations—a cru-
cial aspect of the present model. Further, they did not at-
tempt to map the representations of visual attributes to
different subregions of temporal cortex.

Hubel and Wieselʼs (1962, 1965) widely accepted hier-
archical model of VVS organization forms the basis of many
model of object recognition in visual cortex (e.g., Wallis
& Rolls, 1997; Perrett & Oram, 1993; Fukushima, 1980).
These models often address electrophysiological data,
capturing properties such as the translation-invariant re-
sponses of IT cells. However, Riesenhuber and Poggio
(1999, 2000) proposed a model of processing in VVS that
also addresses high-level processes. In their model, object
representations are built up in a hierarchical, convergent
fashion and used as input to task modules that learn to
perform identification and categorization. There are many
similarities of Riesenhuber and Poggioʼs approach to the
extended PMFC model, but there are two key differences.
First, the “perceptual” and “higher order” components of
their model operate in serial fashion: only the final layer
of object representations provides output to the task mod-
ules. In the extended PMFC model, representations in
every layer are associated with an outcome, so that later
stages of perceptual processing need not be complete be-
fore elementary perceptual representations can be used
in a higher-order process. Thus, perception and learning
are integrated rather than independent and serial. Second,
the two models address different data sets. Riesenhuber
and Poggio draw on electrophysiological data to solve the
problems of view and location invariance. Our network
addresses data from lesion studies to investigate the hy-
pothesis that cognitive systems operate in a unitary, con-
tinuous fashion.

The present model also resembles the configural-cue
model of Gluck and Bower (1988). Both models assume
that all possible combinations of the elements of the in-
put stimuli are represented in the sensory layer(s) of the
model. Both models allow all sensory representations to
become associated directly with an outcome. Where the
extended PMFC model diverges from Gluck and Bowerʼs
network is in the use of a lateral inhibition function on each
layer of the model. Thus, a “winner-take-all” process op-

erates independently on each subset (layer) of stimulus
representations, according to their complexity. This prop-
erty also allowed us to account for critical findings in the
area of brain damage and object recognition memory
(Cowell et al., 2006). A more important divergence be-
tween the two models lies in the cognitive phenomena
they attempt to explain. Gluck and Bower used simple
visual stimuli (which all possess the same number of ele-
ments) and category structures defined by rules that range
in complexity from very simple to very complex, because
the goal is to investigate the processes underlying category
learning. The extended PMFC model uses simple discrimi-
nation problems (which tend to possess a similar degree
of overlap) and a range of complexity of visual stimuli, be-
cause the goal is to investigate how impairments in visual
discrimination arise from brain lesions at different points in
visual cortex.

SIMULATION 1: IWAI AND
MISHKIN REVISITED

We simulated Iwai and Mishkin (1968), a paradigm case of
the nonhuman primate literature on visual discrimination
learning. To simulate the pattern relearning task, networks
were trained to discriminate a single pair of similar simple
patterns. To simulate concurrent discrimination learning,
networks learned to discriminate eight pairs of complex
objects.

Methods

In all simulations, lesions of the network were effected
by completely removing the layer corresponding to the
cortical area lesioned in Iwai and Mishkin (1968). Compu-
tational details of the connectionist model are given in
the Appendix.

Pattern Relearning

Stimuli. Simple visual patterns were represented by stim-
uli possessing two “visual features”: 2 of the 32 units in the
input layer were activated. We used stimuli with an over-
lapping feature so that the discrimination problem took
the form AB+ vs. BC− (where a letter denotes an individual
visual feature or active unit, two letters represent a whole
stimulus, “+” indicates that the stimulus was rewarded,
and “−” that it was nonrewarded). Because the stimuli used
by Iwai and Mishkin (1968)—a plus sign and a square—
possessed some distinct features and some common fea-
tures, these inputs seem reasonable representations of the
stimuli they used.

Training. Networks were trained to discriminate be-
tween a single pair of input patterns, as in Iwai and Mishkin
(1968). Training involved two phases: prelesion and post-
lesion acquisition of the discrimination. In “preoperative”
Phase 1, 24 networks were initialized and trained on a
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single pair discrimination using the pattern relearning stim-
uli until discrimination performance reached criterion. At
the end of Phase 1, the networks were divided into three
groups of eight networks and lesioned: in group “posterior,”
Layer 1 was removed; in group “middle,” Layer 2 was re-
moved; and in group “anterior,” Layer 3 was removed. In
“postoperative” Phase 2, networks were not reinitialized be-
fore retraining on the same single pair discrimination that
had been acquired before removal of a layer of units. Train-
ing in Phase 2 also proceeded until criterion was reached. In
Phases 1 and 2, criterion was reached when 9 of 10 correct
responses were made in two consecutive blocks of 10 trials.

Concurrent Discrimination Learning

Stimuli. Complex, three-dimensional objects were repre-
sented by activating 4 out of a possible 32 units in the input
layer for each stimulus. Thus, in the full set of 16 stimuli (or
eight pairs), there were many visual features that were
possessed by more than one stimulus, reflecting the occur-
rence of overlapping features across a set of real-world
objects.

Training. In this task, training occurred in a single, post-
operative phase, as in Iwai andMishkin (1968). Three groups
of eight networks—groups posterior, middle, and ante-
rior, as in the pattern relearning task—were initialized and
trained to criterion on the concurrent discrimination of
eight pairs of stimuli. Criterion was reached when 9 of
10 correct responses were made in two consecutive blocks
of 10 trials.

