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Effects of Category Length and Strength on Familiarity in Recognition

Richard M. Shiffrin, David E. Huber, and Kim Marinelli

Indiana University

In most recognition models a decision is based on a global measure often termed familiarity.
However, a response criterion is free to vary across lists varying in length and strength, making
familiarity changes immeasurable. We presented a single list with a mixture of exemplars from
many categories, so that the criterion would be unlikely to vary with length or strength of the
category of the test item. False alarms rose with category length but not category strength,
suggesting that familiarity does not change much with changes in strength of other items but grows
when additional items are studied. The results were well fit by an extension of the search of
associative memory (SAM) model presented by R. M. Shiffrin, R. Ratcliff, and S. E. Clark (1990).

The present article explores recognition memory. Previous
research (e.g., Ratcliff, Clark, & Shiffrin, 1990) has focused on
sensitivity of recognition, usually measured asd’. In the studies
reported here, we examined the values of familiarity, mea-
sured by the probabilities of giving old responses to singly
presented test items,! that most models assume underlie the
participants’ recognition judgments. We did so by varying
category length and category strength rather than the more
commonly manipulated list length and list strength.

Most models of old-new recognition memory utilize con-
cepts loosely borrowed from the theory of signal detection
(e.g., Banks, 1970). It is assumed that the old-new decision is
based on a single numerical value, variously termed familiarity
(adopted in the present article for convenience), match,
activation, or the like. In different models, this value arises
from different underlying processes, such as a match of two
vectors (e.g., Murdock, 1982), a sum of retrieval strengths (e.g.,
Gillund & Shiffrin, 1984), or a sum of activations (e.g.,
Hintzman, 1988), but the source of the familiarity value need
not be considered for the time being. It is assumed that the
value of familiarity (F) when an item is tested has a distribu-
tion with a higher mean for a target (an item from the studied
list) than for a distractor (an item not from the studied list).
When accuracy is the response measure of interest, the
participant is assumed to choose a criterion (C). An old
response is given when F is greater than C, and a new response
is given otherwise. The participant presumably chooses the
value of C to be suitable for the kind of item tested, the kind of
list studied, the kind of experimental context, and the payoffs
of the experiment.

The situation is illustrated in Figure la: A list of a given
length (number of different words) and strength (number of
repetitions of each word) has been studied. The distribution on
the right gives the familiarity values when a target is tested,

Richard M. Shiffrin, David E. Huber, and Kim Marinelli, Depart-
ment of Psychology, Indiana University.

This research was supported by National Institute of Mental Health
Grant MH12717.

Correspondence concerning this article should be addressed to
Richard M. Shiffrin, Department of Psychology, Indiana University,
Bloomington, Indiana 47405. Electronic mail may be sent via Internet
to shiffrin@indiana.edu.

267

and the distribution on the left gives the familiarity values
when a distractor is tested. Suppose the participant places a
criterion where the two distributions cross, at the familiarity
value labeled X. The hit rate, denoted P(H), is the probability
of responding old to a target; it equals the area to the right of
the criterion under the right-hand distribution. (The hit rate
equals 1 minus the miss rate.) The false-alarm rate, denoted
P(F), is the probability of responding old to a distractor; it
equals the area to the right of the criterion under the left-hand
distribution. (The false-alarm rate equals 1 minus the correct
rejection rate.) P(H) and P(F) comprise the data usually
available from experiments. It is typical to assume, at least as
an approximation, that the distributions are normal and have
equal variance (as depicted in the figure). One can then use
the hit rate and the false-alarm rate to calculate a measure of
sensitivity, d’, and a measure of relative criterion placement.
The measure d’ is the distance between the means of the
distributions, divided by the common standard deviation.
Although criterion placement is often given as B (i.e., the ratio
of the two ordinates at the criterion value), we find it facilitates
exposition to use standard deviation units (called C by
Snodgrass & Corwin, 1988) for referring to the placement of
the criterion in terms of the distance of the criterion from the
point at which the distributions cross.

A typical study involves the variation of some variable such
as list length (the number of different words in a list), item
strength (the number of study repetitions of the tested word),
or list strength (the total number of repetitions of all studied
items). Of interest is the way in which d’ varies across such
manipulations. However, Figure 1 shows that there are a
number of different ways that familiarity can change and still
predict the same pattern of d’ changes. Suppose, for example,
that a longer list is used than that giving rise to the distribu-
tions of Figure 1a. Figures 1b, 1c, and 1d all show possible

! Recognition paradigms sometimes require participants to choose
which of two presented items is the old one (e.g., Glanzer & Adams,
1985). Such tests tend to provide information about the relative
oldness of two items and therefore are a somewhat more indirect
measure of familiarity than a direct judgment of oldness. Thus, in
these experiments, we used single-item tests and individual judgments
of old versus new, leaving forced-choice paradigms for future research.
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Figure 1. Examples of distributions of familiarity used to make a recognition decision. T represents the
distribution for target tests, and D distractor tests, with means .t and p.p, respectively. P(H) stands for hit
rate; P(F) stands for false-alarm rate. The criterion above which an old response is given is labeled X and
X' in different sections. Section a contains examples of distributions for a short list or category. Sections b,
¢, and d contain examples of distributions for a longer list or category under different models: Section b
shows that extra length increases the variance, but not the means or criterion; section ¢ shows that extra
length increases both the means and variances, but not the criterion; section d shows that the distributions
caused by increased length are as in section c, but that the criterion has increased accordingly. In section e,
an increase in word strength, for a list or category of the same length as in section a, is depicted as leaving
the distractor distribution unchanged but as increasing the mean and variance of the target distribution;
the criterion is shown at the same point as in section a (appropriate for the category experiments in the

present article).

distributions of familiarity for such a longer list. Figure 1b
shows the case in which the target and distractor distributions
have the same means as in Figure 1a, but have higher variance,
producing a lower value of d’. Figure 1c shows the case in
which both the means and variances of the target and distrac-
tor distributions rise relative to Figure 1a, producing a lower
value of d’. Although the familiarities represented in Figure 1b
and 1c are quite different, they produce the same value ofd’.
It appears that one should be able to determine the changes
in familiarity by reference to the values of P(H) and P(F).
However, Figures la, 1b, and 1c are misleading because the
criterion is shown at the same placement in all three panels.

Because Figures 1b and 1c represent a longer list than Figure
1a, and because this difference would be readily apparent to a
participant, the participant would be free to adjust the crite-
rion to a new position. This is shown in Figure 1d: The
distributions are those of Figure 1c, but the criterion has been
moved upward so that the P(H) and P(F) values match those in
Figure 1b. Thus, the hit and false-alarm rates can be used to
determine the changes in familiarity only when the criterion
can be assumed to remain constant across conditions. Finally,
calculation of relative criterion placement (or g or any similar
measure) does not allow determination of the changes in
familiarity: Figure 1b and 1d have the same d' and the same



LENGTH, STRENGTH, FAMILIARITY 269

relative criterion placement, but different familiarity distribu-
tions.

These examples serve to illustrate our general point: When
conditions are varied between lists, the participant is free to
adjust the criterion, making it impossible to assess how
familiarity changes between conditions. Because many of the
extant models make explicit predictions about the absolute
values of familiarity and make explicit predictions concerning
how these values should change with experimental manipula-
tions, we decided to carry out a study in which it would be
plausible to assume that the criterion is not moved between
conditions of interest. The basic idea involved presenting a
single very long list of words for study (several hundred items),
followed by an old-new recognition test. Embedded in the list
were many categories of words. The words in each category
were presented in a widely spaced fashion, such that partici-
pants were largely unaware of the categorical structure of the
list and were seldom aware of the existence of any particular
category. This allowed us to manipulate the variables we were
exploring across categories within a given list.

For this paradigm to work, it is essential that there is
preferential access to the stored members in the category of
the test word (even when the participant is unaware of the
length or strength of that category). If strength of activation of
traces is based on similarity of the test word to the stored word,
as incorporated in most models, then this requirement will be
satisfied. The validity of this assumption can be tested by
varying the lengths of categories and examining false alarms to
distractors from each category; false alarms will rise with
length only if there is preferential access to the category of the
test item.

We manipulated two of the most common variables used to
study recognition memory: length and strength. In the present
study, we instantiated these variables as category length (the
number of different words studied from a given category) and
category strength (the number of presentations of the words
from a given category). We hoped that the participant would
adopt a criterion that was on the average the same for items
tested from categories of differing length and strength. Al-
though we have no independent test, the internal consistency
of the results can provide some verification of this hypothesis.

Previous studies (e.g., Gillund & Shiffrin, 1984; Ratcliff et
al., 1990) have varied list length and list strength, making it
likely that criteria vary with these variables and making the
absolute values of hit rates and false-alarm rates difficult to
interpret. Therefore, we discuss only the implications of extant
findings concerning the variations of sensitivity (i.e., d’) with
length and strength. The lowering of sensitivity as list length
increases is a virtually universal finding. Whether a d’ decrease
with category length in the present study was to be expected
depends on the model being examined. Many models predict
d’ to decrease with length because the extra items increase the
target variance as much as the distractor variance, without
changing the difference between the means. In an experiment
in which length is varied across categories within one list,
however, the variance increases only as a result of the small
number of extra items in a given category, an increase that
might be masked by the variance contributed by the many
items from the other categories.

How sensitivity changes with list strength has been examined
several times in recent years (e.g., Murnane & Shiffrin, 1991a,
1991b; Ratcliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, &
Clark, 1990). It has been found that increasing the strength of
some list items (by means of extra study time or increased
numbers of spaced repetitions) does not reduce d’ for other
items (and may even slightly improve d' performance). These
effects are of interest because most models do not predict such
effects. Shiffrin et al.’s (1990) search of associative memory
(SAM) model, which is a slight modification of Gillund and
Shiffrin’s (1984) SAM model, does predict such findings. This
model may be extended to the present category study by
adding the assumption that there is preferential activation of
the stored items that are in the category of the test item
(perhaps due to a larger value of associative similarity between
a test item and stored items in its category)—that is, these
items are activated to a higher degree than noncategory items.
Thus, each category acts as a mini-list, with all the items from
other categories contributing noise. This model predicts no
change in d’ with category strength.

