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A modeling framework for determining modulation
of neural-level tuning from non-invasive human
fMRI data
Patrick Sadil 1✉, Rosemary A. Cowell1,2 & David E. Huber1,2

Many neuroscience theories assume that tuning modulation of individual neurons underlies

changes in human cognition. However, non-invasive fMRI lacks sufficient resolution to

visualize this modulation. To address this limitation, we developed an analysis framework

called Inferring Neural Tuning Modulation (INTM) for “peering inside” voxels. Precise spe-

cification of neural tuning from the BOLD signal is not possible. Instead, INTM compares

theoretical alternatives for the form of neural tuning modulation that might underlie changes

in BOLD across experimental conditions. The most likely form is identified via formal model

comparison, with assumed parametric Normal tuning functions, followed by a non-parametric

check of conclusions. We validated the framework by successfully identifying a well-

established form of modulation: visual contrast-induced multiplicative gain for orientation

tuned neurons. INTM can be applied to any experimental paradigm testing several points

along a continuous feature dimension (e.g., direction of motion, isoluminant hue) across two

conditions (e.g., with/without attention, before/after learning).
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Neurons in mammalian sensory cortex often exhibit tuning
functions, responding selectively to a narrow range of
values of a stimulus feature such as line orientation1.

Moreover, experimental manipulations of perceptual or cognitive
state can modulate these tuning functions, providing crucial
insights into the neural mechanisms of perception and cognition.
For example, spatial attention achieves performance gains by
multiplicative rescaling of orientation tuning functions in maca-
que V42, rather than through a bias shift (additive shift) or
increased selectivity (sharpening). As another example, Fig. 1a
shows a neuron in mouse primary visual cortex3, tuned to motion
direction, that appears to undergo multiplicative rescaling as
spatial frequency is manipulated (Fig. 1a). However, single-cell
electrophysiology is rarely feasible in humans, and non-invasive
techniques such as functional magnetic resonance imaging
(fMRI) reflect the activity of many cells: a patch of striate cortex
the size of a typical fMRI voxel (2 mm3) reflects the activity of
approximately 300,000–500,000 neurons4. Nonetheless, fMRI
studies reveal feature-selective tuning in voxels (e.g., in which a
voxel’s BOLD response varies systematically as a function of a
well-defined feature such as stimulus orientation)5,6, which is
assumed to arise from a non-uniform distribution of tuning
preferences across the neurons contributing to a voxel7.

Like neural tuning functions, voxel tuning functions are
modulated by manipulations of perceptual state8–11, and so it is
tempting to infer the form of neural-level tuning modulation
directly from observed changes in voxel tuning. But, as many
have acknowledged, directly inferring neural behavior from voxel
behavior might be misleading10,12–14. The relationship between
voxel and neural tuning functions presents a many-to-one inverse
problem: the same voxel tuning function can arise from many
different combinations of the shape of the underlying neural
tuning functions and the distribution of neurons across different
preferred stimulus values (e.g., the number of neurons preferring
vertical, horizontal, or oblique orientations). Thus, fMRI tuning
does not uniquely specify tuning at the neural level14.

Rather than quantitatively solving this inverse problem, which
is probably not possible, we developed a framework that allows
drawing qualitative conclusions about changes in neural level
tuning from the Blood Oxygen Level Dependent (BOLD) signal.
We term the framework Inferring Neural Tuning Modulation
(INTM). Building on encoding models15–17, INTM assumes that
voxel tuning emerges from the combined activity of feature-tuned
neurons. Unlike many existing encoding models, which assume
that voxel activity is driven by a discrete number of neural
“subpopulations”, INTM conceptualizes the underlying neural
preferences as existing along a continuum (Fig. 1b). This con-
tinuous distribution resembles population receptive field map-
ping, but whereas population receptive field mapping is generally
concerned with uncovering the quantitative parameters of tuning
(e.g., the size of receptive neural fields, or the population’s pre-
ferred location in the visual field)18, INTM is designed to uncover
the modulation of tuning. To do this, INTM leverages the
observation that some forms of modulation produce patterns of
BOLD data that are distinct from other forms (Fig. 1c, d), and so
the BOLD data provide information about which form of tuning
modulation is most likely. This framework encompasses many
kinds of analyses, but, in short, INTM prescribes building mul-
tiple encoding models of voxel data that are parameterized by
continuous distributions at the neural level, followed by com-
parison between the models in light of the observed BOLD data to
uncover the most likely form of tuning modulation.

We validated INTM by applying it to a new dataset for which
the “ground truth” modulation of tuning was known from single-
cell recordings: changes in visual contrast induce multiplicative
scaling in orientation-tuned neurons19–21. This simple test-case

demonstrates the advantages of INTM, considering that existing
methods, if interpreted as indicating the underlying neural tuning
functions, can easily reach the wrong conclusion about the form
of neural tuning modulation when applied to changes in visual
contrast c.f.,14,22. We used INTM to design two complementary
analyses that differ in the assumptions required for the statistical
models underlying the analyses. The first analysis uses Bayesian
estimation and quantitative model comparison by making para-
metric assumptions for the shape of neural tuning (a circular
Normal distribution). The second makes no assumptions about
the shape of neural tuning (i.e., a non-parametric analysis),
providing a qualitative check of whether similar conclusions are
reached. Critically, both techniques are needed, with the para-
metric model not only providing statistical model comparison,
but also indicating the expected qualitative data patterns for the
non-parametric check. As applied to BOLD data collected from
the primary visual cortex of human participants viewing oriented
gratings at high versus low contrast, the techniques correctly
implicated multiplicative scaling, despite working with only
voxel-level data.

Parametric analysis: Linking neural tuning to voxel tuning
We first use INTM to build a parametric model of voxel tuning
for inferring how changes in stimulus contrast modulate neural
tuning. The resulting model provides a concrete demonstration of
the ways in which different kinds of neural tuning modulation
should produce different behaviors at the level of the voxel.

The parametric modeling approach involves assuming specific
forms of the neural tuning functions, and further specifying the
contribution of these tuning functions to a voxel’s activity with a
continuous distribution. For application to orientation pre-
ferences, which lie on a circular measurement scale, the con-
tributions are assumed to follow a circular Normal distribution
(Fig. 2). The circular Normal distribution resembles a typical
Normal distribution but is periodic, thereby accommodating the
circular nature of orientations. The distribution’s density function
has a period of 2π, but orientations have a period of π, so the
values of the orientations used in an experimental design are
doubled when applying the model. For an orientation, r, the
density function is

f rjϕ; κ1
� � ¼ exp κ1cos r � ϕ

� �� �
2πI0 κ1

� � ð1Þ

where κ1 is a concentration parameter, ϕ is the orientation of the
peak value of the function, and I0ð�Þ is the modified Bessel
function of the first kind, of order 0. The numerator of Eq. 1
produces a periodic bell shape peaking at ϕ, with the con-
centration parameter determining its “sharpness”.

