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This article presents data and theory concerning the fundamental question of how the brain achieves a
balance between integrating and separating perceptual information over time. This theory was tested in
the domain of word reading by examining brain responses to briefly presented words that were either new
or immediate repetitions. Critically, the prime that immediately preceded the target was presented either
for 150 ms or 2,000 ms, thus examining a situation of perceptual integration versus one of perceptual
separation. Electrophysiological responses during the first 200 ms following presentation of the target
word were assessed using electroencephalography (EEG) and magnetoencephalography (MEG) record-
ings. As predicted by a dynamic neural network model with habituation, repeated words produced less
of a perceptual response, and this effect diminished with increased prime duration. Using dynamics that
best accounted for the behavioral transition from positive to negative priming with increasing prime
duration, the model correctly predicted the time course of the event-related potential (ERP) repetition
effects under the assumption that letter processing is the source of observed P100 repetition effects and

word processing is the source of observed N170 repetition effects.
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The brain must achieve a balance between integrating and
separating information over time. Over short durations (e.g., tens
of milliseconds), the brain needs to integrate sensory information
to provide a stable and interpretable percept; but, over longer
durations, it needs to distinguish between distinct sensory events.
Behaviorally, these phenomena have been studied using short-term
priming experiments, where two stimuli are presented close in time
and the impact of the first (prime) stimulus on perception of the
second (target) stimulus is measured (e.g., Evett & Humphreys,
1981; Meyer & Schvaneveldt, 1971).

Using identical prime-target stimuli (i.e., repetition priming) and
a forced-choice test of words flashed at perceptual threshold,
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recent studies have observed enhanced identification of repeated
targets following short prime durations (e.g., less than 200 ms), but
impaired identification following longer prime durations (Huber,
2008; Huber, Shiffrin, Lyle, & Quach, 2002; Huber, Shiffrin, Lyle,
& Ruys, 2001; Huber, Shiffrin, Quach, & Lyle, 2002; Weidemann,
Huber, & Shiffrin, 2005, 2008). Such findings help clarify the
large and varied literature regarding short-term priming facilita-
tions and deficits (e.g., Eimer, 1995; Hochhaus & Johnston, 1996;
Humphreys, Besner, & Quinlan, 1988; Marcel, 1983; Masson &
Borowsky, 1998; Meyer & Schvaneveldt, 1971; Meyer, Schvan-
eveldt, & Ruddy, 1974), suggesting that the extent of prime pro-
cessing is a critical factor that may potentially eliminate or even
reverse priming effects.

Such reversals with prolonged presentations or with increased
prime salience are found with many other paradigms. For instance,
interpretation of a visual stimulus that is ambiguous in the depth
plane is biased towards a primed interpretation following an un-
ambiguous prime, but this finding reverses to a bias against the
primed interpretation when the unambiguous prime is seen for
many seconds (Long, Toppino, & Mondin, 1992). A similar result
is found with face perception. Leopold, O’Toole, Vetter, and Blanz
(2001) created a “face space” using morph technology, finding that
prolonged (5 s) presentation of an antiface enhanced perception of
a target face (see Rhodes et al., 2005, for a recent review of face
adaptation effects). The inability to adequately perceive a repeated
stimulus is also found in the phenomenon termed “repetition
blindness,” in which the second occurrence of word within a
sentence is not noticed (Kanwisher, 1987; Kanwisher, Kim, &
Wickens, 1996; Whittlesea, Dorken, & Podrouzek, 1995). Similar
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reversals after extended processing are also found in less percep-
tual domains, such as attentional processing for inhibition of return
(Klein, 2000; Posner & Cohen, 1984; Samuel & Kat, 2003) and
reversals in evaluative priming (Glaser & Banaji, 1999; Murphy &
Zajonc, 1993). Huber and O’Reilly (2003) reviewed these para-
digms and others, relating them to forced-choice perceptual iden-
tification, as well as to the neural dynamics that may underlie all
these phenomena. Subsequently, Huber (2008) tested this neural
account behaviorally with a range of prime durations while exam-
ining repetition priming, associative priming, and masking effects.
The current studies take this same account and test neural behavior
as predicted from response behavior.

In the reported studies, we used forced-choice perceptual iden-
tification for words to investigate these dynamics, but the theory
we tested has implications for many tasks that involve the imme-
diate effect of one stimulus on a subsequent stimulus (see Huber,
2008, for a review of these implications). The current paradigm
modifies the original perceptual identification task of Humphreys
et al. (1988) by using forced-choice testing to reveal the costs as
well as the benefits of priming through conditions that prime the
wrong alternative versus conditions that prime the correct alterna-
tive. As seen in Figure 1, the participants’ task was to identify the
briefly flashed target word (e.g., PATCH) presented in the center
of the screen immediately following presentation of one (Experi-
ment 1) or two (Experiments 2 and 3) prime words. Target flash
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durations were set individually at the perceptual threshold for each
participant such that accuracy was approximately 75% in forced-
choice identification (e.g., a choice between HURRY and
PATCH). In the repeated condition, the target was a repetition of
a prime word (also known as the target-primed condition), and in
the novel condition, the target was a word previously unseen in the
experiment. A novel target flash could be further broken down into
two additional behavioral conditions, depending on whether nei-
ther choice word was primed (a true baseline condition, also
known as the neither-primed condition, which is not shown in
Figure 1) or whether the incorrect foil choice word was primed (a
condition that assesses the costs of priming, also known as the
foil-primed condition, which is labeled novel in Figure 1). The
current experiments only included this foil-primed case that as-
sesses the costs of priming; but, for reasons of consistency, we
nonetheless refer to this as the novel condition, considering that we
examined electrophysiological responses to the briefly flashed
target word prior to the onset of the choices (thus, nothing was
primed at this point within the sequence of events). Nevertheless,
it is important to keep in mind that the novel condition still
involved priming, although it took the form of priming a choice
alternative (i.e., decisional priming) rather than priming the target.

Priming may result in an interactive effect, for instance if more
information is extracted more quickly from the briefly flashed
target. A positive interaction between prime and target is defined
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novel
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SHADE

repeated novel repeated
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PATCH HURRY SHADE
for both primes
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primes 2000 ms (long)

ﬁ final 150 ms

long conditions shown
(for short conditions,
reverse prime positions)

target flash
(ERP and MEG)

presentation
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forced choice
(behavioral data)
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Figure 1.

Presentation sequence for the reported experiments. Behavioral responses are collected at the time

of the forced-choice presentation (decision) but the reported experiments examined electrophysiological re-
sponses at the time of the target flash (perception). Participants attempted to identify which choice word was the
same as the briefly flashed target word. Target flash duration was set individually to place performance at 75%,
which resulted in a duration of 70 ms on average. The pattern mask duration was set so the delay between target
onset and forced choice onset was 500 ms. All experiments compare conditions where the target repeats a prime
(repeated) versus conditions where the target is new (novel) but the incorrect foil choice word repeats a prime
(i.e., a foil-primed condition that assesses the costs of priming). Experiment 1 used a single prime word presented
for 150 ms (short) or 2,000 ms (long), with the same prime word appearing simultaneously both above and below
fixation. Experiments 2 and 3 used two different prime words, with the upper prime word presented for 2,000
ms and the lower presented for the final 150 ms prior to the target flash. One of the two choice words was a
repetition of either the upper prime (long) or the lower prime (short). Participants were instructed that there could
be no effective strategy in relation to the prime words considering that the correct target word was just as often
a repetition of a prime as the incorrect foil word. Trial-by-trial feedback reinforced this claim.
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as larger performance gains when priming the target compared to
performance losses when priming the foil. Alternatively, priming
may result in an additive effect, changing performance without
changing the information gained from the target flash, which
results in equal-sized performance gains and losses when priming
the target versus priming the foil, both compared to the neither-
primed condition in which neither choice is primed. If the main
effect of priming is one of spatial/temporal source confusion, with
the primes mistaken for the briefly flashed target, this will be
revealed as an additive effect, with increased choice accuracy in
the repetition condition but decreased choice accuracy in the novel
condition that primes the foil. For example, if both the prime and
target are the word PATCH, then this might result in a higher
probability of correctly choosing PATCH. In contrast, if the prime
is HURRY and the target is PATCH, this might result in an
increasing probability of incorrectly choosing HURRY (i.e., lower
performance compared to no priming).

The reported experiments do not include a truly unprimed
condition (i.e., prime words unrelated to both choice words)
against which these two priming conditions are compared, but
previous research (Hochhaus & Johnston, 1996; Huber, 2008;
Huber, Shiffrin, Lyle, et al., 2002; Huber et al., 2001; Huber,
Shiffrin, Quach, et al., 2002; Masson & Borowsky, 1998; Weide-
mann et al., 2005, 2008), demonstrated that priming is largely
additive, with approximately symmetric costs and benefits (al-
though see Huber, 2008, for conditions that demonstrated small
interactive deficits with repetition priming and small interactive
benefits with associative-semantic priming). It is tempting to con-
sider a decisional interpretation of such additive priming effects in
which participants simply wait for the choice words and choose the
word that is recognized as the prime. If applied to those trials
where the target was not directly perceived, this would help
performance in the target-primed (repeated) condition but hurt
performance in the foil-primed (novel) condition, both compared
to the baseline neither-primed condition. The primary goal of this
work is to differentiate between such a decisional account versus
a perceptual account by examining brain responses prior to the
presentation of the choice words that define the choice alternatives.

Thus, electrophysiology is ideally suited to covertly measure when
in time the priming effect occurs: At the time of the choice words
(decision) or at the time of the target flash (perception).

With prime durations ranging from subliminal to several sec-
onds (see Figure 2), priming remains largely additive in nature
(Huber, 2008), although the pattern of prime induced costs and
benefits changes direction from positive to negative priming
(Huber, 2008; Huber, Shiffrin, Lyle, et al., 2002; Huber et al.,
2001; Huber, Shiffrin, Quach, et al., 2002; Weidemann et al.,
2005, 2008), and this is taken as the signature pattern of the
transition from integration to separation of perceptual events
(Huber & O’Reilly, 2003). As seen in Figure 2, these effects are
very large, and 50 ms of prime viewing can result in reliably
choosing the wrong answer more often than the correct answer for
the novel condition that primes the incorrect choice. In other
words, people are confused regarding what was presented when
and where and often fully mistake the prime for the target. Nev-
ertheless, after a few hundred milliseconds of prime viewing, this
pattern completely reveres and now the tendency is not to choose
whatever has been primed.

These priming reversals are explained as the discounting of the
prime in order to reduce source confusion. Furthermore, there is
ample evidence that this discounting is implicit in nature rather
than due to strategic bias. For instance, these effects exist across
manipulations of the proportion of primed trials (Weidemann et
al., 2008). Additionally, discounting is ineffective in some condi-
tions but not others, even though the primes are equally salient and
even though these different conditions appear in a mixed design
(see Huber, Shiffrin, Lyle, et al., 2002, for an explanation of these
conditions). Demonstrating these effects, prime durations that
would otherwise produce negative priming, instead produced pos-
itive priming when the decision is between very similar choice
words (Huber et al., 2001), when no target is presented on some
trials (Huber, Shiffrin, Lyle, et al., 2002; Weidemann et al., 2008),
and when the similarity between primes and primed choice words
is very low (Huber, Shiffrin, Lyle, et al., 2002; Huber et al., 2001).
Nevertheless, concluding that these effects are implicit does not
imply that discounting is perceptual in its origin. Therefore, the
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Figure 2. Behavioral data (Huber, 2008) and neural network behavior (Huber & O’Reilly, 2003) using the
same paradigm as Experiment 1 but with the inclusion of additional prime durations. The right-hand panel
exemplifies the role of neural habituation through synaptic depression, resulting in postsynaptic potentials that
reach a maximum and subsequently reduce to a low asymptote following extended prime presentations. This
deactivation due to loss of synaptic resources produces a transition from integration to separation between prime

and target flash.
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current experiments examined early electrophysiological re-
sponses to the briefly flashed target word, which occurs prior to
presentation of the choice options (i.e., prior to the decision pro-
cess), to measure the perceptual basis of variations in priming as a
function of prime duration. If these perceptual neural responses
modulate in the manner predicted by behavioral priming, this will
provide converging evidence that discounting can directly change
perceptual processes.

A Perceptual Account of Priming Based
on Neural Habituation

According to the neural habituation model of Huber and
O’Reilly (2003), which places these priming effects in the percep-
tual response, source confusion (integration) between prime and
target explains the initial tendency to mistakenly blend prime and
target, thus resulting in a greater preference (i.e., additive effect)
for primed words. However, with excessive prime processing,
discounting (separation) results in small or missing perceptual
responses to primed words and, therefore, an apparent preference
against primed words. Huber and O’Reilly hypothesized that the
electrophysiological properties of neurons that integrate excitatory
input over time, combined with transient neural habituation, ex-
plain this transition from integration to separation. According to
their account, these effects naturally and automatically result from
the neural dynamics of perception. Simulating a dynamic neural
network with these properties, their theory explained a wide range
of relevant behavioral data.

A key assumption underlying this account is that participants
monitor the perceptual response to each choice word in deciding
which option was just presented as the target. In other words, the
perceptual fluency of each choice word is used to guide respond-
ing. This is a sensible response strategy considering that the target
is presented at the perceptual threshold and is not often explicitly
identified. Source confusion from the primes boosts the perceptual
response to a primed choice word, whereas discounting reduces the
perceptual response to a primed choice word. This reduction in
source confusion not only minimizes the perceptual influence of
the prime on the target, but it additionally results in a perceptual
disfluency such that the perceptual response to a primed word
occurs more slowly compared to an unprimed word. Thus, because
performance is based on fluency, there is a real deficit in process-
ing a primed choice word, and this can result in a full reversal to
the direction of behavioral priming. In keeping with this claim,
reaction times are found to be faster when choosing a primed word
in the positive priming situation but are found to be slower when
choosing a primed word in the negative priming situation (Huber
& Cousineau, 2004).

The transition from integration to separation is a useful mech-
anism for clearing prior activation, allowing unobstructed percep-
tual processing of new input. It greatly reduces source confusion
and eliminates the tendency to blend together subsequent percep-
tual events. As seen in Figure 2, priming the incorrect choice (i.e.,
the novel condition) is actually beneficial, provided that the prime
is viewed sufficiently long prior to the briefly flashed target. Once
the perceptual system has fully identified and dealt with a percep-
tual object, that object is ruled out as the potential cause of
subsequent perceptions (temporary depression), thereby making it
easier to perceive different subsequent objects (i.e., novelty detec-
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tion). However, such a clearing of activation comes at a cost for
those occasions when a closely related or identical item subse-
quently appears (i.e., the repeated condition in Figure 2). Assum-
ing that subsequent items are more likely to be new rather than
immediate repetitions, this can be viewed as an adaptive mecha-
nism for reducing the unwanted effects of source confusion be-
tween perceptual events that are close in time. Besides reducing
source confusion, this separation serves to highlight novelty, caus-
ing the new aspects of perceptual input to pop out (i.e., temporal
contrast), which is also adaptive in terms of drawing attention to
new, possibly threatening, events.

