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Abstract Sensor selection is typically used in magneto-

encephalography (MEG) and scalp electroencephalography

(EEG) studies, but this practice cannot differentiate

between changes in the distribution of neural sources versus

changes in the magnitude of neural sources. This problem is

further complicated by (1) subject averaging despite sizable

individual anatomical differences and (2) experimental

designs that produce overlapping waveforms due to short

latencies between stimuli. Using data from the entire spatial

array of sensors, we present simple multivariate measures

that (1) normalize against individual differences by com-

parison with each individual’s standard response; (2)

compare the similarity of spatial patterns in different con-

ditions (angle test) to ascertain whether the distribution of

neural sources is different; and (3) compare the response

magnitude between conditions which are sufficiently simi-

lar (projection test). These claims are supported by applying

the reported techniques to a short-term word priming par-

adigm as measured with MEG, revealing more reliable

results as compared to traditional sensor selection meth-

odology. Although precise cortical localization remains

intractable, these techniques are easy to calculate, relatively

assumption free, and yield the important psychological

measures of similarity and response magnitude.

Keywords EEG � MEG � Individual/anatomical

differences � Overlapping waveforms � Multivariate

analysis � Source modeling � Repetition priming

Introduction

The human brain is a highly distributed system and many

cortical areas are simultaneously active during any task.

Non-invasive surface recordings, such as scalp electroen-

cephalography (EEG) and magnetoencephalography

(MEG), use many sensors to record the voltage potentials

or magnetic field responses near the surface of the head that

arise from the underlying mixture of cortical sources. Each

sensor in these recording methods receives a mixed signal

from all neural sources and the contribution of each source

depends both on the distance to that source and the relative

orientation of that source [12]. Given the mixture of

underlying neural sources, it is inaccurate to assume a one-

to-one mapping between sensors (or local groups of sen-

sors) and underlying sources. In particular, a change in

response for a particular sensor could be due to a change in

the magnitude of response of the dominant neural source,

or it might instead be due to a change in the distribution of

the neural sources as different cortical areas are recruited in

the different conditions of interest.

The inherent ambiguity between response magnitude

and cortical distribution could be addressed with equivalent

dipole modeling [1] or blind source separation algorithms,

such as independent component analysis (ICA) [23].

However, due to the 3-dimensional nature of passive

electrophysiological recordings (as opposed to 2-D

manipulated cortical slices with fMRI), there exists a so-

called ‘‘inverse problem’’, which refers to the infinite

possible cortical solutions to a particular data pattern across
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the sensors [24]. These techniques tackle the inverse

problem through simplifying assumptions, such as an

assumed number of dipoles/components and independence

from moment to moment and trial to trial. The accuracy of

these techniques strongly relies upon these assumptions,

which are known to be false in many circumstances. For

instance, synchronization between cortical areas during

auditory or visual detection tasks [3, 10, 11] implies that

different cortical sources are temporally dependent rather

than independent.

The ambiguity that arises from only considering select

sensors is compounded by averaging across subjects

because the same sensor may reflect entirely different

mixtures of cortical sources for each individual. Neverthe-

less, sensor selection and subject averaging remain common

practices in EEG experiments (e.g., [6, 31]) and few EEG

studies address this issue directly (although see [4, 30]). For

instance, it has been demonstrated that anatomical differ-

ences in the cortex directly relate to EEG scalp recording

differences [2]. Beyond anatomical differences, tissue

conductivity volume conduction differences also play an

important role in the magnitude and pattern of scalp

potentials [26]. In contrast to this situation with EEG, the

role of individual differences is carefully considered in the

study of neuroanatomy and functional magnetic resonance

imaging (fMRI). For instance, current practice in fMRI

normalizes against neuroanatomical differences by

employing inflation techniques that map each individual

brain onto a canonical brain that is flattened such that sulci

can be visualized in a 2-D plane [8]. Analogous to this

canonical brain mapping with fMRI, we present a simple

technique that normalizes EEG or MEG responses across all

sensors against the ‘standard’ response pattern for that

individual.

In light of individual differences, EEG and MEG typi-

cally go to one of two extremes. EEG analyses often

average over many participants, making sure to keep scalp

electrodes in the same position in relation to the external

parts of the head, with the hope that this produces a sys-

tematic positioning in relation to the brain, or at least

sufficient data to overcome the differences that might

otherwise confound the results with a smaller number of

participants. In contrast, systematic positioning of sensors

in relation to the head is all but impossible with MEG.