In the parametric model, there are two uses of the circular
Normal distribution. First, Eq. 1 describes the relative contribu-
tion to a voxel’s activity of different subpopulations of neurons
that prefer different orientations, and so we refer to it as a “weight
distribution”. With a flat weight distribution (low κ1), the neu-
rons within a voxel are in equal proportion (resulting in a com-
plete absence of voxel tuning even if the contributing neurons are
well-tuned). With a peaked weight distribution (high κ1), most of
a voxel’s activity is driven by neurons tuned to orientations
around ϕ (resulting in sharp voxel tuning if the contributing
neurons are also well-tuned).

A circular Normal density function fits single cell orientation
tuning functions adequately23 and so, in INTM, a second circular
Normal distribution function is used to specify the individual
neural tuning functions (Eq. 2). Although this equation relies on
the distribution function, the interpretation is not a probability
density but instead a description of neurons’ responses to
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orientations. In this equation, the concentration parameter indi-
cates the sharpness of a single cell’s tuning. To account for a
neuron’s baseline activity and responsiveness, we included addi-
tional parameters. The baseline activity parameter reflects the
activity of a neuron in the absence of stimulation and is imple-
mented as an additive offset, α. The parameter for responsiveness
models how well a neuron responds to stimulation and is

implemented as a gain parameter, γ. With the addition of these
baseline activity and responsiveness parameters, Eq. 2 specifies
the neural tuning function, NTFð�Þ for orientation of a presented
stimulus relative to that neuron’s preferred orientation.

NTF rjκ2; γ; α
� � ¼ αþ γf rj0; κ2

� � ð2Þ

Fig. 2 Orientation preferences of simulated voxels can be approximated with unimodal distributions. Left: A Kohonen network was used to simulate
orientation preference maps. Each panel represents a separate voxel. Right:Weight distribution for each voxel. The histograms represent the tallies of each
preferred orientation in the left panels. The black line is the best fitting (maximum likelihood estimation) circular Normal density function (Eq. 1). The
horizontal gray (shaded) ribbons give the 99% confidence interval for a flat distribution (i.e., the range of heights that we would expect when a simulated
voxel contains an equal number of neurons tuned to all orientations). Given the amount of cortex sampled by each stimulated voxel, most weight
distributions tend to be flat, but the fitted von Mises density function can capture individual modes.

Fig. 1 Modulations in neural tuning may manifest in voxel activity. aModulation of neural tuning. In this neuron (mouse primary visual cortex)3, direction
tuning interacts multiplicatively with spatial frequency (cpd: cycles per degree; ΔF=F: average change in fluorescence). b Convolution (�) of neural tuning
functions with a weight distribution leads to voxel tuning functions. The modeling procedure of INTM assumes that the observed voxel tuning functions
reflect the shape of the neural tuning functions as applied across the distribution of preferred orientations (the weight distribution) within each voxel.
Compare with Eq. 3. c An additive shift in the neural tuning function causes an additive shift in the voxel tuning function. d Multiplicative gain in the neural
tuning function causes multiplicative gain in the voxel tuning function. Compare c and d with Equation 4.
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Within each voxel (but not across voxels), all neural tuning
functions are assumed to take on the same circular Normal
parameter values. The voxel tuning function is obtained by
convolving Eqs. 1 and 2 (Fig. 1b). This results in Eq. 3, the voxel
tuning function, VTFð�Þ, in a baseline condition (e.g., low-
contrast stimuli). It is critical to note that the choice of baseline
condition is arbitrary (e.g., the high-contrast condition could be
labeled as the baseline) considering that the model is applied to
both conditions conjointly. The only difference in terms of which
condition is labeled as baseline is whether the modulation para-
meters are increases or decreases.

VTFbaseline rjκv; γv; αv; ϕv
� � ¼ αv þ γvf rjϕv; κv

� � ð3Þ

The subscript v indicates parameters that are estimated sepa-
rately for each voxel. The concentration parameter, κv , is equal to
neither κ1 nor κ2, but is a function of both24. Thus, the model
does not distinguish between voxels containing a concentrated
distribution of orientation-tuned neurons each of which has
diffuse tuning (high κ1 and low κ2), and voxels containing a
diffuse distribution of orientation-tuned neurons each with con-
centrated tuning (low κ1 and high κ2). The key insight behind
INTM is the realization that there is no need to differentiate
between such possibilities, if the measurement goal is identifica-
tion of the qualitative form of neural tuning modulation rather
than precise specification of neural tuning functions.

Within the INTM framework, each form of tuning modulation
is instantiated by incorporating additional parameters that
modulate one or more parameters in the baseline voxel tuning
function (Eq. 3, Fig. 1c, d). In this validation test case as applied
to visual contrast manipulations, we considered two forms of
tuning modulation that are capable of producing an average
increase in neural activity: multiplicative gain and additive shift.
Other forms of neural tuning modulation, such as bandwidth
changes and tuning preference shifts, could be implemented
within the INTM framework, but these forms were not included
in the candidate set of models for this test case because they do
not change average neural activity (i.e., they are not viable models
for the neural modulation that underlies changes in visual
contrast).

In this test case, multiplicative gain is known to be “ground
truth”—that is, changes in visual contrast induce multiplicative
gain in single-neuron tuning functions19–21. However, in seeming
contradiction to multiplicative modulation, an examination of
raw voxel tuning functions suggests an additive increase with
increases in visual contrast (Fig. 4a, b). Nevertheless, averages can
be misleading, and a formal model comparison between additive
shift and multiplicative gain is required that considers each voxel
separately, particularly when considering that many of the voxels
contributing to the average exhibit poor tuning. For completely
untuned voxels, additive shift and multiplicative gain are indis-
tinguishable and so the average will necessarily look additive. If
INTM works, it should leverage differences between voxels (i.e.,
capitalize on the small proportion of well-tuned voxels), to reach
the conclusion that multiplicative gain is the more likely form of
tuning modulation despite what the average BOLD signal appears
to show.

To model a change in multiplicative gain, we included a voxel-
specific gain multiplier parameter, gv (Eq. 4a). To model an
additive shift change, we included another, voxel-specific additive
shift parameter, av (Eq. 4b). In summary, Eq. 3 captures the
situation for low contrast in both models, whereas either Eq. 4a or
4b captures the situation for high contrast.

Multiplicative :VTFmodulated rjκv; γv; αv; ϕv; gv
� �

¼ αv þ gvγvf rjϕv; κv
� � ð4aÞ

Additive :VTFmodulated rjκv; γv; αv; ϕv; av
� �

¼ av þ αv þ γvf rjϕv; κv
� � ð4bÞ

For other applications, shifts in orientation preferences could
be modeled by allowing ϕv to change across conditions, and a
change in concentration could be modeled by allowing κv to
change across conditions. In the current dataset, these forms were
not pursued because neither allows contrast to alter the average
activity of a voxel across orientations—an effect that was clearly
present in the empirical data (Fig. 4a)—and so these forms could
be rejected without explicit modeling.