Results

The simulations bear a striking similarity to the data of Iwai
and Mishkin (1968). As is shown in Figure 5, networks lack-
ing Layer 1 (group posterior) were impaired relative to
networks lacking Layer 3 (group anterior) on the pattern
relearning task. However, on the concurrent discrimination
learning task, the group anterior was impaired relative to
the group posterior. Networks lacking Layer 2 (group mid-
dle) showed performance levels between those of groups
posterior and anterior on both tasks.
In this simulation and all others in the present article, any

data points lying further than two standard deviations from
the mean were deemed outliers and removed from the
analysis. We assessed the statistical significance of group dif-
ferences in Simulation 1 with a one-way ANOVA with factor
Lesion Group for each task. The mean scores of each group
differed significantly from one another on both Pattern
Relearning, F(2, 20) = 18.09, p < .001, and Concurrent
Discrimination Learning, F(2, 20) = 8.16, p < .01. Sidak
multiple comparisons showed that the group posterior
performed significantly worse than the group anterior on
pattern relearning ( p < .001), whereas the group anterior
performed significantly worse than the group posterior on
concurrent discrimination learning ( p < .01).

Discussion

The simulations match very closely the double dissocia-
tions reported in studies such as Iwai and Mishkin (1968)
and show how a completely different explanation from
the modular view can account for these data. According
to the extended PMFC model, the area of VVS critical for
a given visual discrimination task depends on the level of
complexity of conjunctive representations required to dis-
ambiguate the stimuli used in that task. If animals are re-
quired to discriminate simple patterns possessing simple
conjunctions of few visual features—as in the pattern re-
learning task—the conjunctive representations in posterior
regions are critical for good performance. Conversely, if
they must discriminate complex objects possessing com-
plex conjunctions of many visual features—as in the con-
current object discrimination task—representations in
anterior regions are needed to solve the task efficiently.

SIMULATION 2: RESIMULATING THE
FEATURE AMBIGUITY EFFECT

To verify that the extended PMFC model can still account
for data simulated by the original PMFC model, we resimu-
lated the visual discrimination studies in which PRh was
lesioned (Bussey et al., 2002, 2003). In the original feature
ambiguity study (Bussey et al., 2002), the PMFCmodel pre-
dicted, and an experiment in monkeys confirmed, that le-
sions of PRh should disrupt complex visual discriminations
with a high degree of feature ambiguity, a property of visual
discrimination problems that can emerge when features
of an object are rewarded when they are part of one object
but not when part of another.

Figure 5. Performance of the extended PMFC model in simulations
of the pattern relearning and concurrent learning tasks of Iwai and
Mishkin (1968). Scores on the two tasks are shown on different scales.
Error bars indicate ±SEM.
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Methods

The simulation was identical to the feature ambiguity sim-
ulation of the original PMFC model, except that stimulus
input vectors possessed 32 elements (rather than 100)
and each stimulus was composed of 4 active elements
(and 28 inactive elements) rather than 20 active elements
(and 80 inactive elements). There were three experimental
conditions: maximum feature ambiguity, in which all stimu-
lus features were explicitly ambiguous; intermediate feature
ambiguity, in which half of the features were ambiguous;
and minimum feature ambiguity, with no ambiguous fea-
tures. To simulate PRh lesions, we removed Layer 3.

Results

The results of the simulation with the extended PMFCmodel
are shown in Figure 6. A one-way ANOVAwith LesionGroup
as between-subjects factor and Feature Ambiguity as within-
subjects factor revealed a significant main effect of Lesion
Group, F(1, 6) = 488.5, p < .001, a significant main effect
of Feature Ambiguity, F(2, 12) = 63.39, p < .001, and a
significant Feature Ambiguity × Lesion Group interaction,
F(2, 12) = 32.78, p < .001. Analysis of simple main effects
revealed differences between the two groups in the inter-
mediate ( p < .005) and maximum ( p < .001) conditions
but not in the minimum condition ( p = .145).

Discussion

As the degree of feature ambiguity in concurrent discrimi-
nation of complex objects was increased, networks with

a lesion of the most anterior layer became increasingly im-
paired. This replicates the findings of Bussey et al. (2002)
for both connectionist networks and monkeys and dem-
onstrates that the most anterior end of the extended
PMFC model can be mapped onto anterior structures such
as PRh, like the “conjunction layer” of the original PMFC
model.

SIMULATION 3: RESIMULATING THE EFFECT
OF MORPHED STIMULI

Next, we used the extended PMFC model to simulate the
“morphed stimuli” experiment of Bussey et al. (2003). In
this study, the perceptual difficulty of single-pair discrimina-
tions was manipulated by blending together pairs of gray-
scale picture stimuli to create discriminanda that shared
many features. The PMFC model predicted that lesion of
PRh would cause impairments when there was a high de-
gree of morphing between the to-be-discriminated stimuli
but not with a lesser degree of morphing; the predictions
were once more confirmed in monkeys.

Methods

Simulations using the extended PMFC model were almost
identical to those with the original PMFC model. In the
low-ambiguity stimulus pair of Bussey et al. (2003), 10 ele-
ments took a value of 1 in the first stimulus (with the re-
maining 90 elements set to 0), and 10 different elements
took a value of 1 in the second stimulus (see Figure 7).
In the high-ambiguity pair, the first stimulus possessed
10 elements with a value of 0.8 and a further 10 with a value
of 0.2; in the second stimulus, the 10 elements that had
been set to 0.8 in the first stimulus were set to 0.2, and
the 10 elements set to 0.2 in the first stimulus were set
to 0.8. In the present simulation, we used stimulus input
vectors with 32 elements rather than 100. There were four
elements (rather than 10) with a value of 1 in each stimulus
of the low ambiguity pair; no elements were shared by the
two stimuli. In the high ambiguity pair, there were four
elements with a high value (0.75) plus four elements with
a low value (0.25) in each stimulus; as in Bussey et al.
(2003), the high-valued elements in the first stimulus served
as low-valued elements in the second stimulus and vice
versa, creating overlap. To simulate PRh lesions, we again
removed Layer 3.

