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Supplementary Methods 
Bayesian Estimation of Parametric Model 

We developed two different hierarchical Bayesian estimation models, which differ in the 
number of hierarchical layers. Both versions estimated voxel-specific parameters, but the second 
version additionally estimated systematic variability across participants. A schematic of the first 
version, which collapsed across participants, is given by Supplementary Figure 1. As displayed 
in Supplementary Figure 1, every voxel was allowed its own value for preferred orientation (𝜙𝜙𝑣𝑣), 
concentration parameter (𝜅𝜅𝑣𝑣), additive constant (𝛼𝛼𝑣𝑣), multiplicative constant (𝛾𝛾𝑣𝑣), and noise 
parameter (𝜎𝜎𝑣𝑣). In addition, for the high-contrast presentation (Equations 4a and 4b), rather than 
a low-contrast presentation (Equation 3), each voxel had its own modulation magnitude 
parameter, whether that occurred through an additive shift (𝑎𝑎𝑣𝑣) or multiplicative gain (𝑔𝑔𝑣𝑣). 
Because higher levels of contrast increase neural activity, the additive modulation parameter was 
constrained to be positive and the multiplicative modulation parameter was constrained to be 
greater than one. 

 

 
The second, more complex version acknowledged differences in how participants 

responded to the contrast manipulation: e.g., perhaps one participant did not attend to the stimuli 
and so the influence of contrast was subject to floor effects. In this case, the participant’s voxels 

Supplementary Figure 1 Schematic for Bayesian estimation of the parametric model, 
collapsing across participants. Filled square nodes indicate priors, open circles are 
estimated parameters, the shaded circle is the observed data, and the open diamond is the 
result of a deterministic function of the parameters (Equations 3 and 4). Nodes are 
grouped with the square “plates”, indicating over which subsets of the data the node is 
replicated. The distribution assigned to each node is listed to the right of the diagram. 
𝑁𝑁(𝜇𝜇,𝜎𝜎) is a normal with location 𝜇𝜇 and scale 𝜎𝜎, and 𝑇𝑇𝑁𝑁(𝜇𝜇,𝜎𝜎) is a normal with the same 
parameters, truncated below at 𝜇𝜇. Γ(𝜁𝜁, 𝜏𝜏) is a gamma distribution with shape 𝜁𝜁 and rate 𝜏𝜏. 
Parameters 𝛾𝛾, 𝜅𝜅, 𝑎𝑎, and 𝑔𝑔 follow truncated normal distributions, and 𝛼𝛼 follows a normal 
distribution. Both kinds of modulation (𝑎𝑎 and 𝑔𝑔) are depicted in this single diagram, but 
only one modulation was allowed during model fitting. In another version of the model, 
each of the 𝜇𝜇𝑥𝑥 parameters are themselves estimated hierarchically across participants. 
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would have, on average, smaller values for the modulation parameters (𝑎𝑎𝑣𝑣 and 𝑔𝑔𝑣𝑣), relative to a 
more vigilant participant. Participant-level parameters in this second version were themselves 
analyzed hierarchically (i.e., there would be an additional plate in Supplementary Figure 1, 
covering participants). Both versions of the model led to the same conclusions in the collected 
dataset: a difference in favor of the multiplicative model, of 13.2 standard errors for the simpler 
version, and 14.5 for the more complex version, in units of expected log pointwise-predictive 
density, a measure of the predictive ability of a model4.  

Model recovery simulations were run with the more complex version. In the recovery 
simulations only, all voxels shared a single noise parameter. Estimating only a single noise 
parameter did not alter the main conclusions of the model comparison when it was applied to real 
data; the multiplicative model was still preferred. We report the version with voxel-specific 
noise since this version was preferred in model comparison on the real data (for both forms of 
modulation) against the version with a fixed noise term (see also Supplementary Figure 1). 
Non-Parametric Check 
Multiplicative and Additive modulation can be distinguished by slope of activation plots.  