In the present research, of course, our main interest was not
in d’, but in the way that the hit and false-alarm rates varied
with category length and category strength. Assuming that the
criterion did not change across length and strength conditions,
the false-alarm rate was expected to be particularly diagnostic.
Shiffrin et al’s (1990) SAM mode! extended to categories
predicts that the false-alarm rate will remain approximately
constant as the strength of items in a category increases and
that the false-alarm rate will rise as the length of a category
increases. Most alternative models predict a different qualita-
tive pattern, in which strength and length have the same effect
on the false-alarm rate. A more detailed exposition of the
predictions of various models is deferred to the Results and
Discussion section.

The categories we used were of two very different types. One
type was semantic: A prototype word was selected to be long
and of relatively low natural language frequency (e.g., butterfly).
In the experiment, we presented exemplars semantically re-
lated to the prototype for study. We did not present the
prototype, in order to reduce the possibility of the participant
noticing the categorical nature of the list. The category
exemplars also tended to be long, low-frequency words. The
other category was orthographic-phonemic: A short, relatively
high-frequency, monosyllabic word was selected as the proto-
type. The exemplars all had the same vowel and the same
vowel sound as the prototype, but they differed in either the
first consonant or the last consonant. These categories are not
among the standardized categories often used in memory studies,
but we chose them because some pilot testing suggested they
would not be noticed by participants during the study phase,
but would nevertheless affect performance. We used these two
different types of categories to assess the generality of the
findings. We reasoned that if the results were similar for these
two types of categories, it would be difficult to argue that the
pattern was due to an idiosyncratic choice of items.

In all, we carried out four experiments in this category
paradigm. The two experiments carried out first were designed
in part to answer some additional questions not entirely
germane to the present issues, and as a result they are not
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ideally suited to make our main points. In the present article,
we have labeled these studies Experiments 3 and 4, and a
summary of their relevant results is presented at the end of the
article in Appendix D. In Experiments 3 and 4, frequency
judgments were required during study. In Experiment 3, only
category strength, and not category length, was varied, and
both immediate and delayed tests were included. In Experi-
ment 4, both category length and strength were varied, and at
test, frequency judgments were required first, and recognition
judgments were required second. The essential point to keep
in mind is that the results of these studies (i.e., those reported
in Appendix D) replicate the results to be reported in the body
of this article in all important respects, both qualitatively and
quantitatively.

The two experiments we report now (Experiments 1 and 2)
are identical in all respects save one. In each, as a word was
presented for study, participants gave a rating of its pleasant-
ness. This was done primarily to combat lapses of attention
and to increase the probability that multiply presented words
were stored more strongly. Following study, there was a long
series of single-word tests. For each, the participant gave a
judgment on a 6-point scale of his or her confidence that the
word had been studied. Test words included studied exemplars
and various types of nonstudied words, namely, nonstudied
category prototypes, nonstudied category exemplars, and non-
studied words that were not members of any of the studied
categories. In both studies, category lengths were 2, 6, and 9
words. In Experiment 1, strength was varied for the categories
of length 6. In Experiment 2, strength was varied for the
categories of length 2. In both studies, strength was manipu-
lated by varying the number of spaced repetitions of a given
exemplar.

The following illustrative example helps clarify the terminol-
ogy used in our article: Suppose Category 1 has the members A4
and B; Category 2 has C, D, and D; Category 3 has E, E, F, and
F; and Category 4 has G, H, I, and J. The letters stand for the
presented words in each category. Category length refers to
the number of different words in a category that are studied,
regardless of the number of repetitions of a given word. Thus,
Categories 1, 2, and 3 have a category length of 2, and Category
4 has a category length of 4. Word strength refers to the
number of presentations of a word. Thus, in Category 2, Word
C has a word strength of 1 and word D has a word strength of 2.
Category strength refers to the average word strength of a
category. Thus, the category strengths of Categories 1 and 3 are
1 and 2, respectively. It is often of considerable theoretical
importance to hold word strength constant while varying
category strength. In our example, this occurs for Words A and
B versus C in Categories 1 and 2, and it occurs for Words E and
F versus D in Categories 3 and 2.

Method
Experiment 1

Participants. The participants were 47 Indiana University students
taking part in a 30-min session to satisfy part of an introductory
psychology course requirement.

Apparatus. Presentation of words and collection of data were
carried out for each participant on IBM-compatible personal com-
puter systems.

Materials. There were 15 semantic categories, each consisting of a
prototype and 11 exemplars. For these categories the prototypes and
exemplars tended to be relatively long words with relatively low
natural language frequency (Kugera & Francis, 1967; Nusbaum,
Pisoni, & Davis, 1984). The exemplars were chosen on the basis of
semantic relatedness to the target, where relatedness was defined
informally on the basis of intuition. A certain amount of pruning of
both categories and exemplars took place after some pilot testing, in
which the aim was to use categories that would not be noticed during
study but would nonetheless affect performance. For example, one
semantic category comprised the prototype butterfly and the exemplars
nectar, cocoon, monarch, flutter, metamorphosis, dragonfly, flitting,
wings, camouflage, fragile, and caterpillar.

There were 10 orthographic-phonemic categories, each consisting
of a prototype and 11 exemplars. The exemplars were chosen on the
basis of orthographic and phonemic relatedness to the prototype. The
prototypes and exemplars were either all three-letter or all four-letter
monosyllabic words generally of high natural language frequency. All
the exemplars of an orthographic~phonemic category shared the same
vowel sound with the prototype and aiso shared exactly one of the
consonant clusters. An example of an orthographic—phonemic cat-
egory is that formed for the prototype sip; it contained exemplars that
differed from the prototype only in the first or last letter, but not both:
tip, lip, hip, dip, nip, pip and rip (first letter differs), and sin, sit, sis, and
six (last letter differs).

In addition to these prototypes and exemplars, two other classes of
words were used. The first was termed extra semantic items and
comprised 30 words similar in structure to the semantic category items
but not obviously related to them or to each other. To control for
primacy, recency, and short-term memory effects, 24 of these words
were used as follows: Each session began with 10 of these words; the
study list ended with 10 more of these words; and the test list began
with 4 more of these words. The second class was termed extra
orthographic-phonemic items and comprised 20 words similar in struc-
ture (i.e., monosyllabic, high frequency, three or four letters) to the
orthographic-phonemic category exemplars but were based on differ-
ent vowel sounds than any of these categories. The category proto-
types, exemplars, and extra items are listed in Appendixes A and B.

Procedure. Participants viewed a single study list of 255 successive
word presentations, followed by a recognition test. In the study list,
each word appeared on a computer screen for 3 s. Within that time, we
asked participants to enter a rating of the pleasantness of the
presented word on a 6-point scale. We informed participants at the
start of the session that some words would be repeated during study
and that there would be a final recognition memory test.

The recognition test consisted of 149 successively presented words.
The participants gave a rating on a 6-point scale (1-6) of their
confidence that the word had been studied, with the neutral point
between 3 and 4. Once a participant’s responses had been entered, we
presented the next test word immediately.

During study, exemplars (but no prototypes) of each of the 25
categories were presented, with the category members and repetitions
of a given word randomly spaced between the 10 primacy and 10
recency buffer words. Five categories were assigned to each of five
conditions. There were three length conditions: two, six, or nine
exemplars studied once each. There were two strength conditions. One
was termed strong, in which six exemplars were studied three times
each. The other was a mixed-strength condition, termed mixed, in
which three exemplars were presented once and three were presented
three times. Three semantic categories and two orthographic—
phonemic categories were assigned to each of these five conditions.
For each participant, the exemplars studied from each category, the
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Table 1
Probability of Responding Old for Category Type and Length—Strength Condition
Length-strength conditions
Pure 1, Pure 1, Pure 1, Mixed, Pure 3,
Test items Length 0 length 2 length 6 length 9 length 6 length 6
Experiment 1
Semantic
Distractors .074 .085 121 195 124 .149
Prototypes .206 .220 284 270 .248
Strength 1 targets .794 .801 773 7187
Strength 3 targets 957 968
Orthographic—phonemic
Distractors .069 .096 213 207 213 229
Prototypes 234 191 309 309 372
Strength 1 targets .766 750 77 .824
Strength 3 targets 915 952
Experiment 2
Mixed, Pure 3,
length 2 length 2
Semantic
Distractors .046 .108 .163 .196 .105 .105
Prototypes 163 333 405 176 .176
Strength 1 targets .833 .853 .876 817
Strength 3 targets 974 974
Orthographic-phonemic
Distractors .069 .147 .206 225 152 152
Prototypes 176 333 .382 .167 216
Strength 1 targets .838 .873 .828 .804
Strength 3 targets 931 971

order of study, and the assignment of conditions to categories were
separately randomized.

After the 4 buffer items starting the test list, words on the test list
were presented in an order randomized for each participant. Two
studied exemplars (targets), the nonstudied prototype, and two non-
studied exemplars (distractors) were tested from each category other
than the mixed categories. For the mixed condition, two words of each
presentation frequency were tested, in addition to the nonstudied
prototype and the two distractors. In addition to these items, 10
nonstudied extra items were tested, at randomly chosen test positions:
6 of these were the remaining extra semantic items not serving as
buffer items, and the other 4 were chosen randomly from the 20 extra
orthographic-phonemic items. These distractors may be thought of as
arising from categories of length zero.

Experiment 2

Experiment 2 was identical in all respects to Experiment 1 save the
following: The strong condition consisted of two exemplars presented
three times each (instead of six exemplars presented three times each,
as in Experiment 1), and the mixed condition consisted of one word
presented once and one word presented three times. As a result, there
were only 155 words in the study list and 139 words in the test list. The
test list was unchanged, except that for the mixed categories, only one
word of each presentation frequency was available for test. This study
involved 51 Indiana University students who participated to satisfy an
introductory psychology course requirement.

Results and Discussion

The primary analyses were carried out on the hit probabili-
ties, defined as confidence ratings 4 through 6, and the

false-alarm probabilities, defined as confidence ratings 1
through 3. When we carried out sensitivity analyses, the hit and
false-alarm probabilities were converted to d’ for each partici-
pant and condition. If either P(H) or P(F) was zero, it was
replaced by a value equal to the inverse of 2n, and if either was
1, it was replaced by 1 minus the inverse of 2n.

