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Abstract The attentional blink (AB) is a temporary deficit for
a second target (T2) when that target appears after a first target
(T1). Although sophisticated models have been developed to
explain the substantial AB literature in isolation, the current
study considers how the AB relates to perceptual dynamics
more broadly. We show that the time-course of the AB is
closely related to the time course of the transition from posi-
tive to negative repetition priming effects in perceptual iden-
tification. Many AB tasks involve a switch between a T1
defined in one manner and a T2 defined in a different manner.
Other AB tasks are non-switching, with all targets belonging
to the same well-known category (e.g., letter targets versus
number distractors) or sharing the same perceptual feature.
We propose that these non-switching AB tasks reflect percep-
tual habituation for the target-defining attribute; thus, a ‘per-
ceptual wink’, with perception of one attribute (target identity)
undisturbed while perception of another (target detection) is
impaired. On this account, the immediate benefit following T1
(lag-1 sparing) reflects positive repetition priming and the
subsequent deficit (the blink) reflects negative repetition prim-
ing for the realization that a target occurred. In developing the
perceptual wink model, we extended the nROUSE model of
perceptual priming to explain the results of two new experi-
ments combining the AB and identity repetitions. This

establishes important connections between non-switching
AB tasks and perceptual dynamics.
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Introduction

The attentional blink (AB; Chun & Potter, 1995; Raymond,
Shapiro, & Arnell, 1992), is a temporary deficit in reporting
the identity of a second target (T2) after presentation of a first
target (T1), when the items are presented in rapid succession
(e.g., 100 ms per item). It is one of the most reliable and well-
studied tasks in the study of cognition, and a great deal of
effort has gone into understanding the mechanisms underly-
ing this task. In the current study, rather than focusing on the
AB task as something to explain in isolation, we consider
relations between the AB and other cognitive phenomena
(e.g., perceptual priming), which leads us to propose a novel
account of many AB tasks based on perceptual dynamics.
After reviewing the literature that led us to develop this ‘per-
ceptual wink’ model, we present the details of the model and
then test the model with two experiments examining interac-
tions between the AB and priming (both positive and nega-
tive priming). In the discussion, we present additional simu-
lations of other results in the AB literature and discuss the
relation between this model and other formal models of the
AB.

Perceptual priming and the nROUSE model

It takes time to form a stable percept (Gorea, 2015). For ex-
ample, images appear to blend together and overlap when they
are presented very briefly in quick succession (Hogben & Di
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Lollo, 1974). This blending also occurs for high-level attri-
butes such as the orthography or meaning of words, a phe-
nomenon referred to as ‘priming’ (Evett &Humphreys, 1981).
In some circumstances, immediate repetitions produce deficits
rather than benefits (Humphreys, Besner, & Quinlan, 1988).
The neural responding optimally with unknown sources of
evidence (nROUSE) model (Huber & O'Reilly, 2003) as-
sumes that priming deficits reflect neural habituation
(Tsodyks&Markram, 1997). Habituation reduces source con-
fusion from prior presentations, minimizing blending, but this
produces a form of ‘repetition blindness’ (Kanwisher, 1987);
lingering habituation makes it difficult to reactivate the same
perceptual representation. The nROUSE model successfully
explained many perceptual phenomena, including repetition
and semantic priming of words (Huber, 2008), repetition
priming of faces (Rieth & Huber, 2010), repetition priming
of episodic recognition judgments (Huber, Clark, Curran, &
Winkielman, 2008), semantic satiation (Tian & Huber, 2010),
repetition priming of same/different judgments (Davelaar,
Tian, Weidemann, & Huber, 2011), the priming of speeded
affective valence responses (Irwin, Huber, & Winkielman,
2010), as well as the time course of evoked electrophysiolog-
ical potentials for several of these paradigms (Huber, Tian,
Curran, O'Reilly, & Woroch, 2008; Tian & Huber, 2013).

Figure 1 shows the repetition priming results of Huber
(2008). In the target-primed condition, short duration primes
increased accuracy whereas long duration primes decreased
accuracy. However, in the foil-primed condition (i.e., a prime
identical to the incorrect answer), this pattern was reversed.
These results are compared to a baseline condition presenting
an unrelated prime word (neither-primed), which produced a
u-shaped deficit with prime duration. According to the
nROUSE model, there is a rise and fall of neural activation
in response to the prime word that is the inverse of the pattern
seen in the neither primed condition: Prime activation reaches
a peak level between 100 and 200 ms and this prime duration
produces the largest deficit for an unrelated prime word, ow-
ing to inhibition between competing representations (i.e., a
forward masking effect). At the same time, this rise and fall
has important consequences for words that are identical to the
prime. More specifically, lingering prime activation blends
with a subsequent identical target or foil, with this activation
boosting performance in the target primed condition, but driv-
ing performance below the chance level of 50% in the foil
primed condition (i.e., the prime is mistaken for the target).
For longer prime durations, habituation lessens this prime ac-
tivation, reducing the overall priming effect. Even longer
prime durations produce a priming deficit because it becomes
difficult to reactivate perceptual representations in response to
a repeated target word or when a choice word repeats the
prime; lingering habituation more than offsets the benefit of
any lingering activation from the prime. Simulating prime
activation on a millisecond by millisecond basis, the

nROUSE model provided an accurate fit of all three of these
conditions based on the rising and falling time course of prime
activation.

The perceptual wink model

Chun and Potter (1995) presented a sequence of characters
one at a time for 100 ms each, asking observers to report
any letters in the sequence, but not numbers. The AB effect
they reported is replotted in Figure 1. As seen in the figure, the
AB has the same time course as the neither-primed condition
from Huber (2008), suggesting that the rise and fall of percep-
tual activation may underlie both effects. In the case of the
Chun and Potter AB paradigm, one can imagine a 'letter de-
tector' that is activated in response to targets, and a 'number
detector' that is activated in response to distractors. With high-
ly practiced categories such as these, category can be identi-
fied pre-attentively (automatically), resulting in visual pop-out
for detection of the category regardless of the number of
distractors (Schneider & Shiffrin, 1977). This notion of cate-
gorical pop-out supports the claim that these category repre-
sentations (e.g., a number or letter detector) exist separate
from identity representations (e.g., an 'L' or 'M' detector); that
is, the fact that there can be categorical pop-out for practiced
sets suggests that detecting that a character is a letter may be a
separate process from identifying which letter it is. Thus, the
benefit for T2 when it appears immediately after T1 (aka, lag–
1 sparing) may reflect positive priming of the letter detector (if
letters are targets), whereas the subsequent blink deficit may
reflect negative priming for the letter detector. Because the
letter detector and number detector are in competition with
each other, the ISI between T1 and T2 reflects the rise and fall
of the number detector (if numbers are distractors), explaining
the similarity between the neither primed condition and the
AB.

On this perceptual wink account (see Figure 2), perfor-
mance in the AB task requires attentional processes for load-
ing identifies into short-term memory (STM), but the blink
itself is not caused by a deficit in these attentional processes.
Instead, the blink is a failure of perception to trigger the req-
uisite attentional response; i.e., a failure to identify that a sec-
ond target occurred because ‘targetness’ (i.e., whatever it is
that defines targets as different from distractors) is habituated
at the time that T2 occurs. Even though the identity of T2 is
undisturbed, the identity of T2 is not loaded into memory
because the observer fails to identify that T2 was in fact a
target. Thus, the attentional blink can instead be thought of
as a ‘perceptual wink’: during the deficit, the identity of T2 is
seen (one eye open), while the target-defining feature is
missed (one eye closed). This proposal finds support from a
recent finding that while the AB paradigm affects conscious
awareness of T2 (i.e., a failure to realize that there was a T2),
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perceptual integration of T2 is intact during the blink
(Fahrenfort, van Leeuwen, Olivers, & Hogendoorn, 2017).

