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The open-source toolbox “TopoToolbox” is a suite of functions that use sensor topography to calculate psychologically meaningful
measures (similarity, magnitude, and timing) from multisensor event-related EEG and MEG data. Using a GUI and data
visualization, TopoToolbox can be used to calculate and test the topographic similarity between different conditions (Tian and
Huber, 2008). This topographic similarity indicates whether different conditions involve a different distribution of underlying
neural sources. Furthermore, this similarity calculation can be applied at different time points to discover when a response
pattern emerges (Tian and Poeppel, 2010). Because the topographic patterns are obtained separately for each individual, these
patterns are used to produce reliable measures of response magnitude that can be compared across individuals using conventional
statistics (Davelaar et al. Submitted and Huber et al., 2008). TopoToolbox can be freely downloaded. It runs under MATLAB (The
MathWorks, Inc.) and supports user-defined data structure as well as standard EEG/MEG data import using EEGLAB (Delorme
and Makeig, 2004).

1. Introduction

This tutorial introduces a free open-source toolbox that
includes functions for topographic analyses of event-related
electrophysiological data (EEG/MEG). These analyses do not
anatomically locate neural sources. Instead, by providing
robust measures of response similarity between conditions
and response magnitude for each condition, multivariate
analyses are used to test psychological theories. These
techniques are not new and were previously proposed and
validated [1, 2]. However, their implementation within a
user friendly toolbox is new. The core routines of Topo-
Toolbox calculate a measure of angle between EEG/MEG
topographies in n-dimensional sensor space, where n is the
number of sensors. This toolbox is called TopoToolbox and
it uses MATLAB (The MathWorks, Inc.) to analyze either
user-defined or EEGLAB [3] standardized data sets. It can be
downloaded from https://files.nyu.edu/xt235/public/ where
a detailed tutorial, manual, and example data can be found.

Multivariate methods are frequently used to analyze
fMRI experiments [4–8], and similar multivariate methods
are beginning to appear in EEG/MEG studies. However,
unlike fMRI studies in which multivariate analyses involve
multiple anatomically defined voxels, multivariate analyses
in EEG/MEG involve multiple sensors (e.g., electrodes or
SQUID magnetometers) that each reflect a mixture of under-
lying neural sources. Thus, for EEG/MEG, these analyses are
often in sensor space rather than source space.

We briefly review several previously proposed EEG/MEG
multivariate analysis methods. Several of these are closely
related to the analyses contained in TopoToolbox, and we
further consider these relations in the Discussion. Global
field power (GFP; [9]) was one of the first measures to
use multiple sensors in EEG data. GFP is the standard
deviation of all sensors from the global mean. Lehmann
and Skrandies [9] also proposed a topographic measure
termed global dissimilarity (DISS), which is the square
root of the mean of the squared differences between the
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sensors after first scaling the sensor values in each condition
by dividing by the GFP of that condition (i.e., Euclidean
distance between the two sensor vectors after normalizing
them to have length 1.0). A nonparametric method called
TANOVA (topographic ANOVA) has been proposed to sta-
tistically test the significance of the DISS value between two
grand average topographies by calculating a null hypothesis
distribution from repeated random permutations of the data
[10–12]. Similar to the analyses contained in TopoToolbox,
DISS is a measure based on the sensor space. In contrast,
some recent multivariate analyses have been developed that
transform the data of multi-sensor event-related EEG/MEG
experiments using a basis set, such as with independent
components analysis (e.g., [13] for a review see [14]). Thus,
these techniques operate in component space, where each
component is a derived topographic pattern, rather than
performing tests based on the raw topographic sensor space.

Compared with traditional waveform-based analyses,
topographic analyses have the following advantages. First,
topographic analyses use all of the data in a single test and
do not suffer from problems related to “double dipping”
that can occur with multiple comparisons [15, 16]. Second,
EEG waveform analyses are highly dependent on reference
channel selection (see the review by Murray et al. [17])
and MEG waveform analyses are difficult to combine across
individuals in sensor space due to large differences in
the response of the same sensor for different individuals
[18]. Third, waveform analyses cannot determine whether a
change between conditions is more likely due to a change in
neural response magnitude or a change in the distribution of
underlying neural sources that gave rise to the response [1].
Even if the goal is anatomical localization, analyses based on
sensor topography can provide an important intermediate
step and validity check prior to source analyses. Furthermore,
multivariate analyses can be used to test psychological theo-
ries (e.g., “how”) in the absence of anatomical localization
(e.g., “where”).