Therefore, MEG typically involves analyzing the results

from a small number of participants separately (e.g., [33],

with no method for combining the results across individ-

uals. This avoids the potential errors caused by averaging

across individual differences who have different neuro-

anatomy (e.g., [21], but makes it impossible to use

inferential statistics to make claims about the general

population.

Traditional EEG and MEG results based on single sen-

sors or small groups of sensors can nevertheless reliably

identify whether conditions are different from each other,

but cannot ascertain (1) whether the observed differences

reflect the addition/subtraction of new cortical sources or

(2) whether the observed differences are due to increases or

decreases in response magnitude of the underlying sources.

Our technique can address these functionally important

questions through the multivariate comparison of the entire

array of sensors in experimental conditions against a

standard response pattern for each individual. For EEG this

makes exact placement of electrodes less important and for

MEG this allows comparison across individuals.

The above discussion focused on the role of individual

differences and the inherent ambiguity between pattern

similarity and response magnitude. In addition to these

concerns, many experimental paradigms introduce a third

problem by using short inter-stimulus intervals between

presentations, which results in measurements that reflect

the combination of fast cortical responses to the current

stimulus and slower responses from previous stimuli.

However, this problem is all but unavoidable considering

that many of the most widely used and informative designs

in behavioral psychology rely upon short latencies between

stimuli (e.g., [7, 17, 20, 27, 28]). Complicated experimental

and mathematical techniques can be employed to address

this issue of overlapping electrophysiological waveforms

[32]. However, our simple multivariate comparison tech-

nique may also help in such situations considering that

comparisons can be done separately in relation to fast (e.g.,

P100) and slow (e.g., N170) standard responses so as to

partially untangle the combined pattern.

Similar to ICA and dipole modeling and similar to mul-

tivariate analyses in fMRI [19, 25], our technique uses the

entire pattern across all the sensors. Our approach is also

analogous to the use of a ‘‘localizer task’’ in functional

magnetic resonance imaging (fMRI) studies (e.g., [18]) in

that it compares responses to a standard reference. In fMRI

experiments, an initial task is often used to locate a particular

cortical region of interest for that individual. Subsequent

experimental conditions are then analyzed in terms of this

region. By analogy, we include a condition that defines a

‘standard response’ for each individual (i.e., a pattern over all

sensors in some baseline condition at a chosen time fol-

lowing the stimulus), against which we compare the response

pattern in experimental conditions. We advocate both a

measure of pattern similarity to the standard response as well

as the projected magnitude ‘‘in the direction of the standard

response’’. Next, we present the mathematical details for

calculating these measures and then we demonstrate their

effectiveness using data from a word priming study that

recorded high density evoked MEG.
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Measures of Similarity and Magnitude

Measures of similarity and magnitude can be calculated for

any two patterns across the sensors, such as with two dif-

ferent experimental conditions, but they are most effective

when there is a standard response for comparison. The

standard response should measure a response that includes

many of the same processes of potential interest that are

employed in the experimental conditions, but remain free

of overlapping waveforms and other complications. The

situation that defines the standard response should be

similar to the experimental conditions in terms of the

stimuli, level of attention, task demands, salience, task

relevance, etc. In the example to follow, the experimental

conditions of interest were immediately repeated versus

novel words and the standard response was generated from

a highly attended prime word presented in isolation for a

sufficiently long duration.

We define the entire multivariate pattern of sensors in

one condition to be A
*

, which is an n-dimensional column

vector where n is the number of sensors (i.e., all analyses

are in ‘‘sensor space’’). Then, the response in some other

condition, B
*

, can be compared for its similarity as defined

by the n-dimensional angle (Eq. 1) as well as its magnitude

in the direction of A
*

through the geometric projection of B
*

onto A
*

(Eq. 2).