Equations 3, 4a, and 4b model voxel activity at each tested
orientation, at each level of contrast. However, there is variability
in voxel activation across runs, and this variability varies across
voxels (some voxels are noisier than others, Supplementary
Fig. 2). These sources of variability were included in the model,
and all voxel-specific parameters were estimated hierarchically
(Supplementary Methods). Hierarchical estimation of voxel tun-
ing functions combines information across voxels, allowing
model comparison to automatically down-weight the noisier
voxels and magnify the well-tuned voxels25.

The parametric model assumes that all neurons within a voxel
share a common shape for their tuning function (homogeneity of
tuning shape), which is unlikely to hold strictly true. However,
some degree of tuning shape heterogeneity should not invalidate
inferences drawn about the form of tuning modulation, provided
that tuning function shape does not differ systematically as a
function of the orientation preference of the neurons. That is,
there could exist a range of tuning function shapes, but if that
heterogeneity occurs to the same extent for neurons centered on
all preferred orientations, then it should not lead to scenarios
where one form of modulation mimics another at the voxel level.
Nevertheless, to assess whether such heterogeneity posed a pro-
blem when adjudicating between the forms of tuning modulation,
we also developed a non-parametric check that does not make
this assumption. If the non-parametric check supports the same
qualitative conclusion as the parametric model, this suggests that
the homogeneity of tuning shape assumption was adequate.

Model recovery
INTM judges the relative plausibility of each form of neural
tuning modulation (e.g., Eq. 4a versus 4b) with model compar-
ison based on empirical data. But under what circumstances
should model comparison be trusted? To assess the extent to
which inherent properties of the models (e.g., their flexibility)
allow reliable model comparison, we assessed model recovery via
two kinds of simulation: data-informed and data-uninformed26.
Model recovery entails producing simulated data from each
model, asking whether the model that produced the simulated
data is better able to capture its own data than competitor models.
If a model is overly flexible, then it might provide a better
explanation of data generated by other models than do the gen-
erating models themselves.

Data-uninformed model recovery asks whether the model
comparison technique is well-calibrated to the relative flexibility
of each model in general. First, synthetic data were generated with
each model using “weakly informative” priors (Supplementary
Methods). These priors were not designed to reflect precise
experimental knowledge but instead simply provide a rough scale
for each parameter individually. Next, the models were applied to
these synthetic data, keeping in mind the “ground truth”, data-
generating model. The model comparison technique has built-in
adjustments for flexibility by approximating the ability of each
model to predict held-out data (i.e., cross-validation). However,
this approximation might be inadequate, providing too much or
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too little penalty for model flexibility. Data-uninformed recovery
asks whether this model comparison is operating as it should in
general.

There is no guarantee that a specific real dataset will be
diagnostic regarding a particular model comparison. For
instance, if none of the voxels is sufficiently well-tuned, then the
two forms of tuning modulation will make the same prediction.
Similarly, if the manipulation of visual contrast is too weak, it
would not be possible to reach a reliable conclusion. Whether
the real dataset is sufficient for differentiating between the
candidate models is assessed using data-informed model
recovery by repeating the recovery process using what has been
learned about the parameters of the models from the
empirical data.

Whereas data-uninformed model recovery assesses the fairness
of model comparison across a wide range of individual para-
meters that are plausible given the prior distribution, data-
informed recovery generates synthetic data by sampling from the
posterior distribution obtained by estimating the models with
empirical data. Generating synthetic data that are consistent with
real data constrains the parameters (e.g., tuning width and
modulation) to a much narrower and more realistic range of
values. Indeed, the behavior from the posterior parameter values
closely matches the weak tuning effects seen in the real data at the
level of separate voxels (e.g., Supplementary Fig. 5). Because the
data-uninformed model recovery has priors that are only weakly
informative, it can allow extreme parameter values for estimated
beta-weights, and hence implausibly sharp tuning functions; this
increases the chance that each generating model will produce a
unique signature pattern in the data, making model recovery
likely to succeed. By contrast, the more constrained data-
informed model recovery presents more of a challenge to
model recovery, providing greater reassurance in the case that it
succeeds.

Non-parametric check: An orthogonal regression slope
analysis
The parametric model assumed normal functions for the NTFs
and weight distributions and additionally assumed homogeneity
of NTF shape within a voxel. These assumptions will often be
violated, but such violations might not pose a problem for
model comparison, particularly if the violations of these
assumptions are uniformly applied across the stimulus dimen-
sion of interest. Nevertheless, as a complement to parametric
model comparison, we developed a more qualitative non-
parametric check of the empirical data. If this check supports
the same conclusion as the parametric model, this suggests that
any violations of parametric assumptions were insufficient to
alter the theoretical conclusions.

The parametric model is crucial to the development of the
non-parametric check and the specific parametric models under
consideration should first be used to generate predictions for the
check. The consequences of parametric assumptions are then
considered in light of these predictions. In the case of a com-
parison between multiplicative gain versus additive shift, these
two forms of tuning modulation can be distinguished using
voxel-wise regression; if the modulation is multiplicative, a
within-voxel plot comparing high- versus low-contrast should
have a slope greater than 1, whereas if the tuning modulation is
additive, this plot should reveal a slope equal to 1. Furthermore,
these predictions do not rely on parametric assumptions. For
instance, if a voxel is multimodal, preferring more than one
orientation, this would serve only to rearrange the order of the
orientations in the regression plot, but the qualitative distinction
between a slope of 1 versus a slope greater than 1 would still

map onto additive shift versus multiplicative gain. The gen-
erality of the slope test across all shapes of tuning function and
all shapes of weight distribution is mathematically proved in
Supplementary Methods Eqs. 1–4.

The key difference between these two forms of tuning mod-
ulations is that the multiplicative model allows the effect of
contrast to vary by orientation whereas the additive model does
not. Additive modulation corresponds to an increase in neural
activity at all orientations. Thus, regardless of the weight dis-
tribution and regardless of the shape of the neural tuning func-
tions, additive tuning modulation causes the low-contrast tuning
function to shift upwards uniformly across orientations (Fig. 3,
top left). Hence, a scatterplot of the voxel’s response to high-
contrast stimuli against its response to low-contrast stimuli has a
slope of 1 (Fig. 3, top right). In contrast, multiplicative tuning
modulation corresponds to a greater increase in neural activity at
the most preferred orientations (Fig. 3, bottom left), and a scat-
terplot of a voxel’s response to high versus low-contrast stimuli
has a slope larger than 1 (Fig. 3, bottom right). Therefore, the
models can be differentiated by plotting high-contrast activity
against low-contrast activity and calculating the slope of the best
fitting line (Fig. 3, right). A slope of one implies additive shift, but
a slope greater than one implies multiplicative gain (see
also Supplementary Methods). The only assumption made in this
analysis is that the magnitude of the additive shift or multi-
plicative gain is the same for all neurons contributing to a par-
ticular voxel or, more specifically, that if the magnitude of
modulation does vary across neurons, it does not vary system-
atically with neurons’ preferred orientation (see Supplementary
Information).