In the main text, we suggested that additive versus multiplicative modulation could be 
assessed by looking at the slope of the neural tuning function plotted at high contrast (the 
modulated condition) against the same tuning function plotted at low contrast (the baseline 
condition). Here, we show why. For this proof, we assume a discrete number of neurons, 𝑁𝑁𝑣𝑣, that 
contribute to the fMRI BOLD response of a particular voxel (each voxel can take on a different 
integer 𝑁𝑁𝑣𝑣). In contrast to Equation 2 in the main text, we start with a more general expression of 
the Neural Tuning Function, 𝑁𝑁𝑇𝑇𝐹𝐹𝑖𝑖(⋅),of a particular neuron, 𝑖𝑖, evaluated at a particular value of 
the stimulus dimension, 𝑟𝑟, (e.g., that neuron's response when presented with a grating of 
orientation 𝑟𝑟). 

 
𝑁𝑁𝑇𝑇𝐹𝐹𝑖𝑖(𝑟𝑟) = 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟) (1) 

 
Note that this NTF is presented in its most general form such that every neuron could 

have a differently shaped tuning function, 𝑓𝑓𝑖𝑖, including the possibility of multimodal tuning. In 
addition, every neuron could have a unique additive baseline response, 𝛼𝛼𝑖𝑖, and unique 
multiplicative constant, 𝛾𝛾𝑖𝑖. If the NTF of Supplementary Equation 1 indicates the metabolic cost 
of each neuron's activity that contributes to the BOLD signal, rather than literal firing rate, then 
the voxel response to stimulus, 𝑟𝑟, is simply the sum of the NTFs that contribute to the voxel, as 
shown in Supplementary Equation 2, which replaces the sum of the additive baselines responses 
with a voxel specific additive term, 𝛼𝛼𝑣𝑣.  

 

𝑉𝑉𝑇𝑇𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝑟𝑟) = �{𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)}
𝑁𝑁𝑣𝑣

𝑖𝑖=1

                                  = �𝛼𝛼𝑖𝑖

𝑁𝑁𝑣𝑣

𝑖𝑖=1

+ �𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

                             = 𝛼𝛼𝑣𝑣 + �𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

(2) 
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This equation captures the voxel response in some baseline condition. Next, we 

implement multiplicative modulation by assuming that all neurons that contribute to the voxel 
experience the same magnitude of multiplicative modulation, 𝑔𝑔𝑣𝑣, similar to Equation 4a in the 
main text, resulting in Supplementary Equation 3. This equation rearranges the terms with the 
goal of representing the multiplicative VTF in terms of the baseline VTF, to specify the 
regression equation when plotting voxels response in the modulated condition as a function of 
response in the baseline condition: 

𝑉𝑉𝑇𝑇𝐹𝐹𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚𝑏𝑏𝑖𝑖𝑚𝑚𝑏𝑏𝑚𝑚𝑖𝑖𝑣𝑣𝑏𝑏(𝑟𝑟) = �{𝛼𝛼𝑖𝑖 + 𝑔𝑔𝑣𝑣𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)}
𝑁𝑁𝑣𝑣

𝑖𝑖=1                              

                                     = 𝛼𝛼𝑣𝑣 + 𝑔𝑔𝑣𝑣  �𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

                                                                        = 𝑔𝑔𝑣𝑣 �
𝛼𝛼𝑣𝑣 𝑔𝑔𝑣𝑣� − 𝛼𝛼𝑣𝑣 + �𝛼𝛼𝑣𝑣 + �𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)

𝑁𝑁𝑣𝑣

𝑖𝑖=1

��

                                                               = 𝑔𝑔𝑣𝑣�
𝛼𝛼𝑣𝑣 𝑔𝑔𝑣𝑣� − 𝛼𝛼𝑣𝑣 + 𝑉𝑉𝑇𝑇𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝑟𝑟)�

                                                            = {𝛼𝛼𝑣𝑣 − 𝑔𝑔𝑣𝑣𝛼𝛼𝑣𝑣} + 𝑔𝑔𝑣𝑣𝑉𝑉𝑇𝑇𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝑟𝑟)

(3) 

In other words, the predicted voxel response in the modulated condition (e.g., high 
contrast, rather than low contrast) should be the multiplicative modulation constant times the 
voxel response in the baseline condition plus an intercept that reflects both the multiplicative 
modulation constant and the voxel specific additive term. This is true regardless of the tested 
stimulus, 𝑟𝑟. Thus, the slope of the orthogonal regression relating the modulated condition to the 
baseline condition should be 𝑔𝑔𝑣𝑣 for this particular voxel. Each voxel could have a different 
multiplicative modulation constant, and thus a different slope, but if the modulated condition 
tends to produce a larger BOLD response, then the multiplicative modulation constants should 
tend to be greater than 1.0 on average (i.e., average slope > 1). 

For additive modulation, it is assumed that all neurons contributing to the voxel 
experience the same magnitude of additive modulation, 𝑎𝑎𝑣𝑣, similar to Equation 4b in the main 
text, resulting in Supplementary Equation 4: 

 

𝑉𝑉𝑇𝑇𝐹𝐹𝑏𝑏𝑎𝑎𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖𝑣𝑣𝑏𝑏(𝑟𝑟) = �{𝑎𝑎𝑣𝑣 + 𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)}
𝑁𝑁𝑣𝑣

𝑖𝑖=1

                                  = 𝑁𝑁𝑣𝑣𝑎𝑎𝑣𝑣 + �𝛼𝛼𝑣𝑣 + �𝛾𝛾𝑖𝑖𝑓𝑓𝑖𝑖(𝑟𝑟)
𝑁𝑁𝑣𝑣

𝑖𝑖=1

�

                            = 𝑁𝑁𝑣𝑣𝑎𝑎𝑣𝑣 + 𝑉𝑉𝑇𝑇𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝑟𝑟)

(4) 
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In other words, the predicted voxel response in the modulated condition should be the 
additive modulation constant (times the number of neurons contributing to the voxel) added to 
the response in the baseline condition. This is true regardless of the tested stimulus, 𝑟𝑟. Thus, the 
orthogonal regression relating the modulated condition to the baseline condition should have an 
intercept of 𝑁𝑁𝑣𝑣𝑎𝑎𝑣𝑣 and a slope exactly equal to 1.0. Each voxel could have a different additive 
modulation, and thus a different intercept, but if the modulated condition tends to produce a 
larger BOLD response, then the values of the additive modulation should tend to be greater than 
zero on average (i.e., average intercept > 0), but the slopes of all voxels should be 1.0. 

This proof makes no assumptions about the shapes of the neural tuning functions, and it 
makes no assumptions that the neurons contributing to each voxel have the same shape. Each 
neuron is allowed to have its own unique tuning function. The one key assumption made in the 
slope test (an assumption that is shared with the parametric model), is that all neurons 
contributing to a particular voxel have the same multiplicative modulation or the same additive 
modulation. However, we can consider relaxations of this assumption, in particular to the less 
constraining (and fairly plausible) assumption that if the magnitude of the multiplicative or 
additive modulation varies across neurons within a voxel, it does not vary systematically with the 
orientation preference of the neurons. If the modulation constant varies systematically across 
neurons contributing to a voxel, then it is possible that multiplicative modulation could produce a 
slope of 1.0 and that additive modulation could produce a slope greater than 1.0. For instance, if 
the additive modulation was greater for the neurons that preferred stimuli that were also 
preferred by the voxel, additive modulation could produce a slope greater than 1.0. Analogously, 
if the multiplicative modulation was smaller for the neurons that preferred stimuli that were also 
preferred by the voxel, multiplicative modulation could produce a slope of 1.0. Such 
confounding relationships between neural preferences and voxel preferences may occur by 
chance for some voxels, but there is no obvious reason to expect such a systematically 
confounding relationship to occur for most voxels. Thus, it is likely that this assumption could be 
relaxed, and provided that heterogeneity of modulation magnitude is uniformly applied across 
the neurons contributing to a voxel, the outcome of the slope test should be reliable. 
Bayesian estimation of the non-parametric test.  