There are a range of techniques that use multiple sensors
to anatomically locate neural responses [19]. However, these
techniques often make strong assumptions such as temporal
and anatomical independence between the underlying neural
sources. Working within a component space based on
sensor topography, rather than source space, independent
components analysis [20] has proven useful for extracting
independent noise components such as the beating heart
or eye blinks [21]. Pascual-Marqui and colleagues [22]
proposed a data-driven, hypothesis-free topographic analysis
of electrophysiology that blindly separates the grand average
into different response components by using multiple spatial
templates as applied to each individual data set.

Aside from the choice of analyzing a select few sensors
versus the entire multivariate sensor topography, another
choice in electrophysiological experiments is whether to
analyze each individual separately versus the entire data set
across all participants. Because individuals differ both in
terms of anatomical structure and in terms of task related
neural responses [23, 24], averaging across individuals can
produce unreliable results, particularly with MEG data (see
[1] for a reliability comparison between a sensor selection

analysis and the projection test contained in the TopoTool-
box). However, if the goal is to infer something about the
adult population in general, then it is necessary to use a
statistical test with subject as a random factor. If spatial
and temporal individual differences are not considered when
averaging across individuals, at best this will reduce the
signal-to-noise ratio and at worst it might bias the results.
The aforementioned multivariate methods do not provide
measures that can be compared across individuals in a
reliable manner in light of these individual differences. One
of the primary advantages of the TopoToolbox is its ability to
normalize against individual differences and derive a single
magnitude measure that is psychologically meaningful [1].
To date, this method has been successfully applied to MEG
data across a variety of experimental paradigms [1, 2, 25, 26],
demonstrating its ability to produce reliable measures that
can be compared across individuals.

2. Methods

This section describes the equations and algorithms imple-
mented in the TopoToolbox. Some details are omitted, such
as navigation of the menus in the toolbox and particular
parameter selections. Descriptions of these details and
example data can be downloaded from https://files.nyu.edu/
xt235/public/. The core of the toolbox is a two-stage analysis
that first quantifies the topographic similarity and second
quantifies response magnitude through topographic projec-
tion. In this tutorial, we also describe a new addition to
the toolbox that assesses dynamic variations in the observed
topography.

For the first stage (angle test), similarity measures are
calculated between the results of different conditions. Signif-
icant dissimilarity indicates that the observed pattern across
the sensors qualitatively changed, such as what might occur
with differing mixtures of underlying neural sources. For
instance, if one condition evokes a response in auditory
cortex while another condition evokes a response in visual
cortex, then this analysis would conclude that the patterns
were dissimilar even when measured at the same latency.
However, if the patterns are not found to be dissimilar, then
the second stage calculates geometric projections between
patterns, which are used to indicate whether there has been
a change in response magnitude (i.e., more or less of the
pattern). This is done separately for each individual based on
that individual’s “template” response. Because these projec-
tions are normalized for each individual, the conclusion of
this second stage is a statistical test across individuals.

Because these methods use traditional null hypothesis
testing (in future work, we plan to supplement the TopoTool-
box with Bayesian statistics), a failure to find a significant
difference with the angle test does not necessarily indicate
that the conditions of interest did not differ (i.e., there is
an unknown type II error rate). Furthermore, if exceedingly
unlucky, two different distributions of neural sources can in
theory produce exactly the same topographic pattern (e.g.,
an inverse problem). Putting aside this remote possibility, the
two tests can be used in combination to determine whether
the best interpretation of a change between conditions is a
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change in the distribution of neural sources versus a change
in response magnitude. More specifically, because both tests
operate on the same data, they have equivalent statistical
power, and a result in which the angle test fails to find
a difference but the projection test produces a significant
difference supports the conclusion that there was a change
in magnitude.