Analyzing the slope is not necessarily straightforward. First,
the slope between high- and low-contrast cannot be determined
using standard linear regression (i.e., estimating the line that
minimizes the ordinary least squares error—the squared vertical
distance between the line and the data). Standard linear
regression estimates a relation between two sets of observations,
such as the activity at low and high contrast. But when both of
those observations are corrupted by noise, the estimated rela-
tionship is “diluted” and biased to zero27. To mitigate this
dilution, the slope was estimated using orthogonal regression27,
by finding the line that minimizes the squared Euclidean dis-
tances from the data (Methods, Supplementary Methods). Sec-
ond, the slope analysis cannot be done across voxels because
there may be covariance between a voxel’s low contrast (base-
line) activation and the effect of contrast on the voxel’s activity
(e.g., voxels with a larger response in the low-contrast condition
may receive a larger contrast effect, and this tendency would
bias an across-voxel analysis toward a slope greater than 1). To
mitigate this confound, slopes were determined separately for
every voxel, followed by an analysis of the distribution of slopes.
Finally, even a within-voxel slope analysis produces results that
are difficult to interpret because most voxels are only weakly
tuned, responding to all orientations almost equivalently. For
those voxels, the data for the slope analysis will be an uncor-
related cloud of points, and an orthogonal regression for a cloud
of points can take on nearly any slope value, including positive
or negative infinity for the case of vertical slopes. Therefore, we
report, not the slope of the line, but instead the angle of
the slope.

In using INTM, we recommend first developing and compar-
ing parametric models of how stimuli give rise to voxel activity
during manipulations of cognitive or perceptual state, and then,
in addition, to consider ways of relaxing those parametric
assumptions to provide a non-parametric check of the model
comparison results, as with the slope test for comparisons of
multiplicative versus additive changes.
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Results
Binning voxels to plot average voxel tuning. Voxel tuning
functions were first analyzed with a standard approach of
“averaging” across circularly aligned voxels (Fig. 4)10, which is an
appropriate technique if all voxels have similarly shaped tuning
functions. This “binning” alignment technique appears to reveal
an additive shift with contrast, in contrast to what is known from
electrophysiology. This apparent additive shift is caused by the
inclusion of many voxels with poor orientation tuning. When the
BOLD response is aggregated across a many such “undiagnostic”
voxels, the true form of tuning modulation is obscured (i.e., it
appears additive rather than multiplicative). One approach to
mitigating this variability would be to adopt experiment-specific
thresholds, excluding some subset of “relatively” untuned or
unresponsive voxels. However, it would be difficult to justify such
thresholding for each experiment, and more importantly
excluding voxels throws away information (e.g., about the average
noise in voxels’ responses). The two techniques of INTM avoid
thresholding, even while using the well-tuned “diagnostic” voxels
to identify the most likely form of tuning modulation.

Data-uninformed model recovery. To evaluate the ability of the
INTM parametric model to recover both kinds of modulation, we
conducted model recovery by simulating datasets from the prior
distribution for each candidate model, applying both models to
both sets of generated data, and comparing the results using
an approximation to cross-validation26,28 (see Methods). The

models did not exhibit mimicry: model comparison picked the
true data-generating model in every simulated dataset, providing
strong evidence that the technique recovers the appropriate class
of modulation.

Application of the parametric model to the observed data. We
next asked whether the parametric INTM analysis recovers the
correct form of tuning modulation when applied to the observed
fMRI data. Specifically, it is known from electrophysiology that
the tuning functions of orientation-sensitive neurons undergo
multiplicative tuning modulation with an increase in stimulus
contrast19–21. Given this knowledge, model comparison on the
collected BOLD data ought to favor the multiplicative model.
Visual comparison of the posterior predictive distribution from
both models revealed that both models largely captured indivi-
dual voxel tuning functions adequately (Fig. 4b, c). The models
were then compared to each other with cross-validation28. The
multiplicative model provided the best account of the data: a
difference of 14.5 standard errors, in units of expected log
pointwise-predictive density28. A significance threshold (e.g., α ¼
0:05 or 1.65 standard errors) would suggest that this difference in
predictive ability is poorly accounted for by a null model in which
the two forms of tuning modulation are equally predictive.

Data-informed model recovery. Exploiting what was learned
about the plausible parameter values by observing the data,
we further probed the validity of model comparison through

Fig. 3 Average voxel tuning functions visually suggest an additive shift even though the multiplicative model is better in its posterior predictions of
individual voxel data. a Average voxel tuning at low and high contrast using binning to average (see Methods). Error bars give 95% confidence interval for
the mean of the 1010 V1 voxels across seven participants. b Examples of individual voxel BOLD data in comparison to posterior predictions of the
multiplicative gain model. The panels show the 16 voxels with the largest average difference in activity across levels of contrast. Vertical error bars span
95% confidence intervals (within-subjects), and the width of the lines indicate the 95% highest density interval of the posterior predictive distribution for
the multiplicative model (additive model looks similar). c Overall comparison between each model (β̂) and observed data (β). Each point corresponds to a
single voxel’s average activity at a given orientation at a given level of contrast. Panels show the average of the posterior for predictions from either the
additive or multiplicative model.
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data-informed model recovery26,28. Synthetic datasets were gen-
erated from the posterior distributions of the multiplicative and
additive models. Next, the multiplicative and additive models
were applied to each of these simulated datasets. All datasets were
best accounted for by the model whose posterior was used to
generate the data even though, as seen in Fig. 4, the differences
between the models were very subtle.

Orthogonal regression. The parametric model correctly indi-
cated that an increase in visual contrast caused an increase in
multiplicative gain, but this result relied on assumptions of cir-
cular Normal distributions for the neural tuning function and
distribution of weights for each voxel, as well as homogeneity of
tuning shape for each voxel. However, we determined that the
two candidate forms of tuning modulation should be distin-
guishable based on what they predict for the slope of a plot of
high-contrast activity against low-contrast activity (Fig. 3, Intro-
duction, Supplementary Methods), without relying on these
parametric assumptions and the assumed homogeneity of tuning
shape. As predicted by multiplicative tuning modulation, this
non-parametric orthogonal regression slope analysis revealed
slopes larger than 1, corresponding to slope angles greater than 45
degrees (Fig. 5). Figure 5b shows the distribution of within-voxel
slopes, as estimated with orthogonal regression of the high- on
the low-contrast activity (Introduction, Methods). The median
slope had an angle greater than 45° (i.e., slope of 1). This ten-
dency for slopes to be larger than 1, as predicted by the multi-
plicative model, was further supported by a hierarchical Bayesian
estimation of the slopes (Supplementary Methods).

Discussion
Many theories of cognition predict specific kinds of neural tuning
modulation with different manipulations e.g.,29,30. For instance,
attention researchers do not only consider neural responses when
people are in a state of high attention; this state is compared and
contrasted to one of low attention, and theories of attention are
informed by this comparison e.g.,31,32. However, these predic-
tions for tuning modulation ‒ the manner in which neural tuning
functions change ‒ are rarely tested in humans because there are
no non-invasive techniques for recording from individual neu-
rons. Tuning functions, and modulation of tuning functions, can
be measured non-invasively using fMRI, but the response of a
voxel reflects hundreds of thousands of neurons. Thus, voxel
tuning functions have been interpreted as population-level
properties of stimulus representations in the brain, population-
level responses that cannot be used to infer properties of the
underlying, individual neurons10,12–14.