Results

Simulation data from the extended PMFCmodel are shown
in Figure 8. In the low feature ambiguity condition, there
was no significant main effect of Group, F(1, 6) = 2.051,
p = .202, a significant effect of Block, F(11, 66) = 11.18,
p < .001, and no Group × Block interaction, F(11, 66) =
0.729, p = .707. In the high feature ambiguity condition,

Figure 6. Performance of the extended PMFC model on the simulated
feature ambiguity task; the results replicate the simulation data of
Bussey et al. (2002). Error bars indicate ±SEM.

2468 Journal of Cognitive Neuroscience Volume 22, Number 11



there was a significant effect of Group, F(1, 6) = 32.74, p<
.05, a significant effect of Block, F(11, 66) = 3.29, p < .01,
and a significant Group × Block interaction, F(11, 66) =
2.81, p < .01.

Discussion

As reported for both networks and monkeys in Bussey
et al. (2003), introducing feature overlap between two
complex stimuli in a visual discrimination caused im-
pairments in networks lacking the most anterior layer,
where the optimal representations of complex stimuli
reside.

SIMULATION 4: SINGLE-PAIR
DISCRIMINATIONS

Faithful replication of Iwai and Mishkinʼs (1968) two tasks
necessitated the use of different stimulus set sizes: a sin-
gle pair of stimuli for pattern relearning and eight pairs in
the concurrent discrimination task. Increasing set size is
thought to increase the level of feature ambiguity be-
tween stimuli (Bussey & Saksida, 2002), which, in the
case of the Concurrent Discrimination task, would create
a greater need for whole-preferring conjunctive stimulus
representations on Layer 3. Thus, our simulations of Iwai
and Mishkinʼs concurrent discrimination task demon-
strate that dependence of performance on Layer 3 arises
as a consequence of the cumulative feature ambiguity pro-
duced by a large set size. Would performance on the con-
current discrimination task also depend on Layer 3 if
feature ambiguity were created not by cumulative feature
ambiguity but by feature ambiguity between a single pair
of complex stimuli? Our theory predicts that it would; we
made that prediction computationally explicit in the pres-
ent simulation.

Figure 7. Schematic illustration of how stimulus inputs were
“morphed” or blended by Bussey et al. (2003) and in Simulation 3 of the
present article. The left panel shows a pair of stimuli with low feature
ambiguity, in which all feature units are either fully activated (1.0) or
fully off (0.0) and no features are common to the two stimuli. The right
panel shows a pair of stimuli with high feature ambiguity, in which units
that were fully activated in the low ambiguity pair have become less
active (0.75) and units that were previously inactive have become
partially active (0.25). The units in one stimulus that become partially
active are the same units that are highly active in the other stimulus of
the pair. This process parallels the morphing process used on
photographs shown to monkeys in Bussey et al. (2003).

Figure 8. Acquisition of
discriminations between
morphed stimuli by the
extended PMFC model. Circles
show percent correct in each
successive block of eight
training trials. (A) Low feature
ambiguity condition. (B) High
feature ambiguity condition.
Asterisks indicate significant
differences between the groups:
*p < .05, **p < .01.
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Methods

Stimuli

We constructed a pair of complex stimuli that mirrored
the single pair of simple stimuli used in the pattern re-
learning task, in that they possessed 50% ambiguous fea-
tures. We simulated single pair discriminations with both
simple and complex stimuli (of the form BC+ vs. CD−
and BCDE+ vs. DEFG− for “simple” and “complex,” re-
spectively). Both simple and complex tasks were learned
by lesioned networks postoperatively, that is, we did not
perform preoperative learning followed by postoperative
reacquisition, as in pattern relearning above.

Training

Three groups of eight networks were initialized and trained
as in the concurrent discrimination learning simulations
described above, except that only one pair of stimuli was
used for each of the two tasks, simple and complex.
Networks were trained to a criterion of two consecutive
blocks of 10 trials in which nine or more responses were
correct.

Results

It can be seen from Figure 9 that the model predicts a
Layer 3 lesion deficit for a single-pair discrimination be-
tween complex, feature-ambiguous stimuli, and a Layer 1
lesion deficit for a single-pair discrimination between sim-
ple, feature-ambiguous stimuli. A two-way ANOVA with

Task (simple, complex) as within-subjects factor and Lesion
Group (posterior, middle, anterior) as between-subjects
factor revealed a significant main effect of Lesion Group,
F(2, 21) = 11.19, p< .001, a significant main effect of Task,
F(1, 21) = 7.24, p < .05, and a significant Task × Lesion
Group interaction, F(2, 21) = 19.68, p < .001.

Discussion

This result shows that concurrent object discriminations
are not necessary to reveal impairments with Layer 3 le-
sions. There is no fundamental difference between the
way in which feature ambiguity in discriminations of com-
plex stimuli induces dependence on Layer 3 and feature
ambiguity in discriminations of simple stimuli induces de-
pendence on Layer 1.
There are some extant experimental data that speak to

these predictions. First, we can extrapolate from the pat-
tern relearning task of Iwai and Mishkin (1968) that initial
learning (i.e., without the relearning paradigm) of a dis-
crimination between two simple patterns is likely to be
impaired by posterior VVS lesions. Second, Bussey et al.
(2003) trained monkeys with PRh lesions to discriminate
a single pair of complex stimuli and found impairments.
To illustrate the extended PMFCmodelʼs mechanism for

single pair discriminations, Figure 10 shows the patterns of
activation elicited by two simple stimuli across the three
layers of the network. The patterns of activation elicited
by two complex stimuli in the network are illustrated in
Figure 11. In the simple single pair discrimination, at each

Figure 9. Performance of the extended PMFC model in simulating
“simple” and “complex” single pair discriminations. Acquisition data for
simple stimuli are shown with filled circles and solid lines; data for
complex stimuli are shown with open circles and dotted lines.