cos h ¼ A

*T

B

*

jA
*

j jB
*

j
ð1Þ

According to Eq. 1, the value of cosine h gives an index

of the spatial similarity between the pattern across the

sensors in two experimental conditions, A and B. We refer

to use of this measure as the ‘angle test’. Similar to a

correlation measure, the cosine of the angle ranges between

-1 and +1, with -1 indicating completely opposite, +1

indicating completely similar, and 0 indicating dissimilar

(perpendicular). This measure has the advantage that it is

unaffected by the magnitude of the response. For example,

if two conditions have identical response patterns across

the sensors, but the response magnitude for one condition is

twice as large, this comparison technique will reveal that

the angle between them is 0, and, thus, the cosine of the

angle is 1.0 (i.e., perfectly similar). If the angle test reveals

that there is no statistically reliable difference in the spatial

similarity between two conditions (below we discuss a

technique for assessing statistical reliability), this suggests

that the distribution of underlying cortical sources is

similar between the two conditions. The distribution of

cortical sources might change in exactly the right way to

produce the same pattern across the sensors, but such a

coincidence is of low probability, particular when the

number of sensors is large. Thus, a high value on the angle

test is likely to correspond with a similar mix of cortical

responses. Conversely, if the angle test reveals that the

spatial similarity of the sensors is different, then this

definitely indicates that the underlying distribution of

cortical responses has changed. This second conclusion is

assumption free, barring confounding factors such as head

position changes between conditions.

jB
*

j cos h ¼ A

*T

B

*

jA
*

j
ð2Þ

For the ‘projection test’ based on Eq. 2, the magnitude

of an experimental condition B is normalized against the

standard response A, by projecting B
*

in the direction of A
*

.

This projection can be used to calculate the magnitude of

response for some condition in the direction of the standard

response. It is not necessary that the condition of interest be

similar to the standard response. However, in order to

unambiguously compare two projection values in two

different experimental conditions (e.g., B1 and B2), the

conditions need to be sufficiently similar to each other.

Otherwise, any apparent magnitude differences could be

due to similarity differences. In other words, a critical first

step is to assess whether the conditions are dissimilar with

the angle test. Regardless of the observed level of

similarity between the conditions, the projection values

can be calculated, but if it is found that the conditions are

dissimilar, then an obtained difference in the projection

values does not unambiguously indicate a magnitude

change and instead only indicated something has

changed. Nevertheless, even in this situation, the

projection test may be useful for normalizing against

individual differences.

Because the projection is relative to each individual’s

‘‘clean’’ standard response (e.g., the M170 to a word

presented in isolation), it should normalize both against

individual differences (e.g., the particular pattern over

sensors of the M170 for a particular individual) and

against contamination from overlapping waveforms that

exist with short latencies between successive stimuli (e.g.,

the combination of an M170 to a word presented 170 ms

ago with the M400 to a prime word presented 570 ms

ago). Because this technique normalizes against individual

differences, the projection values can be used in tradi-

tional inferential statistical tests across the data of

multiple participants.

Figure 1 illustrates the angle test and projection test,

with a hypothetical example that includes spatial differ-

ences between the standard (A) and experimental

conditions (B1 and B2), as might arise from overlapping

waveforms for the experimental conditions. For demon-

stration purposes, only two sensors are shown (e.g., a 2-D

sensor space), but the same logic applies to n sensors
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defining n dimensions (i.e., a multivariate situation). The

angle test between B1 and B2 indicates that they are suf-

ficiently similar and, therefore, likely due to the same

mixture of underlying cortical sources. Thus, the projection

onto the standard response provides a pure measure of

magnitude that normalizes against individual differences

(i.e., different patterns in the standard response for different

individuals) and also normalizes against overlapping

waveforms (i.e., extraction of that component of the

experimental condition that is in the direction of the stan-

dard response, rather than in the direction of the

overlapping response). The bold lines along the direction of

standard response are the projected normalized responses

of experimental conditions. A traditional analysis based on

the sensor with the largest response compares sensor j in

the two conditions, and concludes that condition B1 pro-

duced a larger response than condition B2. In comparison,

projection of the experimental conditions onto the standard

response concludes that condition B1 produced a smaller

response magnitude than condition B2.

The general procedure for using these measures includes

the following steps. (1) identify an appropriate standard

response in the experimental design; (2) use the angle test

to assess the similarity of conditions of interest; (3) project

the experimental conditions onto the standard response to

normalize against individual differences and overlapping

waveforms. If the answer to step 2 concludes that the

conditions are dissimilar, the projection of step 3 is still

useful for normalizing, but it does not unambiguously

indicate magnitude versus similarity. However, if condi-

tions are not found to be similar according to the angle test,

then the projection values unambiguously indicate magni-

tude and increases versus decreases can be taken to

correspondingly indicate increases versus decreases of

cortical response.