When the noise differs at high and low contrast, Equation 5 in the main text will produce 
a biased estimate of the slope. The contrast of a stimulus can affect noise5, an effect that was 
visible in our data (Supplementary Figure 2). Given this potential for a biased slope, we 
supplemented the frequentist non-parametric test with Bayesian estimation of the slope that did 
not assume equal noise. 
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As before, let 𝑥𝑥 be the activity of a voxel at low contrast. Additionally, let 𝑗𝑗 be an index 
for run and 𝑟𝑟 be an index for orientation. The low-contrast activity is assumed to vary around 
location parameters that depend on orientation, 𝜁𝜁𝑟𝑟𝑥𝑥, with the standard deviation given by 𝜎𝜎𝑥𝑥 (i.e., 
noise at low contrast). 

 
𝑥𝑥𝑟𝑟,𝑗𝑗~𝑁𝑁(𝜁𝜁𝑟𝑟𝑥𝑥,𝜎𝜎𝑥𝑥) (5) 

 
Supplementary Equation 5 defines the likelihood function for voxel activity at low 

contrast. The likelihood for high contrast activity, 𝑦𝑦, is analogous:  
  

𝑦𝑦𝑟𝑟,𝑗𝑗~𝑁𝑁�𝜁𝜁𝑟𝑟
𝑦𝑦,𝜎𝜎𝑦𝑦� (6) 

 
The location parameters, 𝜁𝜁𝑟𝑟𝑥𝑥 and 𝜁𝜁𝑟𝑟

𝑦𝑦, in Supplementary Equations 5 and 6 are given by 
deterministic functions of the output of voxel tuning function at low contrast. We denote that 
output with 𝑧𝑧𝑟𝑟. The 𝜁𝜁𝑟𝑟𝑥𝑥 are equal to 𝑧𝑧𝑟𝑟, while the 𝜁𝜁𝑟𝑟

𝑦𝑦 are shifted and scaled according to an offset, 
𝑎𝑎, and gain, 𝑔𝑔. 

 
𝜁𝜁𝑟𝑟𝑥𝑥 = 𝑧𝑧𝑟𝑟
𝜁𝜁𝑟𝑟
𝑦𝑦 = 𝑎𝑎 + 𝑔𝑔𝑧𝑧𝑟𝑟

(7) 

 
In the case of only additive modulation, the offset 𝑎𝑎 in Supplementary Equation 7 gives 

the magnitude of the modulation (i.e., the 𝑎𝑎 = 𝑁𝑁𝑣𝑣𝑎𝑎𝑣𝑣 according to Supplementary Equation 4). In 
the case of only multiplicative modulation, the offset 𝑎𝑎 will be a function of both the baseline 
offset and the multiplicative modulation (i.e., 𝑎𝑎 = 𝛼𝛼𝑣𝑣 − 𝑔𝑔𝑣𝑣𝛼𝛼𝑣𝑣 according to Supplementary 
Equation 3). The variable 𝑔𝑔 is the same slope as estimated by orthogonal regression. But in 
contrast to the estimate provided by Equation 5 in the main text, this Bayesian model allows that 
the noise at high contrast, 𝜎𝜎𝑦𝑦, may differ from the noise at low contrast, 𝜎𝜎𝑥𝑥, mitigating this 
source of bias in the orthogonal regression estimate of slope.  

Supplementary Figure 2 Within voxels, the noise 
at high contrast is slightly higher than noise at low 
contrast. Each point represents the pooled standard 
deviation for a voxel at high and low contrast (i.e., 
the variability of a voxel’s beta, pooled across 
orientations). The solid line marks the diagonal. 
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Supplementary Equations 5 – 7 resemble the Bayesian model presented in the main 
paper. However, while that model defined a parametric equation for the voxel tuning function, 
here we simply model it with a normal distribution centered around a mean 𝜇𝜇𝑧𝑧 with standard 
deviation 𝜎𝜎𝑧𝑧. 