Figure 10. Schematic illustration of the representations in the model
of stimuli used in the simple single pair discrimination task. Active units
are shown in color; darker color indicates higher activity. At each of the
three layers, the representations of BC and CD activate an overlapping
set of units. However, in Layer 1, there is greater differentiation in
activity amongst the units, yielding the least overlapping activation
patterns: this layer is the most useful for solving the discrimination.
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of the three layers, representations of BC and CD acti-
vate an overlapping set of units (Figure 10). Within each
Layer 1 stimulus representation, the most active unit is
relatively more active compared with the least active unit
than is the case in Layer 2 or Layer 3 representations. This
enhanced differentiation of unitsʼ activities in Layer 1 effec-
tively reduces overlap between the two different stimulus
representations for BC and CD. The enhanced differen-
tiation of unitsʼ activities is due to inhibition of collateral
units by the “winning unit,” as described above. In Layers 2
and 3, several units share the status of “winner,” leading to
a more distributed pattern of activity for each stimulus,
which results in poorer discrimination. Removal of Layer 1,
therefore, has the most devastating effect on the discrimi-
nation of simple patterns.
In the complex single pair discrimination, the represen-

tations of BCDE and DEFG again activate an overlapping
set of units (Figure 11). In this case, Layer 3 provides the
most highly discriminable activation patterns representing
stimuli BCDE and DEFG because Layer 3 contains the two
units that represent the exact four-featured conjunctions
BCDE and DEFG. Removing Layer 3, thus, has the most
profound effect on the discrimination of patterns with four
visual features. It is the same mechanism that accounts
for data from the concurrent discrimination learning task
of Iwai and Mishkin (1968).

SIMULATION 5: STIMULI OF
INTERMEDIATE COMPLEXITY

In the present account, the degree of discrimination im-
pairment caused by a lesion should reflect the extent to
which the to-be-discriminated stimuli are “optimally” rep-
resented in the brain region that is lesioned. To complete

our demonstration of the modelʼs predictions, we report a
final simulation, in which the discriminanda are stimuli
of complexity intermediate between those of the simple
pattern and concurrent discrimination tasks of Iwai and
Mishkin (1968). In the spectrum of complexity we have de-
fined, these intermediate stimuli possess three features. In
this discrimination, we expected to see the greatest impair-
ment in networks that have lesions in the middle layer—
Layer 2.

Methods

Stimuli

We constructed eight pairs of complex stimuli in the same
way that stimuliwereconstructed for theconcurrentdiscrim-
ination task, except that we activated 3 out of a possible
32 units in the input layer, rather than 4, for each stimulus.

Training

Three groups of eight networks were initialized and trained
as in the concurrent discrimination learning simulations
described above. Networks were trained to a criterion of
two consecutive blocks of 10 trials in which nine or more
responses were correct.

Results

It can be seen from Figure 12 that the model predicts a
Layer 2 lesion deficit for a concurrent discrimination be-
tween eight pairs of stimuli of intermediate complexity.
A one-way ANOVA with Lesion Group (posterior, middle,
anterior) as between-subjects factor revealed a significant

Figure 11. Schematic illustration of the representations of stimuli
used in the complex single pair discrimination task. In this task,
Layer 3 provides the least overlapping activation patterns and the
best discrimination between the stimuli.

Figure 12. Performance of the extended PMFC model on concurrently
learning to discriminate eight pairs of stimuli of intermediate level
complexity. Error bars indicate ±SEM.
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effect of Lesion Group, F(2, 20) = 18.00, p< .001. Post hoc
comparisons of group differences, corrected by Sidak ad-
justment, revealed that the group middle differed from
the group posterior ( p < .005) and from the group ante-
rior ( p < .001) but that there was no significant differ-
ence between the group anterior and the group posterior
( p = .30).

Discussion

This simulation result gives a concrete demonstration of
a central aspect of our theoretical account; namely, that a
lesion at any point in the VVS will cause impairments in
visual discrimination learning, if the to-be-discriminated
stimuli possess a level of complexity best represented by
the neurons in the lesioned area. Here, the stimuli pos-
sessed an intermediate level of complexity and it was the
middle group—in which Layer 2 of the networks had been
removed—that showed the greatest degree of impairment
in contrast to the impairment of the posterior group in the
case of simple pattern discrimination and the impairment
of the anterior group in the concurrent discrimination of
complex objects.

GENERAL DISCUSSION

Our simulations demonstrate that dissociable effects of
VVS lesions on visual discrimination learning may reflect
compromised stimulus representations within a single
system rather than separate modules for perception and
memory.

Accounting for Iwai and Mishkin (1968)

We assumed that the visual discriminations used by Iwai
and Mishkin (1968), like any visual discriminations, pos-
sess feature ambiguity. This property of the stimuli may
occur regardless of the level of complexity of those visual
stimuli. The discrimination of stimuli that possess ambig-
uous features is facilitated by conjunctive representations
of those stimuli, for which the whole stimulus is greater
(more “activating”) than the sum of the parts. Such “whole-
preferring” conjunctive representations exist for a given
stimulus only at the point in the VVS where the level of com-
plexity of representationsmatches that of the stimulus. Thus,
any discrimination problem is solved most effectively by a
particular “optimal” stage in the VVS.