This bottom-up account of repetition priming deficits assumes
that separation occurs automatically during perception, affecting
processing of the target prior to the choice process. In contrast,
top-down accounts appeal to discounting in the decision process
(e.g., Jacoby & Whitehouse, 1989) or implicit decisional processes
based on optimality. For instance, the responding optimally with
unknown sources of evidence (ROUSE) Bayesian decision model
(Huber et al., 2001) assumes that perceptual processing is un-
changed and that the detrimental effect of an extended prime
presentation is a decision effect in response to the choice words.
Thus, the account based on perceptual separation predicts effects at
the time of the briefly presented target, whereas accounts based on
decision discounting place the effect at the time of the choice
words.

Behavioral examination of target processing requires some sort
of decision process or additional presentation, and, therefore, it is
difficult to differentiate between these accounts based upon overt
response behavior. In contrast, neuroimaging provides a passive
method for covertly monitoring the response to the target word
without eliciting a decision. In the three reported experiments, we
differentiated between a perceptual account versus a decisional
account by examining perceptual (i.e., <200 ms) brain responses
to the briefly flashed target word, which is presented prior to the
choice words. The key qualitative prediction, as outlined below, is
for less of a perceptual response for repeated targets, but this
repetition deficit should lessen in magnitude with increased prime
duration. Next, we describe the representational and dynamic
assumptions of the neural habituation model that we are testing.
We explain the manner in which it handles behavioral data and the
manner in which it was used to produce a priori predictions for
neural repetition effects.

Model Architecture and Dynamics

Full specification of the neural network model was previously
reported by Huber and O’Reilly (2003) and a summary is provided
here. As seen in Figure 3A, the bottom level of the model encodes
visual input at different visual locations (e.g., visual lines),
whereas the middle and top levels encode progressively abstract
higher level representations, such as with identification of letters
and words regardless of screen location. Therefore, these higher
levels suffer both from spatial source confusion and from temporal
source confusion, although habituation serves to reduce temporal
source confusion. In a series of experiments that parametrically
varied prime duration, masking, and the type of priming (repetition
versus associative), Huber (2008) tested not only the dynamics of
this model but also this particular architecture of lines, letters, and
word-level representations, with top-down feedback from the word
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Figure 3. A: The three-level model of Huber and O’Reilly (2003). B: Event-related potential (ERP) repetition
effect predictions following one prime, Experiment 1 (Exp 1), or two primes, Experiment 2 (Exp 2), in the short
and long conditions using previously published parameters (same parameters as Figure 2). C: Equivalent source
dipole positions and orientations that best accounted for the observed ERP results of Experiments 1 and 2. Level
1 is sensitive to lines at specific visual locations. Level 2 responds to the same sequence of letters regardless of
where those letters appear. Level 3 responds to known words regardless of where they appear. The yellow and
blue lines in Panel B present membrane potential summed across all units of the letter (yellow) or word (blue)
levels. ERP repetition effect predictions are derived by assuming that the letter level produces the P100 peak and
that the word level produces the N170 peak. Thus, the black line at the bottom of each graph is the difference
of the blue lines subtracted from the difference of the yellow lines, which corresponds to the assumption of equal
and oppositely oriented dipoles for the letter and word levels. There is a smaller voltage for repetitions during
the time period of the P100 (smaller P100s) and a larger voltage for repetitions during the time period of the
N170 (smaller N170s). Furthermore, the P100 effect is predicted to diminish and the N170 effect is predicted
to increase following long-duration primes. This N170 effect as a function of prime duration is due to the
lingering P100 letter-level effect overwriting the N170 word-level effect following a short-duration prime. Only
following a long-duration prime is the letter-level effect sufficiently diminished to fully reveal the underlying
word level N170 effect. This is particularly true for Experiment 2 because two prime words produce greater
inhibition at the letter level. The results of Panel C confirmed the assumption of equal magnitudes for each level
(the length of the yellow and blue lines) and opposite orientations for each level (the direction of the yellow and

blue lines).

level back to the letter level. This architecture is largely inspired by
the original interactive-activation model of word reading of
McClelland and Rumelhart (1981), which explains the word su-
periority effect, except for the inclusion of habituation.

In simulations with this model, words are presented in the same
temporal and spatial manner as in the experiments and activation
is updated every millisecond. Each simulated neuron includes
excitatory, inhibitory, and leak currents, as dictated by the electri-
cal and diffusion forces operating in real neurons. The effect of
inhibitory interneurons is simulated through local inhibition be-
tween all units within a patch of units (i.e., within the boxes of
Figure 3A). The critical activation variable of these neurons is
membrane potential rather than actual spiking behavior, and each
simulated neuron can be thought of as representing a large number
of spiking neurons that have similar inputs and outputs, with
membrane potential proportional to the average firing rate of the
assembly.

When a neuron produces an action potential and subsequent
neurotransmitter release, the effect of the released neurotransmitter
on the receiving (i.e., postsynaptic) cell lasts for a period of time
ranging from tens to hundreds of milliseconds. Due to these
lingering effects, the excitation from prior action potentials adds
with subsequent action potentials, yielding even greater postsyn-
aptic depolarization (e.g., the voltage potential across the mem-
brane of the receiving cell), and, therefore, greater probability of

producing action potentials in the receiving cell. As a stimulus is
presented longer, or repeated in rapid succession, more total acti-
vation accrues due to this integration process. The model captures
this integration with a Hodgkin-Huxley differential equation for
the gradual increase in postsynaptic membrane potential in the face
of ongoing excitatory input (O’Reilly & Munakata, 2000). This
equation includes a leak current, such that membrane potential
gradually returns to baseline in the absence of excitatory input.
Because the leak current is relatively weak, the return to baseline
takes some time, resulting in lingering persistent activation past
removal of input. This enables the integration of excitatory input
over short time periods.

There are other dynamic properties of synaptic transmission
operating on even slower time scales that serve to eventually
counteract the accumulation of excitatory responses. In other
words, neural responses tend to habituate with ongoing excitation
due to a variety of mechanisms. Because these processes are
slower, postsynaptic neural activity achieves a maximum and then
falls to a low asymptotic level in the presence of prolonged
exposure to a stimulus. These counteracting processes are collec-
tively referred to as synaptic depression, which arises from a
variety of cellular mechanisms that diminish the postsynaptic
effect of each additional presynaptic (i.e., sending) action poten-
tial. These cellular mechanisms include both the depletion of the
resources necessary for effective synaptic signaling as well as
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more direct forms of inhibition. This depletion is temporary in
nature and is driven by recent activity. For instance, calcium is
needed for the release of the vesicles that contain neurotransmitter,
and over time, calcium is gradually depleted as the presynaptic cell
continues to release neurotransmitter. Other counteracting pro-
cesses work on the postsynaptic side, serving to desensitize the
postsynaptic cell to excitatory input. Still other processes work
through slowly accruing inhibitory currents. Regardless of their
source, these counteracting processes have been collectively
termed synaptic depression and quantified through electrophysio-
logical experiments and mathematical models (e.g., Abbott,
Varela, Sen, & Nelson, 1997; Tsodyks & Markram, 1997). Huber
and O’Reilly (2003) used the equation of Abbott et al. (1997) to
dynamically modify the strength of excitatory input between send-
ing and receiving cells. It is important to note that synaptic
depression is transient and is not the same as the long-term
connection strength (i.e., the weight) in a traditional neural net-
work. Instead, synaptic depression is a dynamically varying term
that specifies the transient efficacy of the connection. It is also
important to note that synaptic depression does not have a specific
time course because it is the ongoing use of synaptic resources that
drives depletion. If there is less presynaptic activity, then resources
will be depleted at a slower rate, and synaptic depression will take
place more slowly.

The dynamics of habituation through synaptic depression are
exemplified in the right-hand panel of Figure 2, which shows the
separate variables of presynaptic membrane potential (i.e., activa-
tion), synaptic resources, and the resultant postsynaptic depolar-
ization (i.e., output). Postsynaptic depolarization is equal to the
multiplication of membrane potential and synaptic resources,
which can be thought of as the probability of spiking multiplied by
the resultant depolarization associated with each spike. Although
the same parameters are used for every simulated neuron across
all three levels of the network, the integration time constant is set
to smaller values for higher levels of the network such that the
letter and word representations are slower to activate and slower to
habituate. This is sensible considering the rapidly changing nature
of visual input as contrasted with the need to slowly extract and
maintain meaning across words and sentences.

Modeling Behavioral Data

The right-hand panel of Figure 2 shows a Level 1 neuron (e.g.,
response to visually presented lines) with parameters that produced
the accuracy results seen in the middle panel. Because the postsyn-
aptic depolarization shown in the right-hand panel is the input to
Level 2, this activity dependent “n-shaped” input to letter process-
ing helps explain the seemingly complex behavioral pattern, de-
pending on whether the prime is the same as the target (“n-shaped”
accuracy) or the same as the foil (“u-shaped” accuracy). Because
the target flash duration is set at the identification threshold in this
paradigm, partial activation from the target is assessed in the
decision process according to which choice word activates first.
Residual activation from the target flash supports accurate re-
sponding but residual activation from the prime is also integrated
with subsequent presentations, thereby producing a head start in
the race process of choosing the more fluent word. If this prime-
induced perceptual fluency favors the target, performance im-
proves, but if it favors the foil, performance is harmed.
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The effect of habituation through synaptic depression is twofold.
First, habituation lessens the extent of residual activation. By itself,
this only produces a reduction in the pattern of costs and benefits
associated with priming. Critically, habituation also slows down
the rate of processing in response to a repeated word, thereby
causing a true perceptual deficit. This accounts for the full transi-
tion from integration to separation seen in the behavioral data as
priming changes from positive to negative.

Although habituation exists at all levels within the model, it is
habituation at the letter level that is most important for producing
the transition from positive to negative priming. Thus, a “cognitive
aftereffect” (Huber, 2008) for the letters of the prime makes it
difficult to readily identify a repeat of those letters when they
appear in a different screen location. The word level plays a role
in producing repetition effects, but the word-level dynamics are
too slow to fully explain the observed behavioral priming effects.
Habituation at the lowest level cannot explain behavioral priming
considering that this paradigm never repeats any words or letters in
the same visual locations and so there is literally no difference
between any of the priming conditions at the lowest level. How-
ever, as explained below, habituation of the low-level visual input
is crucial for predicting electrophysiological effects.

A Priori Predictions for Electrophysiology Based on
Behavioral Parameters

Considering that the target flash occurs 500 ms prior to initiation
of the decision process (see the labels at the left-hand side of
Figure 1 that indicate when event-related potential (ERP) and
magnetoencephalography (MEG) responses are recorded com-
pared to when behavioral responses are collected), early electro-
physiological effects that modulate with prime duration would be
suggestive of a perceptual account of priming rather than a deci-
sional account. Because we examined brain responses within 200
ms after presentation of the flashed target and because there is no
difference between the repeated and novel conditions until the
target flash, explicit strategies cannot explain ERP/MEG repetition
priming effects. Nevertheless, we do not deny the possibility that
decisional effects can potentially explain response behavior even if
there is also a perceptual effect. The question posed by this
research is whether the observed perceptual effects are an adequate
explanation of response behavior (i.e., whether decisional strate-
gies are needed in addition, or whether perceptual effects are
sufficient). To answer this question, we reverse engineer the prob-
lem, going from overt behavior back to perceptual responses. This
was done by generating a priori predictions for perceptual ERPs
from the previously developed neural habituation model with the
previously published parameter (Huber & O’Reilly, 2003) that fit
the data seen in Figure 2. Thus, behavioral results specified the
time course of electrophysiological recordings and changes in
these recording as a function of prime duration.

The parameters used to produce ERP predictions (see Figure
3B) for immediate word repetitions were found by fitting a par-
ticularly constraining data set that not only included the same
conditions as Experiment 1 but additionally included other prime
durations (as shown in Figure 2), other conditions with primes that
were unrelated words (not shown in Figure 2), and “primes” that
were simply pattern masks presented for equivalent durations (not
shown in Figure 2). Huber and O’Reilly (2003) reported these
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parameters and the associated simulation details and Huber (2008)
reported the full experimental details and results. Therefore, these
parameters were specified in advance based on behavioral data.
Because nothing repeats at the lowest level of visual lines, the ERP
predictions shown in Figure 3B are derived solely from the letter
level (the yellow lines) and word level (the blue lines) as they sum
to produce voltage potential differences between repeated and
novel targets as recorded from posterior scalp locations (dashed
black lines).

To fully understand these predictions, it is important to appre-
ciate the difference between a field potential, which is the voltage
potential associated with a large number of simultaneously active
neurons, versus the response of a single cell. Electrophysiological
recordings at the scalp are field potentials, and so they reflect the
activation of entire cortical regions, such as the visual word form
area (Dehaene, Le Clec, Poline, Le Bihan, & Cohen, 2002), rather
than activations of single words. Therefore, predicted scalp ERPs
are found by summing the membrane potential from all the sim-
ulated neurons within a level of the model (the yellow and blue
lines of Figure 3B). Membrane potential is the most appropriate
analogue of EEG for this model because scalp potentials are
thought to arise from concurrent excitatory postsynaptic potentials
at the apical dendrites of pyramidal cells (Kandel, Schwartz, &
Jessell, 1991).

If the response to a word lingers for some period of time past its
removal (i.e., integration), then the field potential to a subsequent
word that is different than the prime (i.e., the novel condition)
reflects not just the target word but also lingering activation from
the prime word. Due to integration, presentation of a novel target
word will produce a larger electrophysiological response com-
pared to a repeated target word. Repeating a word may produce a
larger response for the activation of the particular neurons associ-
ated with that target word, but the more important factor for field
potentials is that presenting two different words involves a greater
number of simultaneously active neurons and, thus, a greater
summed response as measured at the scalp. Therefore, the general
prediction is for ‘repetition deficits’ as revealed by smaller elec-
trophysiological responses, although the term deficit is a misnomer
because the underlying explanation is that two simultaneously
active words add up to more than repeating a single word (i.e., a
novelty boost is a more accurate description). These repetition
deficits are apparent in Figure 3B at both the letter and word levels
because the repeated conditions (dashed lines) lie below the novel
conditions (solid lines), with the peak differences occurring in
concert with peak activation.

Beyond this general prediction of repetition deficits, neural
habituation predicts that these deficits will reduce in magnitude as
a function of increasing prime duration. With a sufficiently long
exposure to the prime, the perceptual input from the prime’s
location becomes habituated. Thus, activation of the prime word
progressively diminishes at all levels with increasing prime dura-
tion. Even though the letter and word representations for the prime
are likewise habituated, the dominant effect of habituation is a
lessening of the perceptual input. When the same word reappears
as the target in a different screen location, this provides a new burst
of perceptual input (i.e., the prime and target are now separate
events at the lowest level). In contrast, if the repetition occurs
following a brief prime, the activation in response to the prime is
still at peak values and the repeat produces little additional acti-
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vation. In sum, the predicted interaction with increasing prime
duration is that the repetition deficits (which are caused by two
words summing to more than a repeat of one word) will diminish
in magnitude. With separation due to sufficiently long prime
exposure, any word, even a repeat, is viewed as a new perceptual
event because the activation to the prime has sufficiently dropped
off due to this low-level habituation. This is seen in Figure 3B by
comparing the magnitude of the repetition deficit following a
short, 150-ms prime (comparison of the solid and dashed lines in
the top graphs) versus the magnitude of the repetition deficit
following a long, 2,000-ms prime (comparison of the solid and
dashed lines in the bottom graphs). This lessening of the repetition
deficit with increasing prime duration is particularly notable for
the letter level (yellow lines), whereas activation at the word level
is slower to fade in response to low-level habituation and so there
is less of a difference as a function of prime duration.