Here, we briefly describe the perceptual wink model's be-
havior as applied to the current experiments, which utilize
upper-case targets and lower-case distractors. The complete
mathematical details of the model are reported in Appendix
A. The loading of letter identities into STM is dictated by the
current activation of an attentional ‘gate node’, which is driv-
en by the task demands of searching the sequence for upper-
case letters while ignoring lower-case letters, implemented
through +1 and –1 weights to upper- (the target detector)
and lower-case (the distractor detector) nodes, respectively.
Critically, the gate node does not habituate, and its moment
by moment activation value is purely driven by the fluctuating
dynamics of the target and distractor detector nodes. Thus,
although attention experiences a transient deficit (a blink),

the cause of this blink is a transient deficit in perception that
a target occurred. For this task, T1 activates the upper-case
node and this activation can carry over to the time when T2 is
presented, if T2 immediately follows T1. Thus, lag–1 sparing
is a positive priming effect because the target detector (the
upper-case node in Fig. 2) is pre-activated by the presentation
of T1. If a distractor or blank screen appears after T1, the
target detector loses its activation, eliminating the priming
advantage. By itself, this loss of activation does not cause a
blink. However, habituation makes it difficult to reactivate the
upper-case node in response to T2, so there is a repetition
blindness to detect that a second target occurred (this is not
the same as identity repetition blindness—see Chun, 1997b).
Because the observer experiences difficulty detecting that the
T2 letter was an upper-case letter, the attentional gate node
does not become fully active, and the identity of T2 is not
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Fig. 1 A comparison between the word priming results of Huber (2008),
Experiment 1, and the attentional blink (AB) results of Chun and Potter
(1995), Experiment 1. For word priming, as tested with two-alternative
forced choice (2AFC) testing, three conditions are plotted, depending on
whether the target, foil, or neither choice word was a repetition of the
prime. The primewas doubled-up to avoid presenting the prime in exactly
the same position as the target, although similar results are found with a
single lower-case prime. The AB task presented a sequence of numbers,
shown for 100 ms each, with two target letters embedded in the sequence.
The plotted AB results show the probability of reporting the second letter

(T2) given successful report of the first letter (T1). As seen in the figure,
the neither primed condition has the same time course as the T1/T2 inter-
stimulus interval (ISI) for the AB. The nROUSE model accurately fits all
three priming conditions based on increasing prime activation for short
prime durations followed by decreasing prime activation for long prime
durations, owing to perceptual habituation. The question considered in
the current study is whether this transition from positive to negative
priming explains the transition from a lag-1 sparing benefit to a blink in
the AB task.



loaded into STM as fully as it otherwise would even though
that identity (the corresponding Letter Identity node in Fig. 2)
is highly active.

In summary, the perceptual wink model explains the at-
tentional blink as reflecting the multifaceted nature of per-
ception, considering the separate perceptual representations
that support the identification of a visually presented charac-
ter (e.g., which letter?) versus detection of the target-defining
attribute (e.g., is it upper-case?). In the model, performance is
determined by the degree to which each identity is loaded
into STM; if T2 target detection is poor, then the identity of
T2 is weakly loaded into STM even if that identity is highly
active (e.g., the perceptual system knows which letter it is,
but remains unsure if the letter is upper-case). In absolute
terms, this is a modest effect, but because T2 is brief and
followed by a mask (i.e., the next character), the magnitude
of the identity of T2 in STM may be weakened to the point
that the observer reports something other than T2. Critically,
if T2 is not followed by a mask, the identity of T2 in STM
accumulates to a high degree owing to an extended duration
of target detection. Indeed, elimination of the post-T2 mask
eliminates the attentional blink by virtue of a ceiling effect
(Giesbrecht & Di Lollo, 1998). If instead performance is
limited by a mask that visually overlaps with T2 (i.e., inte-
gration masking) rather than post-T2 masking, then the limit
on performance is not the degree of accumulation for the
identity of T2 in STM, but rather whether the identity that
is being accumulated is the correct identity (e.g., the mask
visually corrupts the stimulus, resulting in report of a visually
similar letter). Indeed, integration masking appears to

eliminate the attentional blink even though T2 performance
remains below ceiling (Giesbrecht & Di Lollo, 1998). These
different T2 masking effects highlight the distinction between
perceptual target detection and perceptual target identifica-
tion, with the perceptual wink model assuming that the at-
tentional blink reflects a temporary deficit in target detection
but not target identification.

Switching versus non-switching attentional blink tasks

The original task termed an ‘attentional blink’ was developed
by Raymond et al. (1992). In their task, observers reported a
white letter (T1) followed by a switch to monitoring for a
black X (T2). The perceptual wink model appears to be at
odds with this AB task, as well as with other AB tasks that
involved a switch from searching for a T1 defined in one
manner to a T2 defined in a different manner. Without a con-
sistent target feature or target category, a deficit for T2 cannot
reflect perceptual habituation to detect a target. However, we
consider the possibility that there are different variants of at-
tentional blink tasks: (1) switching, whenever T1 and T2 are
defined differently (e.g., a white letter followed by a black X)
or appear in different spatial locations; and (2) non-switching,
whenever T1 and T2, both appearing in the same location, are
examples of the same class of stimuli, where class might be
defined categorically (e.g., letter targets versus number
distractors) or based on visual features (e.g., white letter tar-
gets versus black letter distractors). As detailed above, percep-
tual priming exhibits the same time course as the AB and it is

1720 Psychon Bull Rev (2018) 25:1717–1739

Fig. 2 The perceptual wink model as applied to an AB task with upper-
case targets and lower-case distractors. Each circle in the figure is a 'node',
describing average activity of many neurons with similar inputs and
outputs. All nodes contained within each rectangle inhibit each other,
producing masking/interference effects. Four free parameters were used
in fitting the results of Experiment 1 and those parameters were then fixed
to make predictions. Dotted trapezoids indicate comparison processes,
with winner-take-all (WTA) divisive-normalization from letter identity

to short-term memory (δ = 1 for the most active letter identity and 0 for
other identities) and linear divisive-normalization (Luce choice) from
short-term memory (STM) to response probabilities. STM encoding
strength is dictated by α, which is a non-habituating ‘gate node’ driven
by the difference between the upper and lower-case nodes. For a standard
blink, the lower-case node is habituated by the first target, and is difficult
to re-active (a perceptual wink), resulting in weak encoding into STM of
the second target’s identity (even though that identity is highly active).



notable that task-switching phenomena, such as the psycho-
logical refractory period (Pashler, 1994), also exhibit this
same time course. Because perceptual priming, task
switching, and the attentional blink, have existed as three sep-
arate literatures, separate formal theories have been developed
to explain each respective literature. Given the similar time
course of transient deficits in each of these literatures, we
consider a more parsimonious account in which perceptual
dynamics explain perceptual effects as well as non-switching
AB tasks while task-switching dynamics explain task-
switching effects, as well as switching AB tasks (support for
the switching/non-switching distinction is reviewed in the
general discussion).

In the current study, we take an important first step in this
division of the AB literature by extending the nROUSEmodel
of perceptual dynamics to non-switching AB tasks. The suc-
cess of the nROUSEmodel in explaining AB effects will be of
interest to AB researchers, and in the general discussion we
review and contrast this account with other AB models. Our
contribution to the literature is the demonstration that a model
of perceptual dynamics can explain non-switching AB tasks.
Thus, the ‘playing field’ for model comparison is greatly en-
larged, challenging other AB models to explain the results of
perceptual paradigms. While proponents of other AB models
may cite the inability of the perceptual wink to explain
switching AB tasks, we equivalently cite the inability of
existing AB models to explain the wide variety of perceptual
paradigms also explained by the nROUSE model. The ques-
tion then becomes where to place the theoretical divide;
should it be placed between switching versus non-switching
AB tasks, or between all tasks that have been give the label of
‘attentional blink’ versus perceptual paradigms that reveal the
same biphasic time course as seen in the AB?