In the pattern relearning simulation, the two simple pat-
terns used by Iwai and Mishkin (1968) were represented
by just two features each, AB and BC. The two stimulus
representations in Layer 1 are more discriminable than
those in Layers 2 and 3 because lateral inhibition greatly
enhances the activity of the conjunctive units exactly match-
ing the stimuli AB and BC. Removing Layer 1, therefore,
causes the greatest impairments in discrimination. In the
concurrent discrimination task, representations of similar,
complex stimuli are most discriminable in Layer 3 because

lateral inhibition selectively enhances the activation of the
units exactly representing the conjunction of the four fea-
tures present in each stimulus. So removal of Layer 3 causes
the greatest impairments. Exactly the same mechanism
accounts for the results of the pattern relearning and con-
current discrimination tasks; only the level of stimulus com-
plexity is different.
We note that the trials to criterion measure for networks

with a lesion of Layer 2 is not significantly different from
that of networks with a lesion of Layer 1 in the concur-
rent discrimination task or from that of networks without
Layer 3 in the simple pattern task. Monkeys in the Iwai and
Mishkin (1968) experiment exhibited a more gradual in-
crease in impairment with position of lesion, at least in
the pattern relearning task. The less graded performance
seen in the model than in lesioned monkeys can be ex-
plained in terms of a certain simplification that we have as-
sumed. In the model, each layer contains units of only one
level of complexity: in Layer 1, all units combined exactly
two features into a conjunction; in Layer 2, all units com-
bined exactly three features into a conjunction, and so
on. In cortex, the gradation in complexity of neural repre-
sentations along VVS is surely much less discrete than in
our simple model, that is, each “layer” in VVS is somewhat
heterogeneous in terms of the level of complexity to which
the individual neurons respond. In our model, all units in
Layer 2 respond maximally and most selectively to a stimu-
lus with exactly three features; in the brain, at the point
corresponding to Layer 2, most neural representations will
be of the level of complexity corresponding to three fea-
tures, but a few will be at the level of two features and some
at the level of four features. Hence, the function of those
brain regions emerges as continuous under the present
account.

Feature Ambiguity at Different Levels of
Stimulus Complexity

The extended PMFC model predicts that if the feature am-
biguous discrimination experiment of Bussey et al. (2002)
were replicated using simple stimuli, such as lines of vary-
ing orientation, monkeys with posterior VVS lesions would
be more impaired than monkeys with PRh lesions. This
prediction follows from a key assumption of the model:
Resolution of feature ambiguity is performed at all stages
of the VVS, not just at the anterior end. Whether a region
of VVS is critical for a discrimination depends on whether
the feature ambiguity present in the discrimination is best
resolved in the region of brain damaged by the lesion.
Rosenthal and Behrmann (2006) presented some data

from human subjects that speak to the prediction for mon-
keys described in the previous paragraph. They tested a
patient, J.W.—who has an extensive lesion of V2 in both
hemispheres and no evidence of damage at higher level
areas of the ventral stream—on a visual discrimination
learning task with simple stimuli. J.W. and age-matched
controls were required to learn to discriminate between
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three classes of visual stimulus, with feedback. All stimuli
were composed of a pair of white stripes on a gray back-
ground, and the only difference between the three cate-
gories was the width of the white stripes: in category A,
both stripes were narrow; in category B, both stripes were
of intermediate width; and in category C, both stripes were
wide. Thus, the stimuli across the three categories shared
many perceptual properties, making their category mem-
bership highly ambiguous. J.W. was impaired in the ac-
quisition of this discrimination, requiring many sessions
of learning to acquire good discrimination performance,
while controls acquired the discrimination in the first train-
ing session. Therefore, in human subjects, damage to early
stations in the VVS is sufficient to cause impairments in the
classification of simple visual stimuli, just as observed in
nonhuman primates by Iwai and Mishkin (1968).

Representational Requirements

A prediction of our framework for understanding lesion ef-
fects is that the specificity of representations required for
solving a task is determined by the representational require-
ments of the task (Tyler et al., 2004). According to our view,
representational requirements are affected by at least two
factors: the properties of the stimulus material and the task
instructions. The first factor—the properties of the stimulus
material—influences representational requirements by de-
termining the degree of detail in which stimuli must be rep-
resented to resolve the task. For example, if the stimuli are
complex but possess no ambiguous features, even posterior
stages will be able to discriminate them using representa-
tions of simple features. The anterior stage that represents
these stimuli conjunctively only becomes critical for the
discrimination if the stimuli possess ambiguous features.
The second factor—the task instructions—determines the
representational requirements of the task in a similar way.
Perhaps the way in which a stimulus is represented is not
consistent across different tasks because the representation
constructed need only be as detailed as the task solution
demands (Palmeri & Tarr, 2008). For example, subjects
might be required to discriminate between stimuli in one
task and to categorize the same stimuli on the basis of a sim-
ple visual property in another task. Discriminating between
complex, feature-ambiguous stimuli requires conjunctive
representations of anterior-level complexity, but a categori-
zation task using the same stimuli, in which categories are
defined by one visual feature, would require only simple
(posterior) representations of the features of those com-
plex stimuli. This analysis provides a very different account
of categorization to that provided by the traditional, modu-
lar view (Knowlton & Squire, 1993).