In order to statistically test each step, a null hypothesis

distribution is needed. There are several techniques that

could be applied to define a null distribution, although we

take the relatively simple approach of comparing the first

half versus second half of trials within the experiment for a

given condition (i.e., cross-validation over time), versus the

same first/second half of trials comparison between con-

ditions. The selected trials could be determined by odd

versus even trials, or through repetitive non-parametric

bootstrap samples, but first versus second half of the

experiment is simple to calculate and includes trends over

time in the null distribution. In this manner, the angle and

projection tests become simple t-test of between versus

within conditions.

Next, we provide an example where these measures

were used to assess M170 responses in a short-term repe-

tition paradigm with visually presented words. The

response of interest was to the briefly flashed target word.

The first word (i.e., the long prime) was used to define a

standard response for the M170 in terms of the spatial

pattern associated with a single visually presented word.

This event was chosen for the standard response because it

presented a single highly attended word. First, the angle

test was implemented to statistically test the existence of

individual differences in the standard response (otherwise

there’s no need for a standard response to obtain normal-

ization). Next, the angle test was used to assess the

similarity across the 3 different target conditions (novel, a

target word that is different than both prime words; short, a

target word that repeats the second prime, which was

presented 150 ms prior the target; and long, a target word

that repeats the first prime, which was presented 2,000 ms

prior to the target). Because the target conditions were

found to be sufficiently similar to each other, the projection

test was used to unambiguously indicate response magni-

tude. The projection measure normalized the target

conditions against the standard response and the results

were analyzed across individuals to determine if, in gen-

eral, target response magnitude varied across the

conditions. Essentially, we asked ‘‘how much of an M170’’

occurred in each condition for each individual by using all

Fig. 1 Demonstration of the angle test and the projection test with a

hypothetical situation involving two sensors (i and j). Results are

shown for a standard response (the solid line A) and two experimental

conditions (B1, dotted line and B2, dashed line). In this example, the

conditions are spatially similar to each other, but are different from

the standard response because, unlike the standard response, the

experimental conditions include some other overlapping response.

The spatial angle (h) between the experimental conditions indicates

whether the experimental conditions represent different response

patterns across the two sensors. Because the conditions are suffi-

ciently similar to each other (i.e., small angle), the projection onto the

standard response indicates response magnitude that normalizes

against individual differences and against overlapping waveforms

(i.e., the magnitude of response in the direction of the standard

response). If the sensor of largest magnitude is selected (i.e., sensor j)

it is concluded that B1 (filled star on vertical axis) is greater than B2

(open star on vertical axis) but, in contrast, if the projection onto the

standard response is analyzed, it is concluded that B2 (length of

dashed arrow) is greater than B1 (length of dotted arrow)
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the data across the entire sensor array as compared each

individual’s standard M170 to visually presented words.

An Example with MEG: Immediate Word Repetitions

The example implementation of these techniques, reported

next, may seem overly complex. However, this complexity

proves to be instructive. A major advantage of these measures

is that they can be applied to high density sensor data that

varies greatly across individuals (as is the case with MEG data

in this example) and that they can be applied to isolate a small

response (e.g., the target word presented for just 50 ms) that

overlaps greatly with a previous stimulus (e.g., the prime

word presented 150 ms before) or overlaps greatly with a

subsequent stimulus (e.g., the pattern mask presented

immediately after the target word). The chosen paradigm is a

classic threshold word identification paradigm (e.g., [16]),

which requires immediately preceding primes, brief targets,

and subsequent masks. Therefore, this task is ideal for dem-

onstrating the effectiveness of these measures for untangling

the otherwise confusing combination of responses.

This experiment is only summarized here, and is

reported in full elsewhere [15]. As seen in Fig. 2, the task

of the participants was to identify the briefly flashed target

word (e.g., PATCH) presented in the center of the screen

immediately after the prime words. First, a single prime

word appeared above the midline, which provided the

standard response (as well as a long duration prime). Next,

a second prime word appeared 1,850 ms later, below the

midline. Finally, these two prime words were replaced by a

single target word, which provided the evoked MEG

responses for the three conditions of interest (a novel tar-

get, a target that repeated the short duration prime, and a

target that repeated the long duration prime). Target word

durations were set at the perceptual threshold for each

participant such that accuracy was approximately 75% in

forced choice identification (e.g., a choice between

HURRY and PATCH).