The final form of a switching AB model should be an ex-
tension of the already existing formal theories of switching
dynamics (Reeves & Sperling, 1986). Indeed, the extension
of the threaded cognition model to the attentional blink is an
example of taking this approach to the AB literature (Taatgen,
Juvina, Schipper, Borst, & Martens, 2009). Because the
threaded cognitionmodel (Salvucci & Taatgen, 2008) was orig-
inally developed to explain the psychological refractory period
and other task-switching effects, it made specific predictions for
the manner in which the AB should change when including a
secondary task. In a similar manner, by extending a model of
perceptual dynamics to the AB literature, the perceptual wink
model makes specific predictions for the manner in which the
AB should change with perceptual priming.

Overview of the current study

The current study is a first step in relating the AB literature to
the perceptual dynamics literature, asking whether an existing

model of perceptual dynamics can be extended to explain non-
switching AB tasks. If perceptual deficits underlie non-
switching AB tasks, the dynamics that explain priming should
explain the AB. We tested the perceptual wink model in two
new AB experiments with upper-case target letters embedded
in a sequence of lower-case distractor letters. We assume that
the perception of each letter is broken into perception of iden-
tity (regardless of visual form) and perception of case (see Fig.
2). Because these are both orthographic representations, the
corresponding identification dynamics were set to those that
best-fit the word priming results.

Beyond demonstrating the adequacy of the model in han-
dling the basic blink pattern, the perceptual wink account
makes specific predictions when combining the AB with rep-
etition priming. More specifically, because T1 primes target
detection, which is the assumed cause of lag–1 sparing, the
post-T1 item is encoded into STM even if that item is a
distractor (i.e., even if it is a lower-case letter). However, if
the post-T1 item happens to have the same identity as T2, this
will increase T2 accuracy (pre-T2 priming), and if that item
happens to have the same identity as T1, this will increase T1
accuracy (post-T1 priming). In contrast, placement of a prime
in other positions within the stream will not produce these
effects owing to a lack of target detection. These predictions
were tested in Experiment 1. The perceptual wink model also
predicts that with sufficient exposure to a particular letter, the
ability to identify that letter will be reduced owing to habitu-
ation. We tested this in Experiment 2 by including a condition
that used a single repeated distractor letter, predicting that this
would reduce the magnitude of the blink (i.e., repetition blind-
ness for the distractor makes it easier to identify and detect
targets).

No other AB theory assumes a perceptual basis for the
blink (for review, see the general discussion). In the perceptual
wink model, the attentional gate node rises and falls with T1-
T2 lag (the α node in Fig. 2), but this is caused by a rise and
fall in perception (the upper and lower-case nodes in Fig. 2).
Unlike other theories, this account makes specific predictions
for the relation between the AB and perceptual priming.
Priming has been examined in many AB experiments (for
review, see the general discussion), but our design is unique,
providing a comprehensive exploration of priming of targets
(Experiment 1) and priming of distractors (Experiment 2) as a
function of lag. The question posed here is whether the per-
ceptual dynamics that explain positive priming of the target
(Experiment 1) and negative priming of a constantly repeated
distractor (Experiment 2) can also explain the time course of
the AB. Other models of the AB could possibly explain these
results if augmented with positive and negative primingmech-
anisms. In contrast, the perceptual wink model is highly
constrained to explain the rise and fall of priming and the rise
and fall of the AB with the same perceptual dynamics (albeit
as applied to different perceptual representations).
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Experiment 1: T1/T2 repetition priming and the AB

Method

Participants

Thirty undergraduate students (five male) from the University
of Milano-Bicocca participated in the study in exchange for
course credit. They ranged in age from 19 years to 48 years (M
= 24.2 years, SD = 6.8). This sample size was chosen based on
prior AB experiments reported in the literature and based on
pilot versions of this experiment.

Apparatus

The experiment was programmed and run using E-Prime™
(Psychology Software Tools, Pittsburgh, PA), on PCs with
CRT monitors and 75 Hz display refresh rate.

Materials and Design

All Rapid Serial Visual Presentation (RSVP) streams
contained two targets, which were upper-case letters, and 12
distractors, which were lower-case letters. Targets and
distractors were selected from the same pool of 14 letters (
Ba^, b^, Bd^, Be^, Bg^, Bh^, Bm^, Bn^, Bq^, Br^, Bj^, Bi^, Bf^,
Bt^). The font was bold Courier New, size 18, in black against
a gray background.

There were 50 conditions in a fully within-subjects design,
representing all combinations of trial type (standard blink,
post-T1 priming, or pre-T2 priming), T1-T2 lag (2, 3, or 6,
plus lag 1 only for the standard blink trial type), and T1 posi-
tion within the sequence (3–7). T1 position was varied so
participants would not know when to expect the first target.
The reported results collapsed over this variable, producing
ten conditions of interest, representing the combinations of
trial type and T1–T2 lag (see Fig. 3). For the standard blink
trial type, none of the distractors were the same letter as the
target. For the post-T1 priming trials type, the distractor im-
mediately following T1 was a lower-case version of T1.
Finally, for the pre-T2 priming trial type, the distractor imme-
diately before T2 was a lower-case version of T2. The 50
conditions were presented three times each in random order
across the 150 trials of the experiment.

Procedure

Participants were tested individually in an experimental ses-
sion that lasted approximately 14 min. Each stream of items
began with a fixation point B+^, which appeared for 400 ms,
followed by 14 items presented for 100 ms each. Finally, a
mask B###^ appeared for 200 ms. Participants were fully in-
formed that there were two targets on every trial and they were

instructed to guess the target identities in any order. If their
second response was the same as their first response, they
received the instructions: BYou were wrong: You typed in
the same upper-case letter^, and they were then required to
provide a different response for their second response. Before
the experimental trials, there were 15 practice trials based on
the standard blink trial type. For these 15 practice trials, lags of
1, 3, and 6, were presented using each of the five different T1
positions.

Results

The key accuracy measure is shown in Fig. 3, which plots the
probability of providing T2 as one of the two responses given
that T1 was the other response. A within-subjects analysis of
variance (ANOVA) with trial type (standard blink, post-T1
priming, pre-T2 priming) and lag (2, 3, and 6) as factors
showed a two-way interaction, F(4,116) = 4.68, P = .002, η2

= .029, indicating that priming effects differed as a function of
lag, warranting further statistical tests probing the nature of
these priming differences. In addition, there was a significant
main effect of trial type, F(2,58) = 5.99, P = .004, η2 = .018,
with accuracy lower in the standard blink trials (M = .5, SDE =
.02) than the post-T1 priming trials (M = .56, SDE = .03), P =
.006, and the pre-T2 priming trials (M = .56, SDE = .03), P =
.001. Collapsing across lags, there was no significant differ-
ence between post-T1 priming and pre-T2 priming trials, P =
.829. There was also a significant main effect of lag, F(2,58) =
54.76, P = .001, η2 = .449. Accuracy was higher at lag 6 (M =
.73, SDE = .02) than lag 2 (M = .48, SDE = .03) or lag 3 (M =
.42, SDE = .04), all ps < .001. There was a significant differ-
ence in performance between lags 2 and 3, P = .033.