Rather than attempting a quantitative measurement of neural-
level tuning from fMRI data, we developed a framework, INTM,
for identifying the functional form of neural-level tuning mod-
ulation. A key component underlying the INTM framework is a
modeled link between the neural and voxel tuning functions
(Fig. 1b–d). This link justifies inferences of neural tuning mod-
ulation from voxel tuning modulation; even though the BOLD
signal reflects the aggregated activity of many neurons, different
forms of modulation can produce identifiable signatures in
activity of the voxels (i.e., Eq. 4a vs 4b, Fig. 3), thereby allowing
identification of the most likely form of modulation by applying
each model to the BOLD data. We tested that link and validated
INTM with a test case in which the neural-level “ground truth”
modulation was known to be multiplicative gain19–21. This test
case was particularly challenging because the average voxel results
appeared to indicate a clear additive shift rather than multi-
plicative gain. We used INTM to design two techniques: 1)
parametric assumptions of tuning function shapes and hier-
archical Bayesian estimation of the models followed by formal
model comparison; and 2) a qualitative, non-parametric check
using orthogonal regression, without relying on parametric shape
assumptions. Both techniques of the INTM framework correctly
implicated multiplicative gain of neural tuning by leveraging
subtle effects that were more apparent in some voxels than others.

Several techniques have previously been developed to peer
inside the voxel, but none of them statistically compares alter-
native theories of tuning modulation using a model that explicitly
links neural tuning with voxel tuning. For example, biophysical
models specify how the BOLD signal arises from the often non-
linear coupling between neural activity and vasculature33,34. But,
despite this biological realism, these models have not yet been
used to examine changes in neural tuning functions. In contrast
to biophysical models, encoding models of fMRI data delve inside
the voxel by modeling how components comprising a voxel (e.g.,
sub-voxel “channels”) transform stimuli into voxels’
activity5,15–17, and, promisingly, enable researchers to use the
BOLD signal to uncover features of neural tuning18. Encoding
models can be applied to multiple conditions ‒ for example
through simulation35, or through fitting to data and inverting36 ‒
thereby estimating how the channels are modulated by an
experimental manipulation. Inverting an encoding model uses it
as a decoder, estimating channel responses for other
stimuli15,16,37 or estimating how channels are modulated in other
conditions38. But this use of inverted encoding models requires
hard-wired (and arbitrary) assumptions about the shape of the
channel responses in baseline conditions39,40. These assumptions
are even more restrictive than those made by the parametric
model in INTM considering that they not only assume a specific
class of shape (e.g., a circular Normal), but they require adopting

Fig. 4 Plotting a voxel’s response to high versus low contrast orientation
uncovers the form of tuning modulation. Left: Simulated voxel tuning
functions in which higher levels of contrast induce either an additive (top)
or multiplicative (bottom) tuning modulation. The eight vertical lines are
eight hypothetical orientations at which these voxel tuning functions might
be probed, which would produce eight responses per level of contrast, High
vs. Low. Note that, whereas the parametric model assumes that the weight
distribution and neural tuning function follow specific shapes (e.g.,
unimodal distributions), the slope test does not (e.g., the voxel tuning
function can be bimodal, as displayed). Right: The two kinds of neural
tuning modulation reveal different signatures when the responses to high
contrast stimuli are plotted against the responses to low-contrast stimuli.
The diagonal line corresponds to no effect of contrast. A line drawn through
the points produced by the additive model necessarily has a slope equal to 1
(top); under this form of modulation, the effect of contrast does not depend
on the orientation. A line drawn through the points produced by the
multiplicative model necessarily has a slope greater than 1 (bottom); under
this form of modulation, the effect of contrast is largest at those
orientations that are closest to the voxel’s preferred orientation.
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a specific, user-selected parameter value for that shape (e.g., a
particular value for the width of the circular Normal). These
assumptions mean that the inferred channel modulation cannot
be taken to reflect the modulations in underlying neural functions
that would be measured with electrophysiology, as users of such
models readily acknowledge14,39. As a result, inverted encoding
models have been used to pursue very different goals than the aim
of the present study14 (i.e., understanding population- rather than
neural-level representations). Beyond inverted encoding models,
other researchers have compared the qualitative predictions of
different forms of tuning modulation35,41,42, analogous to the
logic underlying INTM’s non-parametric check. However, these
techniques neither fit the alternative encoding models to
empirical data, nor account for model flexibility.

These previous attempts to peer inside voxels are combined in
INTM. Like biophysical models, INTM connects the latent neural
activity to the observed BOLD. It does so by assuming a linear
coupling that is justified given our experimental design and the
goals of our modeling procedure (we discuss potential violations
of this assumption in more detail below)43–46. But unlike these
biophysical models, INTM uses an encoding model (Fig. 1b–d,
Eqs. 3, 4a, 4b). Like inverted encoding models, the parametric
analysis in INTM assumes a specific class of neural tuning shape
(circular Normal). But unlike inverted encoding models, it avoids
the need to assume specific parameter values for the shape (e.g.,
tuning width). The non-parametric slope analysis in INTM takes
things a step further by avoiding the need to assume a specific
class of neural tuning shape. In applying the framework to data,
we used a quantitative measure of the predictive abilities of each
model (a form of cross-validation), a measure that is sensitive to
both the flexibility of each model and the signal-to-noise ratio of
the data.

INTM is a general framework for inferring neural tuning
modulation, but the two techniques developed in this report have
a crucial feature that ought to be retained in further applications
of the framework: analyses were within-voxel. As previously
reported for voxel-wise orientation tuning6, most of the voxels in
our study were poorly tuned, and they were additionally only
weakly affected by stimulus contrast. Although we restricted the
analyses to only those voxels whose population receptive fields
overlapped with the stimulus (see Methods), most voxels were
only weakly responsive (e.g., falling near the origin in Fig. 5a) and
were minimally affected by visual contrast (e.g., lying near the

diagonal in Fig. 5a). These voxel differences and other sources of
voxel variation—including partial voluming47, proximity of each
voxel to blood vessels48, the responsiveness of neurons within
each voxel, etc. –are present in any fMRI experiment. Analyses
that are insensitive to weak signals risk conflating different forms
of tuning modulation, particularly when the noise differs across
conditions (Supplementary Methods—Non-Parametric Check)22.
In the current case, because most voxels exhibited nearly flat
tuning, this altered the appearance of the average voxel tuning
function (Fig. 4a), incorrectly suggesting that changing visual
contrast causes an additive shift. This was because an additive
shift is equivalent to multiplicative gain for a voxel with poor
tuning. Both INTM techniques avoided this problem by assessing
the voxels individually, identifying (and exploiting) the voxels
that exhibited the unique combination of being well-tuned and
possessing a strong visual contrast effect. Voxels with this com-
bination of behaviors were more diagnostic for the comparison
between different forms of tuning modulation.