In many articles, the sensitivity results would be given and
discussed first. In the present article, our primary concern is
with the changes in the hit and false-alarm rates that occur
with variations in category length and category strength, so we
begin with these findings. (We note that in every figure in the
body of the article, and in the Appendixes, error bars around
p(old) values are used to indicate the standard error of the
mean.)

In neither experiment did length or strength interact with
category type (analyses of variance [ANOVAs] were carried
out separately on the two experiments; the 12 interaction
terms representing combinations of category lengths and word
strengths and category strengths with category types for targets
and distractors for Experiments 1 and 2 all had p values greater
than .14), so the following results are summed across category
type. (For reference, Table 1 gives the breakdown of the
findings by category type.) The following statistical results are
all given as ¢ tests based on within-subject contrasts; one-tailed
tests were used when the direction of an effect was an a priori
prediction of the SAM model (any two-tailed tests are indi-
cated).

Figure 2 gives the category-length results from Experiments
1 and 2 (zero length refers to tested extra semantic and extra



272 R. SHIFFRIN, D. HUBER, AND K. MARINELLI

1.0
Exp. 1
0.8 ——— F-===—F
0.6
0.4 -
0.2 - _
—_— M
E 0.0 | 1 i 1 ]
S Exp. 2
Qs EF -
0.6
—&— observed
0.4 ——*—- predicted
0.2
e
0'0 { ] 1 1

0 2 4 6 8 10
category length

Figure 2. Hit and false-alarm rates as a function of category length for
Experiment 1 (top section) and Experiment 2 (bottom section).
Predictions of the search of associative memory model are the dashed
lines. p(old) stands for the probability of responding old, and the error
bars around each value represent the standard error of the mean.

orthographic-phonemic items). False alarms rose significantly
with category length, ¢(46) = 7.46, p < .001, for Experiment 1
and ¢(50) = 7.51, p < .001, for Experiment 2. Hits exhibited an
unanticipated slight downward trend in Experiment 1, but not
significantly so; t(46) = 0.37, p = .15, and no trend in
Experiment 2, #(50) = 0.87, p = .20. For reference, note that
the trend was slightly upward in Experiment 4; this is reported
in Appendix D.

Figure 3 gives the category-strength results for Experiments
1 and 2. False alarms did not vary with category strength, for
fixed category length, t(46) = 0.92, p = .36 (two-tailed), for
Experiment 1 and #(50) = 0.00, p = 1.0 (two-tailed), for
Experiment 2. This is evidenced by the lowest horizontal line in
the figures. There was a main effect of word strength for
targets: Items presented three times had higher hit rates than
did items presented once, t(46) = 8.61, p < .00, for
Experiment 1 and #(50) = 8.11, p < .001, for Experiment 2.
This is evidenced by the difference in level between the two
upper lines in the figures. There was no significant effect of
category strength for targets: The strength of the other items in
the category had no effect on the hit rate when the strength of
the target item was fixed, #(46) = 1.64, p = .11 (two-tailed), for
Experiment 1 and #(50) = —0.28, p = .78 (two-tailed), for

Experiment 2. This is evidenced by the horizontal nature of
each of the two upper lines in the figures.

The contrast between the length and strength effects on
false alarms is illustrated in Figure 4, which gives false-alarm
rates as a function of the total number of presentations of all
items in a category. False alarms clearly rose with length and
also clearly did not rise with strength, at two different levels of
performance, corresponding to short and long categories.

The various results reported above may be analyzed in a
fine-grained fashion by examining in more detail the confi-
dence ratings. One can analyze the entire distribution of
ratings or, equivalently, analyze separately hits and false
alarms defined by different cut points along the confidence
scale. We looked at the results in both ways; because they are
entirely consistent with the patterns reported above, they are
not presented or discussed further. These claims may be
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Figure 3. False-alarm rates as a function of category strength, and hit
rates as a function of category strength for two levels of word strength
for Experiment 1 (in the top section; category length is 6) and for
Experiment 2 (in the bottom section; category length is 2). Predictions
of the search of associative memory model are represented by the
dashed lines. p{old) stands for the probability of responding old, and
the error bars around each value represent the standard error of the
mean. Category strength is indicated by whether the test items come
from pure 1 categories (every exemplar presented once), pure 3
categories (every exemplar presented three times), or mixed categories
(half the exemplars presented once and half the exemplars presented
three times).
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assessed by perusing the confidence rating breakdown, summed
over category types, given in Appendix C.

The sensitivity resuits were analyzed statistically by calculat-
ingd’ for all conditions within each participant’s data and then
by averaging across participants. However, Figures 5 and 6
graph d' calculated from the group hit and false-alarm rates;
this was done because the model fit to the data predicts only
group data (the d' patterns were the same in both methods,

but all the d’ values were higher when we used the average of -

individual participant d’s).

There were no reliable interactions of length and strength
with category type. ANOVAs were carried out on the d’ values
calculated per participant on the basis of truncated scores for
each study. The six interaction terms (two studies by length
and word strength and category strength) had p values all
exceeding .12, so the results were summed across category
type.

Figure 5 gives d’' as a function of category length for
Experiments 1 and 2: For Experiment 1, d’ decreased signifi-
cantly with increases in category length, £(46) = 4.30,p < .001;
for Experiment 2, the trend downward was smaller but still
significant, £(50) = 2.20, p < .05. Such resuits are consistent
with an extensive amount of literature (e.g., Gillund & Shiffrin,
1984; Ratcliff et al., 1990) showing list-length effects. Although
the size of the observed category-length effects was not
enormous, larger effects would have been unlikely given that
the length manipulation was carried out on a category embed-
ded in a much larger list, without obvious demarcation. This
argument is formalized in terms of variance contributions
when the models are presented and discussed in the Empirical
Summary section of the present article.

0.5
Exp. 1

044 T category strength
03 category length

14 18
exemplar presentations

Figure 4. False-alarm rates as a function of category length and
category strength, both given as the total number of exemplar
presentations per category, for Experiment 1 (top section) and
Experiment 2 (bottom section). p(old) stands for the probability of
responding old, and the error bars around each value represent the
standard error of the mean.
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Figure 5. Sensitivity (d') as a function of category length for Experi-
ment 1 (top section) and Experiment 2 (bottom section). Predictions
of the search of associative memory model are represented by the
dashed lines. The observed (and predicted) 4’ values were calculated
from the group hit rate (and the group false-alarm rate) for a given
condition.

Figure 6 gives d' as a function of category strength, when
category length is held constant, for Experiment 1 (in which
length was 6) and Experiment 2 (in which length was 2).
Consistent with all previous findings, there was a main effect of
word strength: d' increased with strength, £(46) = 7.44,p <
001, for Experiment 1 and ¢(50) = 7.93, p < .001, for
Experiment 2. There was no effect of category strength (i.c.,
the strength of other items in the category) for a fixed value of
target strength, #(46) = 0.59, p = .56 (two-tailed), for Experi-
ment 1 and #(50) = 0.03, p = .98 (two-tailed), for Experiment
2. These category-strength results are consistent with quite a
few recent articles on the list-strength effect (e.g., Murnane &
Shiffrin, 1991a, 1991b; Ratcliff et al., 1990). It may be noted
that for word-strength 3, category strength exhibited a trend
consistent with a negative category-strength effect, although
not significantly so. Several negative list-strength effects, a few
significant, have also been noted in the articles just referenced.

Although category type did not interact with category length
and category strength, there were differences in both studies
between the category types in the probabilities of responding
old, and in performance. In summary, sensitivity (d ') was
better for the semantic than for the orthographic~phonemic
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Figure 6. Sensitivity (d') as a function of category strength for two
levels of word strength for Experiment 1 (in the top section; category
length is 6) and for Experiment 2 (in the bottom section; category
length is 2). Predictions of the search of associative memory are
represented by the dashed lines. The observed (and predicted) d’
values are calculated from the group hit rate and the group false-alarm
rate for a given condition. Category strength is indicated by whether
test items come from pure 1 categories (every exemplar presented
once), pure 3 categories (every exemplar presented three times), or
mixed categories (half the exemplars presented once and half pre-
sented three times).

categories, 1(46) = 5.01, p < .001, for Experiment 1 and
t(50) = 2.93, p < .01, for Experiment 2. This is of course
consistent with the literature, because recognition perfor-
mance is well known to be better for low (natural language)
frequency words (e.g., Gregg, 1976). This effect was due largely
to a higher false-alarm rate for orthographic-phonemic distrac-
tors than for semantic distractors, ¢(46) = 4.09, p < .001, for
Experiment 1 and #(50) = 2.46, p < .01, for Experiment 2.
There may be some differences here from the usual mirror
effect (e.g., Glanzer & Adams, 1985), according to which the
semantic targets ought to have had a higher hit rate than that
for orthographic-phonemic targets. However, the differences
between the two types of category words were evident enough
that the participants could have chosen different criteria for
words from the two types of categories, making it difficult to
come to any firm conclusions. Such results may suggest that
participants were attending to and coding semantic properties

of items to a greater degree than they were attending to and
coding orthographic-phonemic properties of items, or the
results may simply reflect a different similarity structure for the
two types of categories.

Regardless of the overall differences between the two types
of categories, the fact that the category type did not interact
with the strength and length manipulations led us to collapse
across category type for statistical analyses, discussion, and in
the drawing of conclusions. Even more important, the fact that
the length and strength pattern was the same for these two
different categories suggests a generality to the findings that
transcends the particular category choices we made.

False alarms to prototypes can also be examined as a
function of length and strength, although the data are less
stable because of smaller numbers of observations. The results
are summarized in Figure 7. For both experiments, prototype
false alarms rose with category length, 1(46) = 1.94, p < .05,
for Experiment 1 and #(50) = 6.24,p < .001, for Experiment 2.
The factors responsible for this rise might well be those
responsible for the rise for regular category distractors.