Humphreys et al. [16] used a similar paradigm and

found differences in the magnitude of immediate repetition

priming with masked versus unmasked words. The current

paradigm tested these effects by controlling for response

bias with two-alternative forced choice testing, rather than

naming the briefly flashed target word. With just a single

prime, as in the Humphreys et al. studies, comparison of

the MEG response to the target following a brief prime

versus following a long duration prime would be prob-

lematic because only the short duration prime condition

involves overlapping waveforms. Furthermore, short ver-

sus long duration primes might involve different degrees of

alertness. For instance, the abrupt onset of a word may

result in a transient attentional response with a different

MEG signature that would exist following a brief prime but

not following a long duration prime. To address these

concerns, the current paradigm presented on every trial a

first prime for 2,000 ms (the long prime) as well as a

second prime for the final 150 ms (the short prime) before

the target. Thus, all conditions are identical up until the

target, and any attentional effects should be equivalent.

Individual Differences

The response to the long prime was used as the standard

response because the long prime was seen in isolation for

1,850 ms as part of the highly attended sequence of events.

Figure 3a shows the M170 standard response results from

Fig. 2 Presentation sequence for the reported experiment. The task of

participants was to identify the briefly flashed target word by selecting

between two choice words at the end of the trial sequence. Target

flash durations were set separately for each individual to achieve

threshold performance of 75% correct. The upper prime word

appeared first (long prime), remaining onscreen for 1850 ms in

isolation, thus providing a standard response. During the final 150 ms

prior the target word, the lower prime word appeared (short prime).

MEGs to the target flash provided three experimental conditions,

depending on whether the target was different than both primes, a

repeat of the long duration prime, or a repeat of the short duration

prime
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all 10 participants, demonstrating different spatial patterns

for the M170 to visually presented words.

In order to statistically assess reliability of these indi-

vidual differences (i.e., are the differences in Fig. 3a

reliable individual differences or just due to sampling

noise), the experiment was separated into two halves, and

M170 patterns for each half were determined separately in

order to obtain a null hypothesis measure of spatial pattern

variability. There were 400 trials in the experiment and so

standard M170 responses to the first 200 trials were cal-

culated separate from the last 200 trials. The angle test was

performed for the 10 within subject comparisons for the
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data of the 10 participants (i.e., angle between first half and

second half for each individual), versus the 45 between

subject comparisons (10 choose two combinations of first

half versus second half when these halves are for different

individuals). Using an independent samples t-test, the

cosine angle for the between subjects comparison was

significantly lower (more dissimilar) than the within sub-

jects comparison, t(21.5) = 7.812, P \ .001. Because the

assumption of equal variances was violated for the inde-

pendent samples t test (F = 4.26, P \ .05), the degrees of

freedom has been appropriately adjusted. This indicates

that different people have different spatial patterns for the

M170 responses to visually presented words. This result

highlights the need to normalize against these individual

differences.

Although not central to application of these measures,

we note that the reported analyses also normalized for

individual differences in the timing of the M170 responses.

This was done by determining peak M170 times in the

standard response waveform to find appropriate M170

temporal offsets for each individual. These individually

appropriate times were then used for subsequent tests (i.e.,

we assumed that these same peak times were applicable to

the briefly flashed target words). Twenty-two milliseconds

windows were placed around these individually determined

M170 peak responses for data averaging purposes, both for

the standard responses as well as the target condition

responses. Separate statistical tests validated the reliability

of these timing differences.

Target Repetition Effects

The three target conditions were first compared to each

other using the angle test to check if they produced dif-

ferent spatial patterns. Such a finding would indicate that

one or more of the conditions involved recruitment of a

cortical response not present in the other conditions. Sta-

tistical reliability was again determined by dividing the

experiment into trials from the first half of the experiment

versus trials from the second half of the experiment. The

patterns for each half were again compared to each other

with the angle test, with this occurring for first/second half

angle measures from the same condition (the within values

for null hypotheses) versus first/second half angle measures

from different conditions (the between values for experi-

mental conditions). Because this was a comparison of

conditions, rather than individuals, these comparisons were

calculated within subject (i.e., repeated measures). Because

there were three conditions, this entailed three different

possible comparisons between conditions, which were then

averaged in comparison to the average of the three within

condition comparisons, yielding one between conditions

measure and one within conditions measure for each par-

ticipant. In a dependent samples test across the 10

participants, there was no significant difference in the

similarity (angle test) of the between conditions compari-

sons versus the within condition comparisons, t(9) =

-1.216, P = 0.255. This suggests that the same distribu-

tion of cortical responses was involved in the three target

conditions. Thus, the subsequent projection test was taken

to indicate magnitude differences rather than pattern

differences.