The techniques developed here were tailored to uncover
changes in orientation tuning caused by stimulus contrast,
relying on assumptions that will not be appropriate in all
studies. We highlight these assumptions here and use them to
clarify the distinction between the framework more generally
versus specific applications of the framework. First, the models
assumed that voxel tuning functions are a linear combination
of the activity of the underlying neural tuning functions. This
assumption is reasonable in some experiments43,44, but the
relationship between neural firing rate and BOLD signal is not
perfectly linear46,49. Second, the techniques implicitly
assumed, through the general linear model used to estimate
voxel activity, a hemodynamic response function that is shared
across all voxels in all participants. Although canonical, that
assumption is erroneous e.g.,50. Next, the parametric analysis
approximated the distribution of neurons tuned to orienta-
tions within each voxel with a circular Normal distribution,
which is unimodal and periodic. This approximation provided
a convenient formula for deriving the voxel tuning function,
and the resulting function matched the data (e.g., individual
voxel tuning functions in Fig. 4b appear unimodal). However,
this assumption may not hold for other types of stimuli, other
brain regions, or for other scan parameters (e.g., an aperiodic
stimulus like pitch would require an aperiodic tuning
function).

Fig. 5 Non-parametric check of model comparison using orthogonal regression analysis. a Orthogonal regression on data and model predictions. Each
line corresponds to a single voxel. Most voxels are weakly responsive at each level of contrast and are only weakly influenced by the experimental
manipulation (i.e., lines cluster in the lower left corner, close to the diagonal). Across voxels (i.e., comparing separate lines), both models capture larger
visual contrast effects for more responsive voxels: predictions lying further rightward along the x-axis are located further away from the diagonal. However,
only the multiplicative model captures the observed interaction between orientation and contrast within voxels. Compare to Fig. 3. b Distribution of within-
voxel slopes. As allowed by multiplicative but not additive modulation, the distribution of slopes is shifted above 45° (i.e., slope of 1).
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Violations of these assumptions may bias model comparison in
some cases but, fortunately, none of the assumptions is intrinsic
to the framework, and there are several ways of relaxing each of
them. For example, more complex weight distributions such as
multimodal functions could be used in the parametric model.
Alternatively, we have shown that assumptions about the weight
distributions can be bypassed by a technique like the non-
parametric slope analysis. As an another example, although
nonlinear relationships between the neural firing rate and the
BOLD signal have been documented, multiple mathematical
accounts have been proposed to explain these
nonlinearities49,51,52, and these relationships could be incorpo-
rated into INTM.

Despite its generality, INTM has two limitations that must be
plainly acknowledged. The first is that INTM requires that the
models under consideration make distinct predictions at the level
of the voxel. For instance, the parametric and non-parametric
INTM techniques both assume that the magnitude of tuning
modulation is the same for all neurons that contribute to the
voxel response. These techniques may be robust to relaxing this
assumption if modulation magnitude differences apply uniformly
across the weight distribution that maps neural preferences onto
voxel preferences. But if the magnitude of modulation varies
systematically, the models might no longer make distinct pre-
dictions at the level of the voxel. For example, if the magnitude of
the additive shift is larger for neurons that prefer the same
orientation as the voxel, this unlikely circumstance could produce
a change in the voxel tuning function that is indistinguishable
from a constant magnitude of multiplicative gain. The inability to
discriminate these two scenarios exemplifies the fundamental
inverse problem that INTM cannot solve: INTM cannot deter-
mine the parameters of tuning functions for individual neurons
(indeed, it is not designed to). Instead, INTM operates upon
distributions of neurons (grouped by, e.g., region-of-interest,
voxel, feature preferences), and so it can compare only models
whose distributions of tuning functions change in ways that are
distinct. With the example of an additive shift whose magnitude
happens to covary with the weight distribution, this might occur
for some voxels, but is unlikely to occur with most voxels,
demonstrating the need to use all of the voxels in the model
comparison.

The second key limitation is that INTM can differentiate only
between models that are formally included in the model compar-
ison process. If the “true” form of tuning modulation is not
included in the set of possibilities, the results may mislead
researchers into conflating the winning form of modulation with
the true form. For instance, in the present study, the technique
contrasted tuning modulation models in which just one form of
modulation occurred but did not consider more complex situations
in which multiple forms of tuning modulation could have occurred.
For example, it is known from electrophysiology that with extended
adaptation, orientation tuning functions can both widen and shift
their preferred orientation53. Since that more complex model, in
which tuning widened and shifted within every trial, was not
included in model comparison, INTM is silent about whether that
effect occurred. Note that such combinations of tuning modulation
could be included in the model comparison process, but when
attempting to adjudicate between complex models it would be
critical to use model recovery simulations, specifically data-
informed recovery, to determine if the collected data were suffi-
ciently constraining.

In summary, using a simple test case—modulation of orien-
tation tuning by stimulus contrast—we presented and validated
the INTM method for identifying the form of neural tuning
modulation from a BOLD dataset. The method is applicable to a
broad range of domains and manipulations. The main insight of

the framework is that there are reasonable assumptions, which
can be made in many neuroimaging studies, that enable inference
about neural tuning modulation. The main requirement for using
the technique is an experimental paradigm that: (1) produces
measurable voxel tuning by testing the BOLD response at dif-
ferent levels of a single stimulus dimension (e.g., direction of
motion, color, pitch), and (2) includes some cognitive manip-
ulation of interest (e.g., with and without attention, before and
after perceptual learning, complex versus simple stimuli) that
modulates the voxel tuning from one condition to another. Now
that INTM has been validated, it can be used to study modula-
tions of neural tuning where electrophysiology has not yet pro-
vided an answer (e.g., studies of tuning modulation underlying
tasks that cannot be taught to animals).

Methods
Participants. Seven participants (22–31 years old; 3 female, 2 did not report)
completed three sessions for monetary compensation ($50 per 2 h session). All
participants had normal or corrected-to-normal vision. One additional participant
completed a single session but exhibited substantial motion; their data were
excluded. The procedure was approved by the University of Massachusetts Insti-
tutional Review Board.

Behavioral stimulation and recording. Stimuli were presented to participants
with a gamma corrected 32” LCD monitor at 120 Hz refresh rate (Cambridge
Research Systems). The experiment was designed using the Psychophysics toolbox
(Version 3.0.14)54 and custom MATLAB code (2018b, MathWorks). Behavioral
responses were collected with a button box (Current Design). Eye-tracking data
were recorded at a rate of 1000 Hz with the Eyelink 1000 Plus system on a long
range mount (SR Research), controlled using the Eyelink Toolbox extension to
Psychtoolbox55. Due to a technical error, the button presses of one participant were
not recorded.

For the main experiment, participants completed 18 functional runs across
three sessions. During each run, oriented grayscale gratings were presented twice at
each of two levels of contrast (eight orientations at 50% or 100% Michelson
contrast in all runs for six out of seven participants, eight orientations at 20% or
80% Michelson contrast in 12 runs for one participant, and seven orientations at
20% or 80% Michelson contrast in that participant’s remaining 6 runs). Grating
parameters replicated those of Rademaker et al.56. Gratings (spatial frequency of 2
cycles per degree) were masked with annuli (1.2° inner and 7° outer radii). The
annulus edges were smoothed with an isotropic 2D Gaussian kernel (1° kernel, 0.5°
standard deviation). Throughout each run, a magenta fixation dot was presented in
the center of the screen (0.2°, RGB: 0.7843, 0, 0.8886).