For ERP peaks, the P versus N letter designation refers to the
polarity of the peak response (i.e., a positive versus a negative
peak), and the number refers to the time in milliseconds at which
that peak occurs in general. However, the underlying cortical
sources of EEG are equivalent to electromagnetic dipoles (Kandel
et al., 1991; Regan, 1989), and so for each P there should be a
concurrent N on the opposite side of the head, although recording
the opposite side of the dipole is often difficult or impossible if
there are no electrodes at that location (e.g., in the neck). In the
reported experiments, we examined the P100 and N170 peaks,
which are measured with electrodes at posterior scalp locations in
response to visually presented stimuli. In keeping with equivalent
electromagnetic dipoles, our observations of P100s and N170s at
posterior scalp locations were concurrent with N100s and P170s as
measured with frontal electrodes, although we use the traditional
terminology of P100s and N170s and we consider posterior elec-
trodes as a scalp position grounding point.

Electrophysiological recordings not only reflect the summed
response of entire brain regions (i.e., summation within levels of
processing), but, in addition, these recordings reflect summation
across different brain regions (i.e., summation across levels of
processing). This form of summation across brain regions requires
an anatomical model of where each region is located in relation to
each electrode and the orientation of each brain region in its
respective position. The neural habituation model specifies pro-
cessing at each level at every millisecond, but it does not specify
exactly where in the brain these regions are located or how they are
oriented. Nevertheless, a rough approximation can be found by
assuming that letter processing contributes to the P100 response
and word processing contributes to the N170 response (in the
General Discussion, we consider these assumptions in greater
detail as they relate to the literature). Without any modification of
the dynamics that best accounted for the behavioral data, the word
level achieves its peak activation roughly 70 ms after the letter
level. However, to accurately map these responses onto the P100
and N170, a temporal offset is needed between when a stimulus is
first presented and when the line level of the model first receives
input from that stimulus. If this offset is around 40 ms, which is
roughly appropriate for the transduction time between the light
signal and regions of visual cortex (Inui & Kakigi, 2006), then the
times shown on the x-axis of Figure 3B correspond reasonably
well to the P100 and N170.
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With the simplifying assumptions that the source of the P100 is
letter processing and that the source of the N170 is word process-
ing and that the letter dipole is pointed towards the back of the
head whereas the word dipole is pointed towards the front of the
head, the dashed black lines at the bottom of the graphs in Figure
3B show the a priori predictions for ERP repetition effects. Under
these assumptions, the predictions are found by taking the repeated
minus novel responses at the letter level and subtracting this
difference from the repeated minus novel responses at the word
level. This second difference is the repetition effect solely based on
the word level, and it is subtracted from the letter-level repetition
effect because the word level is assumed to be oppositely oriented.
The predictions for the time period corresponding to the P100 are
relatively straightforward, with repetition deficits following both
short- and long-duration primes, although the magnitude following
a long-duration prime is predicted to be smaller due to habituation
of the perceptual input. The predictions for the time period corre-
sponding to the N170 are more complicated because there is a
strong ongoing influence of the letter-level repetition effect during
the N170 time period. In general, during the N170, the prediction
is for greater responses with repetitions due to the opposite orien-
tation of the word level (i.e., less of an N170 with repetitions
corresponds to greater ERPs). However, rather than a lessening of
the repetition benefit following a long-duration prime, the opposite
is seen in Figure 3B, and the N170 achieves its greatest repetition
benefit for the long prime duration condition. This is due to the
overlapping nature of the two cortical sources—following a short-
duration prime, there is still a large letter-level repetition deficit
that partially counteracts the repetition benefit produced by the
word level; but following a long-duration prime, this letter-level
deficit is substantially reduced, which unmasks the underlying
repetition benefit due to the word level.

One final aspect of these predictions concerns the difference
between presenting just a single prime word (Experiment 1) versus
presenting two different prime words (Experiment 2). The model
includes inhibition within each level of processing, which serves to
keep total activation from becoming excessive. Therefore, with
two simultaneously active words, there is greater inhibition due to
greater total activation, which tends to reduce the magnitude of the
additional response when the target is presented. It is the letter
level where this effect primarily occurs; and, as seen in Figure 3B,
the differences between the repeated and novel conditions of the
letter level are reduced for Experiment 2 compared to Experiment
1. As a result, the model predicts that P100 effects will be smaller
in Experiment 2 and, paradoxically, that N170 effects will be
stronger considering that the source of the N170 is not as strongly
masked by the ongoing letter-level effect.

Outline of Experiments

Considering the complexities of reporting behavioral data,
electrophysiological data, and a computational model that links
the two types of data, we provide a brief preview of the reported
studies. The overarching goal of this research was to test
whether perception, rather than decision, might serve as a
viable cause of the transition from positive to negative priming.
This was tested by monitoring neural responses to the target
word, which was presented prior to the choice words that initiate
the decision process (see Figure 1). If the neural responses occur
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sufficiently early as to indicate a perceptual effect and if the neural
responses modulate as a function of prime duration, then these
responses may serve as the basis of behavioral priming. Alterna-
tively, if the neural sources underlying word perception provide a
measurable signal, and yet there is a failure to observe repetition
effects that modulate with prime duration despite sufficient power
and repeated attempts (three experiments and two types of elec-
trophysiological recording), this would cast considerable doubt on
a perceptual account of priming.

The aim of these studies was to examine the nature of overlap-
ping brain responses (i.e., integrated responses) when visual words
are presented in rapid succession. Furthermore, by testing both
short-duration primes and long-duration primes, we compared a
situation that maximizes the entanglement of prime and target
versus one were the prime and target were perceptually separated.
We expected to see a complicated overlapping electrophysiologi-
cal waveform following a short-duration prime, but it was literally
this complicated overlap that we sought to study. We could have
used any of a number of techniques that untangle overlapping
waveforms through experimental manipulations, such as random
variation in the timing of presentations. However, our goal was to
directly study the entanglement and the manner in which the brain
naturally untangles events as a function of processing time. We
analyzed the results only in terms of repetition effects (i.e., differ-
ences between the repeated and novel conditions) so as to reduce
the influence of other cortical regions that are not directly involved
in the processing of visually presented words. Because the re-
sponses to the target were difficult to identify following a short-
duration prime, we used the response to the prime in the long
condition, which presented a single word in isolation, to determine
appropriate time periods for the corresponding P100 and N170
responses to the briefly presented target word.

Two different ERP experiments were performed, with the first
using a single prime word and the second two different prime
words. Use of a single prime word produces maximal repetition
effects (Experiment 1). Nevertheless, it could be that the difference
between the short and long conditions is due to differential atten-
tion with the single prime paradigm. For instance, if attention is
heightened 150 ms after presenting a word but then attention falls
to a low level 2,000 ms after presenting a word, this difference in
attention between short- and long-duration might explain the in-
teraction between priming and prime duration. For this reason, the
second experiment adopted a different procedure, one that elimi-
nated this possibility by using visual presentations that were iden-
tical in all conditions prior to presentation of the target. In order to
do this, it was required that two different prime words be presented
on every trial such that the first prime served as the prime in the
long condition and the second prime served as the prime in the
short condition (see Figure 1). As explained above, this change in
procedure was predicted to produce smaller P100 repetition ef-
fects. In keeping with these predictions, Experiment 1 produced
both P100 and N170 repetition effects, whereas Experiments 2 and
3 only produced the later repetition effect (N170 for ERPs and
M170 for MEG).

The a priori ERP repetition effect predictions provided an ade-
quate qualitative explanation of the observed data. In order to
assess the quantitative strength of these predictions and the extent
to which the assumption of equal and oppositely oriented dipoles
for the sources of the P100 and N170 was appropriate, we fit



THE DYNAMICS OF INTEGRATION AND SEPARATION

anatomical dipoles for the letter and word levels to the data of each
participant using the previously specified dynamics. Furthermore,
we did this with the likelihood ratio chi-square goodness of fit
statistic, which produces significance tests for the reliability of the
fit. Unlike brain electrical source analysis (BESA; Scherg, 1990),
which allows that dipoles take on different, independently deter-
mined magnitudes at each observed time, our equivalent dipole
model is constrained to specific values across time. Because BESA
is a popular method for extracting cortical source information (e.g.,
Bekker, Kenemans, & Verbaten, 2005; Qiu, Luo, Wang, Zhang, &
Zhang, 2006; Reinvang, Magnussen, Greenlee, & Larsson, 1998;
Thierry, Doyon, & Demonet, 1998), we directly compared our
account to a temporally unconstrained dipole model. Therefore, we
also fit a model that contained these same letter and word dipoles
but allowed that each dipole take on any value at any moment in
time, such as with a typical application of BESA. Thus, the neural
habituation model was literally nested under this BESA model, and
so the goodness of fit between each model was directly compara-
ble in light of the differences in the number of free parameters
through a chi-square difference test (e.g., Batchelder & Riefer,
1990; Collins, Fidler, Wugalter, & Long, 1993). This provides a
comparison between these a priori dynamics of the habituation
model versus the popular technique of using unconstrained dy-
namics. This allows us to statistically assess whether the specific
dynamics of the habituation model are adequate compared to all
possible other dynamics that the temporally unconstrained BESA
model considers.

The results of dipole fitting revealed large differences across
individuals for cortical location. Such differences might arise from
anatomical differences or, instead, they might indicate the spatial
limitations of scalp potentials. In order to discriminate between
these possibilities and to provide replication of the electrophysio-
logical repetition effects, Experiment 3 was identical to Experi-
ment 2, but used MEG, which provides better spatial localization.
The MEG results confirmed that the spatial layout of these early
perceptual cortical responses varied substantially across individu-
als. In order to normalize against these individual differences, the
response to the first prime word was used as a “standard” response
to determine both the timing of the MEG responses, as well as
the multivariate pattern of the response across all the sensors. The
subsequent target responses were then compared to this standard
response, producing a single number for the magnitude of the
M100 (which is similar to the ERP P100) and the magnitude of the
M170 (which is similar to the ERP N170). With these individual
differences normalized both in spatial location and onset latency,
the results were analyzed across individuals, replicating the find-
ings of Experiment 2.

ERP Repetition Effects: Experiments 1 and 2

Using the experimental paradigm seen in Figure 1, participants
performed forced-choice perceptual identification while voltage
potentials were recorded from a 129-channel Geodesic Sensor Net
(Electrical Geodesics Inc., Eugene, OR). The basic behavioral task
was to identify the briefly flashed target word with a forced-choice
decision. On half the trials, the prime repeated the correct target
word (repeated condition) and on the other half of the trials, the
prime repeated the incorrect foil word (novel condition). Further-
more, half the trials presented primes for 150 ms (short condition),
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whereas the other half of the trials presented primes for 2,000 ms
(long condition). Many aspects of the paradigm were designed to
reduce reliance upon strategic decisional factors in relation to the
primes. A prime duration of 150 ms was chosen for the short
condition so that the primes in all conditions were above the
threshold of awareness, thereby reducing concern for conscious
control factors as the difference between short- and long-duration
priming. Participants were fully informed of the design and told
there could be no effective strategy in selecting for or against
primed words, considering that the incorrect foil word repeated a
prime just as often as it repeated the correct target word. To
reinforce this assertion, trial-by-trial feedback was provided. ERPs
were time locked to the onset of the target flash (i.e., before the
choices were known), and the measure of interest was the differ-
ence between repeated and novel conditions.

Experiment 2 also examined responses to the target word fol-
lowing short- or long-duration primes, but this was done with two
different primes on every trial (one long and one short), so that
there was no difference between any of the conditions up until the
time of the target presentation (the target might repeat the long-
duration prime, the short-duration prime, or neither). This served
two purposes. First, it controlled against the possibility that the
prime duration effect of Experiment 1 was due to the presence of
any briefly flashed words versus a prime word that remained
onscreen for several seconds. A briefly flashed word may engage
attentional and control factors that are different compared to a
long-duration presentation. Therefore, Experiment 2 always in-
cluded both a long-duration prime and a briefly flashed prime on
every trial. Although Experiment 2 contained four conditions in
terms of behavioral priming (as differentiated at the time of the
choice words), there were just three conditions for the ERP results
considering that all conditions were identical prior to the briefly
flashed target. In other words, the briefly flashed target might be
the same as the short prime, the same as the long prime, or
unrelated to both prime words. Thus, this last condition served as
the novel baseline condition for both the short- and long-duration
repetition conditions. The other purpose of Experiment 2 was to
test the prediction that presenting two different prime words would
result in more activation, and therefore more inhibition, which
would reduce P100 repetition effects (i.e., including extra prime
words dilutes the letter-level effect of repeating a particular word).

Method
Participants

There were 33 participants in Experiment 1, and 34 in Experi-
ment 2. They ranged in age from 18 to 21 years and all were
right-handed native speakers of English with normal or corrected
vision. Fifty of the participants were University of Colorado un-
dergraduates receiving course credit for their participation, and the
other 17 participants received monetary compensation. Two of the
participants from Experiment 1 were not included in the ERP
analyses due to insufficient numbers of valid EEG trials. Four of
the participants in Experiment 2 were not included in any analyses.
The reasons for these exclusions were a programming error result-
ing in a zero target flash duration for one participant, a participant
who never understood the nature of the task, and two participants
who forgot their glasses.
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Materials

A pool of 1,000 five-letter words was used for all presentations
in Experiment 1 and an expanded pool of 1,500 five-letter words
was used in Experiment 2. These words had a minimum written
language frequency of 4 per million for Experiment 1 and a
minimum frequency of 2 for Experiment 2, as defined and mea-
sured by Kucera and Francis (1967). All words were displayed in
upper case, Times Roman font, as gray lettering against a black
background, and subtended approximately 1.6° of horizontal vi-
sual angle. Upper and lower primes (these were the same word
presented twice in Experiment 1, but two different words in
Experiment 2) were on two single-spaced lines, one above the
other, and collectively subtended approximately 0.8° degrees of
vertical visual angle. Stimulus materials were displayed on LCD
monitors with presentation times synchronized to the vertical
refresh. The refresh rate was 75Hz providing display increments of
13.3 ms.

