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• State-Trace Analyses (STA) test the latent dimensionality of cognitive processes.
• STA assess monotonicity across conditions between dependent measures.
• Current methods for STA assume independence between measures.
• Unmodeled dependence can bias state-trace analyses.
• We present a hierarchical model for STA that accounts for such dependencies.
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a b s t r a c t

State trace analyses assess the latent dimensionality of a cognitive process by askingwhether themeans of
two dependent variables conform to amonotonic function across a set of conditions. Using an assumption
of independence between the measures, recently proposed statistical tests address bivariate measure-
ment error, allowing both frequentist and Bayesian analyses of monotonicity (e.g., Davis-Stober, Morey,
Gretton, & Heathcote, 2016; Kalish, Dunn, Burdakov, & Sysoev, 2016). However, statistical inference
can be biased by unacknowledged dependencies between measures, particularly when the data are
insufficient to overwhelm an incorrect prior assumption of independence. To address this limitation,
we developed a hierarchical Bayesian model that explicitly models the separate roles of subject, item,
and trial-level dependencies between two measures. Assessment of monotonicity is then performed by
fitting separate models that do or do not allow a non-monotonic relation between the condition effects
(i.e., same versus different rank orders). The Widely Applicable Information Criterion (WAIC) and Pseudo
BayesianModel Averaging – both cross validationmeasures of model fit – are used formodel comparison,
providing an inferential conclusion regarding the dimensionality of the latent psychological space. We
validated this new state trace analysis technique usingmodel recovery simulation studies,which assumed
different ground truths regardingmonotonicity and thedirection/magnitude of the subject- and trial-level
dependence. We also provide an example application of this new technique to a visual object learning
study that comparedperformance on a visual retrieval task (forced choice part recognition) versus a verbal
retrieval task (cued recall).

© 2019 Elsevier Inc. All rights reserved.

State-trace analyses test the dimensionality of psychological
spaces (Bamber, 1979; Dunn, 2008) by framing the situation
in terms of manipulations (e.g., experimental study conditions)
that affect dependent variables (e.g., accuracy in cued-recall ver-
sus recognition) via unobservable, latent variables. The goal is
to probe the dimensionality of the latent space. For example, a
studymight use a range of different experimental study conditions
and compare cued-recall versus recognition performance to assess
how many latent psychological variables are required to explain
performance. If there is just one latent psychological variable un-
derlying behavior (e.g., memory strength), then the two dependent
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variables must be affected in the same qualitative manner (i.e., the
same rank order across conditions for each dependent measure).
Conversely, if there are two or more latent psychological variables
(e.g., item-strength versus association-strength), different rank or-
ders are possible. Terminology for the different components of a
state-trace analysis can differ (compare Davis-Stober, Morey, Gret-
ton, & Heathcote, 2016; with Dunn, 2008; Dunn & Kalish, 2018).
We adopt the terminology of Dunn and Kalish (2018), referring to
the outcome space as all possible combinations of values for the
dependent variables and the predicted or model state-trace as the
subset of the outcome space feasibly reached by amodel thatmaps
an independent factor (i.e., experimental conditions), via latent
variables, onto the outcome space. The goal of a state-trace analysis
is to identify the model that best accounts for the observed state-
trace (i.e., the values of the dependent measures in an experiment,
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across experimental manipulations) — where ‘‘best’’ is a measure
of a model’s ability to recapitulate the data at hand, penalized by
its flexibility.

State-trace analysis provides a ‘‘scale-free’’ assessment of the
dimensionality of the latent psychological space. In other words,
the analysis enables assessment of whether one latent variable is
sufficient to account for the data, or whether additional variables
are required, with this assessment making only the minimal as-
sumption that the dependent measures lie on a monotonic scale
in terms of the underlying psychological variables. This is achieved
by making only the minimal assumption that the latent variables
map in amonotonicmanner onto the observable outcomes. That is,
a state-trace analysis provides a way to make inferences about the
dimensionality of the latent space without committing to a spe-
cific model of the transformation from independent experimental
factors to latent variables, nor latent variables to the predicted
state-trace. Although a state-trace analysis can be performed to
compare models with an arbitrarily-sized latent space, typically
the models under comparison have one versus two latent dimen-
sions. Comparisons between such ‘‘unidimensional’’ and ‘‘bidimen-
sional’’ models will be the focus of this paper.

In the following explanation, an observed instance of the depen-
dent variables defining the outcome space X and Y will be referred
to as x and y, respectively. Likewise, a value of the latent variables A
and Bwill be referred to as a or b, respectively. The transformation
of the latent variables into outcomes will be written as functions,
f , g , or h.

In a unidimensional model, outcomes are assumed to be sepa-
rate monotonic functions of a single latent variable

xuni = funi (a) ,

yuni = guni (a) . (1)

In a bidimensional model, the outcomes depend on two latent
variables. The resulting state-trace is defined by1

xbi = fbi (a, b) ,

ybi = gbi (a, b) . (2)

Despite the generality of the definition of each of these mod-
els, the unidimensional and bidimensional models will typically
make different predictions about the monotonicity of the true
state-trace. Specifically, the unidimensional model always pre-
dicts that the data plotted in the outcome space will exhibit a
monotonic relationship provided that f the mapping from the
latent variable to both dependent measures is monotonic. For
instance, if an increase in memory strength from low to medium
elicits higher recognition accuracy, the unidimensional model pre-
dicts that a further increase in memory strength from medium to
high cannot decrease recognition accuracy. Thus, an observed non-
monotonic state-trace result falsifies any unidimensional model.
In the event that a unidimensional model is rejected, further sta-
tistical or rhetorical arguments may be required to advocate for
a particular multidimensional model — that is, specification of
the psychological constructs that correspond to the separate latent
variables (Dunn, Kalish, & Newell, 2014).

Observing evidence for monotonicity in the data requires more
careful inference considering that there are different ways that the
bidimensional model can be conceptualized. In one approach, the
model comparison asks whether the data are better described by a
monotonic function or a non-monotonic function. In the approach
we take here, the unidimensional model is a special case of the

1 For the bidimensional model, it is not necessary that both fbi and gbi depend
on both a and b, but rather that at least one of these functions depends on both
latent variables or that one function depends on one latent variable while the other
function depends on the other latent variable.

bidimensional model. A key idea of a state-trace analysis is that
the unidimensional model implies order restrictions on the DV
means, and our model comparison will take advantage of this by
considering ordered-restricted models as nested within the set of
all possible orderings. That is, the unidimensional model will be
nestedwithin the bidimensional model.

Given this conceptualization of the bidimensional model as
encompassing the unidimensional model, parsimony may be in-
voked to give credence to the unidimensional model (Dunn, 2008).
With this nested model assumption, the bidimensional model can
produce monotonic state traces in circumstances when the exper-
iment is not well calibrated to the system in question or the latent
dimensions are highly correlated (Davis-Stober et al., 2016; Dunn
et al., 2014; Prince, Brown, & Heathcote, 2012). In other words, al-
though the bidimensional model has two different latent variables
that can in principle map onto the chosen dependent variables in
different ways, the particular manipulations in a reported dataset
may happen to affect both latent variables in the same manner,
producing a situation where there is no discernible difference be-
tween the latent variables. Providing an example of this, Jang, Lee,
and Huber (2019) reanalyzed a prominent state-trace result in the
metamemory literature that reported separate monotonic func-
tions for manipulations of two independent variables, with each
state trace performed at a different level of a third independent
variable. Their reanalysis revealed a non-monotonic functionwhen
the state trace analysis included all three independent variables
concurrently. Thus, the separate monotonic functions were found
to reflect at least two latent variables that happened to affect the
dependent measures in the same way.

To summarize this distinction, one approach asks of each
dataset whether the function relating the two dependent mea-
sures is monotonic versus non-monotonic. In contrast, the nested
modeling approach asks whether the data require more than one
latent variable, but if not, this lends support for the unidimensional
model. Critically, a monotonic function does not falsify the bidi-
mensional model. To make this distinction clear, suppose that an
analysis of an experiment favored a monotonic function but then
a direct replication of the experiment favored a non-monotonic
function. Such a pattern of results could either be viewed as
two separate conflicting conclusions regarding monotonicity or,
alternatively, this pattern of results could be viewed as favoring the
bidimensional model considering that the bidimensional model
can explain both findings. Extrapolating from this example, con-
sider that each participant in an experiment is a replication. Thus,
if 50% of participants clearly produce a monotonic function while
the remaining 50% clearly produce a non-monotonic function, one
approachwould say the data are equivocal regardingmonotonicity
whereas the other approach would favor the bidimensional model
for its ability to explain both groups of participants.