In each trial, a counterphasing (5 Hz) grating was presented for five seconds. In
the middle three seconds of each trial, the spatial frequency of the grating either
increased or decreased (1 cycle per degree) for 200 ms. Participants were instructed
to indicate via button press the direction of change as soon as they noticed it. Per
run, gratings were presented at multiple orientations, twice at each combination of
orientation and contrast. In most runs, there were eight orientations, but in one
session of one participant (totaling six runs), only seven orientations were
presented. Inter-stimulus intervals ranged from 8000 to 12000 ms in steps of
200 ms. A five-second fixation period preceded the first trial, and a fifteen-second
fixation period succeeded the final trial. Each run lasted 490 s.

We mapped a circular area of the visual field, of radius 8° centered on a central
fixation point. pRF mapping scans followed the protocol of Benson et al.57. Briefly,
natural images58 were overlaid on pink noise and viewed through a series of
circular apertures (8° radius). Within one run per session, the apertures enabled
view of either moving bars (2°) or rotating wedges (1/4 aperture) and rings that
expanded and contracted (see stimulus software for details). In bar runs, a bar
traversed the central region in cycles. During each cycle, the bar was visible for 28 s,
followed by a 4 s blank period. The bar moved in one of eight directions (east,
north, west, south, northeast, northwest, southwest, or southeast, in that order). A
16 s blank period preceded the first cycle, a 12 s blank period followed the fourth
cycle, and there was a 16 s blank period at the end of all cycles (300 s in total).

In the second pRF scan, the apertures were either wedges that rotated clockwise
or counterclockwise, or they were rings that expanded or contracted. These runs
started with a 16 s blank period, followed by two, 32 s cycles of a counterclockwise
rotating wedge, two 28 s of expanding rings (each followed by a 4 s blank period),
two 32 s clockwise wedge rotations, and two 28 s cycles of contracting rings
(followed by 4 and 26 s of blank, respectively). The total run time was 300 s.

Throughout the pRF scans, the color of a central fixation dot (0.3°) changed
between black, white, and red. Participants were instructed to monitor the color of
the fixation dot and press a button when the dot turned red. To help participants
maintain fixation, a circular fixation grid was presented throughout.
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fMRI data acquisition. MRI data were collected on a 3T Siemens Skyra scanner
with a 64-channel head coil. In each of the three sessions we collected field-
mapping scans, functional scans, and a T1-weighted anatomical scan (MPRAGE,
FOV 256 × 256, 1 mm isotropic, TE 2.13 ms, Flip Angle 9°). The anatomical scan
was used to align field-mapping and functional images parallel to the calcarine
sulcus. Gradient recall echo scans estimated the magnetic field. The pRF and
primary functional data were collected with the same scan parameters (TR
1000 ms, TE 31 ms, flip angle 64°, FOV 94 × 94, 2.2 mm isotropic, interleaved
acquisition, no slice gap, Multiband Acceleration Factor 4). To aid alignment of
functional and anatomical images, single-band reference images were collected
before each functional run for all but three participants (TR 8000 ms, TE 65.4 ms,
flip angle 90°, FOV 94 × 94, 2.2 mm isotropic, interleaved acquisition, no slice gap).

MRI preprocessing. Preprocessing of images was performed with fMRIPrep 1.4.0,
which relies on Nipype 1.2.0 and Nilearn 0.5.2 (RRID:SCR 001362).

The T1-weighted (T1w) images were corrected for intensity non-uniformity (INU)
with N4BiasFieldCorrection, distributed with ANTs 2.2.0. The T1w images were then
skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow
(from ANTs), using OASIS30ANTs as target template. A T1w-reference map was
computed after registration of the individual T1w images (after INU-correction) using
mri_robust_template (FreeSurfer 6.0.1; RRID: SCR 001847). Brain surfaces were
reconstructed using recon-all, and the brain mask estimated previously was refined with
a custom variation of the method to reconcile ANTs- derived and FreeSurfer-derived
segmentations of the cortical gray-matter of Mindboggle (RRID: SCR 002438). Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter
(GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR
002823).

For each of the functional runs, the following preprocessing was performed.
First, a reference volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. A deformation field to correct for susceptibility
distortions was estimated based on a field map that was co-registered to the BOLD
reference, using a custom workflow of fMRIPrep derived from D. Greve’s
epidewarp.fsl script (www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl)
and further improvements of Human Connectome Project Pipelines. Based on the
estimated susceptibility distortion, an unwarped BOLD reference was calculated for
a more accurate co-registration with the anatomical reference. The BOLD reference
was then co-registered to the T1w reference using bbregister (FreeSurfer) which
implements boundary-based registration. Co-registration was configured with nine
degrees of freedom to account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters) were
estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9). The BOLD
time-series were resampled to surfaces on the following spaces: fsaverage and
fsnative (FreeSufer). The BOLD time-series were resampled onto their original,
native space by applying a single, composite transform to correct for head-motion
and susceptibility distortions. These resampled BOLD time-series will be referred
to as “preprocessed BOLD”. A reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A set of physiological
regressors were extracted to allow for component-based noise correction59.
Principal components are estimated after high-pass filtering the pre-processed
BOLD time-series (using a discrete cosine filter with 128 s cut-off) for the
anatomical CompCor (aCompCor). The time-series entering the CompCor
analyses are derived from a mask at the intersection of subcortical regions with the
union of CSF and WM masks calculated in T1w space, after their projection to the
native space of each functional run (using the inverse BOLD-to-T1w
transformation). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize
the smoothing effects of other kernels. Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

To estimate voxel-wise responses to each orientation, a general linear model
(GLM) was fit using SPM12 (version 7487, RRID:SCR 007037) to the time-series of
each voxel during each orientation run. Fitting the GLM can be viewed as a
preprocessing step to reduce the dimensionality of the data; the method presented
here could be configured to run on the raw timeseries, but working with beta
weights of a GLM rather than the raw timeseries drastically reduced the
computational requirements of the Bayesian estimation. Prior to fitting the GLM,
each voxel’s timeseries was converted into a percent signal change, relative to the
average signal within a run (across voxels). Design matrices were convolved with
the canonical hemodynamic response function, parameterized with the SPM12
defaults, and additionally contained both six motion (three translation and three
rotation) and multiple aCompCor regressors. For each run, the number of
components was determined by the broken-stick method.