The pre-T2 priming advantage (i.e., higher accuracy for
pre-T2 than standard blink) when collapsing across lag is
qualified by a significant interaction between lag and the
pre-T2 versus standard blink trial types, F(2, 58) = 8.20, P =
.001, η2 = .042. More specifically, there was a large pre-T2
priming effect at lag 2 (Mpre-T2–standard = .17, SDpre-T2–standard

= .19), t(29) = 5.09, P < .001, d = .93, but no reliable pre-T2
priming effects at lag 3 (Mpre-T2–standard = –.02, SDpre-T2–

standard = .19), t(29) = –.59, P = .563, d = –.11, or lag 6
(Mpre-T2–standard = .03, SDpre-T2–standard = .17), t(29) = .86, P
= .395, d = .16. In contrast to pre-T2 priming, the interaction
between lag and the post-T1 versus standard blink trial types
was unreliable, F(2, 58) = 2.78, P = .070, η2 = .013, suggest-
ing that the post-T1 priming advantage occurred regardless of
lag (despite what appears to be a selective absence of post-T1
priming only at lag 3).

In summary, the observed data revealed significant post-T1
priming that did not interact with lag and pre-T2 priming only
at lag 2. As seen in Fig. 3, the nROUSE model accounted for
both of these patterns. With four free parameters, the
nROUSE model was fit to the four joint probability values
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(identification of T1 and T2, only T1, only T2, and neither T1
nor T2), for each of the ten conditions. As seen in Fig. 4, the
model captured the data across these 40 joint probabilities
(95.6% of the variance accounted for).

Experiment 2: Distractor repetition priming
and the AB

Method

Except as noted, all methods were identical to Experiment 1.
Experiment 2 examined repetition priming of the distractors
by comparing a standard blink distractor type to one where the
same distractor was used throughout the RSVP sequence (the
repeated distractor trial type). In addition, this experiment ma-
nipulated the visual similarity of the distractors as compared to
the targets, with targets and distractors drawn from a pool of
either curvy or straight letters (see Appendix Table B1). As
reported in the Appendix B analyses, performance was better
when distractors were dissimilar from targets (e.g., curvy
distractors paired with straight targets), but this effect was
weak (η2 = .009, corresponding to a change of 4%), and did
not interact with any of the other variables. Therefore, we
collapsed over distractor similarity.

Participants

Forty-three undergraduate students (eight males), ranging in
age from 19 years to 41 years (M = 22.7 years, SD = 3.5)
participated in exchange for course credit. However, only 41
participants provided a full data set, with one lost because of a
black-out during the experiment, and another lost because of a
corrupted data file.

Materials and design

Targets and distractors were drawn from the pools of let-
ters reported in Table 1. The main factors of the design
were distractor similarity (similar vs. dissimilar), and
distractor type (repeated distractor vs. standard blink). A
particular level of distractor similarity was created
through two combinations of different letters types. For
instance, the similar distractor type consisted of curvy
targets paired with curvy distractors, as well as straight
targets paired with straight distractors (see Appendix
Table B2 for the full design). Unlike Experiment 1, all
factors were tested at lag 1, 3, and 6. As in Experiment
1, T1 position varied from 3rd to 7th. Combining all fac-
tors, there were 120 unique conditions, which occurred
three times across 360 experimental trials.
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Fig. 3 Experimental paradigm,modeling results with best-fit parameters,
and observed data for Experiment 1. For each of the three trial types at
each T1-T2 lag, the graph shows the probability of identifying the second
target (T2) given that the first target (T1) was identified. The experimental
paradigm (overlaid top box) shows the three trials types with example lag
2 trials. With four free parameters, the nROUSE model was fit to the 40
joint probability of identifying both T1 and T2, only T1, only T2, or
neither T1 nor T2 as seen in Fig. 4. These joint probabilities were then

used to calculate the conditional probabilities shown in this figure. Error
bars are 95% confidence intervals. According to the perceptual wink
account, Pre-T2 priming occurred only at lag-2 because at this lag the
T2 prime (e.g., lower-case j) is encoded intomemory owing to upper-case
priming from T1. Furthermore, Post-T1 priming occurred at all lags
because post-T1 encoding of the prime (e.g., lower-case h) eliminates
interference that would have occurred in the standard blink condition
owing to post-T1 encoding of the post-T1 distractor (e.g., lower-case m).



Procedure

Participants were tested individually in an experimental ses-
sion that lasted approximately 20 min. Unlike Experiment 1,
each item appeared for 67 ms, with blank screens of 25 ms
occurring between each item (i.e., stimulus onset asynchrony
= 92 ms, as in Olivers & Meeter, 2008). The 15 practice trials
included a sample from all manipulations (i.e., during

practice, participants experienced all levels of all factors, but
not all combinations of all levels).

Results

The probability of providing T2 as one of the two responses
given that T1 was the other response is shown in Fig. 5, with
the results broken down by lag and distractor type. A within
subjects analysis of variance of these conditional probabilities,
with distractor type (repeated distractor vs. standard blink) and
lag (1, 3, and 6) showed a main effect of distractor type,
F(1,40) = 171.84, P < .001, η2 = .297, with greater accuracy
for repeated distractor trials (M = .72, SDE = .03) than stan-
dard blink trials (M = .5, SDE = .02). There was also a main
effect of lag, F(2,80) = 101.5, P < .001, η2 = .366, with higher
accuracy at lag 1 (M = .73, SDE = .02) than lag 6 (M = .64,
SDE = .03) and lag 3 (M = .45, SDE = .02), all Ps < .001.
Performance at lag 3 was significantly lower than lag 6, P <
.001. Finally, there was a significant distractor type by lag
interaction, F(2,80) = 40.31, P < .001, η2 = .062. For the
repeated distractor trials, there was no reliable difference be-
tween performance at lag 1 (M = .77, SDE = .03) versus lag 6
(M = .79, SDE = .03), P = .340 whereas for the standard blink
trials, accuracy was greater at lag 1 (M = .69, SDE = .02) than
lag 6 (M = .49, SDE = .03).

As seen in Fig. 5, the nROUSEmodel predicted these results
without any free parameters. As seen in Fig. S1 in the
Supplementary material, when freeing up the same four param-
eters as used in Experiment 1, the model captured the data
across the 24 joint probabilities, including the observation of
greater T2 accuracy than T1 in the lag-1 condition (this T2
advantage was marginal in Experiment 1, but robustly present
in Experiment 2, and in general it is found in the AB literature).

Discussion

In the perceptual wink model, the same perceptual dynamics
underlie repetition priming and the AB, with these effects
differing only because repetition priming affects identity,
whereas a prior target affects detection that a target occurred
(perception of upper-case in the current situation). This phe-
nomenon is described as a wink because one perceptual attri-
bute exhibits a deficit (e.g., the ability to detect that T2 was
upper-case) while other perceptual representations are undis-
turbed (e.g., the ability to identify the T2 letter). Thus, the
blink in these experiments reflects positive priming (lag–1
sparing) and negative priming (the blink) for the perception
of letter-case. Lingering activation (i.e., positive priming) for
the target attribute of letter-case causes the encoding into
short-term memory of anything appearing immediately after
T1, explaining lag-1 sparing and interactions with primes
placed in the post-T1 position. However, after an intervening
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Fig. 4 Modeling results and observed joint probabilities for Experiment
1. With four free parameters, the model captured 95.6% of the variance.
As seen in the figure, themodel and data show amarked difference in Pre-
T2 priming as compared to the standard blink. According to the model,
this occurs only at lag-2 because only in this condition does upper-case
priming from T1 cause encoding of the T2 prime. In contrast, post-T1
priming produced an overall upward shift in the probabilities of
responding with both T1 and T2 across all lags. According to the model,
this occurred because of a reduction in the probability of giving a re-
sponse other than T1 or T2 (more specifically, the elimination of
responding with the post-T1 distractor, such as occurs in the standard
blink condition).



distractor (or a blank screen), this positive priming of upper-
case detection is lost, and lingering habituation for upper-case
detection produces negative priming and thus the AB deficit
(see also Fig. S4).