For Experiment 1, prototype false alarms rose slightly with
category strength, #(46) = 2.72, p < .01 (two-tailed). For
Experiment 2, prototype false alarms did not change signifi-
cantly with category strength, ¢(50) = 0.70, p = .49 (two-
tailed). Although the data are somewhat noisy, it still may be
asked why false alarms to prototypes showed a greater ten-
dency to rise with category strength than with other types of
category distractors. One answer is related to the hypothesis of
implicit associative response (IAR), which was proposed for
recognition memory by Underwood (1965). During the study
of a list, when an exemplar from a category is encountered,
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Figure 7. False-alarm rates for prototype tests as a function of
category length and category strength, both given as the total number
of exemplar presentations per category, for Experiment 1 (top section)
and Experiment 2 (bottom section). p(old) stands for the probability of
responding old, and the error bars around each value represent the
standard error of the mean.
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certain unstudied words may be generated spontaneously
during the encoding process. It seems natural that the chances
of this happening will be higher for the category prototype
than for some other unstudied category exemplar. Further-
more, the probability of prototype generation during study
would likely rise with additional exemplar repetitions (see
Leicht, 1968). Once generated during study, a prototype would
tend to be judged old on a later test, thereby producing the
(somewhat noisy) observed increase with increases in category
strength.

In the remainder of this section, we consider data concern-
ing the position of a word during the study list, the position
during the test list, and the study-test lag. Certain models
make predictions concerning the way in which activation
should change across positions. For example, the theory of
distributed associative memory (TODAM) model (Murdock,
1982) predicts that the activation caused by a test word should
be a geometric function of its recency of presentation.

Table 2 gives the effect of recency in session; it gives the hit
probability for fifths of the study list, for the length conditions.
In Experiments 1 and 2 there was a small effect of recency:
Words closer to the end of the list had marginally higher hit
rates: In Experiment 1, #(46) = 1.0, p = .16, and in
Experiment 2, £(50) = 2.28, p < .05. Whatever effect there
was, it could have been due to position in the session or the
position in the category (our pool of data did not have
sufficient power to separate these possibilities). Some possible
explanations of the recency effect include better storage of
information as the session or category presentation proceeded
or a drift of context over the session so that the test context
better matched recently stored context.

Table 3 gives the breakdown of the probability of responding
old, along with d’, for different types of test items as a function
of test position, partitioned by fifths of the test list. The effects
were quite small: The only trends reaching significance were
the slight decrease in the probability of responding old for
targets in Experiment 2, #(50) = 5.88, p < .001, and the
corresponding decrease in d’, 1(50) = 3.88, p < .001 (two-
tailed). All the other p values were greater than .30 (two-

Table 3
Probability of Responding Old and d' for Position
Within Test List

Test list pold)
position Distractors Prototypes Targets d’
Experiment 1
4-33 .184 272 851 2.086
34-62 150 .248 841 2.152
63-91 118 .268 .848 2.347
92-120 .189 .202 .833 2.038
121-149 145 328 .830 2.098
Experiment 2
4-31 155 220 .939 2.510
32-58 .149 .296 .894 2.311
59-85 154 254 .885 2.320
86-112 136 231 .849 2.238
113-139 .165 255 .837 2.076
Note. Test list position is broken into quintiles for all conditions.

tailed). The d' finding may suggest some degree of retrieval
inhibition (see Bjork, 1989).

Table 4 gives the effect of the lag between study and test for
the length-condition targets, with lags partitioned by fifths of
the range. There was a significant tendency for the probability
of a hit to decrease with lag, 1(46) = 1.82, p < .05, for
Experiment 1 and #(50) = 3.45, p < .001, for Experiment 2.
This analysis combined the effects of study and test position
and therefore lends itself to a number of different interpreta-
tions.

Empirical Summary

The primary results of our studies are those showing the
effects of length and strength.

Probabilities of responding old. Hits and false alarms in .
response to category exemplars did not change appreciably
with category strength. The number of hits rose markedly with

Table 4
Table 2 Probability of Responding Old for Lag Between Position Within
Probability of Responding Old for Position Within Study List Study List and Position Within Test List
Study list Lag between
position p(old) study and test p(old)
Experiment 1 Experiment 1
10-57 775 14-90 .848
58-104 763 91-166 791
105-151 770 167-242 747
152-198 7190 243-318 796
199-245 .801 319-394 .765
Experiment 2 Experiment 2
10-37 .803 14-68 940
38-64 .841 69-122 .895
65-91 .833 123-176 .859
92-118 .889 177-230 776
119-145 .889 231-284 .783
Note.  Study list position is broken into quintiles for length-condition Note. Lag is broken into quintiles for length-condition targets.

targets. p(old) = probability of responding old.

p(old) = probability of responding old.
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increases in word strength. The number of prototype false
alarms rose slightly with category strength in both experiments
but rose significantly only in Experiment 1.

The number of false alarms (to both exemplars and proto-
types) rose as category length increased. The number of hits
remained relatively constant as category length increased.

Sensitivity measured by d'. Sensitivity did not vary with
category strength (what trends there were indicated higher d’
with larger category strength, which is a negative category
strength effect), but d' rose markedly with word strength.
Sensitivity decreased slightly with category length.

We ascribe the length effects to a pooling of trace activa-
tions, on the basis of similarity.2 Longer categories have more
images similar to the test item. In this explanation, increased
total activation arises from the greater number of within-
category traces, not from an increase in the activation of the
trace of the test item itself. The length effects seemed to occur
even though the participants tended to be unaware of the
categorical structure of the list. We judged this to be the case
on the basis of a debriefing of about 25% of the participants at
session’s end. When asked first if they noticed anything special
about the list presented, almost no one volunteered anything
concerning categories (1 or 2 participants mentioned a single
associated group of studied items). When told that there were
categories of items on the list, and asked to name any they
could remember, a few more participants named a single
category. It is interesting.that these failures to report much
awareness of categories occurred after the test portion of the
experiment, a test that included all the category prototypes.

The pattern of length and strength results, excluding proto-
types, is consistent with the pattern of familiarity distributions
illustrated in Figure 1, if the following assignments are made.
Assume that a short category of singly presented items results
in familiarity distributions and the criterion depicted in Figure
1a. An increase in length is then assumed to produce an
increase in mean (and somewhat in variance), but no change in
absolute placement of the criterion, as illustrated in Figure 1c.
An increase in category strength, for a fixed target strength, is
assumed to produce no change in the distributions or criterion,
so Figure la represents the situation. An increase in word
strength is assumed to leave the distractor distribution and
criterion unchanged, but increase the mean (and somewhat
the variance) of the target distribution, as illustrated in Figure
le.

We next demonstrate that these patterns and assumptions
are consistent with the predictions of the differentiation
version of the SAM model extended to the category setting.
We do so by fitting this model to the data. For the purposes of
model fitting, we ignore the differences between categories
and category types and simply fit the model to the combined
data. After fitting and discussing the SAM model, we discuss
the implications for other models.

The SAM Model

The applicable version of SAM is particularly simple. It is
essentially the same model introduced by Shiffrin et al. (1990)
and differs only in a differentiation assumption from earlier
versions of SAM (e.g., Gillund & Shiffrin, 1984). It is assumed
that each different word is stored in a different image in

long-term memory but that repetitions of a word are stored in
a single (stronger) image. At test, memory is probed with
context and word cues. Each image is activated, to an extent
determined by the match to the test probe, and then the image
activations are summed. The participant gives a confidence
rating based on the sum. We fit the full set of confidence rating
data, so we needed a criterion for each cut point in the
confidence scale (five parameters): A confidence rating i is
given when the summed activation (familiarity) is greater than
criterion { — 1 and less than criterion i. To apply the model,
one need know only the mean and variance of the activation of
each image in response to a given probe. We assumed
independence for different images. For a long list like ours, the
law of large numbers assures us that the sum will be approxi-
mately normal, with a mean equaling the sum of the individual
means and a variance equal to the sum of the variances. To
generate predictions, then, we needed to know only the means
and variances of the individual activations; these were gener-
ated according to the following assumptions:

1. A target activates its own n-times studied image with
mean strength S,,,n = 1 or 3.

2.-A test word other than the prototype activates the image
of any word in its category, other than its own image, with
mean strength ;.

3. A test word, whether distractor or target, activates the
image of any word not in its category with mean strength §,,.

4. The variance of activation of any image is a times the
square of the mean strength for that image.

The differentiation assumptions that enabled Shiffrin et al.’s
(1990) version of SAM to predict list-strength findings are
implicit in Assumptions 2 and 3: Parameters §; and S, do not
change with strength of the image being activated. The idea, in
short, is that the context cue tends to cause more activation of
a stronger image but the item cue tends to cause less activation
of a stronger image (because it differs from that image). The
two tendencies cancel, leaving activation unaffected by strength.
In this instantiation of SAM, as in previous applications, we
assumed that exact cancellation occurs. There is nothing in the
conceptualization of SAM to demand exact cancellation, and it
would be quite sensible to introduce another parameter
controlling the degree of cancellation. Nonetheless, for simplic-
ity, and because it allows fairly accurate predictions of all the
extant data, we formulated the equations so as to incorporate
implicitly the assumption of exact cancellation.

Equations 1 and 2 give the means of the familiarity distribu-
tions for tests of targets and distractors, and Equations 3 and 4
give the corresponding variances. In the equations, L is the
category size (excluding repetitions) for the category of the test
item (we assumed L = 0 for tested extra semantic and extra

2 The existence of length effects could conceivably be attributed to
priming: The first presentation of each word could cause activation of
images of associated (category) words (as in the JIAR hypothesis
proposed by Underwood, 1965). In this explanation, the increased
probability of responding old would be due to the increased activation
of the trace of the tested word itself. However, the priming explanation
is not very likely for several reasons, chiefly because long-term
associative priming is quite weak (as compared with identity priming)
and usually cannot be found (e.g., Joordens & Besner, 1992; Roediger
& Challis, 1992).
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orthographic—phonemic items), and X is the total number of
different items in the study list (excluding repetitions). For
Experiment 1, K = 145; for Experiment 2, K = 105. In the
following, F (standing for familiarity) is used to denote the
total summed activation.