Statistics and reproducibility
Population receptive field mapping. To mitigate the effects of stimulus vignetting—
whereby orientation information differs between the edge and central portions of a
grating60,61—we restricted the analyses to only striate voxels whose population
receptive fields (pRFs) did not overlap with the stimulus edges. We estimated the
pRFs of each voxel with standard methods. First, the preprocessed functional data
for the pRF scans were converted into percent mean signal change within a run

(across voxels). The compressive spatial summation model was fit to each voxel
using analyzePRF HCP7TRET52,57. Following Benson et al., the compressive
exponent of this model was set to 0.05. The resulting pRF parameters were com-
bined with an anatomical prior for a Bayesian estimation of the parameters
(neuropythy 0.94)62. Only the parameters of voxels for which the pRF explained
more than 10% of the variance of the run were used as empirical parameters for
Bayesian estimation; the remaining voxels’ posterior pRF parameters were deter-
mined entirely by the prior.

The resulting pRF parameters determined whether a voxel would be retained
for analyses. The pRF resembles an isotropic, bivariate Gaussian. The three pRF
sessions were analyzed separately, resulting in three sets of three pRF parameters
per voxel. Within a set of parameters, two indicate the center location of the pRF,
and the third determines its size—the standard deviation of the Gaussian. A voxel
was retained only if a circle centered on its pRF with radius equal to two standard
deviations was entirely contained by the grating stimulus in each of the three
sessions.

Estimated average voxel tuning function. The voxel tuning function (Fig. 4) was
estimated according to a “binning” method10. First, each voxel’s activity was z-
scored, separately for each voxel. Then, one run was held out and the voxel’s
preferred orientation was calculated with the remaining runs. The preferred
orientation was estimated as the orientation that produced the largest activity,
averaged across runs and levels of contrast. Next, the activity in the held-out run
was plotted against stimulus orientation translated into a function of distance from
the voxel’s preferred orientation. This procedure was repeated once for each
available run, holding out a different run on each repetition. Averages and
repeated-measures confidence intervals, across voxels and ignoring participants,
were then calculated63, treating contrast and distance from preferred orientation as
within-voxel factors.

In Fig. 4, one session of one participant was excluded; the figure shows only
sessions in which the participant was shown eight orientations.

Bayesian estimation of parametric circular normal models. Each of the voxel-
specific parameters (baseline tuning function, tuning modulation, and variability in
the output of the tuning function) were estimated with a hierarchical Bayesian
model. All models were estimated with R (R Core Team) and its interface (RStan,
2.18.2) to the Stan language64. The Stan language provides a robust variation of
Hamiltonian Monte Carlo65,66, which efficiently and accurately approximates
Bayesian posterior distributions. Two diagnostics were used to assess the accuracy
of the estimation. First, we calculated the split-R̂ for each parameter in the model67.
This value is analogous to an F-score in an analysis of variance, and values close to
1 give no evidence that the different Markov chains are sampling from different
distributions. The split-R̂ was below 1.1 for all parameters25. Second, chains were
monitored for divergences, whose presence would indicate that the samples, even if
they are from a common distribution, likely misrepresent the true posterior dis-
tribution. There were no divergences when applying the multiplicative and additive
models to real data.

In all applications of models to data, four chains were initialized with random
values for the parameters (RStan defaults), and the sampling algorithm was given
1000 draws to adapt. After adaptation, each chain was used to draw 2000 samples
from the posterior distribution. All model comparison was done with Pareto-
smooth importance sampling, leave-one-out cross-validation plus, a technique for
approximating cross-validation28. We refer readers to the original report for details
of this technique.

Model recovery. For data-uninformed model recovery, 100 datasets were simulated
from the priors of both models. The datasets contained one participant con-
tributing 100 voxels measured in 18 runs at 8 levels of orientation. Both the
additive and multiplicative models were applied to each simulated dataset, resulting
in 200 simulated datasets and 400 model applications.

Data informed model recovery was implemented analogously to the data-
uninformed model recovery. One hundred datasets were generated from the
posterior of the multiplicative and additive models. The datasets contained six
participants, each contributing 200 voxels measured in 18 runs at 8 levels of
orientation. The multiplicative and additive models were applied to these simulated
datasets and model comparison was conducted as above.

Orthogonal regression estimate of slope. A derivation of the slope for orthogonal
regression can be found in Casella and Berger, chapter 1227. Here, we report the
result. Let xi be the activity of a voxel at low contrast on trial i, out of n trials; let yi
be the activity of a voxel at high contrast on an analogous trial (i.e., the beta weight
for the same orientation in the same run); let �x be the voxel’s average activity at
low-contrast; and let �y be the voxel’s average activity at high-contrast. The fol-
lowing are the sums of squares and the cross-product.

Sxx ¼ ∑
n

i
xi � �x
� �2

Syy ¼ ∑
n

i
yi � �y
� �2
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The slope, g, that solves the total least squares problem is given by
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r
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As stated in the main text, a separate slope was estimated for each voxel. In one
session, one participant was shown seven rather than eight orientations. When
calculating the slopes for this participant, the activity from those sessions were
excluded.

Orientation preference simulation. To show that there are circumstances in which a
von Mises density function is a reasonable weight distribution, we simulated cor-
tical orientation preference maps (Fig. 2). Each voxel was constructed with a
Kohonen network. We tailored the network parameters so that, following self-
organization, each voxel would contain a roughly accurate number of pinwheels for
a voxel of size 2.2 mm3—the voxel sized used in this study—approximately two
pinwheels per millimeter68. However, this simulation is meant as a “proof of
concept”, rather than a demonstration that the von Mises distribution is an ideal
weight distribution. That is, it does not consider many factors that likely influence
how neuronal activity will be reflected in voxel activity48. For example, it does not
consider the variability in pinwheel density across V1, vasculature, nor how cortical
folding would allow disparate parts of cortex to be sampled by the same voxel.
Nevertheless, it shows why we might expect weight distributions in most voxels to
be relatively flat, with the deviations from uniformity being captured adequately by
the single mode of the von Mises distribution.

Each network was simulated as follows. First, a grid of 67 × 67 “neurons” was
initialized to have a random orientation preference. Then, for 20000 iterations, the
grid was presented with a random orientation stimulus. The neuron that preferred
an orientation closest to the stimulus was selected, and the weights were updated.
Weights were updated based on the proximity of a neuron in the grid to the
winning neuron. Specifically, on iteration iþ 1, the weight, w, of neuron j was
given by the following.

wj;iþ1 ¼ wj;i þ
ψ dj; σ i
� �
ψ 0; σ i
� � δi

ð6Þ

In Eq. 6, ψðx; σÞ is the density of x as assigned by the density function of a
normal distribution with mean 0 and standard deviation σ. The variable dj is the
distance on the grid between neuron j and the winning neuron (Euclidean distance,
as calculated after setting a city-block distance of 0.03 between adjacent neurons).
The learning rate δi is the difference between the neuron’s preferred orientation
and the presented stimulus. Finally, σi changes the effective distance between
neurons over the course of learning, altering the size of the update to preferred
orientation for neurons that neighbor the winning neuron. On each iteration, σ i is
equal to 0:06 � ðð20000� iþ 1Þ=20000Þ.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging and behavioral data that support the findings of this study are available as a
repository on the Open Science Framework (https://doi.org/10.17605/OSF.IO/93YNM).

Code availability
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