In developing the perceptual wink model, the nROUSE
model of perceptual priming was extended to the AB para-
digm. Using perceptual dynamics fixed by the word priming
results, the model explains the basic blink pattern and interac-
tions between the blink and priming of targets (Experiment 1)
and priming of distractors (Experiment 2). Critically, both
kinds of priming produced accuracy benefits, rather than def-
icits. In other words, priming of distractors was in truth a
negative priming effect in the sense that the repeated presen-
tation of the same distractor caused habituation for that letter
identity, making it easier to identify the target letter identities
and easier to detect when a target occurred. If priming of
distractors had been a positive effect in the sense of boosting
distractor perception, then a repeated distractor would have
been a stronger competitor to targets, and performance would
have been lower rather than higher. In the perceptual wink
model, the same habituation dynamics that produced this ben-
efit from priming of distractors also produced the AB deficit
and the benefit from priming of targets. The success of the

model supports the claim that the root cause of the blink in
non-switching AB tasks is perception, which in turn affects
attention.

Upper-case priming for whatever appears in the lag–1
position

According to the perceptual wink model, at the time of any
lag–1 presentation, the target detector (upper-case) is still ac-
tive, even if the lag–1 item is a distractor (lower-case). This
lingering activity for the upper-case detector triggers encoding
of the post-T1 item regardless of its identity. Upper-case prim-
ing explains lag-1 sparing in the standard blink and it also
explains: (1) a pre-T2 priming benefit that only occurred in
the lag-2 condition; (2) a post-T1 priming benefit that was
invariant with lag; and (3) the asymmetry in the degree of
recovery from the blink when comparing the standard blink
condition to the repeated distractor condition. Each of these
effects was explained by the model as emerging from complex
dynamics. Next, we attempt intuitive explanations of these
three effects based on our analyses of the model’s behavior
(see also Figs. S4–S8).
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Fig. 5 Experimental paradigm, a priori model predictions (no free
parameters, using the parameter values determined by Experiment 1),
and observed data for Experiment 2. For each of the two distractor types
at each T1-T2 lag, the graph shows the probability of identifying the
second target (T2) given that the first target (T1) was identified. The
experimental paradigm (overlaid top box) shows the two distractor types
with example lag 2 trials (although the experiment did not include lag 2).
Blank screens were inserted between letters to give an appearance of a
sequence even for the repeated distractor condition. The data and model
predictions show a reduced difference between the distractor type

conditions only at lag-1. According to the model, T2 encoding was
boosted in the lag-1 condition because the presentation of T1 primes
the upper-case node, benefiting the post-T1 item.With the standard blink,
even for a recovered upper-case node at lag 6, T2 encoding does not
achieve the same degree as compared to upper-case priming at lag-1.
However, with a repeated distractor, T2 encoding is high even in the
absence of upper-case priming because of a relative lack of lower-case
activation owing to an habituated visual response to the repeated
distractor. Error bars are 95% confidence intervals.



Regarding pre-T2 priming, the benefit of priming is by
virtue of a mistake. Only for lag-2 is the pre-T2 prime placed
in the post-T1 position. Thus, only in this condition is the
prime encoded into STM, boosting T2 performance. In other
words, the observer might give an answer of T2 not because of
accurate encoding of T2, but rather because of the mistaken
encoding of the prime (a prime that happens to have the same
identity as T2).

Regarding post-T1 priming, the benefit of priming is
through reduced interference. In the standard blink condition,
the post-T1 distractor is partially encoded, causing response
interference (increasing the probability of giving a response
other than T1 or T2). However, with post-T1 priming, the
post-T1 item has the same identity as T1, eliminating this
response interference (increasing the probability of
respondingwith both T1 and T2 by eliminating the probability
of responding with the post-T1 distractor).

Regarding the priming of distractors, the benefit of
priming is again through reduced interference, but in this
case it is a twofold effect. First, because the repeated
distractor’s identity is habituated, there is overall less re-
sponse interference, boosting performance in general.
Second, the recovery from the blink appears to be more
complete (lag-6 performance is equal to lag-1 perfor-
mance), whereas this is not true for the standard blink.
According to the model, recovery from the blink is nearly
complete at lag-6 in the standard blink. Nonetheless, lag-1
performance is better than lag-6 performance because in
the lag-1 condition, T2 has an extra benefit from upper-
case priming (i.e., lag-1 sparing is more than just preserv-
ing performance—it is a net benefit). This upper-case
priming also occurs in the repeated distractor condition,
but T2 encoding is already at ceiling regardless of this
boost considering that the habituated distractor produces
minimal lower-case detector activation (i.e., it is easy to
achieve upper-case activation even without upper-case
priming from T1).

A comparison with other priming-AB studies

These are not the first experiments to investigate interactions
between priming and the AB. Indeed, the first example of
priming in an AB task predates the adoption of the term ‘at-
tentional blink’. In the study of Broadbent and Broadbent
(1987), upper-case target words were presented with lower-
case distractor words in an RSVP stream, and semantic prim-
ing was examined by comparing target pairs that were unre-
lated to those that were semantic associates. No semantic
priming benefit was found except in the specific circumstance
of a failure to identify T1 in the lag–1 condition. In contrast,
Maki, Frigen and Paulson (1997) found robust semantic prim-
ing between targets that was largely invariant with lag.
Furthermore, they found semantic priming from a distractor

placed in the pre-T2 position, regardless of T1–T2 lag (in
contrast to our Experiment 1). Additional experiments found
semantic priming of T2 from a distractor placed in a variety of
positions between T1 and T2 (both post-T1 and pre-T2).
Although these results differ from our experiments, this may
reflect the difference between semantic priming and repetition
priming; according to the nROUSE model, while habituation
of orthography readily eliminates priming or even produces
negative repetition priming, semantic priming only produces
benefits (Rieth & Huber, 2017). Thus, it is expected that se-
mantic priming would produce benefits for a wider variety of
positions within the RSVP stream.

Aside from using semantic priming rather than repetition
priming, the Maki et al. (1997) study potentially differs from
the current study by using a paradigm that might be a
switching AB task; in their task, T1 was light green and T2
was light red. Thus, observers might have been searching for
any colored word (a non-switch task), or they might first
search for a red word and then switch to searching for a green
word (a switch task). Indeed, most studies of priming in the
AB have used switching AB tasks. For instance, Potter et al.
(2005) examined semantic priming in an AB task that present-
ed simultaneous upper/lower RSVP streams of distractor
masks and target words. The two targets were always present-
ed in different streams, so the T2 deficit may have reflected a
spatial attention switch (e.g., the time needed to disengage
from the T1 stream and switch spatial attention to the T2
stream). In any event, this paradigm produced results similar
to Maki et al. (1997), revealing semantic priming of T2 across
a range of delays between the T1 prime and the T2 target. In
addition, Maki et al. (1997) examined backward priming,
finding that a semantically related T2 produced a boost to
T1 accuracy only when T2 immediately followed T1 (see
Rieth & Huber, 2017, for an application of the nROUSE
model to both forward and backward semantic priming).

Repetition priming has been examined in AB tasks, al-
though most studies have used a switching paradigm.
Shapiro et al. (1997) had people report a white digit (T1),
followed by switch to a lag-3 upper-case black letter (T2),
and then another switch to a lag-6 (relative to T1) lower-case
black letter (T3). Observers were told to report not only the
identity of these subsequent targets, but also the letter case,
and half of the time the T3 letter was the same identity as T2
(i.e., repetition priming). In keeping with the nROUSE model
and the repetition priming results of Huber et al. (2002), they
found a negative repetition priming effect of T2 on T3 when
T2 was identified, but a positive repetition priming effect
when T2 was not identified. Thus, the observed identity prim-
ing effects were fully compatible with the perceptual dynam-
ics of the perceptual wink model. A second experiment used
words instead of letters, with T1 being the only white word,
T2 the only red word, and T3 the only yellow word
(distractors were black words). In keeping with the
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nROUSE model when comparing semantic priming and rep-
etition priming, this study produced only positive priming
despite using the same lags as the repetition priming
experiment.