Functional Dissociations

The present simulations demonstrate a double dissocia-
tion, which is often interpreted as evidence for two mod-

ules. Yet we claim that our account of object processing is a
continuous, hierarchical one. The present study shows
how our claim can be reconciled with the data, by demon-
strating that a double dissociation does not necessarily
imply modularity at the cognitive level, because the simu-
lation results emerge from a mechanism that eschews cog-
nitive modules. Our model is, of course, a simplification of
the brain: We have instantiated successive regions of VVS in
only three layers. To better conceptualize how the function
of this system could be truly continuous, one can imagine a
model with ten layers or one hundred. With one hundred
layers, we could take pairs of layers chosen at random, and
the closer those two layers happen to lie in the continuum,
themore similar would be their contribution to discriminat-
ing stimuli of a given complexity. In the limit of a very large
number of layers (as in the brain), the change in function
across the layerswould be revealed as continuous. Thedou-
ble dissociation revealed in the simulations arises through
the comparison of two tasks that use stimuli lying at oppo-
site ends of the spectrum of stimulus complexity (or, at
least, the spectrum represented in our model). There is
no difference in processing mechanism at the two points
in the model at which lesions produce opposite behavioral
effects; the only difference is the complexity of stimulus
representations residing at those points. Similarly, Plaut
(1995) has presented a connectionist account of a double
dissociation between concrete and abstract word reading
in dyslexia. The double dissociation produced by damaging
the network is a consequence of a functional specialization
that arises in themodel, without an assumption ofmodular-
ity. As Shallice (1988) remarked, “If modules exist, then
double dissociations can reveal them. However, finding
double dissociations is no guarantee that modules exist.”

One prediction of this framework is that if discrimina-
tion performance were tested on a range of stimuli whose
complexity increased incrementally, the effect of a lesion
in anterior VVS would also increase incrementally, and
the effect of a lesion in posterior VVS would decrease in-
crementally. A related prediction is that object processing
in the healthy brain should differentially engage different
regions of the VVS, depending on the level of detailed
information that must be extracted from an object. A
neuroimaging study by Tyler et al. (2004) has tested this hy-
pothesis. Healthy subjects were shown pictures of every-
day objects and asked to name them either at a “basic”
level (e.g., as a donkey or hammer) or at a “domain” level
(e.g., as a living thing or manmade object). When the task
required detailed information to differentiate between ob-
jects (naming at a basic level), anteromedial regions of the
left temporal lobewere recruited, andwhen the task did not
demand such detailed information (naming at a domain
level), activation was limited to bilateral posterior regions
of IT. Tyler et al. also tested two patients with bilateral ante-
rior temporal lobe damage on a picture-naming study com-
parable to that used in healthy subjects. The patients were
impaired on naming at a basic level but very accurate at
domain level naming.
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An Alternative to Cognitive Modularity

The account that we present represents a completely differ-
ent paradigm from the prevailing view in the field, in which
the brain is divided into discontinuous modules, each de-
fined according to a particular psychological function. The
two accounts differ in at least two important respects.

First, our model is a single system in which the compu-
tational processes at each stage in the hierarchy are the
same. We were able to reproduce the double dissociation
of Iwai and Mishkin (1968) without any differences in cog-
nitive processing across brain regions. Therefore, our re-
sults challenge the interpretation of Iwai and Mishkinʼs
observations in terms of cognitive functional modules.
The commonly encountered assumption that double disso-
ciations such as Iwai and Mishkinʼs force an interpretation
in terms of psychological modules cannot be correct. The
success of our simulations suggests that the labels “percep-
tion” and “memory” may be the wrong way to describe
cognition in VVS because these labels imply a host of func-
tional and neural–algorithmical differences between the dif-
ferent regions of the pathway. Rather, differences in the
cognitive role of different brain regions may be due to differ-
ences in the representations that thosebrain regions contain.

Second, the modular view posits modules that are in-
volved in a single psychological function: A region involved
in, say, memory performs that function to the exclusion
of any role in perception. In this view, the brain adheres
to the rule, “one region, one function.” In contrast, our
account claims that different regions contain different stim-
ulus representations but that each region can, in principle,
be involved in a range of cognitive functions. It may be
that some representations (the simpler ones, in posterior
regions) tend to bemore useful for traditional “perceptual”
tasks, whereas other representations (the complex ones,
in anterior regions) are often more useful for “memory”
tasks. When representational requirements and task labels
are unconfounded by careful manipulation of stimulus ma-
terial, it has been revealed that anterior regions previously
thought to mediate only memory are also involved in per-
ception (Lee, Scahill, & Graham, 2008; Bartko, Winters,
Cowell, Saksida, & Bussey, 2007). Similarly, López-Aranda
et al. (2009) recently demonstrated that cells in Layer 6
of the visual cortical area V2 are involved in object recog-
nition memory, contradicting the notion that regions in
posterior VVS are involved in only visual perception.

In line with the modelʼs suggestion that visual percep-
tion and visual memory are distributed across common
brain regions, several authors have rejected the modular
approach to higher order perception and memory. Gaffan
(1996, 2002) has argued strongly against using the concept
of a module for memory or “memory system” in the brain.
Bussey (2004) also questions the utility of the modular,
“multiple memory systems” framework. Palmeri and Tarr
(2008) join these authors in outlining the weaknesses of
a multiple memory systems approach. They note that mul-
tiple memory systems theories typically do not answer

specific questions about underlying cognitive mechanisms
such as how memories are encoded, represented, and
processed. Further, Palmeri and Tarr point out that this
weakness of the modular approach to memory is paral-
leled in modular accounts of visual perception that assign
independent systems to particular kind of objects. Finally,
Saksida (2009) has argued that the VVS and MTL should
not be segregated according to their putative roles in per-
ception and memory, rather the entire pathway is impor-
tant for both of these cognitive functions.
In addition, there is a movement in the human cognitive

literature advocating an account of cognition in termsof dis-
tributed cortical function. Some have proposed a process-
driven account of cognition (e.g., Kolers & Roediger, 1984)
or a levels-of-processing framework (Craik & Lockhart,
1972), in which memory is conceived of as a by-product
of perception. More recently, Goldstone and Barsalou
(1998) have suggested that higher order conceptual pro-
cesses are grounded in perception. Fuster (2003) referred
to the alternative, unitary account as a “network model of
cognition”; Foster and Jelicic (1999) described it as a “pro-
cessing” view.