E[F|target,n] = K- L)S, + (L - 1)S, + S,. (1)

E [F | distractor] = (K — L)S, + LS, @

Var [F | target, n] = o[(K ~ L)S? + (L — 1)$? + 2. (3)
Var [F | distractor] = of(K — L)S? + LS?]. 4

It would be easy to extend this model to predict tests of
prototypes by adding a parameter, S,, representing mean
strength of prototype, to images of exemplars from its own
category: S, would replace §; in Equations 2 and 4. However,
Equations 2 and 4 vary only with length and not strength, so
such a model would fail to predict the observed increase in
p(old) for prototypes with category strength. We think the
observed increase may have been due to an increasing chance
of thinking of the prototype during study as repetitions
increased, which is a hypothesis with some support (e.g.,
Underwood, 1965). However, we decided not to fit a model
augmented by this hypothesis to the prototype data, because
we would have no other independent validation of the aug-
mented model.

The parameters were chosen so as to minimize the chi-
square measure of discrepancy between the observed and
predicted probabilities of giving confidence rating i for all the
probabilities in both experiments, excluding prototype tests.
The parameters were the same for both experiments, except
for the 5 criteria. We allowed the criteria to vary between
studies because the different study-list lengths ought to have
affected the criterion choices. The 10 criteria parameters are
denoted C(i, 1) and C(i, 2). The best fitting parameter values
are given in Table 5. Because the participants were aware of
the length of the list at test, one might expect them to choose
lower criteria for the shorter list; such a pattern is evident in
Table 5. This model fit quite well: The predictions are those
that are graphed in Figures 2, 3, 5, 6, and 8 and are presented
in tabular form in Appendix C.

The match of predictions and data demonstrate the ad-
equacy of the version of the SAM model in incorporating
differentiation (e.g., Shiffrin et al., 1990) to predict hits, false
alarms, and d’. The pattern of observations was predicted in
advance under the assumption that the response criterion does
not shift with length and strength, lending support to this
assumption as well as to the model.3

Finally, we discuss the receiver operating characteristic
(ROC) functions from our studies (our model was fit to these
implicitly because we fit the full range of confidence ratings,
but a more detaiied look is useful). Using the group confidence
rating data, we constructed for each condition in each experi-
ment an ROC function, giving cumulative probability of
confidence ratings up to a given cut point for targets on one
axis, versus distractors on the other axis, for the various
conditions. Plotted on normal-normal axes these functions will
be linear if the underlying familiarity distributions are normal.

Table §
Parameters for Fit of the Search of Associative Memory Model to
Experiments 1 and 2

Variable Value
Activation
S, 1.0 (fixed)
S; 1.57
Sy 13.0
S3 26.1
Variance multiplier
a 210
Criteria
Experiment 1
c(,1) 145.3
c(21) 1488
c@3,1) 151.5
c@41) 153.0
c, 1) 155.0
Experiment 2
c(1,2) 105.5
C(2,2) 108.6
C(3,2) 110.5
C(4,2) 111.8
C(5,2) 113.2

The slope of the function gives the ratio of distractor standard
deviation to target standard deviation. Our slopes ranged from
.39 to .62 across conditions and studies. The functions are
given in Figure 8. In other recognition studies these slopes
have also tended to be below 1.0, typically in the range .6 to .9
(e.g., Ratcliff, Sheu, & Gronlund, 1992). The figure aiso gives
predictions from the model. Although the model had no
difficulty producing low slopes, and at least roughly fitted the
ROC functions, some caveats are in order. The fit, and the low
slopes, came about because the parameters controlling the
mean and variance of target strengths were estimated to be
very high relative to the parameter controlling distractor
strength (13 and 26.1 vs. 1.87). Despite the high mean

3 Although the slight downward trend of hits with increases in length
in Experiment 1 was not reliable, we were led to explore model
variants that might predict a decrease. We augmented our mode! by
assuming that the recognition decision is sometimes based on a recall
of a particular stored image. For simplicity, we did this in a parameter-
free fashion: We assumed that on presentation of a test word, a single
sample is made from the list words stored in memory. The probabil-
ity of sampling an image is simply its (mean) strength divided by
the summed (mean) strengths of all the images of the list words, the
strengths being determined by the probe cues. If the test word is the
one sampled, an old recognition response is made (actually, the
highest confidence rating is given). If not, the decision is based on
the summed activation. Because the sampling probability decreases
with category length, we hoped that the model could combine the
processes of sampling (recall) and summed activation (global recogni-
tion) in such a way as to produce a decrease in hit rate with increases in
category length. We discovered that this was indeed possible, and a
best fit to the data from Experiment 1 alone indeed produced a
predicted decrease of hits with category length. However, when this
model was jointly fit to the data from both experiments with the same
parameters (except for the criteria), the results were not significantly
better overall than the fit shown in Figures 2, 3, 5, 6, and 8.



278 R. SHIFFRIN, D. HUBER, AND K. MARINELLI

slopes

0 cbser. pred.
v L9/S1 (pure) .62 .69
44 ¢ L6/ST (mix.+pure) .59 .69
° 1 2/S1 (pure) 53 .69
= ¥ L6/S3 (mix.+pure) .60 42
o ! 1 1 L L.
o Exp. 2 g
D "/'!/
2 o
L ———— observed
1 —— predicted
0 slopes
obser. pred.
v L9/S1 (pure) .50 .63
44 ® L6/S1 (pure) .59 .63
o  12/S1 (mix.+pure) .51 .62
v L2/S3 (mix.+pure) .39 .36
-2

false alarms (normal)

Figure 8. Receiver operating characteristic functions on normal-
normal coordinates, with best linear fit to the observed points, and
observed slope values. Predictions of the search of associative memory
model are represented by the solid lines. Category-length (L) and
word-strength (S) conditions are indicated, as well as the type of list
(pure, mixed, or data collapsed across pure and mixed) for Experiment
1 (top) and Experiment 2 (bottom). obser. = observed; pred. =
predicted; mix. = mixed. .

strengths for targets, performance remained in the right range
because the variances grew correspondingly large. Some re-
searchers may regard these parameter estimates as conceptu-
ally implausible. In addition, the large target variances contrib-
uted to the failure of the model to predict as large an effect of
category length on d' as was observed (see Figure 5).

In future research it may be worth exploring alternative
models in which there is a recall component to recognition.
Suppose, for example, that participants try to sample once
from memory. If an image of the test word is sampled, the
participant assesses the recovered episodic information and
responds old or new on this basis, without using a feeling of
familiarity of the recovered information. If an image of the test
item is not sampled, the participant uses the familiarity value.
Such a process might produce effects that, when fit with a
familiarity-only model, appear to be due to much larger means
and variances for targets than for distractors, even if the
variances of the familiarity distributions are actually near
equal for targets and distractors.

These alternatives notwithstanding, the current version of
the SAM model captures most of the findings. In particular, it
predicts the results that are the most important and diagnostic
for discriminating theories—those illustrated in Figure 4:
False alarms rose with category length and did not rise with
category strength. If the criterion for a recognition decision
does not change across these conditions, then we have good
reason to conclude that the familiarity distributions shift
uniformly upward with increases in category length but do not
move with increases in category strength. This is exactly what is
predicted by SAM. Strictly speaking, it would be possible to
obtain similar predictions under other assumptions (in models
other than SAM, for instance) if the variances of the familiar-
ity distributions are assumed to change in ways not correspond-
ing with the changes in means. However, the fact that the
results reported hold for each cut point in the range of
confidence ratings makes such esoteric possibilities unlikely.

How might we assess the fundamental assumption that the
criterion does not change with category length and category
strength? First, the results were predicted in advance, given
the prior known results with lists that vary in strength and
length, and given the added assumption that the criterion does
not change with these variables in our category study. Second,
the participants’ reports indicated little knowledge of the type
of categories that were on the study list, or even the existence
of such categories, thus making it difficult to see how any
process other than recognition itself could be used to assess
the length or strength of the category to which the test item
belonged. Third, if participants were adjusting criteria in
accord with the list characteristics of the category of the test
item, it is hard to see why a different result would have been
obtained for length and strength. We would be the first to
admit that these arguments are inconclusive, but as far as we
know, no better design to assess this question currently exists.

Alternative Models

Consider now the predictions of some alternative models
(for the old vs. new results). In previous articles (e.g., Murnane
& Shiffrin, 1991a, 1991b; Ratcliff et al., 1990; Shiffrin et al.,
1990; Shiffrin, Ratcliff, Murnane, & Nobel, 1993), models that
fail to predict the way recognition performance depends on list
length and list strength have been discussed. We tried, without
success, to extend these models in the simplest and most
natural fashion that would allow them to be applied to the
category length and category strength findings from the pre-
sent paradigm. We decided not to discuss these, however,
because our extensions might not be optimal choices and
because our interest is in models that can predict both the
present results and the list length and list strength findings
from previous studies.

As discussed by Shiffrin et al. (1990), a modification of the
MINERVA model (e.g., Hintzman, 1988) is capable of han-
dling the earlier set of recognition findings under certain
special assumptions. In MINERVA, items are represented by
vectors of features. At study, each item is stored as a vector in a
separate trace. Each feature is stored independently with some
probability, L. If a second presentation of an item results in
replacement of the first trace with a new trace based on a
higher value of L (or, equivalently, if the features in the first
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stored trace that match the presented item are retained and
the other features are replaced by correct features with some
learning probability L'), then list-length and list-strength
findings will be correctly predicted (approximately). This same
model could be extended to the category paradigm by assum-
ing that same-category traces have positive correlations. If so,
the present pattern of old versus new results (Figure 5) would
be predicted correctly, at least qualitatively. We regard the
replacement assumption as conceptually implausible, and it
certainly alters the multiple-trace assumption of MINERVA,
but we mention this model for the sake of completeness.