2.1. Angle Test: Topographic Similarity. The topographic
analyses in TopoToolbox assume that each of the n sensors
provides a unique dimension of variation. Thus, the 2D
or 3D spatial arrangement of the sensors is irrelevant.
Instead, all sensors are equally important regardless of their
position. The n-dimensional spatial patterns across sensors
for different experimental conditions (e.g., the pattern for
condition X1 versus the pattern for condition X2) are first
assessed with an angle test. The n-dimensional sensor space
angle (θ) is calculated to measure similarity between these
patterns (see Figure 1 for an example with 2 sensors, which
is the largest number of sensors that can be accurately
portrayed on the written page). If the two conditions produce
a similar distribution of neural sources, then the angle in
sensor space will be 0 degrees even if one condition produces
a larger response magnitude than the other condition.
However, if the two patterns are completely opposite (i.e.,
sign flip), then the angle is π. The angle is measured by
calculating the cosine of the angle, which is a normalized
dot product between the two sensor vectors (1). If the
sensor data are zero centered (e.g., using an average reference
channel), this is formally the same as the Pearson correlation
coefficient. We term this cosine angle the angle measure. The
angle measure ranges from −1 to 1, where −1 is observed
for completely opposite patterns and 1 is observed for the
perfectly similar patterns (regardless of magnitude). Because
this angle measure is calculated between conditions, we term
it the between angle measure:
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A null hypothesis is needed to statistically assess the
between angle measure (i.e., is the angle between conditions
greater than expected based on chance). There may be other
methods for constructing a null hypothesis, but a simple
solution is to separate the experiment into two halves and
then calculate between versus within angle measures based
on the average patterns found for each half, condition, and
individual. The angle measure is calculated separately at each
evoked time point, and then these separate angle measures are
averaged over a temporal window to increase reliability. Both
the beginning and the end point of the averaging window can
be set. In particular, the middle of the averaging window can
be adjusted separately for each individual considering that
different people tend to produce waveforms that achieve peak
values at different times (see [1] for evidence of individual
differences in the duration to reach a peak response). If
the separation of the experiment into two halves is done
according to trial number (first versus second half of the
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Figure 1: Illustration of angle test and projection test with 2 sensors,
although the technique is typically applied to an n-dimensional
sensor space where n is the number of sensors. Each experimental
condition (X1 and X2) produces a magnitude of response for each
sensor. The angle (θ) between these conditions is used as a measure
of pattern similarity. Some other condition defines a template
pattern (T), and projections onto this template provide numbers
for “how much” of the template each condition produced. These
response magnitudes can then be compared across individuals.

experimental session), this produces a null hypothesis that
includes variance due to changes over time, such as what
might occur with head position shifts. However, the toolbox
also allows that the separation into halves can be done in an
interleaved manner (odd number trials versus even number
trials) or through a random split of trials. The null hypothesis
is based on the within angle measure that compares the
responses between the two halves for the same condition for
each individual whereas the between angle measure compares
the responses between the two halves for different conditions
for each individual.

To understand the nature of these calculations, consider
a comparison between two conditions (X1 and X2) across
the experimental halves (a and b) with 10 individuals in
the experiment. The null hypothesis within angle measure
for the first individual is found by averaging the X1a/X1b

angle measure with the X2a/X2b angle measure, and the
experimental between angle measure is found by averaging
the X1a/X2b angle measure with the X2a/X1b angle measure.
These same values are calculated for the other 9 individuals,
and then differences between the 10 within and 10 between
angle measures are statistically assessed. It is important
to note that although a direct measure of angle would
require a statistical test designed for circular data, the angle
measure in TopoToolbox is the cosine angle, which is a
noncircular interval scale for the null hypothesis of no
difference. Furthermore, if the sensor data are zero-centered,
then the angle measure is the same as the Pearson correlation
coefficient, which is traditionally tested using a t distribution.
Therefore, TopoToolbox uses a paired t-test to determine if
the response patterns were significantly dissimilar across the
population for the two experimental conditions.
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If the between angle measure is significantly smaller
than the within angle measure, then the two experimen-
tal conditions are significantly dissimilar, leading to an
unambiguous conclusion that a different mix of neural
sources was responsible for the change between conditions.
Furthermore, such a result suggests that the projection test,
described next, should not be run and would produce
ambiguous results because it confounds response magnitude
with response similarity. Alternatively, the failure to conclude
that the two conditions are significantly dissimilar implies
that (a) a similar distribution of neural sources produced the
response pattern in both conditions (b) that two different
distributions of neural sources happened to produce the
same topographic pattern (a remote possibility), or (c) that
the t-test was not sufficiently powerful to detect dissimilarity.
The question of statistical power can be addressed with
the projection test. More specifically, if the projection
test concludes that the response magnitude is significantly
different between the two conditions, this suggests that there
was sufficient power to have detected a difference in response
similarity.