Although the uni- and bidimensional models will typically cor-
respond to different state-trace results, dependent variables are,
of course, greatly influenced by sources of noise. That is, although
a state-trace analysis provides a qualitative comparison between
models, its use requires a way of quantitatively comparing these
models in light of measurement error (see Eq. (3)).

x ∼ funi (a) y ∼ guni (a) vs. x ∼ fbi (a, b) y ∼ gbi (a, b) . (3)

The property of Eq. (3) that sets it apart from Eqs. (1) and (2)
is that (3) has introduced an unknown probabilistic error term
resulting in a functional relationship between the latent variables
and the dependent measures. Whereas f and g were deterministic
functions in (1) and (2) (i.e., any input would always produce
the same output), f and g signify probability distributions in (3)
(i.e., a given inputwill produce structured but variable output). The
inferential challenge lies in determiningwhichmodel provides the
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best account of the data when f and g are unknown functions that
include this probabilistic error.

Statistical techniques exist for adjudicating between the uni-
and bidimensional models (Davis-Stober et al., 2016; Dunn &
James, 2003; Dunn & Kirsner, 1988; Kalish, Dunn, Burdakov, &
Sysoev, 2016; Loftus, Oberg, & Dillon, 2004; Pratte & Rouder,
2012; Prince et al., 2012), but we identified two limitations of
the current methods, both relating to the role of unacknowledged
dependencies in the data. First, most of these tests are unable to
partition variance into both item and subject effects (see Pratte &
Rouder, 2012 for an exception).2 Second, these techniques assume
independence between X and Y . Whereas the inability to account
for item and subject variability only limits the power of a study to
detect non-monotonicity, the assumed independence between X
and Y could systematically bias the results.

Regarding the independence assumption, consider a situation
in which participants decide to devote more resources to one
task (e.g., a dependent measure of recognition) at the expense of
the other task (e.g., a dependent measure of cued recall), with
the choice of which task to favor differing for different partic-
ipants. This results in a negative dependency between the two
measures at the subject level. With sufficient data, violations of
this independence assumption should not matter (i.e., the data
will overwhelm the prior assumption of independence). However,
with limited data per subject, the independence assumption allows
subject effects to freelymove as necessary to capture the randomly
varyingmeans for each subject (i.e., fitting noise owing to a limited
sample). In contrast, a model that includes a term capturing the
subject effect dependency will be appropriately constrained (aka,
exhibit ‘‘shrinkage’’) in its estimate of subject effects, depending on
the pattern of results for the other subjects. For instance, if subjects
who perform well on recognition tend to also perform well on
cued recall (i.e., a positive dependency), then a particular subject
who did well on cued recall but not recognition may have their
posterior distribution for recognition adjusted upwards in light of
the general pattern across the other subjects (i.e., poor recognition
performance for this subject is deemed to be sampling error).

Such dependencies can also occur at the item level (e.g., high
frequency words are easier to recall but harder to recognize than
low frequency words). Furthermore, if the experiment collects
both measures in relation to the same item for the same subject
(e.g., following item recognition, use of that same item as a cue for
recall), such dependencies can also be identified at the trial level
(e.g., a greater focus on one task than the other, with this focus
varying from trial to trial). Thus, any of the random factors of an
experiment (e.g., subject, item, and possibly trial) may exhibit a
dependency pattern that could be negative (e.g., focus on one task
at the expense of the other) or positive (e.g., some words are more
memorable regardless of how they are tested). Next, we consider
how these unacknowledged dependencies may affect the ability of
a monotonic model to capture the data.

Consider a hypothetical experiment with real-valued depen-
dent measures plotted along the X and Y axes for four condi-
tions, as shown in Fig. 1. In the figure, the colored ellipses show
the spread of data owing to variance and covariance, with green
ellipses (left column) showing a positive dependence whereas
red ellipses (right column) show a negative dependence. In both
cases, the variance for each Dependent Variable (DV) is the same,
corresponding to the range of the ellipse along theXandYaxes. The
dependencies (i.e., the tilt of the ellipse) could reflect subject, item,

2 The Kalish et al. (2016) technique could be modified by relaxing the block-
diagonal constraint to estimate subject and item effects simultaneously, but this
would still be under an assumption of independence between the dependent
measures (i.e., the subject or item effects for one dependent measure would not
be constrained by values for the other dependent measure).

Fig. 1. Monotonicity assessment errors due to unacknowledged dependencies.
Panels depict hypothetical datasets with differing patterns of correlation on two
tasks (DV1, DV2), across four experimental conditions. Data from the experimental
conditions are depicted with colored ellipses (green for a positive correlation and
red for a negative correlation). The gray ellipses represent a hypothetical model of
these data and are connected by an approximately best-fitting monotonic function
in each case (dashed line). These functions were chosen by hand for illustrative
purposes. The top row is a model that assumes independence between the two
tasks whereas the bottom row is a model that estimates the correlation in the
data. In these hypothetical examples, the standard deviations are assumed to be
constant and known (all ellipses have equal standard deviation). Note that average
performance per condition and variance for each task is identical in all situations.
However, a model that only considers condition means and variances, but not
covariances, neglects valuable information that could constrain model fitting. For
instance, the bottom row shows that the best-fitting monotonic function fails to
capture the middle two conditions in the case of positively correlated data but not
negatively correlated data. . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

and/or trial level correlations in the data (the model we developed
includes the combination of all three sources of dependency). For
ease of exposition, consider that this hypothetical experiment only
allowed variation for one of these three possible random factors:
e.g., one subject tested for many trials on the same item; or one
subject tested onmany items, but with each item only tested once;
or many subjects tested with the same item, with that item only
tested once per subject. These three situations are mathematically
identical (i.e., just one random factor underlying the different data
points for each condition), demonstrating that this hypothetical
example applies equally to subject, item, or trial dependencies.

A hypothetical best-fitting monotonic function is drawn with
the dashed lines (i.e., the line segments are constrained to have
positive slope), and the gray ellipses centered on each junction of
the piecewise linear monotonic function capture the best-fitting
condition means for each of the four conditions. The observed
condition means are the same in all cases and are positioned as
to map out a non-monotonic function. In this case, the question
of interest is the power to reject the (incorrect) monotonic model
(i.e., to what extent does the monotonic model misfit the data).

The top row shows application of a model that assumes in-
dependence whereas the bottom row depicts a model that cap-
tures the dependence, allowing the direction of the dependence
to be determined by the observed data patterns. Judging by the
overlap between the gray circles (assumed independence) and
the colored ellipses in the top row it appears that the monotonic
model performs similarly regardless of the dependency in the
data, with perhaps a slightly worse fit (greater power to reject
the monotonic model) in the case of negatively correlated data
(the simulations reported below verified this greater power with
negatively correlated data). Next, consider the bottom row, which
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shows application of a model that explicitly captures the observed
dependency. For ease of exposition, the dependency as determined
by the model is set equal to the dependency in the data, but in real
applications, the model’s estimate of dependency may differ from
reality in an attempt to capture as much of the data as possible
despite the monotonicity constraint. As seen in the bottom row,
the model is clearly capturing more of the data when the observed
data are negatively correlated (red) as compared to when they are
positively correlated (green). More specifically, for the middle two
conditions under positively correlated data, the positive depen-
dency in the model results in a complete misfit of the correspond-
ing data distributions. In contrast, for the middle two conditions
under negatively correlated data, the misfitting condition means
can nonetheless capture much of the data distribution.

In summary, the choice of a statistical model that assumes in-
dependence versus one that captures the observed dependence in-
fluences the statistical power to reject themonotonic model. More
specifically, if the pattern across the conditions is non-monotonic,
but with a general trend of increasing conditions means, there ap-
pears to be greater power to reject the monotonic model for posi-
tively correlated data provided that the statistical model includes this
positive correlation in its explanation of the data. The complementary
scenario is equally true: when the pattern of condition means
exhibits a generally decreasing trend, it is easier to correctly reject
the monotonic model for negatively correlated data. To be clear,
we are not suggesting that dependencies will necessarily always
produce the same bias for or against one of themodels in question;
the effect of dependencies will depend on the arrangement of the
condition means. However, the example shown in Fig. 1 suggests
that a failure to include the observeddependencies in the statistical
modelmay lead tomodel selection errors (we provide quantitative
evidence of these model selection errors in the model recovery
section of this paper).