A Continuous Hierarchical Account of
Object Processing

Thus, the case against a modular organization of percep-
tion and memory is gaining momentum. The model we
present in this article is one example of the general ap-
proach, which ties in the levels-of-processing view of per-
ception and memory advocated by cognitive psychologists
(e.g., Craik & Lockhart, 1972) with neurobiological prop-
erties of the brain.
Several strands of research are now converging to pro-

vide support for a continuous, hierarchical account of
object processing. In addition to the anatomical and neuro-
physiological evidence, there is a growing body of theoret-
ical work in favor of the new view. For example, Ullman
et al. (2002) performed a computational analysis of visual
images that measured the amount of information delivered
by particular features about the class membership of the
images. The features they sampled were subregions of
the full images at a range of sizes and resolutions, and
the features that emerged as most informative for classifi-
cation were those of intermediate level complexity. The
proposed reason for the superiority of intermediate com-
plexity features over both smaller, simpler components
and larger, more complex fragments is that intermediate
features strike the optimal balance between specificity
and frequency of occurrence. That is, for classification at
the basic level, small, simple features occur so frequently
in visual objects that they appear in many classes of object
and cannot be used for discriminating between classes, but
larger, complex features are so specific to one instance of a
visual object that they cannot be used to generalize to dif-
ferent instances of the same class. The authors speculated
that the features their information-theoretic model showed
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to be optimal might map onto the features preferred by
neurons in IT. In addition, Ullman et al. (2002) suggested
that in tasks requiring the identification of specific objects,
the optimal features would instead be global object views,
that is, more complex features. Indeed, Zhang and Cottrell
(2005) tested this hypothesis by extending the method of
Ullman et al. (2002) to look for the features that are most
useful in a subordinate level classification task, namely, face
identification. They found that large areas of faces consti-
tuted the most informative fragments for face identifica-
tion, confirming that the optimal representations for a
task that demands detailed discriminations between similar
stimuli are those with a high level of complexity.

Conclusions

We have presented an extension of the PMFC model to
investigate the effect of lesions in VVS. Our single-system
account can explain data from lesion studies including
those of the canonical study of Iwai and Mishkin (1968),
in which lesions in posterior versus anterior regions of
VVS differentially affected performance on two visual dis-
crimination learning tasks. We ask whether observed dis-
sociations between memory and perception often arise
because putative memory tasks typically require complex
representations found inmore anterior areas of VVS,whereas
tasks presumed to tap perception require simpler repre-
sentations located in posterior regions? Perhaps, in general,
double dissociations are best interpreted not as an indica-
tion of functional modularity but as a demonstration of dif-
ferences in the level of processing carried out by different
points in a representational hierarchy. The present results
could have far-reaching implications for categorization,
perceptual learning, and recognition memory: Patterns of
impairment in these functions following brain damage may
reflect the demand that each task places on stimulus repre-
sentations rather than dissociable cognitive modules.

APPENDIX

Network Overview

The network consists of an input layer, three stimulus
representation layers (Layer 1, Layer 2, and Layer 3),
and a single outcome node whose activation represents
an event, for example, reward. Weights on the links be-
tween the input layer and Layers 1 to 3 are fixed. Upon
presentation of an input stimulus, units in Layers 1, 2,
and 3 are activated according to the similarity of the in-
put pattern to the conjunction of features the unit rep-
resents. All units in Layers 1, 2, and 3 are linked to the
outcome node with weights that are adjustable by an as-
sociative learning rule. Weights are adjusted every time
the network makes a “choice” response between a pair
of stimuli; the size of the adjustment is proportional to
the activation of the unit and the discrepancy between

the response and the outcome. Each layer computes a
response to a stimulus, which is the sum of the unitsʼ ac-
tivations multiplied by their associative weight strengths.

Initialization

Weights on the links between the input layer and Layers 1,
2, and 3 are set on initialization of the network. Each
Layer 1 unit is connected to two input units, each Layer 2
unit is connected to three input units, and each Layer 3
unit is connected to four input units. Weight values are
chosen so that the total weight value converging on any
unit in Layers 1, 2, and 3 is 1. Thus, weights connecting
an input unit to a Layer 1 unit are set to a value of 0.5,
weights connecting an input unit to a Layer 2 unit are set
to 0.33, and weights connecting an input unit to a Layer 3
unit are set to 0.25. It is assumed that a subset of all pos-
sible combinations of visual features are already “known”
to the network. Layer 1 contains all possible combi-
nations of two visual features into a conjunction, giving
496 units, Layer 2 also contains 496 units, that is, a ran-
domly selected 10% subset of all possible three-feature
combinations, and Layer 3 contains 496 units, each rep-
resenting the conjunction of four visual features, which
corresponds to 1.38% of all possible four-feature conjunc-
tions. In addition, extra units in Layers 2 and 3 can be
recruited as required on presentation of stimuli that con-
tain conjunctions not already existent in the network.

Calculating the Activation of a Unit in Layers 1, 2,
and 3

A stimulus S is represented on the input layer as a vector
of activations, each element taking a value between 0 and
1. An activation value of 1 for an element represents the
presence of the “visual feature” corresponding to that
element in the vector, and an activation value of 0 repre-
sents the absence of that feature. Activations that are in-
termediate between 0 and 1 represent features that are
only weakly present.