Experimental Design

Experimental sessions lasted from 2 to 2.5 hours and included a
practice session, a block of 64 trials during which appropriate
target flash times were determined, and five blocks of 80 experi-
mental trials. Between each block of trials, impedances were
checked to makes sure all electrodes were below 50 k(. All
variables were within subject. The basic design for both experi-
ments used the following two variables: priming condition, with
two levels (target primed or foil primed), and prime duration, with
two levels (short or long). There were 100 repetitions of each
of the four basic experimental conditions randomly intermixed
across the five blocks of 80 trials. Word selection occurred ran-
domly without replacement.

As seen in Figure 1, two prime words were presented on every
trial, one immediately above and one immediately below the
fixation point. In the case of Experiment 1, these two prime words
were identical, both appearing for the same duration. In Experi-
ment 2, there were two different prime words, with the top word
appearing for 2,000 ms and the bottom word only appearing for
the final 150 ms prior to the target flash presentation. During the
forced-choice decision, the target and foil were presented to the
left and right of fixation, with the left/right position of the target
fully counterbalanced. On every trial, a sequence of events oc-
curred as shown in Figure 1. Prior to the first display of the prime
words, a blank screen appeared for 100 ms, followed by a row of
five plus signs for 500 ms in order to fixate the participant’s
attention to the appropriate part of the screen. The forced-choice
response was nonspeeded and error feedback (‘correct’ or ‘incor-
rect’) appeared for 500 ms prior to the start of the next trial.

Eight trials at a time were run during which participants were
instructed to refrain from blinking or moving. At the end of each
8 trials, participants were allowed to relax until they felt ready to
continue. There were 16 practice trials prior to the 64 target flash
time determination trials. The target was presented for 187 ms
during these practice trials. The 64 target flash duration trials
began with a target flash time of 113 ms. At the end of every 16
trials, target flash times were adjusted in order to progressively
reduce target flash duration until the perceptual threshold was
obtained, with performance close to 75% correct. After these trials,
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target flash duration remained fixed for the remainder of the
experiment.

EEG Methods

Scalp voltages were collected with a 129-channel Geodesic
Sensor NetTM (Tucker, 1993) connected to an AC-coupled, 129-
channel, high-input impedance amplifier (2,000 MOhm, Net Amp-
sTM). Amplified analog voltages (0.1-100 Hz bandpass, —3 dB)
were digitized at 250 Hz. Individual sensors were adjusted until
impedances were less than 50 k(. EEG was digitally low-pass
filtered at 40 Hz. Trials were discarded from analyses if they
contained eye movements (EOG over 70 V), or more than 20%
of channels were bad (average amplitude over 100 wV or transit
amplitude over 50 V). Trials were included regardless of accu-
racy. Individual bad channels were replaced on a trial-by-trial basis
with a spherical spline algorithm (Srinivasan, Nunez, Tucker,
Silberstein, & Cadusch, 1996). Consistently bad channels for a
given participant were replaced throughout that participant’s entire
dataset. ERPs were created by averaging all acceptable trials for
each participant in each condition, time locked to the target onset.
The mean number of acceptable trials per subject and condition
ranged from 94 to 96 for both experiments. EEG was measured
with respect to a vertex reference (Cz), but an average-reference
transformation was used to minimize the effects of reference-site
activity and to accurately estimate the scalp topography of the
measured electrical fields (Dien, 1998). Average-reference ERPs
were computed for each channel as the voltage difference between
that channel and the average of all channels. The average reference
was calculated to correct for the polar average reference effect
(Junghofer, Elbert, Tucker, & Braun, 1999). ERPs were baseline
corrected with respect to a 100-ms pretarget recording interval.

Equivalent Dipole Methods

As explained in the model analysis section within the results, a
dynamically varying strength of activation for each dipole was
determined from the neural network behavior or through linear
regression for the BESA model. Predicted scalp electrode voltage
potentials were calculated from a linear summation of four equiv-
alent dipoles, given their positions and dynamically weighted
moments (Berg & Scherg, 1994). This was done assuming a
spherical four-shell head model with the conductances reported by
Stok (1986). Locations for the 129 electrodes were determined by
projecting their standardized nonspherical locations onto the outer
shell. Appropriate up-down and front-back offsets for this projec-
tion were calculated so as to minimize the square of the projection
distances. The simulated scalp potentials to the novel condition
were then subtracted from the simulated scalp potentials to the
repeated condition and compared to the observed ERP differences
(i.e., repetition effects).

Likelihood Ratio Chi-Square Goodness of Fit

There are three commonly used methods to assess goodness of
fit. The first of these is a least squares measure, such as is used in
regression analysis. However, least squares is purely descriptive
and cannot be used for hypothesis testing beyond noting the
percent variance accounted for. For hypothesis testing, there are
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two different common methods for producing goodness of fit
statistics that are distributed as a chi-square variable: Pearson
chi-square and likelihood ratio chi-square (see Collins et al., 1993
for a discussion and comparison between these measures). There
are reasons to prefer the likelihood ratio over Pearson chi-square
(e.g., Gonzalez & Griffin, 2001; MacCallum, Browne, & Cai,
2006); but, beyond these reasons, real-valued ERP data are ill-
suited to calculation of Pearson chi-square. Therefore, we derived
the appropriate equation for calculating chi-square based on the
likelihood ratio, which is traditionally termed G>

Derivation of G? requires calculation for the probability of an
observed ERP value in reference to sampling noise (i.e., ERP
standard deviation). In other words, even a “poor fit” in absolute
magnitude is not necessarily a poor fit in terms of maximum
likelihood if the observed data include a large degree of noise.
Because the data of each participant were separately fit, we cal-
culated ERP standard deviations separately for each individual,
with resultant values ranging from 0.73 to 3.66 microvolts across
individuals. In this manner, the quality of fit for each individual
was calculated in light of the ERP standard deviation for that
individual. This could have been done in terms of the standard
deviation of each separate electrode for each individual, although
doing so would introduce additional error because the calculation
of ERP standard deviation would be based on a much smaller
sample (i.e., the standard deviation could no longer be assumed to
be a population value, which is a necessary assumption to calculate
G?). A measure of ERP standard deviation for each individual was
found using the plus—minus technique (Handy, 2005), which re-
verses the mathematical sign for half of the trials within a condi-
tion before averaging. This eliminates the average signal and the
resultant ERP waveform only reflects sampling noise. The stan-
dard deviation was then calculated across the 36 time slices of the
P100 and N170 time periods and across the 129 electrodes, thus
yielding a measure of variability based on 4,644 plus/minus ERP
values per individual in each condition. Finally, the ERP standard
deviations for each of the four conditions were averaged to yield
one highly reliable measure of ERP standard deviation for each
individual, which was assumed to be the population value for that
individual. Under the assumption that ERP noise is normally
distributed, these standard deviations were used to calculate the
standard deviation of the ERP difference between the repeated and
novel conditions (i.e., the variance of the difference is the sum of
the variances).

The likelihood ratio chi-square goodness of fit statistic, G2,
states that —2 times the natural log of the likelihood ratio is
distributed as a chi-square distribution with degrees of freedom
equal to the difference in the number of free parameters between
the model in the numerator and model in the denominator of the
ratio (Hoel, 1971). In the current situation, the two models in the
likelihood ratio are a constrained model with fewer parameters
than observations versus an unconstrained model that perfectly fits
the data (i.e., a model that is the data itself). In other words, if the
ERPs are very noisy, data that perfectly match expectations may be
a low probability event, and so a model that misfits the data is not
viewed as excessively erroneous in light of the sampling noise. By
assuming that ERP noise is normally distributed, the normal den-
sity function is used to calculate a likelihood ratio for each obser-
vation based on the difference between observed and predicted
values for the constrained model versus no difference for the
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unconstrained model (see Equation 1). Assuming that all observa-
tions are independent of each other, the likelihood ratio of the
entire data set is the product of the likelihood ratios for each
observation. This independence assumption follows from the as-
sumption that the model is the “true model,” thus implying that
lack of fit only occurs due to sampling error. Finally, because G*
is twice the log of the likelihood ratio, this measure of goodness of
fit is easily calculated with the sum of the log likelihoods, which
results in Equation 1, where N is the number of observations, ogrp
is the ERP standard deviation (in the current situation, this is the
standard deviation of the ERP difference between the repeated an
novel conditions as explained above), and k is the number of free
parameters in the model.
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The numerator and denominator normal density values in Equation
1 are not technically probabilities. However, they could be converted
to probabilities by assigning some small bin width to the normal
distribution. Note that doing so would introduce the same bin
width term to both numerator and denominator and these would
cancel each other. So, in the end, calculation of a value that is
distributed as a chi-square is quite simple if one assumes that ERP
noise is normally distributed. The net result after algebraic sim-
plification is just the sum of squared differences divided by ERP
variance. The 15 free parameters were separately adjusted for each
participant so as to minimize this chi-square for the 144 ms of the
P100 and N170 time periods. With a sampling rate of 250 Hz, this
corresponds to 36 separate time points across the 129 electrodes in
the short and long conditions, and so 9,288 fitted data points per
participant.

Finally, we note that the logic behind the likelihood ratio chi-
square statistic is the same as the logic behind the general linear
model that underlies the analysis of variance (ANOVA). As with
a Model III general linear model for the ANOVA, in which the
same residual error is applied for all conditions but different
residual errors are sampled for different individuals, our use of G*
assumes a constant ERP error at all time points but different ERP
residual error for different individuals. This is not the same as
assuming that different ERP components have the same variance;
ERP component variance is typically calculated across several
time points and across individuals who may differ in the magni-
tude or onset of the systematic aspect of the ERP waveform. The
only difference between our application of G* and a model III
ANOVA is that we have assumed population values for ERP
residual error in light of the large sample sizes used to estimate the
ERP residual error. This allowed us to use a chi-square test rather
than an F test, which, in turn, allowed us to compare goodness of
fit for the temporally constrained habituation model to a tempo-
rally unconstrained BESA model by means of the chi-squared
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differences for nested models (see Batchelder & Riefer, 1990 for
an example of nested model comparisons).

Results and Discussion

Below, we report three separate sets of results: (a) behavioral
results, which replicate the behavior seen in Figure 2; (b) statistical
analyses of the ERP data; and (c) dipole modeling results that
compare performance of the neural habituation model to the best
case scenario of a model that allows independent values at each
time slice (i.e., a comparison to BESA with similarly constrained
symmetric dipoles).

Behavioral Results

For Experiment 1, the average target flash duration was 50 ms,
ranging from 27 ms to 80 ms across individuals. For Experiment
2, the average target flash duration was 97 ms, ranging from 23 ms
to 190 ms across individuals. The procedure for setting target flash
duration at an individual’s threshold was not as effective in Ex-
periment 2, resulting in high accuracy. Figure 4 shows probability
correct for the four conditions of all three experiments. There was
a main effect of priming condition in both experiments, F(1, 32) =
15.5, p < .001 and F(1, 30) = 28.91, p < .001. The main effect
of prime duration was only significant in the first experiment, F(1,
32) = 12.87, p < .01, but not the second experiment, F(1, 30) =
0.003, p = .96. The interaction between priming condition and
prime duration was of fundamental interest, and this was signifi-
cant in both experiments, F(1, 32) = 93.97, p < .001 and F(1,
30) = 82.48, p < .001. For the short prime duration, performance
in the target condition was better than performance in the foil
condition in both experiments, #(32) = 8.07, p < .001 and #30) =
9.18, p < .001. For the long prime duration, performance in the
target condition was worse than performance in the foil condition
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in the first experiment, #(32) = 3.59, p < .001, but not the second,
#(30) = 0.20, p = .84.

Evoked Responses (ERPs)

We examined the earliest detectable ERP components in re-
sponse to the briefly flashed target prior to the presentation of the
choice alternatives. These components consisted of the first posi-
tive going wave, or P100 (as measured at posterior scalp loca-
tions), which peaked around 110 ms after presentation, and the
first negative going wave, or N170, which peaked around 180 ms
after presentation. As seen in Figures 5 and 6, these ERP compo-
nents revealed significant repetition effects that were modulated by
prime duration.

The ERP components in response to the brief target flash were
small and overlapped greatly with the large ERP components
elicited by the above-threshold prime presentations. Therefore,
appropriate time periods for the target’s P100 and N170 were deter-
mined from the prime’s P100 and N170, which were more easily
isolated. It is conceivable that the target’s P100/N170 responses
were offset in some systematic manner, considering that the target
was only briefly flashed. However, the P100 to the briefly flashed
target in Experiment 1 following a long-duration prime was easily
isolated, as seen in Figure 5, and confirmed the offset technique;
this P100 occurred at the expected time based upon the P100 to the
long-duration prime, thus validating use of the long-duration
prime to determine appropriate time windows. The prime’s
P100 and N170 were separated by approximately 70 ms in both
experiments, although these responses were advanced by 20 ms
in Experiment 2.

In analyzing these data, the effect of prime duration on repetition
priming was of critical importance. The neural habituation model
predicted that the magnitude of the repetition effect should dimin-
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Figure 4. Behavioral data (probability correct with forced-choice testing) for the three reported experiments.
Error bars are plus and minus one standard error of the mean. The legend refers to the prime conditions.
Experiment 1 used a single prime word and produced both larger positive priming effects following short-
duration primes as well as larger negative priming effects following long-duration primes.
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Figure 5. Average event-related potentials (ERPs) for Experiment 1, which used a single prime word presented
for 150 ms (short) or 2,000 ms (long). The graphs show results for the four groups of electrodes shown in black
on the electrode map. There were five electrodes per group, and groups were labeled left temporal (LT), left
occipital (LO), right occipital (RO), and right temporal (RT). The legend refers to the prime conditions. The stars
indicate different significance levels for the ERP repetition effects. “p < .05. ** p < .01. " p < .001.

ish with increased prime duration. Furthermore, assuming that the
letter level is the source of the P100 and the word level is the
source of the N170, with these levels equal in magnitude, the
model predicted P100 repetition deficits, with these deficits de-
creasing in magnitude as a function of prime duration, as well as
N170 benefits, with these benefits growing in magnitude as a
function of prime duration. Finally, the model predicted that the
P100 effects in Experiment 2 would be smaller due to use of
two prime words.
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To assess the reliability of the observed perceptual ERPs, we
statistically analyzed 20 posterior electrodes. Recent analyses of
EEG data with independent components analysis of the visual
P100 and N170 suggests that limiting consideration to posterior
electrodes minimizes the effect of more anterior sources (Makeig
et al., 2002). To assess topographic differences, these electrodes
were further divided into four groups with five electrodes per
group (see Figures 5 and 6), arranged over both hemispheres, in
either occipital or temporal scalp regions. We term these electrode
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Figure 6. Average event-related potentials (ERPs) for Experiment 2, which used two different prime words
with the top prime presented for 2,000 ms and the bottom for the final 150 ms such that all conditions were
identical up until the time of the target flash. The legend refers to the prime conditions. See the Figure 5 caption
for other descriptions. In terms of these ERP responses, which occur prior to the choice words, the short-novel
and long-novel conditions are in fact the same condition at this point in the presentation sequence for the design
of Experiment 2, although the graphs show them separately, providing an indication of sampling error. * p < .05.
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groups left occipital (LO), right occipital (RO), left temporal (LT)
and right temporal (RT). Repeated measures ANOVAs were run
on the mean amplitude of the repetition priming difference scores
(i.e., ERP repetition effects), which were averaged across the
eighteen 4-ms time slices comprising the separate time periods
where the P100 and N170 responses to the target flash were
expected to be maximal. For Experiment 1, the P100 time period
was the average response from 84 ms to 152 ms after the target
flash, and the N170 time period was the average response from 156
ms to 224 ms (see Figure 5). For Experiment 2, the P100 time period
was the average response from 64 ms to 132 ms after the target flash,
and the N170 time period was the average response from 136 ms to
204 ms (see Figure 6). The included variables were hemisphere (left,
right), region (occipital, temporal), and prime duration (short, long).
In addition, Figures 5 and 6 label all significant ERP repetition effects
for each electrode group.