The study of Chua, Goh and Hon (2001) used a switching
AB task, examining the effect of letter repetition priming (dif-
fering in letter case), with a prime of T2 placed in a variety of
different locations. In a series of six experiments, they found
sizable priming only when the prime was in the lag-1 position.
When the prime was prior to T1, in a later lag, or in the lag-1
position when using a task that did not require a response to
T1, priming was eliminated. Thus, it appears that some level
of attention to the prime is needed for repetition priming (i.e.,
presentation of a task relevant T1 produces greater processing
of the prime in the lag-1 position, producing greater priming).
This finding is similar to results of Experiment 1 in which the
pre-T2 prime was only effective when placed in the lag-1
position (i.e., the lag-2 condition) whereas the post-T1 prime
was effective regardless of lag (although note that in the cur-
rent experiment, the post-T1 prime was a prime of T1 rather
than T2).

Similar to the study of Chua et al. (2001), Dux and Marois
(2008) examined repetition priming from letter distractors pre-
sented during the blink. It is not entirely clear whether their
paradigm was switching or non-switching considering that
distractors were white letters whereas the two targets were
colored, but of different colors from each other. In any case,
the prime always appeared in the lag-2 position and they ex-
amined T2 performance at lag-4 versus lag-10 to measure the
AB. On average, they found small positive priming at lag-4
and no priming at lag-10, but analyses of individual differ-
ences revealed that some observers produced negative prim-
ing at lag-4, whereas others produced large positive priming at
this lag. Furthermore, these individual differences reliably cor-
related with the AB magnitude (those with smaller ABs had
negative priming) and T1 performance (those with high T1
accuracy had negative priming). The authors viewed attention
as the causal factor of these individual differences, with dif-
ferences in distractor inhibition during the blink causing prim-
ing differences (however, see Elliott & Giesbrecht, 2015 for a
failure to replicate this correlation result and a computer
simulation suggesting that the previously reported
correlation may have been an artifact when using the same
data twice). If this correlation exists, the perceptual winkmod-
el provides a qualitatively different account, with differences
in perception as the causal factor: individuals with more rapid
orthographic perceptionmore easily perceive T1, more readily
experience letter habituation (i.e., negative priming) and more
rapidly recover the ability to detect the existence of a second
target (i.e., revealed as a small AB magnitude). The results of
Slagter and Georgopoulou (2013) support this alternative ex-
planation. Their study replicated Dux and Marois, but also
included a lag-2 condition. They found that priming correlated

with the blink magnitude when comparing lag-4 to lag-10, but
not when comparing lag-2 to lag-10, suggesting that these
individual differences reflect the speed of AB recovery rather
than blink magnitude.

The priming study of Chun (1997b) is highly relevant
to the current experiments. In a series of experiments,
Chun found a double dissociation between the AB and
repetition blindness (i.e., negative repetition priming).
Like the current experiments, these were non-switching
AB tasks (e.g., letter targets with digit or symbol
distractors) and, like the current experiments, repetition
priming was introduced through a case change. However,
unlike the current experiments, priming was between T1
and T2 rather than from a distractor. This study found that
repetition blindness followed a faster time course than the
AB (compare for instance the target-primed condition of
Figure 1 to the AB results in Figure 1). Furthermore, some
manipulations alleviated repetition blindness but not the
AB (a condition in which the two targets differed in color),
while other manipulations alleviated the AB but not repe-
tition blindness (searching for letter targets with symbol
distractors). In the perceptual wink model, these dissocia-
tions reflect the difference between the perceptual repre-
sentation of identity (which underlie repetition blindness)
versus the perceptual representation of targetness (which
underlie the attentional blink). Furthermore, the AB has a
slightly different time course than repetition blindness
considering that the repetition blindness condition entails
all of the deficit from habituated target detection, as well
as the deficit from habituated visual line segments of the
repeated character, providing a weakened input to target
detection. In a study currently in preparation, we replicated
Chun’s findings while using forced choice testing to rule
out alternative explanations based on strategic guessing.
Application of the perceptual wink model demonstrated
that the different time course for each effect can be ex-
plained by the same perceptual dynamics.

In summary, most priming studies of the AB used
switching AB tasks, and the perceptual wink model might
not apply to the observed AB deficits. Nevertheless, the ob-
served priming effects were largely consistent with priming
studies in the perception literature. Given the success of the
nROUSE model in explaining perceptual priming effects, it is
likely that the perceptual wink model, which incorporates
nROUSE’s perceptual dynamics, could accommodate many
of these interactions between priming and the AB.

Applying the perceptual wink model to other AB results

The AB literature is large and cannot be addressed in its en-
tirety in the current paper, although we consider some of the
more prominent findings. A key discovery was the 'spread of
sparing' that occurs with multiple back-to-back targets (Di
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Lollo, Kawahara, Ghorashi, & Enns, 2005). This is naturally
explained by the perceptual wink model as reflecting contin-
ued priming of the target detector, which maintains STM
encoding with an uninterrupted series of targets. After fully
developing the perceptual wink model and applying it to
Experiment 1, we learned of a study reporting that the spread
of sparing reverses with the insertion of a blank screen (Chen
& Zhou, 2015). If the model can account for these results, this
would simultaneously demonstrate that the model handles the
spread of sparing, as well as the challenging result that the
spread of sparing is undone by insertion of a blank screen.

Chen and Zhou (2015) used a bare-bones version of the
AB, in which the task was to report numbers rather than let-
ters. Rather than placing the target numbers in a long se-
quence, there were just two targets, with a single letter
distractor after T1 and a single letter distractor after T2.
Rather thanmanipulating lag by changing the relative position
of T2 in the sequence, a blank screen of different durations
was presented after the post-T1 distractor, prior to T2 (see Fig.
6). This target-distractor-target (TDT) condition was run in
one block of trials and observers knew to attempt report of
two target numbers. In a different block of trials, the procedure
was modified by replacing the intervening distractor with an
intervening target instead. For this target-target-target (TTT)
condition, observers knew to attempt report of three numbers.
In applying the perceptual wink model to the results of this
study, the simulation did not use any free parameters, fixing all
parameters to the values dictated by the fit of Experiment 1.
As seen in Figure 6, the a priori prediction (a priori in the
sense that the model was developed and parameterized with-
out knowing of this result) of the perceptual wink model was
qualitatively accurate, capturing both the spread of sparing
(TTT > TDT) without a blank screen as well the reversal of
this effect (TTT < TDT) with the insertion of a blank screen.
As reported in Fig. S2, the model quantitatively captures these
results if allowed the same four free parameters as in
Experiment 1.

The model produces a spread of sparing owing to contin-
ued priming of target detection, but this spread of sparing is
reversed by insertion of a blank screen because target detec-
tion priming fades during the blank interval, revealing the
underlying habituation for the ability to detect a target (see
also Figs. S9–S10).

The study of Chen and Zhou (2015) presented each char-
acter only for 50ms, rather than 100 ms, which is more typical
in the AB literature. As such, the ability of the perceptual wink
model to capture this result does not necessarily indicate that
the perceptual wink model can explain the spread of sparing
reported in other studies. To explore this situation, we again
kept all parameters fixed to the values that best-fit Experiment
1, simulating the Chen and Zhou paradigm as if the proce-
dures had presented each character for 100 ms rather than 50
ms. As reported in Fig. S3, the model’s predictions were

nearly identical to those seen in Fig. 6 (i.e., the model pro-
duces a spread of sparing with 100 ms presentations).
However, the model is not able to maintain the spread of
sparing indefinitely (in keeping with prior studies), and the
perceptual representation common to all targets will eventual-
ly fatigue and produce worse performance for a string of tar-
gets as compared to a situation that gives the target represen-
tation a rest by inserting distractors. To demonstrate this, we
once again simulated the Chen and Zhou procedure, but this
time we assumed that each character was presented for 200
ms. In this case, the spread of sparing was eliminated even
without the insertion of a blank screen. In other words, after
400 ms of constant presentation of targets (i.e., the first two
targets at 200 ms per target), the target detector was sufficient-
ly habituated as to make it difficult to encode another target.