Very recently, there have been reports of new models
formulated to predict the list-length and list-strength findings.
We discuss two of these. Murdock and Kahana (1993a)
proposed a continuous memory version of the TODAM model,
which they claimed predicted performance measures correctly.
Shiffrin, Ratcliff, Murnane, and Nobel (1993) disagreed with
this contention (see also the reply by Murdock & Kahana,
1993b). The present data bear on the critical issue. In the
TODAM model, items are represented by vectors, and each
presented item is added to a common memory vector. This
vector is then multiplied by a forgetting factor a before the
next item is added. At test, the inner product of the test vector
with the memory vector (a measure of similarity) serves as the
decision statistic and plays the role of activation or familiarity
in SAM. Murdock and Kahana suggested that all past images,
not just the current list, contribute to the decision statistic. If
so, under reasonable side assumptions, it may be shown that
neither list length nor list strength should alter variance of the
decision statistic, and hence should not alter performance, for
a test item at a fixed recency. To explain list-length effects,
then, Murdock and Kahana argued that longer lists contain
older serial positions and greater lags until test. Because the
model predicts decreasing performance as lag until test in-
creases, list-length effects are produced by averaging across
serial positions.

It is not hard to apply this version of TODAM to the present
study. It would be both necessary and plausible to assume that
vectors of items in the same category are correlated more than
vectors of items in different categories. It is critical to note that
average serial position, average test position, and average
study-test lag are the same in our study for items from
categories of different lengths and strengths, so this factor
plays no differential role in the predictions. Nonetheless,
higher hit and false-alarm rates for longer categories are
predicted as a resuit of the higher activation produced by
additional within-category vectors being added to memory.
Unfortunately, higher hit and false-alarm rates would also be
predicted for additional repetitions of other within-category
items, so this model would not handle the present findings.
Other assumptions could conceivably be adopted that would
eliminate the strength misprediction, but it is hard for us to
imagine how this could be managed without also eliminating
the predicted changes with length.

The second model we consider is an array-similarity model
proposed by Estes (1994). The claim is again made that the
basic pattern of list-length and list-strength effects is predicted
by the model. In our view, this is debatable (because the model
predicts positive list-length and list-strength effects, even
though they would be of small magnitude for certain param-

eters). As with TODAM, the critical issue is clearer when the
model is extended to the present study. The model is quite
simple and easy to extend to the category paradigm. In
essence, a test item has similarities to exemplars attached to an
old response category and to exemplars attached to a new
response category. For a distractor test, the sum of similarities,
A(N), to the new response category is simply a pre-
experimental new bias, s(V). For a distractor test, the sum of
similarities, 4(0), to the old response category will equal the
number, n, of within-category list items multiplied by a
within-category similarity parameter, s+, plus the number, m,
of out-of-category list items multiplied by the out-of-category
similarity parameter, s—, plus a pre-experimental old bias,
s(0):

A(O) = ns + ms— + s(O). )

The probability of responding old (and thereby giving a false
alarm) is then

p(old) = 4(0)/[A(0) + AN)]. )

For target tests, assume there are r repetitions of the target;
then r of the within-category similarities in Equation 5 (i.e.,
s+) are replaced by the value 1.0.

It is clear from these equations that distractors from
categories of equal total numbers of presentations, whether
these presentations come from different items or repetitions,
are predicted to have the same p (old), regardless of parameter
choices. The critically relevant data is given in Figure 4: For six
total presentations, length and strength give different values,
t(50) =2.48,p < .014

Conclusion

We gave participants a single long list with distributed
exemplars from many categories. We did so in the hope that
the participants would utilize a recognition criterion in the
subsequent test that would not vary with the number of
exemplars, or with the number of repetitions of exemplars, in
the category of the test item. Assuming this to be the case, the
hit and false-alarm rates give evidence concerning the changes
in familiarity caused by changes in length and strength. The
results showed that changes in the strength of category
exemplars (other than the target itself) produced no reliable
change in hits or false alarms, which suggests that the distribu-
tions of familiarity did not change. However, extra category
items produced increases in both hits and false alarms, which
suggests that the distributions of familiarity moved upward.
Given the assumption that the criterion is independent of
length and strength, the SAM model previously used to explain

# Some other recent models developed to predict the effects of list
length and list strength in recognition include a network-similarity
version of Estes’s model (discussed very briefly by Estes, 1994) and the
neural network models of Chappell and Humphreys (1994) and
Dennis (1993). It is not clear to us how best to extend these to the
present paradigm. In addition it is not obvious what the predictions
would be for a given extension; predictions might well require
extensive computer simulations.
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list-length and list-strength results predicts the observed pat-
tern of findings. In fact, a simple version of this model gave a
good quantitative account of the results. This outcome gives
some credence to the hypothesis of criterion independence.
Many recognition models assume that the recognition deci-
sion is based on the magnitude of some globally produced
value, termed familiarity here for convenience. The present
results suggest that constraints beyond those already imposed
by performance measures need to be taken into account:
Changes in category strength (and by extension, list strength)
do not change familiarity, but increases in category length (and
by extension, list length) do increase familiarity. The SAM
model predicts such findings. Two recent models (namely, the
continuous memory version of TODAM [Murdock & Kahana,
1993a] and the array-similarity model [Estes, 1994]) that have
been claimed to correctly predict performance measures for
list length and list strength failed to predict these category results,
so the category results may be of considerable diagnostic utility.
Some caveats concerning these relatively simple results and
conclusions need to be kept in mind. First, the assumption of
criterion independence has not been verified directly. It is not
clear to us how to carry out a direct test of this assumption, but
future research using forced-choice paradigms may provide
converging evidence. If the criterion does change with length
and strength, it must covary with the changes in means and
variances in a fairly intricate fashion to produce the observed
data, but this possibility cannot be ruled out. Second, the
model represented by the proposed version of SAM, in which
all decisions are based on a single, normally distributed value
of familiarity, may be too simple. However, we leave the
exploration of more complex models to future research.

References

Banks, W. P. (1970). Signal-detection theory and human memory.
Psychological Bulletin, 74, 81-99.

Bjork, R. A. (1989). Retrieval inhibition as an adaptive mechanism in
human memory. In H. L. Roediger III & F. I. M. Craik (Eds.),
Varieties of memory and consciousness: Essays in honour of Endel
Tulving (pp- 309-330). Hillsdale, NJ: Eribaum.

Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural
network for sparse representations: Analysis and application to
models of recognition and cued recall. Psychological Review, 101,
103-128.

Dennis, S. J. (1993). Integrating learning into models of human memory.
Unpublished doctoral dissertation, University of Queensland, Bris-
bane, Australia.

Estes, W. K. (1994). Classification and cognition. New York: Oxford
University Press.

Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both
recognition and recall. Psychological Review, 91, 1-67.

Glanzer, M., & Adams, J. K. (1985). The mirror effect in recognition
memory. Memory & Cognition, 13, 8-20.

Gregg, V. H. (1976). Word frequency, recognition and recall. In J.
Brown (Ed.), Recall and recognition (pp. 183-216). London: Wiley.
Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace

memory model. Psychological Review, 93, 411-428.

Hintzman, D. L. (1988). Judgments of frequency and recognition
memory in a multiple trace memory model. Psychological Review, 95,
528-551.

Hintzman, D. L., & Curran, T. (1994). Retrieval dynamics of recogni-
tion and frequency judgments: Evidence for separate processes of
familiarity and recall. Journal of Memory and Language, 33, 1-18.

Hintzman, D. L., Curran, T., & Oppy, B. (1992). Effects of similarity
and repetition on memory: Registration without learning? Journal of
Experimental Psychology: Leaming, Memory, and Cognition, 18, 667—
680.

Hintzman, D. L., & Ludlam, G. (1980). Differential forgetting of
prototypes and old instances: Simulation by an exemplar-based
classification model. Memory & Cognition, 8, 378-382.

Jones, C. M., & Heit, E. (1993). An evaluation of the total similarity
principle: Effects of similarity on frequency judgments. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 19, 799—
812.

Joordens, S., & Besner, D. (1992). Priming effects that span an
intervening unrelated word: Implications for models of memory
representation and retrieval. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 18, 483-491.

Kugera, H., & Francis, W. N. (1967). Information retrieval from long
term memory: Category size and recognition time. Journal of Verbal
Learning and Verbal Behavior, 7, 291-295.

Leicht, K. L. (1968). Recall and judged frequency of implicitly
occurring words. Journal of Verbal Learning and Verbal Behavior, 7,
918-923.

Murdock, B. B., Jr. (1982). A theory for the storage and retrieval of
item and associative information. Psychological Review, 89, 609-626.

Murdock, B. B., & Kahana, M. J. (1993a). Analysis of the list-strength
effect. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 19, 689-697.

Murdock, B. B., & Kahana, M. J. (1993b). List-strength and list-length
effects: Reply to Shiffrin, Ratcliff, Murnane, and Nobel (1993).
Journal of Experimental Psychology: Learning, Memory, and Cognition,
19, 1450-1453.

Murnane, K., & Shiffrin, R. M. (1991a). Interference and the represen-
tation of events in memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 17, 855-874.

Murnane, K., & Shiffrin, R. M. (1991b). Word repetition in sentence
recognition. Memory & Cognition, 19, 119-130.

Nusbaum, H. C., Pisoni, D. B., & Davis, C. K. (1984). Sizing up the
Hoosier mental lexicon: Measuring the familiarity of 20,000 words.
(Research on Speech Perception Progress Report No. 10). Bloom-
ington: Indiana University.

Posner, M. L, & Keele, S. W. (1970). Retention of abstract ideas.
Journal of Experimental Psychology, 83, 304-308.

Ratcliff, R., Clark, S., & Shiffrin, R. M. (1990). List-strength effect: I.
Data and discussion. Journal of Experimental Psychology: Leamning,
Memory, and Cognition, 16, 163-178.

Ratcliff, R., Sheu, C.-F., & Gronlund, S. D. (1992). Testing global memory
models using ROC curves. Psychological Review, 99, 518-535.

Roediger, H. L. III, & Challis, B. H. (1992). Effects of identity
repetition and conceptual repetition on free recall and word
fragment completion. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 18, 3-14.

Shiffrin, R. M., Huber, D., & Marinelli, K. (1993). Effects of length and
strength on familiarity in recognition (Tech. Report No. 94). Blooming-
ton: Indiana University, Cognitive Science Program.

Shiffrin, R. M., Ratcliff, R., & Clark, S. E. (1990). List-strength effect:
II. Theoretical mechanisms. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 16, 179-195.

Shiffrin, R. M., Ratcliff, R., Murnane, K., & Nobel, P. (1993).
TODAM and the list-strength and list-length effects: Comment on
Murdock and Kahana (1993a). Journal of Experimental Psychology:
Leamning, Memory, and Cognition, 19, 1445-1449.