First, we consider the N170 time period, which was more
similar across the experiments. There was a main effect of prime
duration on the N170 repetition effect for both experiments, F(1,
30) = 6.00, p < .025, and F(1, 29) = 431, p < .05. For
Experiment 1, there was a two-way interaction between duration
and hemisphere, F(1, 30) = 5.15, p < .05, as well as a three-way
interaction between duration, hemisphere, and region, F(1, 30) =
4.93, p < .05. Specific contrasts identified these effects as centered
in the LT group, which changed from a negative ERP repetition
effect following a short-duration prime, #30) = 3.05, p < .01, to
a positive ERP repetition effect following a long-duration prime,
1(30) = 2.40, p < .05, whereas the LO group changed from a
negative ERP repetition effect, #(30) = 2.31, p < .05, to an absent
effect, #(30) = 0.77, p = .45. There were no significant repetition
effects for the RT and RO groups. For Experiment 2, there were no
significant two-way or three-way interactions. The basic result for
Experiment 2 was a positive repetition effect following a long-
duration prime, #(29) = 2.84, p < .01, but no effect following a
short-duration prime, #29) = 0.31, p = .76.

Summarizing across the relatively minor regional differences,
the N170 to a repeated word (compared to a novel word) was
larger following a long-duration prime (both experiments), but was
either smaller (Experiment 1) or equivalent (Experiment 2) fol-
lowing a short-duration prime.

Next, we consider the P100 time period, which differed more
greatly between the experiments, as expected, due to the difference
between using one versus two prime words. For Experiment 1
there was an effect of duration, F(1, 30) = 10.65, p < .01, and
region, F(1, 30) = 12.90, p < .01 for the ERP repetition effects,
but no interaction. The 7 tests against a test value of zero revealed
anegative ERP repetition effect both following short, #(30) = 5.66,
p < .001, and long prime durations, #30) = 1.83, p < .05,
although this effect was larger for short prime durations #(30) =
3.26, p < .01. Furthermore, the ERP repetition effect was larger
for the bilateral occipital electrode groups than the bilateral tem-
poral groups, #(30) = 3.59, p < .01. In contrast, for Experiment 2
there were no significant effects of duration, hemisphere, or re-
gion, but there was a significant interaction between duration and
region, F(1, 29) = 5.69, p < .05. Although there were no signif-
icant ERP repetition effects for any of the electrode groups, there
was a tendency for the ERP repetition effect to decrease for the
bilateral occipital groups as a function of prime duration, whereas
there was a tendency for the ERP repetition effect to increase for
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the bilateral temporal groups as a function of prime duration. The
significant difference between these two tendencies, #(29) = 2.39,
p < .05, resulted in the observed interaction between prime dura-
tion and electrode region.

In summary, there were P100 deficits to repeated words, and
these deficits diminished with prime duration and occurred more at
occipital scalp locations. In the case of Experiment 1, there was a
significant negative ERP repetition effect at both prime durations,
whereas in Experiment 2 there were no significant ERP repetition
effects, although there was a tendency for the slightly negative
ERP repetition effect to diminish with prime duration (which
contributed to the significant interaction).

In summary, both P100s and N170s revealed perceptual repeti-
tion effects in response to the target word, and these effects varied
as a function of prime duration. These findings are problematic for
the claim that discounting occurs in response to the choice words
rather than the briefly flashed target word. Furthermore the qual-
itative pattern of these perceptual repetition effects was as pre-
dicted a priori by the neural habituation model: (a) diminishing
P100 repetition deficits with increasing prime duration; (b) in-
creasing N170 repetition benefits with increasing prime duration;
and (c) smaller P100 effects with use of two primes rather than one
prime. The only aspect that did not conform to prediction was the
appearance of N170 repetition deficits in the short condition of
Experiment 1. However, it is important to keep in mind that these
predictions were based on exactly equal and opposite contributions
for the letter and word levels. If it is assumed that the letter level
produced an overall slightly larger response than the word level for
the participants of Experiment 1, then the model can quantitatively
capture this crossover interaction as seen next. Essentially, with a
larger letter-level response, there was sufficient masking from the
ongoing P100 deficit during the N170 time period following a
short-duration prime as to produce the appearance of N170 repe-
tition deficits. Only following a long-duration prime was the
underlying N170 repetition benefit revealed.

Modeling Analyses

Because the neural network only includes the minimal repre-
sentation needed for word identification, irrespective of task de-
mands, attention, and other cognitive functions, it would be inap-
propriate to apply it to the ERP waveforms of a single condition,
particularly in the case of the short conditions in which later-
acting, higher order responses to the primes (e.g., P300 and N400)
overlapped with the target ERP response. However, by limiting the
analysis to the difference between conditions (i.e., repetition ef-
fects), the model provides a remarkably accurate account of the
ERP repetition effects, both as a function of time and scalp
location.

The fundamental prediction of the model is for less of a re-
sponse for a repeated item due to integration. However, this effect
should be diminished following a long-duration prime (see Figure
3B and the associated discussion). In mapping this prediction onto
scalp potentials, it is necessary to specify the position and orien-
tation of the underlying cortical sources (see Figure 3C for the best
fit average dipole positions and orientations). This was achieved
by quantitatively fitting ERP repetition effects at every electrode
and every 4-ms time slice during the P100 and N170 time windows
using a unique equivalent dipole methodology in which dipoles
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provide a static position and a time-invariant magnitude that is
multiplied by the dynamically varying neural network activations
to produce dipole activation values. The reported dipole position
fits were done separately for the data of each participant. Unlike
BESA dipole modeling (Scherg, 1990), which allows that dipoles
can be weighted by a different, independently determined value at
every moment in time, this solution is highly constrained, employ-
ing fixed dynamics as specified by the previously reported fit of
the neural network to the behavioral data (i.e., the a priori dynam-
ics seen in Figure 3B are not allowed to vary).

Parameter estimation and nested modeling.  In producing an
account of the ERP data, it was assumed that the summed mem-
brane potential of all units in a given level of the neural network
produce a regional potential that can be simulated with an equiv-
alent electromagnetic dipole. The spatial distribution of the scalp
potentials depends upon the position and orientation of these
equivalent dipoles, with position and orientation dictated by the
geometry of the cortical folds (Kandel et al., 1991) and layer of
cortical enervation (Regan, 1989). The only parameters allowed to
vary were dipole positions (x, y, and z), dipole orientation (vertical
and horizontal angle in spherical coordinates), static dipole mag-
nitude, and the time offset between presentation of a word and the
first effect of that word at the lowest level of the model. Dipoles
were constrained to be symmetric across the hemispheres (i.e., no
additional position or orientation parameters were needed for the
opposite hemisphere dipole), although a different static magnitude
was used on each side to capture hemispheric differences (i.e.,
each level of the word network was allowed to exist in each
hemisphere to some extent). The first level of the neural model was
simulated but did not specify a dipole because it is equivalent in its
response in all conditions (i.e., as an ERP source, the first level
contributes nothing to the difference between conditions). There-
fore, four dipoles were used in fitting the data (one for letters and
one for words in each hemisphere), although position and orien-
tation parameters were needed for only two of the four dipoles
considering the constraint of hemispheric mirror symmetry. This
method of fitting the a priori network dynamics to the scalp
potentials was run separately for the data of each individual for the
129 ERP data points collected in the short and long conditions over
the 36 time slices, yielding 9,288 fitted values for 15 free param-
eters. The model results were then averaged across participants to
produce the displayed ERP repetition effects. Parameters were
optimized using chi-square error (Equation 1).

Chi-square values for the goodness of fit for the neural habitu-
ation model provide a probability measure of the fit. However, as
pointed out by Roberts and Pashler (2000), there is more to
evaluating a model than simply demonstrating that a fit is quanti-
tatively good; it is important to engage in model comparisons and
to consider model flexibility by examining what types of data a
model cannot address. Therefore, we performed a second fit of the
data using traditional equivalent dipole methodology, similar to the
BESA method (Scherg, 1990), which is widely used to provide
cortical position as well as response magnitude for assumed un-
derlying neural sources (e.g., Bekker et al., 2005; Qiu et al., 2006;
Reinvang et al., 1998; Thierry et al., 1998). This can be viewed as
the best case scenario against which the fit with a priori neural
habituation dynamics is compared. BESA methodology does not
temporally constrain dipole responses, allowing uncorrelated re-
sponses from moment to moment and even reversals in the direc-
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tion of response (Berg & Scherg, 1994). Producing dipole fits with
these relaxed assumptions allowed comparison of the a priori
dynamics against freely varying dynamics that are optimized to
capture the data.

Unlike a typical implementation of BESA, we constrained the
dipoles of each hemisphere to be mirror symmetric and of equiv-
alent response at each moment, but with a free parameter for the
weighting of one side versus the other. With these constraints on
the BESA model, the neural habituation model is literally a subset
of the possible time-independent equivalent dipole models and is
thus nested under the BESA fit (i.e., the BESA fit can fit anything
that the neural habituation model can fit, plus other results that the
neural habituation model cannot fit due to its assumption of
independence over time). This allows nested model comparisons in
terms of the relative decrease in chi-square goodness of fit in light
of the number of extra parameters contained in the more flexible
parent model (Batchelder & Riefer, 1990; Huber, 2006). A nested
model comparison is particularly desirable because it allows for
statistical comparison without need of more complex techniques
that attempt to calculate the separate flexibility assigned to each
parameter when comparing nonnested models (Pitt, Kim, &
Myung, 2003; Pitt & Myung, 2002; Pitt, Myung, & Zhang, 2002).
Because equivalent dipoles sum in a linear fashion to produce
scalp potentials, the separate values for each dipole at each mo-
ment are easily calculated using multiple linear regression. For the
BESA fit, a static magnitude for each hemisphere was no longer
needed, although a single weighting value was still needed to
capture the relative contribution of the hemispheres. Therefore, the
14 static free parameters were reduced to 12 free parameters.
Instead of a static magnitude multiplied by a priori dynamics, a
different weighting value was needed for each of these two dipoles
at each of the 36 time slices in both the long and short conditions,
and so 156 free parameters were needed to fit the 9,288 data points
collected for each individual; even though these parameters are
found through multiple linear regression, they are properly viewed
as free parameters and increase the flexibility of the model. Thus,
there were more than 10 times as many free parameters for the
BESA fit, with these extra parameters providing extra freedom
over time to the same number of symmetric dipoles.

Temporal results: model comparison. Next we describe the
results of model fitting both for the habituation model, which uses
a fixed dynamic time course, as well as for the temporally uncon-
strained BESA model, which considers all possible time courses
but uses the same set of mirror symmetric dipoles as the habitu-
ation model. A statistical comparison between these two models
allows us to ask whether the prespecified dynamics of the habit-
uation model are adequate in capturing these data.

In addition to the results at the level of individual subject fits,
the model behavior for each individual was averaged and com-
pared to the observed data collapsed across subjects. For this
reconstituted subject-averaged data, the results across the 36 time
slices for the a priori neural habituation dynamics are shown in
Figure 7 both as a scatter plot over the 9,288 values (upper graphs)
and at each moment in time for each experiment and condition
averaged across the 129 electrodes (lower graphs). For the lower
graphs, a straight average of the 129 electrode ERP repetition
effect difference scores at a particular moment in time would
produce a zero value, considering that frontal scalp electrodes
show opposite responses to posterior scalp electrodes (and because
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Figure 7. Temporal results from the habituation model for the subject-
averaged data for Experiment 1 (Exp. 1) and Experiment 2 (Exp. 2). The
upper scatter plots show the 9,288 event-related potential (ERP) repetition
differences for the thirty-six 4-ms time slices of the P100 and N170 in the
short and long conditions for all 129 electrodes. Goodness of fit regression
lines are shown. The lower graphs show the average values at each time
slice (see text for details of averaging technique). These graphs are directly
comparable to the a priori predictions shown in Figure 3B, except that, in
this case, dipole positions and orientations were fitted to the data (see
Figure 3C) rather than assumed to be exactly equal and opposite in value.

Table 1
Goodness of Fit Statistics for ERP Repetition Effects
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an average reference was used). Therefore, the values were ad-
justed before averaging in producing Figure 7 such that electrodes
producing positive ERP repetition effects during the P100 time
window were flipped in numerical sign to convert them to negative
ERP repetition effects. In other words, both the observed and
model values for each electrode were multiplied by +1 or —1 de-
pending on the average observed ERP repetition effect during the
18 time slices of the P100 time window. Essentially, frontal
electrodes were converted to posterior electrodes before averaging
across electrodes.

As seen in the lower graphs of Figure 7, the fixed neural
habituation dynamics provide a reasonable account of the ERP
repetition effects at each moment in time across the P100 and
N170 time periods (more so for Experiment 1 than for Experiment
2). The dynamics for the a priori predictions seen in Figure 3B are
the same, and so Figure 7 is necessarily very similar to 3B except
that the values are shifted downwards slightly because dipole fitting
placed larger static weights on the letter dipoles (the source of the
P100) compared to the word dipoles (the source of the N170).
Figure 7 does not show the best case scenario results of the time
independent traditional dipole model; but, if it did, the graphs
would reveal nearly perfect fits, with BESA capturing every seem-
ingly random bump and wiggle at each moment in time. Thus, it is
nearly certain that the assumption of independence over time
results in fitting noise, which is why a quantitative comparison
based on chi-square is needed to appropriately factor in the role of
model flexibility.

First, we consider chi-squared error, which can be converted
into a probability for the goodness of fit in light of the number of
fitted values, the number of free parameters, and sampling noise.
Chi-squared error was calculated according to Equation 1 (see
associated discussion for calculation of sampling noise) for the
data of each individual, with average results under both models
shown on the left side of Table 1 in the last row. To calculate
chi-squared error for the reconstituted group data (shown on the
right side of Table 1), the ERP standard deviations found through
the plus/minus technique for each participant were averaged and
then divided by the square root of the number of subjects to
provide a measure that appropriately reduced the expected sam-
pling variance in light of the larger number of data points included
in the group data. Table 1 does not report the associated probabil-
ities for goodness of fit because all models fit excessively well,
producing p values of exactly 1.0 (i.e., the probability that the

Individual data (9,288 values)

Group data based on fits to individual data
(9,288 average values)

Experiment 1

Experiment 2

Experiment 1 Experiment 2

Model Habituation BESA Habituation BESA Habituation BESA Habituation BESA
Number of parameters 15 156 15 156 465 4,836 450 4,680
Squared error (microvolts) 0.81 0.50 0.74 0.51 0.05 0.02 0.03 0.02
Variance accounted for 29% 54% 26% 48% 65% 86% 31% 58%
Correct valence T1% 77% 69% 75% 76% 86% 73% 79%
Chi-squared error 2,884 1,771 2,403 1,645 4,342 1,796 2,133 1,308

ERP = event-related potential; BESA = brain electrical source analysis.