Beyond the spread of sparing, and its reversal with a blank
screen, we also applied the perceptual wink model to other
challenging results in the literature. For these simulations, the
best-fitting parameter values from Experiment 1 produced
similar results, although the results of Experiment 2 were
more typical of the literature, producing a T2 advantage at
lag-1 as compared to T1 accuracy (the parameter values from
Experiment 2 indicate a more sluggish attentional gate node,
which enhances the lag-1 boost). Thus, the parameters from
Experiment 2 were used in the simulation results shown in
Fig. 7 (henceforth, these will serve as ‘default’ parameters).
The standard blink condition shown in Fig. 7 was based on the
stimulus onset asynchrony experiment reported by Bowman
and Wyble (2007), which involved eight different potential
letter targets in a sequence of letter targets versus eight differ-
ent potential digit distractors.

Bowman and Wyble (2007) found that the time course of
the blink is invariant with the presentation rate. In other words,
a blink that lasts for 600 ms is found regardless of whether that
600 ms is filled with five intervening distractors presented for
100 ms each versus 11 presented for 50 ms each. In the sim-
ulation shown in Fig. 7, the standard blink condition was run
at 100 ms/item whereas the rate doubled condition was 50 ms/
item. As such, a T1–T2 stimulus onset asynchrony of 100 in
the rate doubled condition placed the T2 in the lag-2 position
rather than lag-1. In line with the findings of Bowman and
Wyble, the model produced lag-2 sparing in this rate doubled
situation. The perceptual wink model produces lag-2 sparing
because the letter detector is still active 100 ms after T1 (a 50-
ms intervening distractor is insufficient to eliminate letter-
detector priming).

Another challenging finding in the AB literature is that, in
the midst of the blink, presentation of a distractor that shares
an attribute with targets greatly reduces the blink magnitude.
For instance, Nieuwenstein, Chun, van der Lubbe, & Hooge
(2005) used an AB task with red number targets and black
letter distractors. Thus, while the basic task was to report
numbers but not letters, font color served a redundant cue. In

1728 Psychon Bull Rev (2018) 25:1717–1739



some conditions, T2 was pre-cued by a red letter distractor in
the pre-T2 position. In the perceptual wink model, even habit-
uated representations can be made active with sufficient input.
Thus, pre-cueing the target detector should allow some degree
of T2 encoding in the midst of the blink. To simulate this pre-
cueing effect, the pre-T2 distractor was connected to the target
detector node rather than the distractor node. This corresponds
to the assumption that observers used color rather than
number/letter to determine what to encode into short-term
memory. As seen in Fig. 7, and as reported by Nieuwenstein
et al. (2005), this pre-cue increased T2 performance as com-
pared to the uncued situation (standard blink), particularly in
the midst of the blink (e.g., stimulus onset asynchrony = 300).

A surprising result is that there is a similar time course of
the blink regardless of whether the interval between T1 and T2
is filled with distractors or a blank screen (Nieuwenstein,
Potter, & Theeuwes, 2009). In Fig. 7, the Bno intervening
distractors^ condition was designed to mimic the conditions
of Nieuwenstein et al. (2005), which compared a standard
letter/number blink to one in which the distractors between

T1 and T2 were replaced with a blank screen. The perceptual
wink model produces this effect because letter detector acti-
vation fades with a blank screen, revealing the underlying
perceptual habituation (i.e., it is difficult to re-activate the
letter-detector).

Finally, because the perceptual wink has separate percep-
tual representations for target detection and target identity, it
could potentially explain distractor intrusions in AB tasks
where targets are indicated by a separate visual feature (e.g.,
an outline box or circle). In these tasks, observers often report
distractors preceding and following each target.Modifying the
procedure developed by Chun (1997a), the study of Vul,
Nieuwenstein and Kanwisher (2008) presented RSVP streams
of letters (separated by blanks) where targets were indicated
by a surrounding circle. At the end of each sequence, ob-
servers were asked to report each of the two targets in the
order that they appeared. First-report (T1 question) intrusion
distributions were analyzed separately from second-report (T2
question) distributions across ten different lags (see Fig. 8 for
a replotting of their results). In the figure, item position is
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Fig. 6 Experimental paradigm, a priori model predictions (no free
parameters, using the parameter values determined from Experiment 1),
and observed data for the no noise conditions reported by Chen and Zhou
(2015). These are a priori predictions in the sense that the perceptual wink
model was developed and fit to Experiment 1 prior to learning of this
study. As seen in the overlaid box showing the experimental paradigm,
this experiment used a minimal version of the attentional blink with two
(TDT) or three (TTT) target numbers and either one or two distractor
letters. The final item was a distractor and the item between the first
and last target was either a target or a distractor (in the TTT condition,
the last target is labeled T2 for comparison to the TDTcondition). A blank

interval of different durations was interposed between the intervening
item and the final target. For each condition, the graph shows the
probability of identifying the final target (T2) given that the first target
(T1) was identified. The perceptual wink model explains the ‘spread of
sparing’ (TTT > TDT) because the number detector is kept active (i.e.,
primed) by an uninterrupted series of targets. However, if interrupted by a
blank screen, this activation is lost, revealing the underlying habituation
of the number detector. This habituation is greater than a standard blink
because of two rather than one prior targets, and performance in the TTT
condition is worse than the TDTcondition. Thus, the spread of sparing is
reversed by insertion of a blank screen.



plotted relative to the position of T1. The colored curves show
the distribution of intrusions and the black dashed lines high-
light the T2 correct responses. Analyses revealed that in the
midst of the blink, the second report distribution is suppressed
(i.e., worse T2 accuracy during the blink), delayed (more in-
trusions after T2 than before), and diffused (i.e., intrusions
across a wide range of positions, both before and after T2).

Rieth and Vul (2012) developed an ideal observer model of
the second report data, although their model did not explain
the first report data and did not capture the bimodal nature of
the intrusion distribution for some lags (see for instance the
second report distribution in the lag-4 condition, which shows
a first mode at the lag-1 position and a second mode at lag-5).
Indeed, a recent re-analysis of these data using a mixture mod-
el (Goodbourn et al., 2016) concluded that lags 1 and 2 were
best captured by a single attentional episode (i.e., one that
encompassed both targets) whereas lags 3 and above were
best captured by separate attentional episodes (i.e., one cen-
tered on T1 and one centered on T2). Because this mixture
modeling was descriptive, measuring rather than predicting
the number of attentional episodes, it remained an open ques-
tion whether a fully specified process model of the AB could
account for these intrusion distributions.

The perceptual wink model as applied to these data was
unchanged from the one fitting the Experiment 2 data and
producing the simulations shown in Fig. 7 (the four free
parameters from Experiment 2 were fixed for this
simulation). This paradigm involved two aspects that differed

from the other paradigms, necessitating two new parameters.
First, because the signal indicating the presence of a target
(i.e., the circle surrounding the target) was peripheral and
separate from the visual input of the target letter’s identity, a
new parameter specified the strength of visual input from the
target signal. Second, unlike previous analyses, this applica-
tion of the perceptual wink model required consideration of
report order. To capture report order, we assumed that relative
temporal position information was available for pairs of items
that received some degree of encoding into STM. This was
implemented with a logistic function based on relative posi-
tion difference between the two items, with a free parameter
for the growth rate. This relative temporal distinctiveness as-
sumption is borrowed from the SIMPLE memory model
(Brown, Neath, & Chater, 2007), which has been applied to
serial recall tasks.