Our development of a state-trace analysis technique that ad-
dresses subject, item, and trial-level dependencies is motivated
by a recently submitted experiment that examined two different
accuracy measures (Sadil, Potter, Huber, & Cowell, submitted).
Next, we describe this experiment considering that it serves as
an example application of our technique, but we reiterate that
our technique is generally applicable and could be readily adapted
to real-valued dependent measures (e.g., d-prime rather than ac-
curacy) and other combinations of random factors (e.g., subject
effects but no item or trial effects). Our experiment was designed
to test for the existence of part-to-part visual associations as one
latent variable and part-to-whole associations as a second latent
variable. More specifically, we asked whether people could learn
and benefit from associations between a particular visual feature
at one location of a visually presented object (e.g., the curve on
the left side of a computer mouse) and a particular visual fea-
ture elsewhere on that same object (e.g., the cord emerging at
the front of the mouse), even if they were never able to identify
the whole object at the time of learning. The ‘Binocular’ learning
condition presented the object to both eyes so that the visual
details were apparent and the object was explicitly identified. The
‘Word’ learning condition presented only a word that named the
object, but no visual details. The ‘CFS’ learning condition presented
the object under Continuous Flash Suppression (Tsuchiya & Koch,
2005), such that visual details were provided, but the observer was
not aware that anything was presented and thus they could not
name the object. Additionally, learning of these associations was
compared to a ‘‘Not Studied’’ baseline condition, which assessed
the pre-experimental strength of these associations. The models
in question were a unidimensional model, which assumed only
one kind of learned information underlying performance, versus
a bidimensional model, which held that at least two kinds of
associations could be learned (i.e., part-to-part associations versus
part-to-name associations).

After study, observers performed back-to-back memory tasks
thatwere designed to be differentially sensitive to the twoputative
association types: (1) an intact-rearranged two alternative forced-
choice (2AFC) between pairs of visual fragments; followed by (2)
a cued-recall task to name the object given one of the visual
fragments that appeared in the immediately preceding 2AFC test
(i.e., this was a test of the same item, allowing assessment of
trial level dependencies). Our experimental design tested multiple
subjects and used the same set of items for all subjects (with a
different randomassignment of item to condition for different sub-
jects) and so the data could potentially exhibit subject, item, and
trial level dependencies. The results were first analyzed using the
technique developed by Kalish et al. (2016), which addresses only
subject effects under an assumption of independence between the
dependent measures. This technique led to rejection of the unidi-
mensional model. However, we were concerned that unacknowl-
edged dependencies in the data (particularly at the trial level) may
have biased this conclusion. Indeed, the results we report below
demonstrate that with (simulated) negatively correlated data, the
Kalish et al. technique more readily rejects the unidimensional
model. This concern led us to develop a new state trace analysis
technique. Because there was only one pair of observations at the
level of a particular trial for a particular item and a particular
subject, we adopted a hierarchical Bayesian modeling approach
to allow the use of sparse data to identify dependencies at the
subject, item, and trial-levels (Kruschke, 2014; Rouder & Lu, 2005).
Ultimately, our new technique reached the same conclusion as the
Kalish et al. technique, but through its development we came to
appreciate the ways in which our technique might have produced
difference conclusions.

1. Hierarchical bivariate probit model for state-trace analysis

The problem in question is a comparison between the following
two models

(x, y) ∼ huni (a) vs. (x, y) ∼ hbi (a, b) (4)

which include the unknown bivariate distributions huni and hbi.
Considering that the data in question are correct/incorrect re-
sponses,weused ahierarchical-Bayesian bivariate probit to specify
these bivariate distributions (Greene, 2017, pp. 807–810; Stan De-
velopment Team, 2017b). A graphical description of the hierarchy
is presented in Fig. 2, in the style used by Kruschke (2014). The
model assumes that performance on the two tasks is a thresholded
process whereby a participant makes a correct response when the
value of evidence, z (not depicted), is above some threshold (fixed
to 0). Each pair of observations corresponds to a single trial, defined
by a unique combination of a subject, s, encountering an item, i,
that was studied in condition, c. For example, when both z values
are above 0, this corresponds to a trial in which the observer is
correct for both tasks. This joint outcome, (x, y), on a given trial
is captured with following expression(
x
y

)
c,s,i

∼ ψ2
((
µX
µY

)
c,s,i

,Ωc

)
(5)

inwhich the symbolψ2 represents the bivariate probit distribution
with parameters µ ∈ R and produces a pair of values that are
either 0 or 1. The construction of µx and µy are given below, but
for intuition theymay be viewed as themeans of a bivariate normal
distributionwhose samples, z, are 1when they are over the thresh-
old and 0 when they are below the threshold.Ωc is a standardized

covariance matrix (i.e., a correlation matrix), Ωc =

(
1 ρc
ρc 1

)
,

where each ρc is the correlation between measures in condition
c. The variance is fixed at 1 for identifiability; more specifically,
identifiability is a potential issue considering that model behavior
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Fig. 2. Schematic of the Bayesian hierarchical bivariate probit model. The tilde symbols (∼) indicate that a parameter is sampled from a distribution whereas the equals
symbols (=) indicate deterministic equations. Subscripts indicate different levels of a factor (e.g., items, subjects, or conditions). Distributions are labeled with either N
for normal (either univariate or bivariate), Γ for gamma, or LKJ for Lewandowski et al. (2009), which is a distribution on correlation matrices. In the normal distributions,
the first parameter signifies the mean, and the second parameter signifies the standard deviation. The two parameters of the gamma are shape and rate. The single LKJ
parameter is a shape parameter (see footnote in main text for an explanation of the effect of this parameter). In this diagram, vectors are presented as columns. Subject- and
Item-level correlations enter themodel through the construction of the bivariate probitmeans. Trial-level correlations enter themodel through the rightmost LKJ distribution.
For illustrative purposes, the diagram shows centered parameterization of the subject- and item-effects, but in practice the model used a non-centered parameterization.
Likewise, the details of the construction of βc and the mixing proportions have been omitted. See text for further details.

would be the same if the deviations were τx and τy, rather than
1, provided that the µx parameter is rescaled by τx and the µy pa-
rameter is rescaled by τy. Dependencies between the twomeasures
are modeled through a combination of the condition-dependent
trial-level correlation, ρc , and the between-trial dependencies that
occur in the construction of the µ parameters through subject and
item effects.

In generative terms, this bivariate probit can be seen as a bivari-
ate extension of an Equal Variance Signal Detectionmodel inwhich
the criteria for both decisions have been fixed to 0 (Macmillan &
Creelman, 2005, pp. 126–144). However, it would be a mistake to
view the use of a bivariate probit as a commitment to a particular
parametric form of the latent dimensions underlying task perfor-
mance. Instead, this probit is just a convenient method for linking
a linear model to a pair of binary outcomes. Rather than thinking
of the dimensions of the bivariate probit as the latent dimensions
A and B, the dimensions of the bivariate probit can be thought of
with the relatively atheoritic language of ‘‘information required to
make a correct response.’’

Beyond trial-level correlations, and changes in these correla-
tions with condition, our technique also includes subject effects
and item effects and correlations for both subject and items effects
through the construction of each µ (Kruschke, 2014, pp. 221–260;
Rouder & Lu, 2005). The trial-level means (one for X and one for
Y ) of the bivariate probit are each constructed with the following
equation

µc,i,s = subject_intercepts + item_intercepti + βc, (6)

which says that each trial is the summation of a subject- (s), item-
(i), and condition- (c) effects. Put another way, the means of the
bivariate probit were modeled with an additive structure, with

intercepts that varied by item, subject, and condition. Intuitively,
each of these effects can be thought of as their respective propen-
sity to elicit the correct response for a given trial.

We note that subject-level and item-level correlations were
constrained to take on the same value for all conditions. This con-
straint was not imposed for theoretically important reasons, but
rather because themodel is difficult to identify if multiple forms of
correlation freely vary with condition (e.g., if the data of just one
condition exhibited a negative correlation, it would be difficult to
determine if this negative correlation existed at the subject-level,
the item-level, and/or the trial-level). To simplify the situation, we
allowed the trial-level correlation to take on different values for
different conditions, while the subject and item correlations were
fixed across conditions. If instead we had applied our approach to
an experiment with only one random factor (e.g., subject differ-
ences), wemight have allowed for correlation differences between
conditions for that factor (e.g., subjects could have a different
correlation in one condition as compared to others).