Because the calculation of activation is the same for
units in Layers 1, 2, and 3, we refer to the layers col-
lectively as Layer N. Every Layer N unit, indexed by j, is
connected to certain units in the input layer indexed by i,
via a link with weight wji. For every unit j in Layer N,
there exists a set of weighted links wj (a vector of weight
values) between each unit i in the input layer that is con-
nected to that Layer N unit. The stimulus vector is mapped
onto Layer N units according to Equation A1.

aj ¼
X
i

aiwji; ðA1Þ

where aj is the activation of the Layer N unit, ai is the
activation of the input layer unit, and i refers to the set
of all input units to which the Layer N unit is connected.
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When a stimulus is presented to the network, the unit
or units in Layer N with the highest activation value are
chosen as the “winning unit” or “winning units.” A lateral
inhibition function is then applied to the activations. The
function depends on the number of winners in the layer
and the activation level of that winner according to the
following equation:

⌢aj ¼ expð−Qð1 − ajÞÞ; ðA2Þ

where

Q ¼ q
nN

winnersN

� �
aj* ðA3Þ

In which q is a constant, nN is the number of units in
Layer N, winnersN is the number of units in Layer N with
the maximum activation level, and aj* is the maximum ac-
tivation level in Layer N. Equations A2 and A3 ensure that
the lateral inhibition function is the steepest when there
are few winners and the activation level of those winners
is high, which corresponds to the likely outcome of lat-
eral competition between collateral units.

The effect of this dampening function is that any unit
in any layer of the network strongly prefers an exact
match between the input pattern and the precise con-
junction of features that the unit represents; that is,
“the whole is more then the sum of the parts.” If there
is more than one winning unit in Layer N, for example,
when the input stimulus is not of the level of complexity
best represented by that layer, the lateral inhibition is
much weaker, according to Equations A2 and A3. This re-
flects the lack of response selectivity found in IT neurons
for stimuli that are not of the preferred level of stimulus
complexity for neurons in that region of IT (Kobatake &
Tanaka, 1994).

The activation value, aj, of each unit in Layer N pro-
duced by Equation A2 is then normalized according to
Equation A4.

hj ¼
⌢ajffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1

⌢a2
j

r ; ðA4Þ

where hj is the normalized activation of Layer N unit j,
and n is the number of units in Layer N.

Associative Learning

After the pattern of activation due to a stimulus has been
determined in all layers, the weights on the links between
units in Layer N and the outcome node are adjusted to an
extent dependent on the activation of the sending unit
(described subsequently). Subsequent presentations of
the stimulus will activate the outcome node and lead to
performance of a conditioned response or CR.

The tasks simulated in the present article are from a si-
multaneous visual discrimination learning paradigm in
which an animal would be required to choose one of two
simultaneously presented stimuli. In these simulations, the
stimuli are presented to the network one at a time, so a
“choice” is simulated by first presenting stimulus A and cal-
culating a CR value, then presenting stimulus B and calcu-
lating the corresponding CR elicited, then comparing the
two CR values in a probabilistic fashion (described below)
to determine the networkʼs response.
The total CR output of the network for a given pattern

is the sum of the independent CR contributions from
each of Layers 1, 2, and 3. The CR value for Layer N,
CRN, is the sum over all units of the product of the acti-
vation of each unit j and its weight to the outcome node
woj (Equation A5).

CRN ¼
Xn
j¼1

woj � hj; ðA5Þ

where hj is the normalized activation value of Layer N
unit j, woj is the weight from unit j to the outcome node,
and n is the number of units in Layer N. The total CR for a
pattern, CRtot, is the sum of the three CRN values from
each of Layers 1, 2, and 3.
The associative weights for each Layer N are updated

according to the delta rule (Rescorla & Wagner, 1972) in
proportion to the activation of the corresponding Layer N
unit (Equation A6).

Δwoj ¼ αhj
λ

3
−

CRtot

3

� �
; ðA6Þ

in which α is a constant learning rate, and λ is the value
of the reinforcer. In simulations in which a layer is le-
sioned, so that only two layers remain, both λ and CRtot
are divided by 2 rather than 3.

Behavioral Output

The output of the model is the CR to each of the pre-
sented stimuli. The behavioral response—the selection
of one stimulus from the pair—is a stochastic choice that
depends on the magnitudes of CR(A) and CR(B), elicited
by paired patterns A and B, respectively. To choose a re-
sponse, a random number between 0 and 1 is generated.
If learning is not yet at asymptote and the random num-
ber is greater than the sum of CR(A) and CR(B), a choice
is selected randomly. If CR(A) is greater than the ran-
dom number, action A is chosen. If CR(A) is less than the
random number, action B is chosen. Thus, as CR(A) in-
creases, so does the likelihood that CR(A) is greater than
the random number and that a stimulus A is chosen. In
addition, if the sum of CR(A) and CR(B) is greater than 1,
the random number is multiplied by the sum of the two
CRs before comparison with CR(A) is made, to scale up
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the comparison number appropriately. This avoids a bias to
choose CR(A) in highly trained networks where both CR(A)
and CR(B) are high.

Parameters

Input stimuli consisted of a vector of 32 elements—each
element corresponding to a visual feature—inwhich a num-
ber of features were “present” (taking activation level 1)
and all other possible features in the input layer were
“absent” (activation 0). Simple stimuli contained two ac-
tive input elements, complex stimuli contained four active
input elements (except in Simulation 3 with “morphed”
stimuli; see Methods), and intermediate stimuli contained
three active input elements. Identical network parameters
were used for all simulations presented in this article: λ =
1.0, α = .0324, q = .02.

Reprint requests should be sent to Rosemary A. Cowell, Psychol-
ogy Department, University of California, San Diego, 9500 Gilman
Drive #0109, La Jolla, CA 92093-0109, or via e-mail: rosie.cowell@
gmail.com.
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