2.2. The Projection Test: Normalizing against a Template to
Measure Response Magnitude. Most event-related electro-
physiological studies analyze response magnitude of a select
few sensors in different conditions. For these analyses, it is
tempting to conclude that increases in response magnitude
(either greater positivity or greater negativity) correspond
to increases in the underlying neural response. However,
when considering just a few sensors, it is unclear whether an
increase reflects an increase in the magnitude of the neural
response or whether an increase might instead reflect a shift
in the distribution of neural sources, with some new source
producing the apparent increase. Simply put, the question
is whether the brain did the same thing to a greater extent
in one condition, or whether the brain did two different
things in the two different conditions. The answer to this
question can be used to distinguish between competing
psychological theories. As described above, the angle test can
be used to determine if the distribution of neural sources
changed between conditions. If the conditions appear to
be sufficiently similar (not significantly dissimilar), then the
projection test can be used to determine if the magnitude of
the underlying neural sources has increased or decreased.

Besides providing a conclusion based on neural response
magnitude (upon failure of the angle test), another advantage
of the projection test is its ability to normalize against indi-
vidual differences, thus providing a more reliable measure.
This is achieved by projecting (2) the sensor pattern in
each condition (Xi) onto a template pattern (T) for that
participant (Figure 1). As with the angle measure, this is done
separately at each time point and window averaging is used
to further increase reliability. The template is typically a
response pattern across the sensors in some other condition
using the same response window for averaging. Critical to
the success of this projection is choice of the template. The
template should include the same psychological processes as
the conditions of interest (see an example below). Because
a different template pattern is used for every individual, the

projection values should lie on the same scale (i.e., more
or less of that individual’s template response). Therefore,
individual topographic differences are eliminated through
normalization. Furthermore, provided that the template is a
“clean” pattern that is relatively devoid of overlapping wave-
form responses (in contrast to experimental conditions), the
projection can serve to decontaminate response magnitude
by eliminating overlapping waveform responses that are
orthogonal to the template:
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Like the angle test, the projection test is statistically tested
across individuals using a paired t-test. However, in the
case of the projection test, the comparison is not a between
angle measure versus a within angle measure but rather the
projection value in one condition versus the projection value
in the other condition for each individual.

An immediate priming experiment [26] provides an
example of an appropriate template response and use of
the angle and projection tests. In this experiment, every
trial presented a prime word for 1,850 ms followed by
the appearance of a second prime word for 150 ms (both
prime words remained on the screen for the final 150 ms).
Next, both primes disappeared, and a target word was
briefly flashed and then masked. There were three conditions
depending on whether this target word repeated the long
duration prime word (the long condition), the short duration
prime word (the short condition), or neither of the prime
words (the novel condition). MEG was recorded in this
experiment, and the measure of interest was the M170
to the target word. However, because the short duration
prime appeared 150 ms prior to target word, and because
a mask followed the target word, there was substantial
contamination of the M170 pattern to the target word (due
to the M400 to the short duration prime word and also the
M100 to the mask). In contrast, the M170 to the first prime
word provided a “clean” M170 that was used as a template
pattern to normalize each individual’s target word M170.
Because there were individual differences in the timing of the
M170, each individual was given a different 22 ms template
time window according to that individual’s peak M170 (as
determined by the root mean square across all 157 sensors).

A priming effect is defined as the difference between a
primed condition (e.g., the long condition) and an unprimed
condition (e.g., the novel condition). Before concluding
whether priming caused the M170 to decrease or increase,
the angle test was used to assess whether each priming
condition was dissimilar from the unprimed condition.
These within and between angle measures were calculated for
each individual using the same individually specified 22 ms
time window as determined by that individual’s template
response (except that this window was placed in relation
to the onset of the target word rather than the onset of
the first prime word). Because the resultant angle tests
failed to find any similarity differences, the projection test
was used for each priming effect. As predicted by a neural
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habituation model of priming [27], these tests revealed that
there was a significant neural response reduction in the
target word’s M170 when it repeated a long duration prime
word but not when it repeated a short duration prime word
[26]. Without these topographical analyses, this theoretical
conclusion would not have been possible because (1) topo-
graphic differences made statistical test across individuals
unreliable, (2) overlapping waveforms produced a target
word M170 that was contaminated and thus unreliable, and
(3) a statistical conclusion based on the magnitude of a few
sensors might have confounded a change in the neural source
distribution with a change in the neural response magnitude.