The condition effects (theβc parameter)were fixed effects, with
the same value on all trials of a given condition across all subjects.
These fixed condition effects are based on separate, independent,
normal prior distributions (one for X and one for Y ). These normal
distribution priors had a mean of 0 and a variance equal to 0.25. In
contrast, the subject and item effects were drawn from bivariate
normal prior distributions, capturing dependencies between de-
pendent measures (e.g., a subject that is good at task X is also good
at task Y ). Non-centered parameterizations of the bivariate normal
priors for the item- and subject-effects were used to facilitate
the exploration of the posterior distribution by decomposing that
distribution into amean (shown as 0 in Fig. 2), a standard deviation
(scale) along dependent measure (τ ), and a correlation matrix
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(Ω). This decomposition decouples the sampling of random-effects
from the sampling of hyperparameters at higher levels of the hier-
archy, often resulting in increased sampling efficiency (Betancourt
& Girolami, 2015; Stan Development Team, 2017b). All correla-
tion matrices (including the trial level correlation) were given LKJ
hyperpriors3 (Lewandowski et al., 2009) with parameter value of
1.5, and all standard deviations were given gamma hyperpriors
(Γ (shape = 2, rate = 4)). To model these subject- and item-
effects as deviations from group-level performance, the means of
the bivariate normal priors were fixed to 0 for each kind of effect
(e.g., a subject effect of 0 corresponds to a subject whose average
performance is equal to the group-level average). Fig. 2 shows
the model as described so far, with a simple prior placed on the
condition effects, but as described below, application of the model
used a more complicated condition effect prior to capture the
difference between the unidimensional and bidimensionalmodels.

The net effect of these prior distributions moving down the
hierarchy is similar to two independent probit regression models
on each dependent measure, considering that the priors at each
level are symmetric and centered at 0 (i.e., independence). Given
that themode of aΓ (2, 4) distribution equals 0.25, themost likely
contribution of subject and item effects to the variance of the
standard normal µc,s,i value is .25 + .25 = .5, with the normally
distributed condition effect contributing an additional .25 variance.
Thus, after passing a µc,s,i distribution with a mean of 0 and vari-
ance equal to .75 through the probit transformation, the net prior
distribution over the accuracy scale is weakly informative, with a
mode at .5, but with non-zero density at 0 and 1 (the effect of the
order constraints through mixture modeling, as described below,
push this composite prior somewhat closer to uniform over the 0
to 1 accuracy scale). We note that prior distributions that impose a
smaller variance (larger density around 0.5 on the accuracy scale)
or larger variance (larger density at 0 and 1 on the accuracy scale)
produced comparable results (see below).

Eqs. (5) and (6) emphasize the data generating process, how
the model describes the production of response on a given trial.
The model determines the probability of the data according to the
following expression, which uses the probability mass function of
the bivariate probit (referred to with ψ2) that results from the
above equations
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(7)

That is, the probability of an observation (i.e., a pair of accu-
rate or inaccurate responses for each task) given a set of model
parameters (left hand side of the above equation) is assigned by the
probabilitymass function of the bivariate probit (right hand side of
the above equation). Note that the probability mass function of the
bivariate probit has a natural interpretation in terms of the cumu-
lative density function of the bivariate normal distribution. To be
explicit, if we call the probability density function of the bivariate
normal φ2, then the probability of the four possible trial outcomes

3 We used LKJ hyperprior on correlation matrices rather than the Wishart on
covariancematrices owing to the non-centered parameterization of ourmodel. That
is, using the LKJ hyperpriors allowed for independent control over the population-
level scale and correlation parameters. Moreover, given that the trial-level standard
deviations were fixed to 1, for consistency this matrix was distributed as an LKJ . For
the LKJ distribution, in this 2x2 case, a shape parameter equal to 1 implies uniform
density across all correlations, a shape parameter between 0 and 1 implies a trough
(i.e., values closer to 0 put higher density on both extremely low and extremely
high correlations), and a shape parameter greater than 1 concentrates the density
symmetrically around 0.

(e.g., all combinations of accurate and inaccurate performance on
the two tasks) can be assigned with the following expressions.
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The expressions in (8) imply that the probability of an outcome
is given by the ‘‘amount’’ of the bivariate normal contained within
the appropriate quadrant (analytic calculation given by Pan, 2017).
The formof themodel in (7) is useful for defining our inferential ap-
proach, but in contacting the data,we assume amixture ofmultiple
bivariate probits, similar to prior state-trace models (Davis-Stober
et al., 2016; Prince et al., 2012).

Model comparison between the bidimensional and unidimen-
sional models requires the imposition of order constraints (i.e.,
constraints on the rank order of the condition means for each of
the two dependent variables), but the model described so far is
unconstrained in its placement of the conditionsmeans. To restrict
the model to be strictly monotonic, as per the unidimensional
model, order constraints were placed on the condition effects, β .
For example, in our experiment with 4 conditions (labeled as 1, 2,
3, or 4), a monotonic state-trace could be realized by requiring that
the condition parameters are in the following order: β1 ≤ β2 ≤

β3 ≤ β4 in the construction of both µX and µY . A non-monotonic
state-trace could be realized, for instance, by requiring that the
condition effects for the construction of µX have order β1 ≤ β2 ≤

β3 ≤ β4 whereas the order ofµY is β1 ≤ β3 ≤ β2 ≤ β4 (where the
second and third β have been swapped). The full unidimensional
and bidimensional models can then be realized as mixture models
over all allowable orderings,where each component of themixture
is a copy of the unconstrained model in Fig. 2, with the imposition
of a particular order constraint.

We next describe how, within one component of the mixture, a
particular ordering onβ is enforced, using the techniquedeveloped
by Bürkner (2017) and Bürkner and Charpentier (preprint). Con-
ceptually, this technique involves sampling three kinds of param-
eters. One parameter will be referred to as β intercept , and another
βraw . β intercept corresponds to the lowest β and the sum of β intercept

and βraw corresponds to the highest β . The third kind of parameter
is a vector whose elements are between 0 and 1, and sum to 1
(referred to as ζ ). This third kind serves to place the remaining β
values between the lowest and the highest values. That is, these
three kinds of parameters are combined to create a vector of
condition effects for all conditions that follow a particular order for
the βc in Eq. (6). After choosing the β intercept and βraw , ζ models the
normalized proportion ofβraw for the ‘‘interior’’ conditions (i.e., the
conditions lying between the worst and best).4

βc = β intercept
+ βraw

n_conditions−1∑
i=1

ζi c ∈ 2, . . . , n_conditions − 1

(9)

The ζ are constrained such that ζi ∈ [0, 1] for all i and∑n_conditions−1
i=1 ζi = 1 (i.e., the ζ are the weights of a simplex).

Anydistribution capable of generating a simplex could be a suitable

4 Note that this scheme assumes the order is monotonically increasing and
requires that 0 < βraw .
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prior for ζ . We used a two-stage method.5 First, n_conditions − 2
intermediate parameters, ζ raw , are sampled from a normal distri-
bution,

ζ raw ∼ N
(
0, σζ

)
. (10)

The ζ raw are then concatenatedwith a 0 and the resulting vector
(still denoted as ζ raw in the following equation) is transformedwith
the softmax function to produce the final ζ

ζ =
exp (ζ raw)∑n_conditions−1

i=1 exp
(
ζ rawi

) . (11)

The standard deviation hyperprior parameter, σζ , determines
the prior likelihood on the spread of the β between β intercept and
βraw . In the model recovery and initial applications of the tech-
nique to real data, σζ was set to 3, which allows for substantial
variability in how the interior points cluster between the lowest
and highest condition effects. Values of 1 were tried and observed
to produce similar results.6 As stated above, an N (0, σ ) prior was
placed on each of β intercept and βraw , with the standard deviation σ
set to 0.5.

The resulting βc values, together with β intercept , define a vector
of condition effects that follow a predetermined order. To create
either the unidimensional or bidimensional models, we used the
Davis-Stober et al. (2016) mixture-model approach by combining
the different allowable orders under each model.7 By ‘‘mixture’’,
we mean that each of the allowed orderings, j, is assigned a prob-
ability of being the true order of condition effects λj. The num-
ber of λj values to estimate is the k!m possible permutations of
condition effect orderings within a model, where k is the number
of conditions and m = 1 in the unidimensional case and m =

2 in the bidimensional case. The same two-stage approach that
models the ζ was used to model λ.8 The likelihood of a given trial,
incorporating all n_orders that are allowed by a givenmodel is then
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The difference between Eqs. (12) and (7) is the presence of the
mixing parameters, λj. Eq. (12) implies that the probability of the
observed data on a given trial is equal to the weighted sum of
the probabilities assigned to bivariate probits whose means have
been constructed with each of the allowable orderings in a model.
The weights are equal to the estimated likelihood of that order.
The components of the mixture are differentiated by how the µ
parameters are constructed (i.e., the order constraints put on the
condition effects) and theweights,λj, instantiate uncertainty about
the true order of condition effects for a given model.