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring
recognition memory: Applications to dementia and amnesia. Journal
of Experimental Psychology: General, 117, 34-50.

Underwood, B. J. (1965). False recognition produced by implicit
verbal responses. Journal of Experimental Psychology, 70, 122-129.



LENGTH, STRENGTH, FAMILIARITY

Appendix A

Semantic Categories

281

CATERPILLAR
COCOON
MONARCH
FLUTTER
METAMORPHOSIS
DRAGONFLY
WINGS
FLITTING
CAMOUFLAGE
FRAGILE
SLIGHT
BUTTERFLY

EMERALD
RUBIES
RHINESTONES
CARAT
BRILLIANCE
PRECIOUS
HARDNESS
SPARKLE
FACET
GLITTERING
PRICELESS
DIAMOND

SPACEMAN
COSMONAUT
SHUTTLE
SATELLITE
PROPULSION
WEIGHTLESSNESS
GRAVITY
ATMOSPHERES
VOYAGER
ROCKET
ORBITING
ASTRONAUT

CYCLONE
TYPHOON
TWISTER
FUNNEL
WHIRLWIND
SIRENS
SPINNING
WHIRLING
GUSTS
SPIRAL
WINDSTORM
TORNADO

FORTRESS
STRONGHOLD
MEDIEVAL
CHATEAU
COURTYARD
DUNGEON
TOWERS
FEUDAL
THRONE
MANSION
VILLA
CASTLE

BETTOR
WAGER
BLUFF
BOOKIE
ROULETTE
CASINO
POKER
STAKES
JACKPOT
LOTTERY
BLACKJACK
GAMBLER

MUMMIES
HIEROGLYPHICS
SPHINX
EGYPTIAN
PHARAOH
TOMBS
TRIANGULAR
CATACOMBS
EMBALMING
UNDERWORLD
VAULT
PYRAMID

SPECTER
GHOUL
GOBLIN
APPARITION
GHOST
HAUNTING
SPOOKY
LAMENTATION
BECKON
PARANORMAL
GLOOMY
PHANTOM

TRICKSTER
HYPNOTIST
SORCERER
RABBIT
CONJURE
VANISH
JUGGLING
ENCHANTED
DECEPTION
WIZARD
SPELLS
MAGICIAN

FOSSILS
EXTINCTION
REPTILES
SWAMPS
GLACIERS
SKELETONS
BRONTOSAURUS
AMPHIBIANS
MAMMOTH
GEOLOGY
ARTIFACTS
DINOSAUR

BURGLARY
THEFT
WALLET
HOLDUP
BOOTY
MUGGING
STICKUP
STEALING
BANDIT
ASSAILANT
EMBEZZI EMENT
ROBBERY

CLOWN
JOKER
HUMORIST
SLAPSTICK
COMIC
LAMPOON
CUTUP
BUFFOON
MONOLOGUE
PUNSTER
IMPROVISATION
COMEDIAN

MADMAN
INSANITY
MANIAC
DEMENTED
PSYCHOTIC
ASYLUM
DELIRIOUS
RANTING
HALLUCINATION
DERANGED
PSYCHOPATH
LUNATIC

WORKOUT
EXERTION
JOGGING
NUTRITION
CALISTHENICS
AEROBICS
TONING
PHYSIQUE
BICEPS
SWEATING
BARBELLS
FITNESS

PREMATURE
DIAPERS
TEETHING
HIGHCHAIR
STROLLER
CRADLE
RATTLE
LULLABY
PACIFIER
BABBLE
STORK
INFANT

Vote. Prototypes appear in bold type.

(Appendixes continue on next page)
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Appendix B

Orthographic-Phonemic Categories and Extra Words

MATE
LATE
DATE
FAZE
FADE
FACE
HATE
GATE
FAME
FAKE
‘RATE
FATE

SIRE
TIRE
DIRE
MICE
MIKE
MIME
FIRE
HIRE
MINE
MILE
WIRE
MIRE

BAT
MAT
PAT
CAD
CAM
CAP
SAT
FAT
CAB
HAT
RAT
CAT

TIP
LIP
HIP
SIS

SIN
SIT
DIP
RIP
SIX
NIP
PIP
SIP

POP

HOP
TOP
coT
COoD
CoG
MOP
sop

COoB
CON
BOP

cor

GUN
NUN
PUN
BUS

BUT
BUG
RUN
FUN
BUM
SUN

BUD
BUN

LOON
SOON
COON
BOOM
BOOB
BOOT
NOON
MOON
BOOS
GOON
TOON
BOON

MOLE
HOLE
SOLE
ROSE
ROPE
RODE
POLE
DOLE
ROBE
ROTE
ROVE
ROLE

DEAL
HEAL
MEAL
PEAL
REAL
SEAL
VEAL
TEAK
TEAM
TEAS
TEAT
TEAL

WEFT
WEPT
WENT
WELT
BEST
TEST
PEST
VEST
LEST
NEST
REST
WEST

Extra orthographic—
phonemic words

RAW
PULL
FUR
NOW
TOY
SAW
WOOD
BIRD
LOUD
COIN
YAW
BOOK
PERK
BOUT
FOIL
LAWN
NULL
BUR
cow
Joy

Extra semantic words

JARGON
PAUPER
APARTMENT
STATIONER
OPOSSUM
MONO XIDE
ANTIQUITY
STOREROOM
BAGEL
TRIBESMAN
JASMINE
LINGUISTICS
BISON
TRIPLICATE
CARPORT
WARMHEARTED
THICKET
PICCOLO
DACHSHUND
UNFORMED
INFERNO
UNDERGROWTH
CANVAS
TORTILLA
THESAURUS
SYNOPSIS
HOUSECOAT
PODIUM
SABLE
CONVENIENCE

Note. Prototypes appear in bold type.



LENGTH, STRENGTH, FAMILIARITY

Appendix C
Full Probability Breakdown for Confidence Ratings
Pure 1, Pure 1, Pure 1, Mixed, Pure 3,
Length 0 length 2 length 6 length 9 length 6 length 6
Confidence  Obs. Pred.  Obs. Pred.  Obs. Pred. Obs. Pred.  Obs. Pred.  Obs. Pred.
Experiment 1
Distractors
1 536 519 477 492 451 439 389 .400 436 439 411 439
2 260 .234 257 .239 232 244 245 246 251 244 238 244
3 132 .130 177 137 160 .152 166 .162 153 152 170 152
4 038 .043 028 .047 055 .055 077 .061 051 .055 043 055
5 013 039 030 .044 034 .054 049 062 032 .054 053 .054
6 021 .035 .032 .041 068 .056 074 .069 077 056 085 .056
Strength 1 targets
1 074 07 091 .060 077 053 079 .060
2 .066 .079 064 .07 079 .064 077 0N
3 077 .094 064 .087 070 .081 .043 .087
4 .038 .058 051 .054 051 .052 072 .054
5 .100 .092 096 .088 .100 .085 .083 .088
6 645 .606 634 641 623 .666 647 641
Strength 3 targets
1 013 025 013 .025
2 021 .020 013 .020
3 026 .024 013 .024
4 017 015 017 .015
5 053 .026 043 026
6 870 .889 902 .889
Experiment 2
Mixed, Pure 3,
length 2 length 2
Distractors
1 592 544 471 512 441 449 425 404 535 512 480 512
2 257 .236 276 243 233 251 239 254 237 243 278 243
3 096 .102 129 110 145 124 127 134 104 110 118 .110
4 031 .043 .049 .048 045 .058 082 .065 037 .048 035 .048
5 .008 .034 027 039 055 .049 051 .057 033 .039 029 .039
6 016 .041 047 049 .080 .069 075 .087 053 .049 059 .049
Strength 1 targets
1 067 .062 055 051 067 .044 078 .062
2 051 .068 043 .059 051 053 047 .068
3 047 062 041 056 025 .051 063 .062
4 045 046 045 043 047 .040 051 .046
5 075 .062 059 058 069 .054 063 .062
6 716 701 757 734 741 957 .698 .701
Strength 3 targets
1 016 .027 014 027
2 020 .019 006 .019
3 008 .016 .008 .016
4 004 012 012 012
5 027 017 016 .017
6 925 .909 945 909

Note. Predicted probabilities are based on SAM parameters listed in Table 5. Obs. = observed; pred. =
predicted.

(Appendixes continue on next page)
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Appendix D

Experiments 3 and 4

We report in condensed form in this appendix two additional studies
bearing on the results reported in the body of the article (and
essentially replicating them). Experiment 3 varied category strength,
but not category length. In addition to an immediate test, Experiment
3 included a group of participants tested after a delay of one week.
Experiment 4 included both category-strength and category-length
conditions and used only immediate tests. In both studies, participants
gave frequency ratings to words during study (rather than the
pleasantness ratings used in Experiments 1 and 2) and gave two
successive ratings at test: (a) a frequency judgment, and (b) recognition
confidence judgment. There were other minor differences between Experi-
ments 3 and 4, and between both of these and Experiments 1 and 2, and
these are mentioned below. Details not mentioned below may be
assumed to be similar to those reported for Experiments 1 and 2.

Method
Experiment 3

Participants.  Forty-nine participants composed the immediate test
group, and 48 participants composed the group tested after a delay of
one week. These Indiana University students participated to fulfill an
introductory psychology course requirement.

Materials. Sixteen semantic categories were used (including a
category with the prototype TAILOR that is not listed in Appendix A).
Eight orthographic-phonemic categories were used (excluding the
categories listed in Appendix B that had the prototypes WEST and
TEAL).