2.3. Angle Dynamics Test: Assessing Pattern Similarity over
Time. For classic well-defined responses such as the M170 to
a visual stimulus, the angle test and projection test can be used
to measure similarity and response magnitude. However,
in other circumstances, the waveform peaks are less well-
defined and it can be difficult to determine when a certain
response pattern reaches its peak and how long that pattern
lasts. The dynamics of response patterns can be assessed by
using the same angle test for similarity except that the test is
applied at every time point rather than only at a well-defined
peak. That is, the angle measure between a template and a
condition of interest can be calculated at each sample time
point for that condition (3). Just as with a well-defined peak,
the within and between angle measures can be calculated at
every time point to determine when the pattern defined by
template is maximally exhibited in the condition of interest
and during what time periods the template pattern does not
exist:
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A simple motor experiment [2] provides an example
demonstrating the usefulness of this dynamic pattern anal-
ysis. This MEG experiment investigated the temporal char-
acteristics of the neural sources involved in motor execution
and imagery although only the motor execution results
are summarized here. In this experiment, participants were
asked to press a button at a comfortable pace upon hearing an
auditory cue. They were encouraged to respond at a similar
speed throughout the entire experiment. The MEG motor
response was measured both by using an average that was
time locked to the auditory cue (cue locked) and by using an
average that was time locked to the button press (response-
locked). The angle dynamics test was implemented by using
the response-locked motor response as a template pattern
(i.e., a classically defined motor response template) that was
compared to every time point in the cue-locked epoch. An
important validation of this angle dynamics test was whether
it could be used to recover the same peak time in the cue-
locked epoch as defined using classical methodology. The
classically defined peak was identified using the root mean
square (RMS) across the sensors to find a peak response.
However, in the cue-locked epoch it is not always clear when
to look for this peak, and so an RMS peak was chosen for each

individual that was near the average reaction time of that
individual. The important question was whether the angle
dynamics test could find these RMS-defined motor response
times in the cue-locked epoch without knowing the average
reaction time of each individual.

As seen in Figure 2, between and within angle measures
were found at each sample point within the cue-locked
epoch (using the response-locked template). This was done
separately for each individual, and then these values were
averaged and graphed with 95% confidence levels to produce
the plots. The zero point of the x-axis is the time at which the
motor response reached its peak value as classically defined
by RMS. This was done separately for each individual,
and time is shown relative to these individually determined
peak times. As seen in Figure 2, the between angle measure
approaches the within angle measure 50 ms before the RMS-
defined peak latency (i.e., the zero point on the x-axis) and
falls below the within angle measure 50 ms after the peak
latency. Furthermore, beyond validating the timing of the
peak time using the angle dynamics test, the angle test at
the peak latency was not significantly dissimilar from the
response-locked template, whereas they were significantly
dissimilar 100 ms before and after the peak latency. The
grand average topographies in Figure 2 further confirmed
the results of the angle dynamics test: the cue-locked response
at 0 ms shared the same distribution as the template, whereas
the responses at −100 ms and 100 ms were apparently
different from the template. This suggests that distribution
of neural sources responsible for the motor response was
different from the distribution of neural sources just before
and just after the response. In contrast, during the peak time
as defined by the angle dynamics test applied to the cue-
locked epoch, the pattern across the sensors was similar to
the template as defined by the response-locked epoch [2].

This is an important validation of the angle dynamics test,
and it may prove to be of use in experiments where there is
a need to find the timing of peaks that are not strictly locked
to stimulus onset. For instance, consider an experiment
that involves left key presses versus right key presses in a
difficult task that produces many errors. Response-locked
epochs could be used to define the template pattern for a
left or a right key press, and then the angle dynamics test
could be calculated for each of these templates to assess the
online decision process as individuals gain more information
favoring one response or the other (see [28] for a related
method for assessing decision evidence accumulation in EEG
data).

3. Discussion

There have been recent and exciting developments in the use
of EEG and MEG analyses based on the topographic pattern
across the entire sensor array [17]. Many of these techniques
are highly complex and attempt to extract the responses of
specific anatomically located neural sources. The techniques
in TopoToolbox also use the topographic pattern across
the entire sensor array to extract more information from
MEG/EEG data. However, rather than attempting to measure
particular neural sources, the goal of these analyses is
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Figure 2: Results comparing the timing of motor response peaks as determined classically through the root mean square (RMS) across
MEG sensors versus motor response peaks as determined by the angle dynamics test. The angle dynamics test used a template defined by the
response-locked epoch, which was compared (angle test) at each time point along the cue-locked epoch. Because the cue-locked epoch has
been adjusted according to each individual’s RMS defined motor response peak, the zero point on the x-axis is the classically defined motor
peak. Validating the angle dynamics test, the difference between the within and between angle measures becomes nonsignificant during a
101 ms window around the zero point. Shaded regions show the 95% confidence intervals for the between and within angle measures. The
grand average of template and cue-locked responses at 3 different times are depicted on the bottom. As seen in these grand average responses,
the cue-locked topography is similar to the response-locked template at the zero point but dissimilar 100 ms before and 100 ms after the zero
point.

to more simply ask whether the distribution of neural
sources changed between conditions and, if not, whether that
distribution was more or less active. The resultant techniques
are relatively simple and can be used to ask functional
questions such as how (same or different from the angle test),
how much (projection test), and when (angle dynamics test).