5 The two-stagemethodwas chosen as a prior for ζ rather thandirectly sampling
from e.g., a Dirichlet for computational reasons. That is, initial attempts to sample
ζ directly from a Dirichlet often resulted in autocorrelated chains, whereas an
informal assessment of the two-stage method appeared to result in more efficient
sampling. Note that in the section Applications to real data, the model reached the
same conclusions regardless of whether the interior conditions are determined
with the two-stage method or whether they are the same sampled directly from
a Dirichlet prior with shape parameter of 1.
6 Values above 5 are not advised, as that would pull substantial density away

from 0. High values of ζ raw tend to produce βc that can cluster too strongly near the
lowest and highest condition effects. However, this is only a soft recommendation
because this parameter was explored only informally.
7 Note that, unlike Davis-Sober et al., the model that results from our procedure

is a union of the allowable orders, rather than a consideration of the implied convex
hull.
8 In all applications of the model in this paper, the same prior that was used for

construction of ξ was used in construction of λ.

We note that – as discussed by Kalish et al. (2016) and Prince
et al. (2012) – a researcher’s prior knowledge about an experiment
can reduce the number of orders under consideration by excluding
implausible orders. Indeed, the conditions of an experimentwhose
state-trace will be analyzed are often chosen after careful planning
and piloting so as to be sufficiently diagnostic of the models in
question. That is, even though the effects of the different conditions
are not known in advance of the experiment, certain orders often
be safely be assumed to be implausible, and excluding them may
be necessary for a fair test of the models in question (Davis-Stober
et al., 2016; Prince et al., 2012). For example, in the experiment
that led to the development of this technique, the arrangement of
two of the four study conditions could easily be predicted before
the start of the experiment. More specifically, performance for any
condition involving some form of study (Binocular, CFS, Word)
should be no worse than the No study condition. Similarly, we
can safely assume that performance following Binocular study
should be no worse than after CFS or Word study, considering that
binocular study provides both the visual details and the object’s
name. Thus, for the unidimensionalmodel, rather than considering
the 4! = 24 possible orderings, we need only consider 2! = 2
plausible orders (two arrangements of the Word and CFS condi-
tions, pinning No study in the lowest position and Binocular in
the highest position). For the bidimensional model, rather than
considering 4!2 = 576 possible orderings, we need only consider
2!2 = 4 plausible orders (two arrangements of the Word and
CFS conditions for each dependent measure, again pinning No
study in the lowest position and Binocular in the highest position).
This drastically reduces the computational burden when applying
the technique. Critically, limitations on possible orders should be
determined without reference to actual results.

In summary, dependencies between the two dependent mea-
sures are modeled via correlations in population-level subject and
item effects, as well as trial-level correlations between the de-
pendent measures that differ based on the condition. This set-
up reflects the presence of three related but conceptually distinct
kinds of correlational structure that may be present in a partic-
ular dataset. First, correlations may be present between the two
measures across subjects. High, positive correlations in subject
effects might correspond to a large role of motivation, whereby
certain participants tend to perform well or poorly in both tasks.
Second, correlations may be present between the two measures
across stimuli (e.g., visual objects that are easy to name from a
part are also easy to recognize from a pair of parts). Finally, after
controlling for subject and item effects, dependencies may still
remain between the outcome variables, owing to, e.g., within-trial
tradeoffs (more effort on one task than the other) or between-trial
fluctuations (more effort on some trials than others). Modeling all
three kinds of dependency simultaneously andwith high precision
is most efficiently achieved with a hierarchical model (Kruschke,
2014; Rouder & Lu, 2005).

Inference about the latent dimensionality of the cognitive space
can proceed through model comparison. Both the unidimensional
and bidimensionalmodels are fit (where the twomodels are differ-
entiated based on the orders of condition effects under considera-
tion). Then, any suitable criterion for picking the best-fittingmodel
can be used.

In the present paper, we chose the Widely Applicable Infor-
mation Criterion for model comparison (WAIC; Watanabe, 2010).
The WAIC is a measure of the predictive accuracy of a model.
Performance of themodels under comparison ismeasured in terms
of a difference in the expected value of their log of predictive distri-
bution. That is, a model which is chosen by WAIC can be expected
to provide better predictions of future data. The significance of this
difference can be assessed by comparing an estimate of the stan-
dard error of this difference to some pre-determined threshold. In
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Fig. 3. Power to reject a monotonic function when (A) the data included correlations at the trial level or (B) the subject level. Panels depict power curves for datasets
analyzed using the Coupled Monotonic Regression (CMR) technique of Kalish et al. (2016). The model was applied to simulated data that were generated either with trial-
level correlation (A) or subject-level correlation (B). Correlations were set to be +.9 (positive), 0 (none), or −.9 (negative). The symbols show the results of each simulated
dataset and the lines show a logistic regression. Note that the CMR technique assumes independence between the dependent measures and yet the results from applying
CMR are clearly affected by correlations in the data. See text for additional details.

the model comparisons presented here, we chose the frequently-
adopted threshold of two standard errors. For further details on the
calculation of the WAIC and estimation of the standard errors, we
refer readers to Vehtari, Gelman, and Gabry (2017).

2. Model recovery via simulation

Any new statistical analysis technique needs to be validated
through experimental and/or simulation studies. In this section,
we show that the model can recover ground-truth from simu-
lated data. That is, when the data are generated from a non-
monotonic function, the technique picks the bidimensional model,
and, conversely, when the data are generated from a monotonic
function, the technique picks the simpler, unidimensional model.
Our simulations also explored the technique’s robustness to dif-
ferent settings for the subject-level and trial-level correlations.
Before presenting these model recovery simulations, we provide
quantitative evidence of the claim that correlations can bias the
results of a State-Trace Analysis.

Fig. 1 suggests that a state-trace analysis that captures the cor-
relation ought to have greater power to reject a monotonic model
when the data are positively correlated, for a situation where the
general trend across the conditions is a positive increase. Fig. 1
also suggests that when using a model that incorrectly assumes
independence, there is little difference between positively and
negatively correlated data, although this is an empirical question
that we address next (Fig. 1 was generated by hand to outline the
situation conceptually). To explore how a model that incorrectly
assumes independent data might be affected by correlations in
the data, we conducted a power analysis by applying the Kalish
et al. (2016) technique to simulated data generatedwith positive or
negative correlations. We simulated 200 non-monotonic datasets
with 20 trials from four conditions withmeans of (1, 2, 3, 4) and (1,
3, 2, 4) along the two dependent measures. Kalish et al. defined a
measure of effect size for non-monotonicity based on the arrange-
ment of condition means and the variance of each condition, so in
this simulation wemanipulated effect size by altering the variance
of the data. The generated data did not include variability due to
subject or item effects. We then applied the continuous version of
the CoupledMonotonic Regression technique of Kalish et al. (2016)
to each of these datasets and talliedwhich oneswere rejected at an
alpha level of 0.01. In all simulated datasets, the correct result is a
rejection ofmonotonicity, so the proportion of rejections can serve

as an estimate for power. A similar power analysis was provided by
the authors of the Coupled Monotonic Regression technique, but
the simulations here were repeated with correlations of −0.9, 0,
and 0.9.

Results of this demonstration are presented in Fig. 3A. Despite
assuming independence between the dependent measures, the
power of the technique nevertheless depends on the correlation
present in the data. In particular, this technique exhibits highest
power for negatively correlated data and lowest power for posi-
tively correlated data. Notably, this conclusion is the opposite to
that suggested by the bottom row of Fig. 1, which indicates that
a statistical model that explicitly models the dependency in the
datawill instead have greater power to reject themonotonicmodel
with positively correlated data (below we confirmed this hypoth-
esis when applying our technique to positively versus negatively
correlated data). More generally, this is a simple demonstration
that correlations in the data matter, in terms of assessing mono-
tonicity.