After confirming that the three conditions were not

dissimilar, magnitude changes were determined by pro-

jecting each condition onto the standard response (i.e., the

M170 to the long prime). In doing so, the target word’s

response was reduced to a single magnitude measure that

normalized against individual differences. Besides allow-

ing statistical tests across individuals, this normalization

also helped reduce contamination from the ongoing later

components (e.g., M400) in response the short prime,

Fig. 3 (a) Spatial patterns of the M170 standard responses for all 10

individuals. In general, individual differences in the similarity of

these patterns were found to be reliable as indicated by a statistical

test of the angle between the standard responses across individuals.

(b) Comparison between the grand averaged waveforms of standard

response to the long prime (left), versus the grand averaged

experimental response to the target word (right), which immediately

followed the second prime. Both figures represented waveforms in

157 channels of grand-average results. The bold red lines in both

figures is the Root-mean-square (RMS) of the 157 channels. For the

experimental conditions, there is no clear M170 peak, possibly

because of individual differences, overlapping waveforms, or because

the target word is only presented briefly. (c) Projection results. The

topographic map is the grand average of the standard M170

responses. The graph shows the average projection measures at each

moment in time for three different target conditions, with projection

calculated separately for each individual according the standard

responses in a. (d) Traditional sensor selection and Root Mean Square

results. The topographic map is the grand average target M170. The

10 sensors with the largest positive magnitude are circled and these

were selected to produce traditional sensor selection analyses. The

graph shows average Root Mean Square for the selected sensors at

each moment in time. The topographic maps in c and d were taken at

176 ms after word onset (the long prime onset for c and the target

word onset for d). A comparison of these topographic maps reveals

large differences, which suggests that the target response is contam-

inated by overlapping responses from the second prime, which

occurred just 150 ms before the target. The shaded areas in the graphs

of both c and d indicate the 22 ms average window used for statistical

analyses. The error bar in each graph indicates one standard error of

the mean difference between novel and repeated words, averaged over

the short and long conditions as calculated for the M170 time

window. There was no difference among M170 responses of the three

target conditions using sensor selection. However, the projection

measure uncovered the small target M170 peak and revealed that the

target word produced less of a cortical response when it repeated the

long duration prime

b

Brain Topogr (2008) 20:131–141 137

123



which was presented just 150 ms prior to the target. By

projecting the target response onto the standard M170, the

resultant magnitude more cleanly reflects the M170 com-

ponent, with the overlapping M400 response to the short

prime partially factored out. The degree of success in this

decontamination depends on the spatial similarity between

the standard response and the unwanted overlapping

response. The possible contamination from the M400 to the

short prime is highlighted in Fig. 3b and the topographic

maps of 3c and 3d, which show the grand averaged (i.e.,

across individuals) standard response 170 ms after the long

prime (the waveforms are shown in the first graph of 3b

and the topographic map is shown in 3c). This contami-

nation is seen by comparing these standard responses to the

grand average target response 170 ms after presentation of

the target (the waveforms are shown in the second graph of

3B and the topographic map is shown in 3d). As seen in the

figures, these two topographic patterns, which include

4,000 trials, are very different and the M170 waveform to

the target appears to be missing as indicated by the Root

Mean Square (RMS) shown in the red line.