THE DYNAMICS OF INTEGRATION AND SEPARATION

model is rejected is 0.0 in all cases). Thus, the neural habituation
model, with fixed dynamics and only 15 parameters successfully
captured the 9,288 values at the level of individual data and at the
level of the reconstituted subject-averaged data.

Providing other measures of model performance, Table 1 also
reports average squared microvolt difference per electrode, percent
variance accounted for, and a qualitative test for the proportion of
data points that were of the correct numerical sign (i.e., correct
valence—both model and data revealing positive or negative rep-
etition effects). Even though the variance accounted for measure
suggests a mediocre fit, it is important to keep in mind that (a) the
variability in the ERP data is quite high and the model is doing
remarkably well in light of the number of free parameters com-
pared to the number of observed values and (b) the BESA fit, with
more than 10 times as many parameters, is not doing much better
in terms of these measures.

Neither the habituation dynamics nor the time impendent BESA
model can be rejected based on goodness of fit. However, because
this is a nested model comparison, the difference in chi-squared
error between these models can be tested with degree of freedom
equal to the difference in the number of free parameters. This asks
the question of whether the extra parameters of the time indepen-
dent BESA model produce a significantly better fit." The answer to
this question is quite interesting and depends on whether one
examines the individual data or the group-averaged data. In terms
of fits to individual data, the extra flexibility associated with the
time-independent BESA model is warranted for most participants
(although in a couple of cases, model comparison preferred the
more constrained habituation dynamics). However, for the chi-
square calculated for the average data based on the individual fits,
the habituation dynamics are the statistically preferred model, and
the extra parameters of the BESA model do not produce a signif-
icantly better fit, Experiment 1: X2(4,371, N = 9,288) = 2,546,
p = 1.0, Experiment 2: x*(4,230, N = 9,288) = 825, p = 1.0. This
is a sensible result considering that these particular a priori habit-
uation dynamics were determined based on fits to group-averaged
behavioral data (Huber & O’Reilly, 2003). In other words, the
habituation dynamics of the average participant are a more par-
simonious account of the ERP repetition effect of the average
participant. Perhaps habituation dynamics fit to the behavioral data
of each individual would fare better in terms of the ERP dynamics
of each individual. In keeping with this conclusion, we recently
performed a series of priming experiments with face perception
using the same design as Experiment 1 in which we found reliable
individual differences in the rate of prime induced habituation
(Rieth & Huber, 2008).

Spatial results: Dipole positions and orientations. The previ-
ous section and results in Figure 7 emphasized the results in terms
of each 4-ms time slice, whereas the current section examines the
results in terms of topographic patterns across the 129 scalp
electrodes for the P100 and N170. Figure 8 shows topographic
maps for two time windows 72 ms apart, chosen to highlight the
P100 and N170 spatial patterns (these are chosen sometime past
the peak response so as to minimize the overlap of the P100 pattern
during the N170). In this figure, the first and third rows show the
observed ERP repetition effects, with dots indicating electrode
position on this flattened scalp representation. The second and
fourth rows show the corresponding spatial patterns produced by
the a priori habituation dynamics after fitting the hemisphere
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Figure 8. Spatial results from the habituation model for the subject-
averaged data. Observed data (first and third rows with electrode positions
indicated by dots) and neural habituation dipole fitted data (second and
fourth rows) are broken down by prime duration (short, long). Two time
slices 72 ms apart are shown to highlight the P100 and N170 spatial
patterns. These occurred at 132 ms and 204 ms for Experiment 1 (Exp. 1)
and 152 ms and 224 ms for Experiment 2 (Exp. 2). White dots indicate the
electrodes used for statistical analyses.

symmetric dipole positions and orientations. Qualitatively, the
spatial patterns appear close to the observed results. A more
accurate quantitative fit could be found through the inclusion of
more dipoles or by relaxing the hemispheric symmetry constraint,
although doing so necessarily increases model flexibility and the
number of free parameters.

Because dipoles were determined separately for the data of each
participant, standard deviations can be calculated for the resultant
parameters. By fitting the data of different individuals, which are
subsets of the grand average data, this is similar to a nonparametric

! Fits with 4-ms time slices may appear biased in favor of the habituation
model, considering that the number of free parameters in the time-
independent BESA model depends on the chosen temporal resolution.
However, this is not necessarily the case. Although a less fine-grained
temporal resolution would entail a smaller difference in degrees of freedom
due to fewer parameters in the BESA model, it would also entail fewer
observations that need to be fit and would involve fitting less noisy data
due to time averaging. The assumption of time independence in the BESA
model allows it to capture truly random fluctuations from moment to
moment, and so, to the extent that the fitted data are noisy and include such
fluctuations (e.g., such as with small time slices), BESA will perform
relatively better on average for each observation. The particular choice of
4-ms time slices is in keeping with the literature and typical use of BESA
and is appropriate to the time scale of change in the habituation model.
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bootstrap analysis for determining parameter confidence limits of
the group data (e.g., Efron & Tibshirani, 1993), the only difference
being that an analysis of individual data results in larger parameter
confidence limits because it appropriately includes both random error
as well as systematic subject variance. The resultant means and
standard deviations across subjects of the model parameters are found
in Table 2. As seen in this table, the standard deviations were large
and similar in magnitude to the mean parameter values (this was
equally true for the time independent BESA fit of the data). With such
large deviations for the parameters, the resultant average dipole po-
sitions are not particularly reliable, and it would be premature to
speculate on the cortical locations of these dipoles.

Relationship to other ERP analysis techniques. ~ Similar to the
adjacent response (ADJAR) technique for separating the compo-
nents of overlapping waveforms through mathematical deconvo-
lution based on uncontaminated waveforms (Woldorff, 1993), our
analyses used the uncontaminated prime word ERP to determine
appropriate times for the P100s and N170s to the target word
combined with the neural habituation model to specify the nature
of the separate overlapping components. However, our theory
supposes that uncontaminated waveforms are already composites
of multiple sources (e.g., the N170 partially reflects the ongoing
response of the cortical area primarily responsible for the P100).
Therefore, according to our theory, ADJAR deconvolution based
on waveforms still fails to fully deconvolve the waveform into
separate cortical responses, which might separately vary with the
conditions of interest. This is the basic difficulty of the so-called
“inverse problem” of electrophysiology (Mosher, Baillet, &
Leahy, 1999), which arises because there is no unique solution for
the mapping between an array of passively monitored three-
dimensional sensors and the underlying cortical responses. To
address this problem, additional assumptions are needed; and, in
the current situation, the assumption we make is based on neural
habituation as specified by the behavioral results.

There are other promising techniques that can similarly demix
scalp responses, separating out concurrently active cortical sources
by means of statistical covariance (Baillet & Garnero, 1997;
Makeig, Jung, Bell, Ghahremani, & Sejnowski, 1997). A serious
limitation of these techniques is the assumption of independence

Table 2
Average Parameters and Standard Deviations

HUBER, TIAN, CURRAN, O’REILLY, AND WOROCH

between the underlying sources (i.e., if one source is strongly
active on a given trial, this does not imply anything regarding the
activity of other sources). For removing eye blink artifacts or
heartbeats, the independence assumption appears valid (Jung et al.,
2000), but for differentiating between levels of perceptual process-
ing, the independence assumption is almost certainly false
(Halgren et al., 1995).

MEG Repetition Effects: Experiment 3

Experiments 1 and 2 obtained neural repetition effects for im-
mediately repeated words, with these effects occurring in early
perceptual responses. Furthermore, the magnitude of these re-
sponses varied with prime duration similar to behavioral priming.
Because these were in response to the briefly flashed target word,
prior to initiation of the decision process with the appearance of
the choice words, this suggests a perceptual basis for the changes
in priming as a function of prime duration. The combination of
equivalent dipoles and the behaviorally specified neural network
dynamics provided a reasonable and statistically reliable account
of the electrode repetition effects seen in Figures 7 and 8, and this
provides converging evidence to the claim that perception rather
than decision underlies the effect of prime duration. In doing so,
the complex data pattern was explained in terms of temporal and
spatial overlap between the cortical source of the P100 and the
cortical source of the N170. Furthermore, the difference between
the two experiments was predicted due to the lessening of the
repetition effect for the cortical source of the P100 when using two
prime words rather than a single prime word. However, one
troubling aspect of the modeling was that it failed to produce
consistent cortical locations for the dipoles across the separate fits
to the data of different individuals (see Table 2 and the associated
discussion). This variability across individuals might indicate that
the ERP data are spatially unreliable, perhaps because average
electrode positions were used rather than determining exact elec-
trode position for each participant or, perhaps, due to sampling
noise. Alternatively, if these differences are real, this variability
may indicate that different cortical areas are involved for different
people or that different distributions of cortical areas are involved,

Experiment 1

Experiment 2

Letters Words Letters Words

Statistic Mean SD Mean SD Mean SD Mean SD
Left-right position -0.14 0.14 —0.12 0.14 —0.14 0.16 -0.15 0.13
Front-back position -0.02 0.32 —0.04 0.35 0.04 0.38 0.06 0.34
Up-down position -0.17 0.22 —0.05 0.26 —0.11 0.24 -0.15 0.23
Horizontal angle —0.84 1.59 0.60 1.62 —-0.41 1.81 0.38 1.57
Vertical angle —0.11 0.44 0.06 0.34 0.02 0.56 0.00 0.63
Response magnitude® 58.61 73.89 47.84 63.19 43.71 65.86 56.44 135.94
Right/left balance® 0.51 0.25 0.54 0.28 0.51 0.37 0.49 0.37
Time offset* 83.20 41.12 123.93 51.00

“ For the BESA fit of the data, these parameters were not needed, and, instead, a multiple linear regression across the two combined left/right dipoles was
performed at each of the thirty-six 4-ms time slices for the short and long conditions, which added 144 more parameters instead of these three parameters.
® Parameters are for the left hemisphere dipoles, with the right hemisphere dipoles mirror symmetric and scaled by right/left balance.
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with the dipole position indicating the central tendency of the
distribution (i.e., each dipole was capturing a mixture of multiple
cortical areas).

Experiment 3 replicates Experiment 2 using magnetoencepha-
lography (MEG), serving two goals. First, replication helps estab-
lish that the effects seen Experiment 2 are reliable and generalize
to other measures of neural activity. Second, MEG is more spa-
tially localized in its response to cortical activity (Hamalainen,
Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993), allowing a more
reliable measurement of dipole position. Even though the use of
two primes revealed weaker effects, the design of Experiment 2 is
chosen for this replication because it controls against attentional
differences between short- and long-duration primes by eliminat-
ing any differences between conditions prior to the target presen-
tation. By convention, evoked MEG components are given the
label M, indicating magnetic, followed by the number in millisec-
onds at which these responses typically occur poststimulus. The
magnetic field responses are signed in terms of sinks (into the
head) versus sources (out of the head), but the sign is not included
in the labeling, presumably because MEG typically reveals both
sinks and sources in close proximity due to its increased spatial
localization. Therefore, the equivalent of the P100 ERP response is
the M100 MEG component and the equivalent of the N170 ERP
response is the M170 MEG component (Hopf, Vogel, Woodman,
Heinze, & Luck, 2002).

The excitatory responses on the apical dendrites of pyramidal
cells are the underlying source of both EEG and MEG (Regan,
1989), producing voltage potential changes as measured with EEG
as well as magnetic field fluctuations as measured with MEG.
Therefore, both techniques have the same high degree of temporal
resolution. Nonetheless, there are some differences between the
techniques. According to the right-hand rule of electromagnetism,
a voltage potential and the associated current in a particular direc-
tion produces a magnetic field that wraps around the current
dipole. Apical dendrites are aligned orthogonal to the cortical
surface and so EEG reveals the largest response on the scalp
directly above the associated patch of cortex. In contrast, MEG
reveals an associated magnetic sink and source response at scalp
locations on either side of that scalp location. Because the cortex
is crumpled, the variable geometry of different cortical locations
(i.e., in a fold versus adjacent to the scalp) means that some
locations are more easily seen with EEG whereas others are more
easily seen with MEG. Besides providing this different topo-
graphic view of brain activity, MEG is a superior technique be-
cause magnetic fields are unaffected by the intervening cerebral
spinal fluid, skull, skin, hair, etc. In contrast, this intervening
material serves to progressively diffuse the voltage potential mea-
sured with EEG. Therefore, the voltage potential distributions seen
with EEG tend to be spatially large, with opposite values on
opposite sides of the head (or even missing in one direction if the
other side is below the head). In comparison, the distribution of
magnetic flux seen with MEG is more spatially localized, typically
revealing both sinks and sources in close proximity on the same
side of the head. For this reason, MEG is the measure of choice for
ascertaining the reliability of the individual differences in the
spatial response.

Although MEG is superior to EEG for its spatial specificity,
unique problems are associated with this level of specificity. In
particular, it is difficult to perform analyses across participants
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because a sensor that reveals a sink for one person is just as likely
to reveal a source for someone else because (a) the distribution of
sinks and sources associated with a current dipole are localized and
therefore more sensitive to individual differences in cortical ge-
ometry and (b) the MEG sensors are not placed in the same
position for each individual, and, therefore, the spatial layout may
be affected by the manner in which people position themselves
within the MEG chamber. For this reason, we primarily use MEG
to assess individual differences, although we developed a geomet-
ric localizer technique to reduce the MEG results to a magnitude
value, thereby replicating the effects of Experiment 2 with infer-
ential statistics across participants (Tian & Huber, 2008). Due to
the problem of head position, we elected not to use dipole mod-
eling with the MEG data because the results of such modeling are
complicated by the need to assess where a subject’s head is located
within the MEG chamber.

Method
Participants

Experiment 3 recruited 18 paid participants, although only 12 of
them were able to sufficiently refrain from blinking (the MEG
chamber was very dark and there was a tendency for the briefly
flashed words to elicit a startle response). Of these 12 participants,
10 of them were used in the reported results. One participant was
eliminated due to malfunction of MEG while recording and an-
other was eliminated because of a highly unusual response in one
of the conditions as determined through the z scores of the repe-
tition effects (more than 2.5 standard deviations greater than the
repetition effects of other participants). Mostly likely this was due
to some sort of artifact in one of the conditions, such as movement
or blinking. All participants were right-handed native English
speakers with no history of neurological disorder.