Next, we investigated whether the biasing effect of correlation
in the data is unique to the trial-level, or whether it can also
occur owing to other sources; namely, correlations between how
well a subject does on one task versus how well they do on the
other task. To assess the impact of subject-level correlation, we
repeated the above simulation but varied the correlation present
at the level of subjects (and set the trial-level correlation to 0).
We again generated 200 datasets at varying levels of effect sizes
(altering both trial-level and subject-level variability). The results
are plotted in 3B, which shows the same pattern as in 3A.

These simulations support the claim that unacknowledged cor-
relations in the data can bias a state-trace analysis when using a
model that assumes independence, with this occurring regardless
of the source of the correlation (i.e., for both trial and subject cor-
relations). Thus, it is important that any statistical model address
these correlations. Next, we report model recovery simulation
results with our proposed technique to assess its ability to recover
ground truth with different correlations in the data.

Three pairs of datasets were simulated with different trial-level
correlations (Fig. 4), set to be 0, 0.5, and −0.9. Each pair consisted
of two simulated datasets from themodel described in the previous
section: onewith an ordering that described amonotonic function,
thereby compatible with both models (although this would be
consistent with a larger proportion of the allowable orderings
under the unidimensional model), and one with an ordering that
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Fig. 4. Simulated data for model recovery. (A) Simulated monotonic and (B) non-
monotonic datasets, at each of 3 correlations. Evidence values above 0 produce
correct responses for the task corresponding to that evidence dimension. Each
dataset included 8000 observations. The ellipses indicate the 95% highest density
interval of fitting a bivariate normal distribution to these simulated datasets. The
proposed technique recovered the true model in all cases.

could only be explained by a bidimensional model. Each dataset
included 50 subjects presented with 40 items in each of 4 condi-
tions (i.e., 8000 observations in total). The remaining parameters
for the simulated datasets were specified in the unconstrained
space (i.e., as probit values). The condition effects in themonotonic
model were ((−1,−1) , (−0.5,−0.5) , (0.5, 0.5) , (1, 1)), and for
the non-monotonic model they were ((−1,−1) , (−0.5, 0.5) ,
(0.5,−0.5) , (1, 1)). The variability of subject and item effects was
set to 0.5 probits (i.e., subject and item effectswere sampled from a
bivariate normal distribution with no correlation and standard de-
viation of 0.5 along both dimensions). These parameters produced
data from each condition that were highly overlapping (Fig. 4).

As discussed in the last section, not every possible order may
be reasonable for a given experiment. Therefore, in these simu-
lations we consider only a subset of the possible orders for each
model, namely, only those orders with the lowest and highest
condition effects appropriately placed. Again, we emphasize that
this decision of which orders to consider should be made during
the planning stage of an experiment, before the data have been
collected.9

All models were fit using the No-U-Turn Sampling algorithm
with the R interface to the Stan language (Stan Development Team,
2017a, 2017b). The WAIC was calculated via the loo package (Ve-
htari, Gabry, Yao, & Gelman, 2018; Vehtari et al., 2017). Six chains
were run (starting from random parameter initializations), with
1000 samples of warmup and an additional 1000 samples from the
posterior (6000 posterior samples, overall). To assess convergence
of the model to the posterior distribution, the split − R̂ was cal-
culated and chains were monitored for divergences (Betancourt,
2017; Betancourt & Girolami, 2015; Gelman, 2014, Chapter 11;
Gelman & Rubin, 1992). The split − R̂ involves first splitting each
chain in half and then comparing the variance within each (split)

9 One adjustment was made in the model recovery simulations, relative to the
presentation of the model in the previous section. In these simulations, the β intercept

parameter was constrained in the fitting routine to always be less than the βraw , for
each order. This contrasts with the description of themodel in the previous section,
and in the application to real data. In practice, if there is a baseline condition with a
probit value below 0 (as there was during model recovery), this constraint will not
have a substantial effect on the posterior parameter estimates.

chain to the variance across each (split) chain for each param-
eter individually. Chains that sample from disparate regions of
the posterior often have a variance ratio much greater than 1. In
these model recovery simulations, all split − R̂ values were below
1.1. Aside from lack of convergence between the chains, another
potential problem is a chain that fails to adequately sample from
the posterior distribution. Posteriors that are challenging to ade-
quately sample from can be identified as such when constructing
chains with Hamiltonian Monte Carlo (or variants such as the No-
U-Turn Sampler) by checking for divergences in the simulations
that define each iteration of the chain (Betancourt, 2017; Duane,
Kennedy, Pendleton, & Roweth, 1987; Neal, 1996). There were no
divergences.

Results: In all six comparisons, the correctmodelwas chosen by
more than 3 standard errors. This is encouraging, as it suggests that
the technique can pick the correctmodel given sufficient power. To
test whether this technique also handles subject correlations, the
above analysiswas repeated three times, using subject correlations
of 0, −0.5, and 0.5. Again, the correct model was chosen by more
than 3 standard errors in all cases.

Beyond model comparison, the bottom row of Fig. 1 suggests
that a monotonic model that captures correlations in the data
should better fit negatively correlated data than positively cor-
related data, provided that the data have non-monotonically ar-
ranged means that are positively increasing (notably, this is the
opposite of the results when applying CMR; see Fig. 3). To assess
this, we compared the WAIC of the unidimensional model to non-
monotonic data for the situation of no trial-level correlations, but
subject-level correlations set to −.5, 0, or +.5. As expected, the
WAIC for the unidimensional model applied to negatively corre-
lated data indicated better predictive performance as compared
to the situation with positively correlated data, with a difference
in WAIC scores between negative and positively correlated data
of approximately 1 standard error. Thus, as compared to CMR,
assumptions of independence versus allowing dependencies pro-
duce seemingly opposite results in terms of goodness of fit of the
monotonic model, as a function of correlations in the data. Some-
what surprisingly, the largest change across the different levels of
correlation in the data was that, for uncorrelated data, the WAIC
value for the unidimensional model was nearly 40 standard errors
worse than for the correlated data. However, on further reflection,
this is sensible, demonstrating that the model can capitalize on
correlations when they exist: as the correlation approaches 1 (ei-
ther positive or negative), the outcomes become more highly con-
strained, resulting in better generalization (i.e., better WAIC), but
with uncorrelated data, awider range ofmean valueswork reason-
ablywell, resulting inworse generalization. This again underscores
that correlations in the data ought to affect the inferences made in
a state trace analysis.

One advantage of the proposed technique is that, in addition
to mitigating bias due to correlation between the dependent mea-
sures, that correlation can be estimated. For example, the most
posterior distributions of the trial-level correlation parameters
straddled the values that were used to generate the data (Fig. 5).
While there were a few failures where the posteriors for each
correlation parameter differed between conditions or missed the
true value, these failures tended to occur when the model was
not matched to the data. For example, the unidimensional model
exhibits spurious differences between the correlations across con-
dition means when the data were nonmonotonic and the true
correlation was 0.5 (Fig. 5, bottom right).

3. State-trace analysis applied to real data

To assess the method using real data, we applied the pro-
posed technique to a recently collected dataset (Figure 6; Sadil
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Fig. 5. Recovery of simulated trial-level correlation. Posterior distributions (median and 95% highest density interval) of each of the four trial-level correlation parameters
(one for each condition) across the simulated datasets. The horizontal axis is grouped by whether the data were generated with a monotonic or non-monotonic function,
and the top and bottom rows show the posteriors after fitting with the bidimensional and unidimensional models, respectively (the unidimensional model is nested within
the bidimensional model). Most posterior distributions straddle the value that was used to generate the data (dashed line), but the largest misses occur when the data were
not matched to the model.

Fig. 6. Real data for analysis by proposed technique. Average performance on the
two tasks in the four conditions. Error bars indicate within-subject Confidence
Intervals, including correction by Morey (2008). 48 participants contributed 32
trials in each of the 4 conditions. For further details, see Sadil et al. (submitted).

et al., submitted). In contrast to the exclusively monotonic or non-
monotonic effects used during model recovery, this application to
real data revealed identifiability problems that can arisewhen data
are not clearly monotonic or non-monotonic. In this section, these
challenges are explored, and a potential solution is presented.

As in the simulated example, we compared restricted versions
of the unidimensional and bidimensional models. Specifically, in
the unidimensional and bidimensional models, the only orderings
consideredwere the ones inwhich subjects performedworst in the
Not Studied condition and best in the Binocularly studied condi-
tion. Ten chains were run, using 1000 samples of warmup and 500
posterior draws, each. The unidimensional model exhibited good
convergence (as measured by split − R̂ and lack of divergences),
but the bidimensional model failed the split − R̂ diagnostic. In
particular, the chains sampleddisparate arrangements of condition
means (βc), resulting in a highly multimodal posterior distribution
(each arrangement of condition means resulted in a mode that
chains did not transition between). Although multiple modes are

not necessarily problematic to Bayesian inference, the presence of
multiplemodeswill frustrate the ability of theNo-U-Turn Sampler,
and the resulting draws from the chains are not guaranteed to
adequately represent the posterior distribution.Model comparison
would be inappropriate without better convergence.