First, we report the results from the projection measure

and, next, we compare these to the results with traditional

sensor selection. A repeated measures one-way ANOVA

across the three priming conditions as applied to the pro-

jection test values averaged over a 22 ms window (see

Table 1 and Fig. 3c), revealed significant differences for

the M170, F(2,18) = 5.202, P \ .025. After Geisser-

Greenhouse correction to the degrees of freedom, there

were still significant differences for the M170,

F(1.75,15.72) = 5.202, P \ .025. Subsequent contrasts

revealed that the M170 to a repeated word was smaller than

the novel condition, but only following a long duration

prime, t(9) = 3.916, P \ .01, with no priming effect fol-

lowing a short duration prime, t(9) = .919, P = .382. This

finding replicated the same result found for the N170 in an

ERP experiment with identical design [15]. Figure 3c

portrays the projection test results, first showing the stan-

dard M170 topographic map and then the projection values

at each moment in time for the three conditions. The

topographic map shows the grand average standard

response for illustrative purposes, but the separate standard

responses shown in Fig. 3a were used for the projections

prior to averaging across subjects. The shaded region of the

waveform graph indicates the 22 ms window used for

statistical analyses and the error bar is the standard error of

the mean repetition priming difference averaged across

short and long duration priming. Unlike the grand average

waveforms in the second graph of Fig. 3b, which reveal no

apparent target M170 response, there is now a definite peak

for the M170 in response to the target (as well as an earlier

large peak for the M170 to the short prime). Thus, this

normalization technique extracted the M170 component

from the overlapping waveforms and did so with a separate

normalization for each individual, thereby recovering the

small M170 peak to the briefly presented and masked target

word.

Next, we compare these results to a traditional technique

based on sensor selection. We first calculated the grand

average response to the experimental conditions at 170 ms

(shown in the topographic map of Fig. 3d) and then selected

the 10 sensors with the largest positive magnitude across the

three conditions (these sensors are circled in Fig. 3d).

Subsequent analyses were performed only for these sensors.

Using these sensors, an average M170 response for each

individual in each condition was calculated based on the

22 ms time window. Comparing across the three priming

conditions with this sensor selection measure, a repeated

measures one-way ANOVA found no differences,

F(2,18) = .591, P = .565. After Geisser-Greenhouse cor-

rection to the degrees of freedom, there was still no

significant difference for the M170 using sensor selection,

F(1.54,12.36) = .591, P = .527 (see Table 1 for the raw

values and measures of standard error for each analysis

technique). The corresponding waveforms in Fig. 3d may

appear to indicate differences between the three conditions,

but perhaps the most important result in Fig. 3d is the height

of the standard error bar, which is more than twice as large

as compared to the projection results in Fig. 3c. Further-

more, even with the maximal M170 sensors selected, there

is no obvious M170 peak to the target, unlike the graph in

Fig. 3c. Thus, the sensor selection results are too unreliable

to conclude that there were any effects of priming condition

or even that there was an M170 to the briefly presented

target.

Although traditional sensor selection failed to find any

reliable results across individuals, the projection measure

not only found reliable results, but, furthermore, these

results replicated N170 ERP results with the same experi-

mental design [15]. Furthermore, such ‘repetition

suppression’ effects immediately following primes are in

agreement with several other published results. For

instance, the M170 to a face is likewise smaller in mag-

nitude when presented immediately after a face as

compared to objects from other categories [13]. Similarly,

Table 1 Target M170 results with traditional sensor selection versus

the project measure

M170 (sensor selection) M170 (projection test)

Mean (fT) Standard error Mean Standard error

Novel 44.829 - .207 -

Short 40.384 2.896 .176 .034

Long 43.598 4.545 .113** .024

** Repetition effects significant at the .01 level
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with a slightly different paradigm using visual words, early

repetition effects have been documented for the P150 [14].

However, unlike these previous results, which were based

on sensor selection, the current technique unambiguously

indicates that smaller MEG values with priming corre-

spond to smaller cortical responses, and are not due to a

change in the pattern across sensors.

Discussion

Using MEG responses to short-term repetition priming of

visually presented words as an example data set, we

demonstrated the effectiveness of the proposed similarity

and magnitude measures. These techniques use all the data

from all recorded sensors (i.e., these are multivariate

measures), to determine reliable measures of spatial simi-

larity and response magnitude. Calculation of the angle

between patterns determined whether conditions produced

different patterns, such as would be the case if they

involved a different mix of underlying neural sources.

Because no differences were found, the projection test

indicated response magnitude without worry that apparent

differences were due to recruitment of different cortical

responses in some conditions but not others. Calculation of

the projection between each condition and a standard

response provided a magnitude measure that normalized

against individual differences and reduced contamination

from overlapping responses. We found that (1) individual

spatial differences were large and reliable; (2) the condi-

tions of interest where similar to each other in terms of the

topographic pattern; and (3) priming reduced the magni-

tude of the distributed cortical response for the M170 to a

target that repeated a long duration prime. In contrast, a

traditional analysis based on sensor selection failed to find

any reliable effects.