Experimental Design

The experimental design was identical to Experiment 2 except
that every trial was followed by feedback, and the feedback re-
mained onscreen until the participant was ready for the next trial
(self-paced). In order to check head position within the MEG, 5
electromagnetic coils were attached to the head of participants
before the MEG recording. The locations of the coils were deter-
mined with respect to anatomical landmarks (nasion, left and right
preauricular points) on the scalp using three-dimensional digitizer
software (Source Signal Imaging, Inc. San Diego, CA) and digi-
tizing hardware (Polhemus, Inc., Colchester, VT). The coils were
localized with respect to the MEG sensors, both at the beginning
and end of the experiment.

During the experiment, participants were supine inside a mag-
netically shielded room. Before the priming experiment, they
listened to 200 repetitions of 250HZ and 1 kHz, 50 ms sinusoidal
tone (interstimulus interval randomized between 750 and 1550
ms), with 100 repetitions for each frequency. Auditory-evoked
responses to the onset of the pure tones were examined, and the
auditory M100 was identified. The auditory M100 is a prominent
and robust (across listeners and stimuli) deflection at 100 ms after
onset and has been the most investigated auditory MEG response
(for review see T. P. Roberts, Ferrari, Stufflebeam, & Poeppel,
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2000). A dipole-like pattern (i.e., a source and sink pair) in the
magnetic topographic map distributed over the temporal region of
each hemisphere was identified for each participant. These re-
sponses were used to verify that the participant was positioned
properly in the MEG.

MEG Methods

Magnetic signals were recorded using a 160-channel (157 data
channels and 3 reference channels), whole-head, axial gradiometer
system (KIT, Kanazawa, Japan). The MEG data were acquired
with a sampling rate of 500 Hz, filtered online between 1 Hz and
200 Hz, with a notch at 60 Hz (Chait, Poeppel, & Simon, 2006;
Liu, Harris, & Kanwisher, 2002). Raw data were noise-reduced
using the continuously adjusted least-squares method (CALM,;
(Adachi, Shimogawara, Higuchi, Haruta, & Ochiai, 2001). A
600-ms time period (100 ms preonset) that was time locked to the
first presented prime word was extracted and averaged over the
400 prime responses. These were used to assess individual differ-
ences in the M170 response to a singly presented word. A second
600-ms time period that was time locked to the briefly flashed
target was extracted and averaged over the 200 novel targets, the
100 targets that repeated the long-duration prime, and the 100
targets that repeated the short-duration prime. Trials with ampli-
tudes > 3pT (~5%) were considered artifactual and discarded.
The averages were low pass filtered with a cutoff of 20 Hz (Luck,
2005).

Results and Discussion

After reporting the behavioral results, we report the MEG results
in two sections. The first examines MEG responses to the first
prime word in order to assess individual differences in the tempo-
ral and spatial pattern of the M100 and M170 to a single word. The
second examines the MEG responses to the briefly flashed target
word in terms of repetition effects. This second analysis uses the
correlation (projection) between the target response and prime
response to provide a measure of response magnitude that normal-
izes against the observed individual differences and partially elim-
inates contamination from overlapping responses from the second
prime word. Evidence that this technique improves the reliability
of the data averaged over participants is presented below by
comparing the raw data based on sensor selection versus this
projection technique. In a related paper, Tian and Huber (2008)
developed the correlation measures of projection and pattern sim-
ilarity, demonstrating their effectiveness with the MEG results
reported here. That paper also presented spatial topographies of all
10 participants and MEG waveforms for all 157 sensors.

Behavioral Results

The average target flash duration was 92 ms, ranging from 47
ms to 165 ms across individuals. Figure 4 shows the average
probability correct for the four conditions. There was a main effect
of priming condition, F(1, 17) = 5.39, p < .05, and a significant
interaction between priming condition and prime duration, F(1,
17) = 21.95, p < .001. For the short prime duration, performance
in the target condition was better than performance in the foil
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condition, #(17) = 3.46, p < .005, but for the long prime duration
there was no difference, #(17) = 0.81, p = .43.

MEG Individual Differences

The next two sections test whether there are reliable (signifi-
cant) differences in the timing of MEG waveform components
between individuals and in the topographic patterns associated
with MEG waveforms between individuals. Testing the reliabil-
ity of individual differences informs the question of whether
variability in the dipole positions for the fits to Experiments 1
and 2 was due to sampling noise or whether it reflected real
differences. As seen in Figure 1, the first prime word was seen
on the screen for 1,850 ms in isolation as a single word in the
upper location without distraction. Therefore, individual differ-
ences in both the timing (temporal differences) and the topog-
raphy (spatial differences) of the M100 and M170 were as-
sessed by examining the MEG response to the first prime word.
This provides a relatively uncontaminated measure of individ-
ual differences in the response to visually presented words.
Figure 9 shows the results from three participants, demonstrat-
ing both different spatial patterns and timing of peak responses
(latency) for the M100 and M170 to visually presented words.
Because all conditions began with a single word, these data
were averaged over all 400 trials for each participant, and so
these are fairly reliable responses.

Temporal differences. Latencies were determined through the
root-mean-square across all 157 sensors. The latencies of the first
and second major peak after onset were defined as the M100 and
M170. The average latency of the M100 was 101.2 ms and ranged
from 67 ms to 139 ms (standard deviation of 25.8 ms) and the
average latency of the M170 was 174.8 ms and ranged from 135
ms to 203 ms (standard deviation of 23.5 ms). In order to statis-
tically assess the reliability of these differences, the experiment
was separated into two halves, and the M100 and M170 latency
for each half were determined separately to provide a null
hypothesis measure of latency variability. Latency differences
(unsigned) between the two halves of the experiment were
separately determined within subject (null hypothesis) as well
as between subjects (treatment of subject differences). This is
similar to the logic of a variance breakdown in an ANOVA,
although, in this case, the comparison is made with a simple
independent samples ¢ test (unequal variance) comparing the
within-subjects first half/second half latency differences versus
the between-subjects first half/second half latency differences.
Across 10 participants, for both the M100 and the M170, the
null hypothesis within latency yielded 10 comparisons (one for
each individual), whereas the alternative hypothesis between
latency yielded 45 comparisons (45 ways to choose 2 of the 10
individuals). The latency differences for the between-subjects
comparison were significantly greater than the within-subjects
comparison both for the M100, #38.2) = 4.672, p < .001, and
the M170, #(42.6) = 5.419, p < .001. For these independent
sample 7 tests, the equal variance assumption was violated, and
so the degrees of freedom was adjusted, resulting in noninteger
values.

Spatial differences. In order to test spatial differences statis-
tically, the spatial pattern of the M100 and M170 (at the
appropriate latency) for different individuals was compared
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Figure 9. Experiment 3 latencies and spatial patterns of the M100 and M170 repetition effects for three
individuals chosen to highlight individual differences both in the spatial topography and in the timing of
the waveforms. Peak latency was determined from the root mean square response to the first prime word,
which provided the uncontaminated standard response against which the projection values in Table 3 were

calculated.

through a geometric measure of angle in the 157 dimensional
sensor space. The similarity in the pattern of two different
M100s or M170s was measured through the cosine of the angle
between the patterns. Tian and Huber (2008) provided a full
description of this angle measure, as well as the projection
measure reported next, and statistically compared the results to
traditional analyses based on sensor selection (Figure 10 shows
this comparison between Part A versus Part B). The angle
measure has the advantage that it is unaffected by the magni-
tude of the response. For example, if two people have identical
response patterns but the response for one of the two individ-
uals is twice as large, this comparison technique would reveal
that the angle between them was 0, and, thus, the cosine of the
angle would be 1.0 (i.e., perfectly similar). Equation 2 shows
the vector notation for the cosine of this angle, 6, when com-
paring two vectors, A and B, with these vectors corresponding
to the magnetic fields of two different M100s or M170s.

—~

A* B

cosh = ——— 2)
|Al[ B

As with the latency differences, the reliability of these spatial
similarity differences were determined by breaking the data into
first half versus second half of the experiment and this angle was
calculated for the 10 within-subjects comparisons versus the 45
between-subjects comparisons. For this comparison it was deter-
mined that an equal variance ¢ test was acceptable. The cosine
angle for the between-subjects comparison was significantly lower
(more dissimilar) than the within-subjects comparison for both the

M100, #(53) = 4.675, p < .001, and the M170, #(21.5) = 7.812,
p < .001.

Target MEGs and Repetition Effects

Considering these large and reliable individual differences in
both the timing and the pattern of the M100s and M170s to
visually presented words, we sought to reduce target word
responses to a single number that normalized against these
individual differences. In the current situation, we determined
when the M100 and M170 reached their peak responses, as well
as the spatial pattern at that peak, and then calculated a measure
of response magnitude at the appropriate time. Not only does
this allow a measure that can then be placed into a between-
subjects ANOVA, it additionally helps to reduce contamination
from the ongoing later components (e.g., M400) in response to
the second prime that overlap with the response to the target.
The cosine angle test used above assessed similarity between
spatial patterns (e.g., whether two M170s were topographically
similar); but, for this analysis, we wanted a measure for how
much of an M100 or M170 occurred. Therefore, the appropriate
measure is the projection of the target word response (at the
appropriate time) onto the standard pattern from the prime.

—

A B

[Blcosh = —— 3)
[A]

The left-hand side of Equation 3 is this projection measure in which

the vector A is the pattern to the first prime word and vector B is the
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A: Results with Traditional Sensor Selection
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Figure 10. Experiment 3 subject-averaged M170 waveform data for traditional sensor selection (Part A)
versus the projection technique (Part B). The graphs show time since the target flash on the x-axis. The
legend refers to the prime conditions. As indicated by the standard error bars, the projection results
produced more reliable results by normalizing each individual’s multivariate magnetoencephalography
(MEG) response against their standard M 170 response as determined from the first prime. The spatial map
in Part A shows the average M170 to the target, which is quite different from the average M170 to the first
prime shown in Part B, presumably due to the overlap between the response to the target and the responses
to the second prime word. The gray bars of the graphs highlight the time window where the M170 to the
target should have occurred, although the magnitude of response was small due to the short duration of the
masked target and overlap with the response to the second prime word. For comparison, note the large
M170 seen in both graphs between 0 and 50 ms, which is due to the second prime word presented 150 ms
prior to the zero point when the target was presented. The graph of Part A shows the three conditions as
calculated from the 10 circled sensors with the largest source response. In contrast to these results, the graph
of Part B shows the projection results, which revealed a small M170 to the target and also revealed that the

250

M170 was less in the long condition but not the short condition.

pattern to the target word. These vectors were determined by
averaging over a 22-ms time window centered on the individual
M100 or M170 peak responses. Thus, each participant yielded
three data points for the M100 and M170 for each of the three
priming conditions. This is analogous to a localizer task in func-
tional magnetic resonance imagining (fMRI; e.g., Kanwisher,
Tong, & Nakayama, 1998) that first determines which region of
the brain is of interest separately for each participant (here based
on the MEG response to the prime), and then examines changes in
the response of the appropriate region across the conditions (i.e.,
the MEG response to targets in the repeated vs. novel conditions).

Before normalizing with this geometric projection, a critical
first step involves comparing the three target conditions for
their spatial similarity using the cosine angle test. If the three
conditions are found to be spatially dissimilar in their response,
then any apparent magnitude difference from the projection
onto the standard prime response may be due to spatial simi-
larity differences between the conditions. Conversely, if the

three conditions are found to be spatially similar, then their
projection onto the standard prime response provides a rela-
tively assumption-free indication that the change was in the
magnitude of the cortical response rather than in the distribution
of the cortical response. Statistical reliability was again deter-
mined by dividing the experiment into trials from the first half
of the experiment versus trials from the second half of the
experiment, with the key comparison of within-condition versus
between-condition angle tests (these were always calculated
within subject). Because there were three conditions, this en-
tailed three different possible comparisons between conditions,
which were then averaged in comparison to the average of the
three within-condition comparisons, yielding one between num-
ber and one within number for each participant. In a dependent
samples test across the 10 participants, there was no significant
difference in the similarity (angle test) of the between-
conditions comparisons versus the within-condition compari-
sons, and this was true both for the M100, #9) = 0.705, p =
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499 and the M170, #9) = —1.216, p = .255. Thus, the
topographic patterns across the target responses in the three
conditions were similar enough to allow subsequent magnitude
comparisons with the projection test.? This also implies that the
same distribution of cortical responses was involved in the three
target conditions such that any magnitude differences are real
and not due to differential recruitment of cortical areas in some
conditions but not others.

Figure 10 demonstrates that the projection measure can produce
more reliable results across participants by showing the average
MEG waveform for the M170 with a traditional method of sensor
selection (Part A) versus the project method (Part B). The topo-
graphic maps show the standard M 170 response to the first prime
(Part B) versus the M170 response to the brief target (Part A),
which are very different, presumably due to overlapping responses
to the second prime or the M100 to the mask. Because the
projection measure normalizes against individual differences and
partially removes overlapping responses, the error bar for the
graph in Part B is relatively smaller compared to Part A (i.e., the
error bar is small relative to the differences between conditions
seen during the time window of the target M170 as highlighted by
the gray bar). Furthermore, the graph in Part B reveals a small
positive deflection during the time window of the M170 for all
conditions, whereas the M 170 for the target is not apparent in Part
A, suggesting that projection has recovered the M170 signal.
Providing a more reliable measure, Table 3 reports the projection
values averaged over the M170 time window.

Comparing across the three priming conditions in terms of the
projection measure of magnitude (see Table 3), there were no
differences for the M100, F(2, 18) = 1.383, p = .276, but there
were for the M170, F(2, 18) = 5.202, p < .025. The M170 to a
repeated word was smaller than the novel condition when the
prime was presented for the long duration, #(9) = 3.916, p < .01,
but there was no repetition priming effect for the short duration,
1(9) = 0919, p = .382. In conclusion, Experiment 2 found that
there were no P100 (~100 ms) repetition effects but there was less
of an N170 (~170 ms) when the target followed a long-duration
prime and this pattern is replicated in terms of the M100 and M170
using the same two-prime-word paradigm as Experiment 2.

General Discussion

With threshold identification of words and immediate repetition
priming, it has been observed that short prime durations produce
positive priming but long prime durations eliminate this effect or
even produce negative priming (Huber, 2008; Huber, Shiffrin,

Table 3
Target Word Responses Projected Onto Prime Responses To
Normalize Against Individual Differences

M100 M170
Projection Mean SE Mean SE
Novel 439 .147 207 104
Short 422 180 .176 .109
Long .329 .168 137 113

Note. ™ MEG repetition effects significant at the .01 level.

Lyle, et al., 2002; Huber et al., 2001; Huber, Shiffrin, Quach, et al.,
2002; Weidemann et al., 2005, 2008). In order to differentiate
between a perceptual basis versus a decision basis of this prime
duration effect, we examined early perceptual brain responses to
the target word, which was presented prior to the choice words and
initiation of the decision process. Supporting the claim that these
effects may have a perceptual basis, we found that ERP repetition
effects were affected by prime duration and replicated these results
with MEG.