Further investigation revealed that thismultimodality reflected
a form of model mimicry. Mimicry occurs because data that con-
form to a non-monotonic arrangement of means can be captured
through a mixture of different monotonic orders (or vice versa: a
monotonic order could reflect amixture of non-monotonic orders).
In our model, this can occur even within an individual consid-
ering that the mixing across orders occurs at the trial level. We
present a simulation to illustrate model mimicry when dealing
with a mixture across orders. To simplify the example, the data
were generated without any subject- or item-effects. Additionally,
the data were continuous-valued (i.e., generated from a bivariate
normal), and the trial-level correlationwas set to 0.9. The condition
means were non-monotonically arranged, with values of ((−2,
−2), (−1, 1), (1, −1), (2, 2)). Each condition had 600 trials and
the data are shown in Fig. 7A. The monotonic model was fit to
these data, allowing only for the two monotonic orders in which
the first and fourth conditions were fixed as the best and worst,
respectively. Simulated datawere then sampled from the posterior
distribution. This resulted in a posterior predictive distribution,
shown in Fig. 7B. Although none of the mixing components in the
unidimensional model included non-monotonically arranged con-
dition means, our implementation of the unidimensional model is
nevertheless able tomimic non-monotonic data. It achieves this by
determining that both of the orders are equally probable (the mix-
ing parameter was highly concentrated around 0.5). Generatively,
this can be understood as the model determining that each order
is equally likely for the given trial. Across samples in the posterior
predictive distribution, the model therefore produces each order
equally often. Although the model is unable to capture the mode
of conditions 3 and 4, the positive correlation in the data enabled
the model to place predictions on high density regions of the data.

Application of the bidimensionalmodel can therefore result in a
kind of non-identifiability. When the data are non-monotonic, the
bidimensionalmodel can account for this by either (A) placing high



128 P. Sadil, R.A. Cowell and D.E. Huber / Journal of Mathematical Psychology 90 (2019) 118–131

Fig. 7. Flexibility of monotonic model as applied to non-monotonic data. Contin-
uous data for which the means are non-monotonically arranged (A) were fit with
a unidimensional model, the posterior predictive distribution of which is shown in
(B). Although none of the components of thismodel contain a non-monotonic order,
the model can reproduce a degree of non-monotonicity by placing equal weight on
the different allowable orderings; the model can either generate from the lower
left cloud of condition 2 and the upper right cloud for condition 3, or the lower
right cloud in condition 3 and the upper left cloud for condition 2. Because the data
are positively correlated, the model effectively captures much of the data with a
mixture of these two arrangements. Ellipses in (B) show the estimation of a 2d-
gaussian fit to the posterior samples.

probability on the mixture component associated with the non-
monotonic order, or (B) placing approximately equal probability
on themixture components associatedwith the twomonotonic or-
ders. The reverse situation could occur if the data weremonotonic.
Moreover, the values of the condition mean parameters (within
each order) that are deemed likelywill depend onwhich orders are
determined to be likely. This trade-off between condition means
and order probabilities represents the source of the multimodality
observed when the bidimensional model was applied to real data.
Presumably, this non-identifiability was not observed in themodel
recovery simulations due to the relatively large effect sizes (mag-
nitude of non-monotonicity) that were modeled, and the relative
uniformity of the simulated subjects (all subjects were simulated
to follow the same set of condition means).

The notion that combinations of data that are monotonically
arranged can appear non-monotonicwas explored byDavis-Stober
et al. (2016) and Prince et al. (2012), under the assumption that
different subjects have different orders. However, our model sug-
gests the possibility of something more pernicious, with mixtures
of orders occurring within an individual. Our first attempt to solve
the convergence problem for the bidimensional model relaxed
the fixed effects assumption, allowing that different subjects have
different mixtures across the orders, with different conditions
means for each subject (see the Appendix for further details). How-
ever, this decoupling of subjects only exacerbated the convergence
problem for the bidimensional model.

A more straightforward modification to the proposed tech-
nique is to compare models that contain only monotonic or non-
monotonic orders, rather than using nestedmodeling between the
unidimensional and bidimensional models. That is, rather than
comparing the unidimensional model (which has two allowed
orders for the present dataset) against the bidimensional model
(which has four allowed orders), one could compare the unidimen-
sional model to a model with the remaining two orders (i.e. only
the non-monotonic orders). Indeed, application of the proposed
mixturemodel exhibits good convergence for bothmodels and the
results suggested that the models faired equally well (i.e., there
was no clear winner). However, as outlined in the introduction,
our theoretical question of interest is not monotonic versus non-
monotonic but rather the dimensionality underlying the data.
In light of this goal, any reliable instance of non-monotonicity
(e.g., clearly non-monotonic data for some subjects) could fal-
sify the unidimensional model, even if the dataset as a whole is

equivocal when comparing the monotonic and non-monotonic
models. Thus, this comparison between the monotonic and non-
monotonic models does not differentiate between the unidimen-
sional and bidimensional models. For instance, it is not clear
whether equivalence between the monotonic and non-monotonic
models indicates that the data were insufficient for determining
the latent dimensionality (e.g., noisy data or too few observations)
or whether this indicates that some aspects of the data (e.g., some
subjects) were non-monotonic, while other aspects were mono-
tonic (e.g., other subjects). If the latter is true, this would favor the
bidimensional model.

Considering the convergence problems for the bidimensional
model when mixing across orders, we instead formulated the
model comparison in terms of each order on its ownmerits (i.e., no
mixing of orders, which eliminated the λ parameters), asking
whether each order provided the best account of the dataset as a
whole and also the extent towhich each subjectwas best explained
by that order. Because each order is an instance of monotonicity or
non-monotonicity, this allowed an assessment of whether the data
contained specific instances of non-monotonicity. In the current
case, there were four models, where the pairs of condition means
for No Study and Binocular are constrained to be lowest and high-
est, respectively, and each model specifies a particular ordering
of the two middle conditions for the two dependent variables. In
changing the model comparison to a comparison amongst orders,
we allowed that each subject has their own set of condition means
under the constraints of that order (see Appendix).

In addition to comparing the four orders using WAIC, we also
compared the different orders using the Pseudo Bayesian Model
Averaging Plus (PseudoBMA+) method proposed by Yao, Vehtari,
Simpson, and Gelman (2018). This technique is similar to AIC
model weights in that it estimates the probability that amodel will
best predict future data, given the observed data (Akaike, 1978;
Wagenmakers & Farrell, 2004). However, the estimation procedure
is substantially different, not least because it relies on the full
posterior distribution and the weights are regularized based on
the uncertainty of the estimated predictive ability of a model.
PseudoBMA+ weights were calculated with the R package, loo
2.0.0 (Vehtari et al., 2018). Use of the PseudoBMA+ allowed us to
compare the four models for each subject, even though themodels
were applied to the entire dataset.

Models that allowed for each of the four orders were fit sep-
arately using 10 chains that were allowed 1000 warmup samples
and 500 samples from the posterior. The PseduoBMA+weights re-
vealed substantial support for the order that matched the raw con-
dition means. Specifically, in the supported model, the condition
means for the 2AFC task were ordered as No Study<Word< CFS
< Binocular, while the condition means for the Naming task were
ordered as No Study < CFS < Word < Binocular. This represents
a non-monotonic arrangement, and it was given a PseudoBMA+
weight of 0.99. The WAIC scores between this most preferred
order and the second most preferred order (a monotonic order in
which the condition means followed Not Studied < CFS < Word
< Binocular for both dependent variables) revealed a difference of
2.8 standard errors.

The primary concern that prompted development of this tech-
nique was that the presently available methods do not account for
correlations between the dependent variables, and that failing to
acknowledge these dependencies may bias the model comparison
process. One advantage of the proposed technique is that the utility
of modeling these dependencies can be assessed by comparing a
model with and without these correlations. A comparison of the
WAIC for the best-fitting order to that same order with correlation
parameters fixed to 0 revealed that the model with correlation
parameters was preferred by 7 standard errors.
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4. Limitations and further modeling considerations

In this section we briefly mention extensions and discuss lim-
itations of the proposed technique. One extension is application
to continuous data rather than binary decisions. This could be
achieved with a bivariate normal distribution, rather than a bivari-
ate probit. Most of the remaining structure would be the same,
except that the variance on the priors would need to be increased
and the model would require a prior on the trial-level variance.