Table D1
Probability of Responding Old for Category Type
and Strength Condition
Strength condition
Pure 1, Mixed, Pure 3,
Test items length 6 length 6 length 6
Experiment 3—immediate test
Semantic
Distractors 170 .163 187
Prototypes 480 546 510
Strength 1 targets 782 .786
Strength 3 targets 964 958
Orthographic-phonemic
Distractors 337 .347 316
Prototypes 327 520 .551
Strength 1 targets .782 724
Strength 3 targets 944 944
Experiment 3—delay test
Semantic
Distractors 337 .370 351
Prototypes 677 797 750
Strength 1 targets 672 .768
Strength 3 targets .904 899
Orthographic-phonemic
Distractors 465 .500 .531
Prototypes 531 542 .604
Strength 1 targets .696 .688
Strength 3 targets .906 .891
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Figure D1. False-alarm rates as a function of category strength, and

hit rates as a function of category strength, for two levels of word
strength (1 and 3), for the immediate test condition in Experiment 3.
p(old) stands for the probability of responding old, and the error bars
around each value represent the standard error of the mean. Category
strength is indicated by whether the test items come from pure 1
categories (every exemplar presented once), pure 3 categories (every
exemplar presented three times), or mixed categories (two exemplars
presented once, two exemplars presented two times, and two exem-
plars presented three times).

The exemplars making up the categories differed slightly from those
listed in Appendixes A and B. In addition, for the orthographic-
phonemic categories, some test exemplars were lower in similarity
than those studied: They retained the vowel sound of the prototype but
differed in both of the consonant clusters.

Table D2
Sensitivity (d’) for Strength Condition
Strength condition
Pure 1, Mixed, Pure 3,
Test items length 6 length 6 length 6

Experiment 3—immediate test

Semantic and
orthographic-phonemic

Strength 1 targets 1.700 1.695
Strength 3 targets 2.557 2.543
Experiment 3—delay test
Semantic and
orthographic-phonemic
Strength 1 targets 0.892 1.037
Strength 3 targets 1.741 1.670

Note. d'was calculated per participant and then averaged.
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Figure D2. False-alarm rates as a function of category strength, and
hit rates as a function of category strength, for two levels of word
strength (1 and 3), for the delayed test condition in Experiment 3.
p(old) stands for the probability of responding old, and the error bars
around each value represent the standard error of the mean. Category
strength is indicated by whether the test items come from pure 1
categories (every exemplar presented once), pure 3 categories (every
exemplar presented three times), or mixed categories (two exemplars
presented once, two exemplars presented two times, and two exem-
plars presented three times).

Procedure. Participants viewed a single study list of 288 successive
word presentations, followed by a 30-s counting task, followed by a
recognition test, either immediately or after one week. In the 3 s that
each word was studied, we asked participants to enter a rating of the
number of times the word had appeared within the experimental
session.

The recognition test consisted of 296 successively presented words.
Participants gave two ratings for each test word, taking as much time as
necessary for each. The first judgment required a rating of the number
of times a word had been presented in the study phase of the
experiment, plus one. The second judgment was a confidence rating on

Table D3
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Figure D3. Hit and false-alarm rates as a function of category length
for Experiment 4. Predictions of the search of associative memory
model are represented by the dashed lines. p(old) stands for the
probability of responding old, and the error bars around each value
represent the standard error of the mean.

a 1-6 scale of the likelihood that the test word had been seen at least
once during the study phase of the experiment.

The category lengths were always six words. There were three pure
strength conditions, in which the six exemplars studied were all
presented either one, two, or three times. Mixed strength categories
were created by presenting two words once, two words twice, and two
words three times. Four semantic categories and two orthographic—-
phonemic categories were assigned to each of these four strength
conditions.

Experiment 4

Participants. Ninety-four Indiana University students participated
to fulfill an introductory psychology course requirement.

Materials. Forty categories of words were used in this experiment,
including the 16 semantic categories and the 8 orthographic—phonemic
categories used in Experiment 3. Sixteen additional semantic catego-

Probability of Responding Old for Category Type and Length-Strength Condition in Experiment 4

Length-strength condition

Pure 1, Pure 1, Pure 1, Pure 1, Mixed, Pure 3,
Test items Length 0 length 1 length 2 length 6 length 10 length 6 length 6
Semantic ‘
Distractors .140 .176 .161 .230 .340 195 .206
Prototypes 284 314 400 504 Al1 456
Strength 1 targets .676 738 .786 .816 .803
Strength 3 targets 915 941
Orthographic-phonemic
Distractors 298 330 309 351 .330 351
Prototypes .245 255 378 415 394 S
Strength 1 targets 787 777 .846 819 862
Strength 3 targets .936 957

(Appendixes continue on next page)
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Figure D4. False-alarm rates as a function of category strength, and
hit rates as a function of category strength for two levels of word
strength (1 and 3), for Experiment 4. Predictions of the search of
associative memory model are represented by the dashed lines. p(old)
stands for the probability of responding old, and the error bars
represent the standard error of the mean. Category strength is
indicated by whether the test items come from pure 1 categories (every
exemplar presented once), pure 3 categories (every exemplar pre-
sented three times), or mixed categories (two exemplars presented
once, two exemplars presented two times, and two exemplars pre-
sented three times).

ries were created to fill out the design. These extra categories were
generally similar to the old semantic categories but were not as
carefully chosen, and the results from these were not analyzed.

Procedure. Participants viewed a single study list of 335 presenta-
tions, followed by a counting task and an immediate 170-item
recognition test. The judgments given during study and at test were the
same as in Experiment 3.

Five categories were assigned to each of eight different length-
strength conditions. Of these five, two were old semantic categories,
two were new semantic categories, and one was an orthographic-
phonemic category. The eight conditions included the same four
strength conditions used in Experiment 1: a mixed-strength and three
pure-strength conditions. The four length conditions consisted of 1, 2,
6, or 10 words all shown once each.

Results and Discussion

Partly because the second judgment may have been biased by the
first, the frequency rating representing zero prior presentations, and

Table D4

the summed confidence ratings representing a judgment of new, were
almost entirely consistent. This fact makes it reasonable to report
analyses of the confidence rating data, thereby making our analyses
consistent with those used for Experiments 1 and 2. All statements we
make concerning results are statistically significant at at least the .01
leve! of significance unless otherwise indicated.

Experiment 3. We start with the hit and false-alarm data correspond-
ing to those given in the main body of the article. Table D1 gives the
response rates for the immediate and delayed tests. Figures D1 and D2
give the false-alarm and hit rates as a function of strength for the
immediate and delayed tests. The results of this experiment replicate
those of Experiments 1 and 2: There was a large main effect of word
strength, no effect of category strength for distractors or hits, and a
small effect of category strength for prototypes (this last effect is not
shown in the figures).

Table D2 gives the d’ values (calculated per participant and then
averaged) for the immediate and delayed conditions. There was a main
effect of word strength but no effect of category strength, which is a
replication of the results from Experiments 1 and 2.

Generally speaking, there is, of course, a good deal of forgetting
from immediate to delayed test. The one exception is intriguing and
occurs when one compares prototypes and distractors. For the
orthographic-phonemic categories, there was some slight forgetting
for prototypes vis-a-vis distractors, but the results were small because
performance was so close to chance. However, for semantic categories,
discrimination of prototypes from distractors did not change over the
one-week delay.

Although category studies have shown less forgetting for prototypes
than for targets (e.g., Posner & Keele, 1970), a finding of no loss of
discrimination is unusual. It would not be easy to explain such a finding
within the standard SAM framework, and the way to augment the
model to handle such a finding is far from clear. The usual theoretical
approach to interpreting such prototype-forgetting findings utilizes an
assumption of a nonlinear relation between similarity and strength of
activation. In one version, all similarities rise with delay and targets are
already near ceiling, so prototypes gain relatively. In another version,
similarity drops with delay; targets are on the steep portion of the
function and drop more than prototypes (similar to MINERVA-—see
Hintzman, 1986; Hintzman & Ludlam, 1980). Such reasoning requires
specific implementation in a model like SAM. We leave such issues for
future research.

Experiment 4. Table D3 gives the probabilities of responding old as
a function of the length and strength conditions. Figure D3 depicts the
length results, and Figure D4 depicts the strength results. There was
an effect of category length for distractors, a main effect of word
strength, no effect of category strength for distractors, and a small
effect of category strength for prototypes (the last effect is not shown in
the figures); these effects replicate all earlier findings. In this study
there was a small but significant increase in hits with category length;
this differed slightly from the results of Experiments 1 and 2.

Table D4 gives the d’ results for the length and strength conditions:
d' was not systematically affected by length, rose with word strength,
and did not change with category strength.

Sensitivity (d') for Length-Strength Conditions in Experiment 4

Length-strength conditions

Pure 1, Pure 1, Pure 1, Pure 1, Mixed, Pure 3,
Test items length 1 length 2 length 6 length 10 length 6 length 6
Strength 1 targets 1.340 1.473 1.522 1.307 1.614
2.106 2278

Strength 3 targets

Note. Values are for semantic and orthographic-phonemic categories combined. 4’ was calculated from

rates averaged across participants.
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Table DS
Parameters for Fit of the Search of Associative Memory Model
to Experiment 4

Variable Value
Activation
S 1.0
S; 1.25
$i 8.96
A 129
Variance multiplier
a 111
Criteria
c@) 217.8
C(2) 219.1
c(3) 219.8
c4) 220.8
C(5) 2219

The model described in the body of the article was fit to the
confidence rating data from Experiment 4, and the collapsed predic-
tions are those given in Figures D3 and D4. The best fitting parameter
values are given in Table DS.

We note finally the following puzzle: When we fit the same model
(with different criteria) to the frequency ratings, it did not fare well.
Furthermore, ROC analyses of the frequency ratings revealed slopes
greater than 1.0, in contrast to the confidence rating data from
Experiments 1 through 4, all of which revealed slopes below 1.0. We
suspect that frequency judgments for items judged to have been seen
involve additional sources of information beyond the total sum of
activation (see Shiffrin, Huber, & Marinelli, 1993, for additional
information on our analyses, and Hintzman, Curran, & Oppy, 1992;
Hintzman & Curran, 1994, and Jones & Heit, 1993, for additional data
and discussion of these issues).

In summary, the results of Experiments 3 and 4 replicate those
reported in the body of this article in all important respects. As before,
the most diagnostic results are the rise of faise alarms with category
length in conjunction with the failure of category strength to have an
effect. The fact that the same pattern of results was found in
Experiments 3 and 4, which required frequency judgments during
study, and in Experiments 1 and 2, which required pleasantness ratings
during study, adds further generality and power to the results and
conclusions.
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