Similar to these measures, registration methods have

been developed to handle individual differences [22]. For

instance, intersubject registration involves mapping one

participant’s imaging data onto another participant’s

imaging data and atlas registration involves the registration

of each participant’s imaging data onto canonical imaging

data. Registration has been successfully employed with

MEG data to overcome individual difference (e.g., [5].

However, the angle and projection measures that we

employed are more easily implemented and do not require

atlas or between subject registration because they instead

normalize each person’s data against their own standard

response.

One limitation of these measures is their inability to

localize specific cortical sources. As discussed in the

introduction, source localization techniques suffer from

limitations due to possibly erroneous simplifying

assumptions. Considering the limitations of these source

localization algorithms, alternative analysis methods have

been proposed that attempt to delineate separate processes

rather than separate cortical areas. Similar to our proposed

techniques, Haig and Gordon [9] used spatial projection to

provide a measure of response magnitude in different

conditions. However, their technique was applied to the

subject averaged data rather than separately for each

individual. First, they found the spatial pattern corre-

sponding to the average difference between the conditions

of interest. Next, the results for each individual were pro-

jected onto this difference pattern and inferential statistics

were applied to these projection scores from each indi-

vidual. This is similar to our technique except that we

advocate normalizing each individual by their own stan-

dard response. Additionally, we suggest that the similarity

between conditions needs to be checked before imple-

menting projection in order to rule out changes in cortical

recruitment between conditions.

An important statistical concern with scalp EEG and

MEG analyses based on individual sensors or groups of

sensors is the need to correct for multiple comparisons (i.e.,

one could continue to select different sensors until a

desired result is found). A conservative correction for the

pair-wise type I error rate in order to achieve a desired

family-wise type I error rate (i.e., the probability that one

or more comparisons incorrectly indicates a significant

difference), is to use the Bonferonni inequality, in which

case the significance level is the desired type I error rate

(e.g., .05) divided by the number of sensors or groups of

sensors (e.g., 157 for case of the MEG data we reported,

requiring that any particular result achieve a probability of

.00032 to reach significance). In truth, it is rare that

researchers perform this conservative correction because it

would require more data collection than is typically fea-

sible. However, multivariate measures across all sensors

avoid the problem of multiple comparisons by distilling the

data to a single measure of spatial similarity or response

magnitude.

Besides spatial similarity and response magnitude, cor-

tical processes can be delineated in their timing. For

instance, a study performed by Uhl et al. [29] examined

spatiotemporal patterns in EEG, revealing components at

different phases at a given temporal frequency (i.e., dif-

ferent modes). In this manner, the evoked response at a

sensor was explained by changes in the distribution of the

temporal modes. This again points out the dangers of

assuming a one-to-one mapping between sensors and

responses of interest; not only does an evoked response

reflect a distribution of cortical sources, but the underlying

sources may each contain a distribution of temporal pat-

terns. Our technique of spatial similarity and response

magnitude is not intended as a competitor to such analyses
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and is instead complementary. When working with a theory

based on the precise timing of cortical processes, such as

with spike timing models, or oscillator models and power

spectrum effects, then these timing analyses are appropri-

ate. However, when working with a theory based on degree

of activation, such as with average firing rate or hemody-

namic effects, then spatial similarity and response

magnitude are appropriate.

We suggest that these measures provide several distinct

advantages over traditional analyses based on individual

sensors or groups of sensors. First, they indicate whether

the distribution of cortical sources has changed or whether

the response magnitude of cortical sources has changed;

such a conclusion cannot be made with single sensors or

groups of sensors, which can only indicate whether there is

a difference. Second, they normalize against individual

differences, allowing inferential statistics across partici-

pants. Third, by projecting onto a standard response, they

reduce the problem of overlapping waveforms that arises in

experiments with multiple rapid presentations. Fourth, they

distill multi-sensor data to a single number of similarity or

magnitude, thus avoiding the statistical problem of multi-

ple comparisons. Fifth, they do not require collection of

anatomical information for each individual. Thus, one can

calculate these measures without costly structural MRI

data. Finally, and perhaps most importantly, these mea-

sures are easy to implement and do not require

sophisticated software.
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