One limitation of the proposed technique is its computational
demands. On a modern though not state-of-the-art computer
(2.40 GHz), the longest running chain required 2 h to finish. In
comparison, the technique of Kalish et al. (2016) only takes a few
seconds to run and the Bayesian approach of Davis-Stober et al.
(2016) is also quite fast. Although the slow speed of the proposed
technique is acceptable for comparison between a small number of
orders, this computational burden makes it challenging to explore
whether the results are robust to model assumptions (e.g., to
assess the impact of different priors). Likewise, since each order
must be modeled separately, designs that involve more conditions
may require substantial computational power. This increase with
the number of conditions is unfortunate, given that the inclusion
of many conditions can benefit a state-trace analysis by more
fully mapping out the functions along each dependent measure.
However, advances in computer technology (e.g., GPUs) may ulti-
mately overcome the computational limitations of this technique.
Moreover, access to a computing cluster can be beneficial, as each
chain and each model can be run in parallel.

Another potential limitation may arise if different participants
have different orders. Our model comparison between orders al-
lowed that each participant could have their own set of conditions
means, but those means were subject to the same order constraint
for all participants. Additional model recovery studies are needed
to assess whether the proposed technique is robust to violations
of this fixed order constraint. In the meantime, the current results
can be used to assess heterogeneity across subjects by calculating
a PseudoBMA+ weight for each participant (Fig. 8). That is, rather
than calculating a single weight for each model based on the log-
likelihood of all trials across all subjects, one can calculate aweight
for each subject from the log-likelihoods that correspond to trials
contributed by that subject. Doing so provides an approximate
way to ask which order will be best able to predict new data for
each subject. This approach is more constrained than fitting each
subject separately in that: (1) item effects can only be determined
by modeling the dataset across subjects; (2) pooling data across
subjects provides increased precision when estimating the trial-
by-trial dependencies inΩc , which are assumed to be the same for
all subjects; and (3) correlations between the twomeasures across
subjects will induce shrinkage in subject-specific conditionmeans.

The order of subjects for both panels of Fig. 8 is according to
how strongly the data of each subject favored the 2 non-monotonic
orders as compared to the 2 monotonic orders, as seen in Fig. 8A.
Although there are some participants whose data seem to be
predictable with just a single order (Fig. 8B), the results favoring
the first order (the non-monotonic order seen in the condition
means) are not as clear-cut as they were for the dataset as a whole,
which exhibited a PseudoMBA+ weight of.99 for this order. This
is unsurprising, and likely reflects the relatively low trial count
(32) for each condition for a given subject. Across these subject
differences, the first order, as shown by the black bars, fared better
than the other orders more often than would be expected by
chance, and collectively across the dataset this provided strong
support for this ordering of the condition means.

Fig. 8. Subject-level PseudoBMA+ Weights. (A) 2loge(odds) of non-monotonic to
monotonic orders, for each participant. Higher values indicate larger support for a
non-monotonic order. (B) PseudoBMA+weights for each of the four orders, with the
list of participants in the same sequence as in panel A. The first and second orders
are non-monotonic, with conditionmeans in the 2AFC task following Not Studied<
Word< CFS< Binocular and Not Studied< CFS<Word< Binocular, respectively,
and following Not Studied < CFS <Word < Binocular and Not Studied <Word <
CFS< Binocular in the Naming Task (see Fig. 6 for data). The third and fourth orders
are non-monotonic, with the conditionmeans following Not Studied<Word< CFS
< Binocular and Not Studied< CFS<Word< Binocular, respectively.

5. Conclusion

State-trace analyses are a powerful, relatively non-parametric
method for distinguishing between models that differ in latent
dimensionality (e.g., Bamber, 1979; Dunn et al., 2014; Prince et al.,
2012). However, despite making few assumptions, current state-
trace analysis techniques are not completely assumption free.
Specifically, current approaches assume independence between
the dependent variables. The first goal of this paper was to high-
light that correlations between the dependentmeasures of a state-
trace analysis can critically influence the analysis (i.e., they can
produce model selection biases when incorrectly assuming inde-
pendence). The second goal was to show that this assumption
can be relaxed by modeling the joint distribution of data in a
hierarchical framework. Explicitly modeling the joint distribution
of the data avoids bias in the analysis, enables estimation of the
dependencies, and can increase the sensitivity to uncover the
underlying non-monotonicity of the data.

It is important to clarify which aspects of the technique intro-
duced here are essential andwhich are nonessential. Central to the
technique was a model of the joint distribution of dependent vari-
ables in a hierarchical framework, to avoid the assumption of in-
dependence between the dependent variables. Uncertainty in the
monotonicity of the truemodelwas initially instantiated through a
mixture of possible orderings of condition effects, but model com-
parison ultimately required fitting each plausible order individu-
ally. Other details are nonessential. For example, the model was fit
using Stan’s No-U-Turn Sampler algorithm, but any suitably robust
algorithm could have been applied. Similarly, model evaluation
proceeded via comparison of PseudoBMA+ and WAIC, but other
measures could be suitable. Likewise, the choice of a bivariate pro-
bit was nonessential; other distributions that provide a reasonable
description of the data could be utilized (e.g., a bivariate normal
distribution if the data are continuous).

A final point to consider is that for some datasets, the indepen-
dence assumption may be adequate even if untrue. For instance,
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if one adopted the technique presented here but set the correla-
tion parameters to be zero, the posterior distribution would still
capture positive or negative dependencies between the subject-,
item-, or trial-effects, if the data were sufficient to overwhelm this
prior assumption of independence. We were motivated to develop
this technique because our experimental design could easily have
induced correlations between the dependent measures and be-
cause the number of data points collected for each individual was
relatively low (insufficient for overwhelming the prior), given the
limited number of available items (items can only be used once per
participant in this learning task). Furthermore, the power analyses
we conducted by applying the Kalish et al. (2016) technique to
simulated data revealed that unacknowledged dependencies in the
data can cause biases. Accordingly, we developed a method that
captures dependencies at the subject, item, trial levels, and we
demonstrated that this technique can recover ground truth values
of these dependencies across a range of simulated values.
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Appendix

In this appendix, a modification to the model is presented that
allows for modeling of subjects with individualized mixing pro-
portions and condition effects. In this model, the condition effects
(βc) and subject-effects are removed. instead, a separate β intercept ,
βraw , and ζ is drawn for each subject, s. The resulting, subject-
dependent, condition means are then defined as in Eq. (9):

βc,s = β intercept
s + βraw

s

n_conditions−1∑
i=1

ζi,s

c ∈ 2, . . . , n_conditions − 1

(A.1)

As before, each βraw is sampled from a univariate normal distribu-
tion, so the βraw values across tasks are sampled independently.
Any suitable prior can be used for the ζ , though they must sum to
1 for each subject. The β intercept are drawn from bivariate normal
distributions.

β
intercept
s ∼ N

((
ηx
ηy

)
,

(
τx 0
0 τy

)
Ω

(
τx 0
0 τy

))
(A.2)

As in the main text, sampling is done with the non-centered
parameterization. In contrast to the model in the main text, the
means of these subject effects, ηx and ηy are not fixed to 0, but
are instead given separate univariate normal priors, N(0, 0.52) —
the same prior as the β intercept received in the main text. The scale
parameters, τx and τy, are given gamma priors with shape of 2 and
rate of 4. Item-effects are sampled in the same way as described in
the main text. To be explicit, the resulting trial-level mean is then
defined by

µc,i,s = item_intercepti + βc,s, (A.3)

The final requirement is that the mixing parameters, λ, be
defined uniquely for each subject. The same priors described in the
main text can be used to construct a λ for each subject. This results
in amodel that assigns probability of a given outcome according to

p
((

x
y

)
c,s,i

|

(
µx
µy

)
c,s,i

,Ωc

)
=

n_orders∑
j=1

λj,sψ
2

((
x
y

)
c,s,i

|

(
µx
µy

)
j,c,s,i

,Ωc

)
. (A.4)

Eq. (A.4) differs from 12 only in the presence of a subscript s on

the λ and in how themeans,
(
µx
µy

)
j,c,s,i

were constructed (i.e., with

Eqs. (A.1)–(A.3)).
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