There are several analysis methods and associated soft-
ware that are closely related to the TopoToolbox, such as
TANOVA in LORETA [29, 30] and Cartool (http://brain-
mapping.unige.ch/cartool). Amongst the three core tests
contained in the TopoToolbox, the angle test is the compo-
nent most similar to the measures contained in these alterna-
tive software packages. In particular, although the equation
for the angle measure is not identical to the equation for
the DISS measure used in TANOVA, it has been proven
that there is a linear relation between these two measures
[31]. However, unlike application of DISS in TANOVA,
the TopoToolbox calculates the angle measure separately
for each participant and uses a statistical test with subject
as a random factor whereas the statistical test of DISS in
TANOVA tests for between-condition similarity differences
in the topographies after averaging across subjects and uses
nonparametric bootstrap sampling to test reliability across
individuals. Beyond accounting for individual differences,
another advantage of the angle test in TopoToolbox is that
by splitting the experimental session into two halves, the null

hypothesis distribution properly includes nuisance factors
such as fatigue and head movements.

Beyond similarities between the angle measure of Topo-
Toolbox and the DISS measure used in TANOVA, the
TopoToolbox also contains the projection test and angle
dynamics test, which are not found in other software pack-
ages. Thus, although there are other methods for assessing
similarity of topographic patterns, only the TopoToolbox has
a technique for determining whether the topographic pattern
has increased or decreased in its response magnitude, as
determined with a measure that decontaminates by using a
clean template pattern, and also a technique for determining
when the topographic pattern becomes most similar to a
template pattern. The combination of the angle test and the
projection test is particularly useful because in combination
they can determine whether the best explanation for a change
between conditions is that the topographic pattern changed
(suggesting a different distribution of neural sources) or
whether the topographic pattern magnitude changed (sug-
gesting an increase or decrease in the neural response).

Due to the “inverse problem,” it is difficult, if not impos-
sible, to infer underlying neural sources from scalp mea-
surements; for any topographic pattern there are infinitely
many combinations of neural sources that can give rise to
exactly that pattern. It is for this reason that the techniques
of the TopoToolbox do not attempt to identify the underlying
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neural sources. Instead, the goal of TopoToolbox is qualita-
tive comparisons that can assess whether the distribution of
underlying neural sources is likely to have changed, which
would produce a different topographic pattern, and whether
the distribution of underlying neural sources is likely to
have increased or decreased, which would produce the same
topographic pattern but a change in response magnitude for
that pattern. However, there is still an inverse problem with
these techniques; it is conceivable that the same topographic
pattern is observed in two conditions (i.e., a failure to
find dissimilar patterns with the angle test) even though
the distributions of underlying neural sources are different.
Nevertheless, the chance of this occurring would seem to be
low considering that the conditions being compared are typ-
ically within the same task that involves the same cognitive
processes. To partly address this question, Tian and Poeppel
[2] compared the results from the angle test to the results of a
source analysis, revealing that the source analysis suggested
differently located sources when the angle test suggested
that distribution of neural sources was different. However,
source analysis also suffers from an inverse problem, and
so the ideal method for validating this limitation, as well as
limitations due to the use of null hypothesis testing, would be
to use a “ground truth” comparison such as with intracranial
EEG.

In the absence of further validation of these techniques
with a comparison to intracranial EEG, we have demon-
strated that projection test reduces variability by normalizing
against individual topographic differences, individual timing
of peak response differences, and contamination from over-
lapping waveforms [1] and we have also demonstrated that
the angle dynamics test can recover the timing of a motor
response (as reported here and also by Tian and Poeppel [2]).
Most importantly, a growing number of studies have found
these techniques to be reliable and useful (e.g., [2, 25, 26]).

4. Conclusions

This paper introduced a new topographically based analysis
toolbox for electrophysiological studies (EEG/MEG). We
demonstrated that these within-participant analyses can
normalize individual differences and derive psychologically
meaningful metrics (similarity, magnitude, and timing) from
high-density sensor arrays in a manner that overcomes
several limitations of traditional waveform analyses.
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