 
𝑧𝑧𝑟𝑟~𝑁𝑁(𝜇𝜇𝑧𝑧,𝜎𝜎𝑧𝑧) (8) 

 
We estimated this model hierarchically, allowing 𝜇𝜇𝑧𝑧, 𝜎𝜎𝑧𝑧, 𝑧𝑧𝑟𝑟, 𝑎𝑎, 𝑔𝑔, 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 to vary by 

voxel (Supplementary Figure 3).  

 
For this Bayesian model, we sampled 1000 draws from the estimated posterior 

distribution in each of five chains, following 1000 warmup draws per chain. The resulting 
posterior distributions suggest that the noise at high contrast was slightly higher than the noise at 
low contrast (Supplementary Figure 4A). However, supporting the orthogonal regression 
estimate, the posterior distribution of the average slope was above 1 (Supplementary Figure 4B).  
 

Supplementary Figure 3 Schematic of the Bayesian implementation of the non-parametric 
check (Supplementary Equations 8-11). See also caption of Supplementary Figure 1. 
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Supplementary Results 
Behavior 

Average accuracy for the spatial frequency change detection task was 72% and 74% for 
low and high-contrast gratings, respectively (p = 0.13). Eye-tracking was used to assess whether 
participants maintained adequate fixation in the scanner: over 90% of all participants’ fixations 
ended within 2° of the location of the run’s average fixation (range: 93–99%). 
Population Receptive Field Mapping 

Only voxels from V1 were analyzed, and only voxels whose population receptive fields 
overlapped with the stimulus (Methods). This resulted in 1,010 voxels, ranging from 90 to 188 
across participants. 

 
 

Supplementary Figure 4 Posterior distributions from the Bayesian estimation of the non-
parametric check. A) Voxels’ activity at high contrast may be noisier than their activity at low 
contrast. The histograms give the posterior samples for the location parameters of the population 
of distribution (across voxels) of the noise at low, 𝜇𝜇𝜎𝜎𝑥𝑥, and high, 𝜇𝜇𝜎𝜎𝑦𝑦, contrast. B) The posterior 
samples for the average (across voxels) slope, 𝜇𝜇𝑔𝑔, are above 1. 
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Supplementary Figure 5 Samples from the Posterior Predictive Distribution of the 
Multiplicative Model. Data plotted as in Figure 4B from the main text. Simulated voxels capture 
the qualitative trends of real voxels (i.e., only minor tuning across orientation, low signal-to-
noise, higher activity with high as compared to low contrast). 
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Supplementary Figure 6 Parameter Recovery for Data-Informed Model Recovery. 
Distributions show the difference from true value across draws when (A) the additive model was 
fit to datasets generated from the additive posterior predictive distribution, or (B) the 
multiplicative model was fit to datasets generated from the multiplicative posterior predictive 
distribution. In all cases, the distributions are centered on 0, indicating lack of bias in the 
estimated parameters. Panels give parameters (compare to Supplementary Figure 1): alpha_loc: 
𝜇𝜇𝛼𝛼; alpha_scale: 𝜎𝜎𝛼𝛼; gamma_loc: 𝜇𝜇𝛾𝛾; gamma_scale: 𝜎𝜎𝛾𝛾; kappa_loc: 𝜇𝜇𝜅𝜅; kappa_scale: 𝜎𝜎𝜅𝜅; 
ntfp_loc: either 𝜇𝜇𝑏𝑏 or  𝜇𝜇𝑔𝑔; ntfp_scale: either 𝜎𝜎𝑏𝑏 or  𝜎𝜎𝑔𝑔; sigma: 𝜇𝜇𝜎𝜎. 
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