The theory that guides this work assumes that perceptual re-
sponses are integrated over time, potentially causing source con-
fusions (short primes), but that with sufficient processing (long
primes), this source confusion is minimized (i.e., prime and target
are separated) through habituation to previously identified items.
This theory has successfully explained many behavioral priming
results in which priming effects are reduced, eliminated, or even
reversed by supraliminal primes (Huber, 2008; Huber, Clark,
Curran, & Winkielman, in press; Huber & Cousineau, 2004; Huber
& O’Reilly, 2003; Rieth & Huber, 2005, 2008). Using parameters
that previously specified behavioral results as a function of prime
duration, we used this neural habituation model to produce a priori
predictions for the direction of P100 and N170 repetition effects
and the role of prime duration by assuming that letter processing
underlies the P100 and word processing underlies the N170. Our
results are significant both qualitatively and quantitatively. Qual-
itatively, we found clear evidence of perceptual ERP and MEG
effects with immediate repetition. Furthermore, these effects were
modulated by prime duration. When only a single prime word was
presented (Experiment 1), we observed less of a response for the
P100 in the repeated condition (less positive), but this repetition
effect was smaller following a long-duration prime. Likewise, the
N170 component in the repeated condition was larger (more neg-
ative) following a short-duration prime and this effect also inter-
acted with prime duration, such that the N170 was smaller (less
negative) following a long-duration prime. Experiments 2 and 3
used two different prime words on every trial in order to control
for attentional factors, and both experiments found that the P100/
M100 repetition effects were eliminated, but there were still rep-
etition effects for the N170/M170, with smaller responses for
repeated words only following long-duration primes. The differ-
ence between Experiment 1 versus Experiments 2 and 3 was
expected due to the extra competition that takes place within the
word identification system with the use of two different primes
rather than a single prime word. The overall pattern of results, and
the interactions with prime duration in particular, provides con-
verging evidence that the corresponding behavioral priming effects

2 The projection test is useful for normalizing against individual differ-
ences even though the angle test conclusion that the patterns are suffi-
ciently similar relies upon accepting the null hypothesis, with some un-
known type II error rate. In other words, use of the projection test for
assessing statistically reliable differences does not rely on accepting the
null hypothesis for the angle test, but interpretation of the differences in
terms of magnitude does rely on this acceptance. As shown in Figure 10
and Table 3, the projection measure produced reliable and significant
results, whereas the angle test failed to produce significant results. This
indicates that an interpretation of the differences between conditions in
terms of magnitude is more likely than an interpretation in terms of
topographic similarity.
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and the interaction with prime duration is due to relatively auto-
matic perceptual processes, such as is assumed by habituation
model of Huber and O’Reilly (2003), rather than strategic respond-
ing and rather than a decisional process specifically in response the
choice words.

These results are quantitatively important because the simulated
neural network accounted for the moment-by-moment ERP repe-
tition effects with only dipole positions and static dipole vector
moments as free parameters (i.e., the neural network specified the
neural dynamics in advance based on the behavioral data). Our
interpretation is novel and assumes that the neural sources of ERP
components are isolated neither in time nor location, with the
ongoing responses of early sources contributing to the observed
effects of later ERP components. The prediction of the model was
for less of a cortical response to a repetition due to integration
across multiple items (i.e., the activation of a brain region to the
presentation of two different words is greater than repeating the
same word). Furthermore, the magnitude of this repetition effect
was predicted to be smaller following a long-duration prime due to
separation. The observed P100 effects (Experiment 1) were di-
rectly in accord with this prediction. The N170 effects were also in
agreement with this account assuming that the source dipoles were
oppositely oriented (see Figure 3). In this manner, the observation
of larger N170s (Experiment 1) or a lack of an N170 effect
(Experiments 2 and 3) following a short-duration prime was ex-
plained as the ongoing source of the P100/M100 effect partially or
fully counterbalancing the N170/M170 effect. Finally, the emer-
gence of decreased N170/M170s following long-duration primes
was explained as the unmasking of the “pure” underlying N170/
M170 repetition effect because the P100/M100 repetition effects
were diminished in size following long-duration primes due to
habituation.

Experiment 3 used MEG, which allowed better spatial localiza-
tion for the cortical source underlying an electrophysiological
response. Besides replicating Experiment 2 with a different tech-
nique, this increased spatial specificity allowed a test for the
reliability of individual differences. The M100 and M170 re-
sponses to visually presented words were found to be highly
variable across individuals in terms of both the latency of the
responses and the pattern of the responses across the sensors.
Assuming that anatomical structures of different individuals do not
differ as greatly as might be implied by the differences in the
electromagnetic flux patterns (see Figure 9), it seems likely that
these patterns reflect the combined response across a distributed
array of cortical responses, with the individual differences arising
from different mixtures of the array rather than differences in a
single source. Therefore, although the dipole fits were useful for
testing the model’s dynamics, the dipole positions and orientations
should not be taken in a literal manner and instead are best thought
of as capturing the central tendency for the distribution of cortical
responses, with this central tendency differing across individuals.
In order to normalize against these individual differences to di-
rectly test the model’s predictions in terms of magnitude, Exper-
iment 3 used the prime’s response as a standard latency and
pattern.

A question that often arises in the use of a computational model
for explaining data is whether the model is too flexible and what
types of data cannot be addresses by the model (Pitt et al., 2003;
Pitt & Myung, 2002; Pitt et al., 2002; S. Roberts & Pashler, 2000).
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Our finding of early repetition effects in response to the target,
prior to the choice words, strongly suggests a perceptual locus of
these priming effects, but these results cannot unequivocally iden-
tify habituation as the root cause. Therefore, the issue of model
flexibility is important in assessing the strength of an explanation
in terms of habituation, and we addressed this issue in several
different ways. First, we used previously published parameters
based on behavioral data to produce predictions with the assump-
tion of exactly equal and oppositely oriented responses for the
letter and word levels of processing. In reporting the results, we
converted the mathematical sign of all electrodes in relation to
posterior scalp regions so that the obtained results (Figure 7) could
be directly compared to these original a priori predictions (Figure
3B). Second, we derived a new method for statistically assessing
the goodness of fit to ERP data. Thus, a chi-square value was
calculated through the likelihood ratio for the probability of the
data under the model, versus the probability of the data from a
model that perfectly fit the obtained results. To obtain these
probabilities, we assumed normally distributed error variance in
sampling ERPs and used measures of ERP variance for each
individual to calculate a goodness of fit for each individual. These
chi-square values revealed that the model produced a valid fit for
all individuals in accounting for 9,288 data points of an individual
with just 15 free parameters. Third, we engaged in model com-
parison by also fitting the popular BESA dipole methodology
(Scherg, 1990), which assumes that equivalent dipoles are inde-
pendent across time steps and can take on any value regardless of
other time steps. This increased the number of parameters by a
factor of 10, but this model did not fare significantly better for the
group-averaged data. Thus, the a priori dynamics of neural habit-
uation based on group-averaged behavioral data were supported.

Comparison with Other Studies

In the study of memory and language processing, there is a
sizable literature examining ERPs to immediately repeated words
both within and across modality (e.g., Bentin & McCarthy, 1994;
Doyle, Rugg, & Wells, 1996; Rugg, Mark, Gilchrist, & Roberts,
1997; Rugg & Nieto-Vegas, 1999), but very few of these studies
examined immediate repetition effects on early (< 200 ms) ERP
components. However, Holcomb, Grainger, and colleagues de-
scribed a P150 effect that is smaller when a word is preceded by
a masked prime of the same word or letter compared to a different
word (Holcomb & Grainger, 2006) or letter (Petit, Midgley,
Holcomb, & Grainger, 2006). For the word-priming study (Hol-
comb & Grainger, 2000), it is interesting to note that the P150
seems to be superimposed on a large negative-going N170 com-
ponent. Thus, the effect could be described as a P150 attenuation
or an N170 enhancement, as noted by Holcomb and Grainger
(2006). According to our model, any effects of repetition attenuate
neural activity, suggesting that these results represent the summa-
tion of oppositely oriented dipoles (i.e., attenuation of a positive
dipole producing the repetition effect combined with a larger
negative dipole producing the negativity).

In contrast to word studies, early ERP and MEG immediate
repetition effects with face and object processing have been stud-
ied more extensively. The most consistent finding is for smaller
N170/M170s following immediately repeated compared to nonre-
peated faces or objects as measured both with ERP (Campanella et



THE DYNAMICS OF INTEGRATION AND SEPARATION

al.,, 2000; Heisz, Watter, & Shedden, 2006; Henson, Rylands,
Ross, Vuilleumeir, & Rugg, 2004; Itier & Taylor, 2004; Jemel,
Pisani, Calabria, Crommelinck, & Bruyer, 2003; Kovacs et al.,
2006; Martens, Schweinberger, Kiefer, & Burton, 2006) and MEG
(Harris & Nakayama, 2007; Ishai, Bikle, & Ungerleider, 2006).
These results are consistent with our model, which predicts less
cortical response to immediate repetitions. However, several other
studies have failed to find effects of immediate face or object
repetitions on early ERP (Henson et al., 2003; Schweinberger,
Pickering, Burton, & Kaufmann, 2002; Werheid, Alpay, Jentzsch,
& Sommer, 2005) or MEG (Halgren, Raij, Marinkovic, Jousmaki, &
Hari, 2000; Penney, Maess, Busch, Derrfuss, & Mecklinger, 2003)
responses. Such inconsistent effects are also understandable in light of
our results and theory, considering that repetition effects observed at
the scalp can be influenced by several factors, including prime dura-
tion and the spatiotemporal summation of multiple cortical sources
that may have counteracting influences because of oppositely
oriented dipoles. We do not claim that the same neural substrates
underlie object, face, and word identification, but rather that the
cortical dynamics should be similar. As such, we expected and
recently observed analogous behavioral priming effects for face
stimuli (Rieth & Huber, 2008).

In modeling our results, it was not necessary to specify what
type of information Levels 2 and 3 of the neural network encode,
considering that we did not manipulate orthographic or semantic
similarity. However, by assuming Level 2 encodes orthographic
information (letter processing) and Level 3 encodes lexical-
semantic information (word processing), Huber (2008) accounted
for behavioral experiments that manipulated the degree of ortho-
graphic and semantic similarity between primes and primed choice
words. We do not claim that P100s only occur with letter process-
ing or that N170s only occur with word processing. Instead, in
keeping with work examining faces, nonwords, and other visual
objects, our claim is that the P100 is sensitive to processing of
component features (e.g., letters or face parts) and that the N170 is
sensitive to the processing of whole objects (e.g., words or faces).
The model only represents word processing, although similar
object modules presumably exist for faces and other visual objects,
with parts and wholes producing P100 and N170 effects. However,
these responses to other objects are perhaps of different magni-
tudes and topography, reflecting different cortical regions within
the ventral stream of visual processing (i.e., the ‘what’ pathway).
From this larger representational perspective, it is important that
we restricted our analyses to repetition effects (repeated minus
novel) in order to focus the results on aspects unique to letters and
words.

Consistent with these representational assumptions, Sereno,
Rayner, and Posner (1998), observed orthographic effects for the
P100 (pseudowords versus consonant strings) and word frequency
effects for the N170. Holcomb and Grainger have also related the
P150 with orthographic processing based on similar repetition
effects for words and letters (Grainger & Holcomb, in press;
Holcomb & Grainger, 2006; Petit et al., 2006). More recently,
Sereno, Brewer and O’Donnell (2003) found that the N170 re-
sponse to a semantically ambiguous word was affected by whether
the sentence context provided disambiguating information. This
result supports the claim that Level 3 of the model, which pro-
duced N170 repetition effects, is involved in the early stages of
lexical-semantic processing.
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Immediate repetition effects are difficult to measure with fMRI,
considering the relatively poor temporal resolution of that tech-
nique. Nonetheless, Dehaene et al. (2001) found a case-
independent “repetition suppression” effect in the left fusiform
gyrus for immediately repeated words (our interpretation would
call this an “integration effect,” such that two words provide
greater activation than repeating a single word). In a follow-up
experiment using event-related fMRI, Dehaene et al. (2002) found
that this region responded to written but not spoken words, and so
they termed this a visual word form area. In reconciling our data
with these results and with the results of Sereno and colleagues,
it could be that Level 3 of the network is analogous to
Dehaene’s visual word form area; but, nonetheless, the repre-
sentation in this visual area may be structured according to
lexical-semantic similarity.

Conclusions

It may seem counterintuitive that the way to separate items in
time is through habituation, but this separation is designed to allow
accurate identification of other, unrelated items (novel condition)
at the cost of identical or highly similar items (repeated condition).
Viewed in this way, this mechanism is sensible provided that
things do not often immediately repeat. This temporary habituation
serves to reduce source confusion between previously identified
items and subsequent items. In the absence of this habituation,
things blend together across presentations resulting in the tendency
to mistake the prime for the target. However, once prime and target
are separated through habituation, these effects are reversed, pro-
ducing a tendency to perceive anything but the prime, which
lowers performance in the repeated condition.

Qualitatively, this theory predicted smaller neural responses
for repeated words, with these effects occurring in early per-
ceptual responses to the target word, prior to the decision
process. Furthermore, this theory predicted that these repetition
effects would modulate with prime duration. Using two differ-
ent electrophysiological recording techniques, we confirmed
these qualitative predictions.

The basic dynamics of the model specify that brief prime
presentations enhance target-specific responses but longer prime
presentations result in smaller target-specific responses. However,
this prediction does not directly map into electrophysiological
measures because scalp recordings are sensitive to the entire word
form area and reflect the combined activation of prime and target.
If source confusion between prime and target is due to the simul-
taneous perceptual activation of prime and target, this implies that
the total activation is largest when prime and target differ in
identity. Therefore, both source confusion and habituation were
expected to produce repetition deficits: Source confusion would
produce an apparent deficit because two different simultaneously
active words (i.e., a prime followed by a different target) would
sum to a larger response than a repetition of a single word, and
habituation would also cause a deficit through a direct reduction
in the target response. In sum, the general prediction was that
perceptual responses should be smaller with repetitions as mea-
sured with scalp recordings and, furthermore, that these effects
should modulate with prime duration in moving from integra-
tion to separation.
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These experiments identified two early electrophysiological re-
sponses that were affected by the repetition of visually presented
words. Furthermore, these responses were modulated by prime
duration, with the P100 effect decreasing with increased prime
duration, whereas N170/M170 effect either reversed or went from
a null effect to a repetition decrease with increased prime duration.
This provides converging evidence for the claim that behavioral
priming in this paradigm results from changes in perceptual pro-
cessing. As expected from this perceptual account, we observed
these electrophysiological effects prior to presentation of the
choice words. We cannot rule out the possibility of strategic
decision, but we appeal to parsimony in presenting a model that
simultaneously accounted for both ERP and behavioral data with-
out reference to any postperceptual factors. Furthermore, this was
accomplished in an a priori manner, using the published network
dynamics.

Our interpretation of the electrophysiological data is novel,
proposing that different stages of perceptual processing combine
both in time and space to produce scalp potentials and magnetic
fields. This highlights the potential hazards of assuming different
electrophysiological components uniquely relate to specific iso-
lated processing events. Instead, we champion an integrative dy-
namic methodology for interpretation of electrophysiological data.
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