As seen in Fig. 8, the model captures all of the qualitative
trends in the data and provides a reasonable account of the
quantitative trends based on a fit with two free parameters.

Support for the switching/non-switching distinction

The perceptual wink model cannot explain temporary deficits
in AB tasks that clearly involve a task switch from a T1 de-
fined in one manner to a T2 defined in a different manner.
Therefore, in extending the nROUSE model to the AB litera-
ture by only considering the switching AB tasks, it is impor-
tant to consider the evidence in support of the switch/non-
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Fig. 7 Application of the perceptual wink model to several other
prominent results in the AB literature using the best-fitting parameter
values from Experiment 2. Similar results are found with the best-fitting
parameter values from Experiment 1, although the Experiment 2 values
produce better T2 performance than T1 in the lag-1 condition, as is often
found in the literature. The rate-doubled condition presented all stimuli
for 50 ms rather than 100 ms and thus the 100 ms stimulus onset

asynchrony was a lag-2 situation (i.e., lag-2 sparing with rate doubling).
The T2 pre-cued condition presented a stimulus in the pre-T2 position
that carried the target defining attribute (i.e., priming the target detector
ameliorates the blink). The no intervening distractors condition replaced
all distractors between T1 and T2 with a blank screen (i.e., the blink does
not require a distractor). See text for further details.



switch distinction. Although the magnitude of the blink in
switching and non-switching AB tasks is correlated (Dale &
Arnell, 2013), this does not necessarily mean that the two
kinds of AB tasks reflect entirely identical underlying mech-
anisms; a formal explanation of individual differences needs
to be developed and tested before such correlations can be
interpreted. For instance, individual differences in the ability
to stay motivated throughout a lengthy testing session are
likely to impact both kinds of AB tasks in the same manner,
although such differences may be unrelated to the root
cause(s) of the blink in each task. Other results support the
switching/non-switching distinction by observing dissocia-
tions between the two types of AB tasks. Some of this evi-
dence comes from neural measures, implicating different neu-
ral substrates for the deficit with each type of AB task
(Brisson, 2015; Vachon & Jolicoeur, 2011). Other evidence
comes from behavioral dissociations. For instance, switching
AB tasks produce cross-modal T2 deficits whereas non-
switching AB tasks do not (Potter, Chun, Banks, &

Muckenhoupt, 1998). Also, blink magnitudes on one non-
switching AB task correlate more strongly with those of dif-
ferent non-switching AB tasks as compared to the strength of
correlation with those of switching AB tasks (Kelly & Dux,
2011). Dale, Dux, and Arnell (2013) performed a factor load-
ing analysis of AB correlations, concluding that the Bswitch-
versus-no-switch distinction may have influenced the strength
of the relationships observed^ (p. 466). Finally, Visser,
Bischof, and Di Lollo (1999) reviewedAB results, concluding
that lag-1 sparing (i.e., the lack of a T2 deficit immediately
following T1) is robust for non-switching AB tasks, but often
missing with switching AB tasks.

Even though the perceptual wink model does not readily
explain deficits in switching AB tasks, its assumptions vis-a-
vis target detection priming explain the finding that lag-1 spar-
ing is less robust in switching tasks. When T2 appears as the
post-T1 item, lingering perceptual responses to T1 trigger at-
tentional mechanisms and encoding of T2 to the extent that the
observer has not yet adopted the attentional set appropriate to
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Fig. 8 Application of the perceptual wink model to intrusion data of Vul
et al. (2008). This paradigm presented a stream of letters, with each letter
presented for 58 ms, followed by a 25 ms blank screen. Targets were
enclosed by a circle. Upper graphs: Data and model results for the first
item reported at the end of the sequence (i.e., an attempt to produce T1).
Lower graphs: Data and model results for the second item reported at the
end of the sequence (i.e., an attempt to produce T2). The x-axis shows
position in the sequence relative to the T1 position. The colored lines
show intrusion distributions for each of the ten lags tested in this study.
The black dashed line shows T2 accuracy. In applying the perceptual

wink to these data, the parameters from Experiment 2 were used (the
same parameters used in Fig. 7). Two new parameters were allowed to
freely vary to capture the data. The first was the strength of visual input
for the circle surrounding the target and the second was a logistic growth
rate parameter specifying the probability of order reversals as a function
of position differences (e.g., if the simulated trial indicated a report of
items from positions 4 and 6, the probability of mistakenly reporting the
position 6 item first was calculated using a logistic function based on a
position difference of 2).



T2. For instance, in the Raymond et al. (1992) paradigm,
observers might still be detecting the presence of white letter-
ing at the time when the black X appears in the lag-1 position,
causing them to partially encode the black X precisely because
they have not yet switched to the T2 attentional set. However,
this lag-1 sparing is less robust than in non-switching tasks
because the T2 does not match the current attentional set. In
contrast, in a non-switching task, at the time of the lag-1 T2,
the target detector is primed by T1 and the T2 matches the
attentional set.

A clear example of lag-1 sparing in a switching task
comes from the Btwo glimpses^ result of Weichselgartner
and Sperling (1987). In that study, observers viewed a se-
quence of numbers and were instructed to report the four
numbers that appeared subsequent/simultaneous with the ap-
pearance of a square around one of the numbers. This in-
volved a task-switch from monitoring for a square to
encoding numbers, and yet there was a form of lag-1 sparing
(the first glimpse) such that, with high reliability, observers
reported the number inside the square as well as the next
number. This was followed by a failure to report subsequent
numbers, and then a re-emergence of number reporting (a
second glimpse) after the task switch. According to the per-
ceptual wink model, if lag-1 sparing occurs in switching AB
tasks, it may arise from the same mechanism as lag-1 spar-
ing in non-switching AB tasks (i.e., detection of T1 activates
the attentional gate, and this gate is still active at the time of
the post T1 item). However, the deficit for switching AB
tasks should relate to similar deficits in the task switching
literature and the deficit for non-switching AB tasks should
relate to similar deficits in the perceptual literature. This
situation explains why switching and non-switching tasks
correlate with each other to some degree, but two different
switching or two different non-switching tasks correlate
more strongly with each other than they do across the
switching/non-switching distinction.

Finally, we consider the intriguing possibility that after a
great deal of training, some switching AB tasks may become
non-switching tasks, akin to the learning of new categories
reported by Shiffrin and Schneider (1977). For instance, an-
other way to state the rule in the task of Raymond et al. (1992)
is to report any white letter or black X, regardless of which
comes first (their task never presented black Xs prior to the
white letter). With sufficient practice, observers may have
learned this unique conjunction of attributes as the perceptual
definition of targets.

A comparison with other AB models

The AB literature has sparked the development of many the-
oretical models (for a review, see Dux & Marois, 2009).
However, there are three important features shared amongst
the existing AB models that differ from the perceptual wink

model proposed here: (1) nearly all of these models are verbal
(e.g., Chun & Potter, 1995; Di Lollo et al., 2005;
Nieuwenstein et al., 2005; Raymond et al., 1992; K. L.
Shapiro, Raymond, & Arnell, 1994; Ward, Duncan, &
Shapiro, 1996) rather than formal theories specified with
mathematical formulae and/or computer simulations; (2) near-
ly all of the models were developed specifically to explain the
AB literature rather than attempting to bridge to related atten-
tional or perceptual tasks, with the notable exception of the
threaded cognition model of Taatgen et al. (2009); and (3)
none of the models place the root cause of the blink in the
dynamics of perception. Nevertheless, the perceptual wink
model is similar to existing AB models in many ways.
Besides reviewing these similarities and differences, we con-
sider in detail how the perceptual wink model compares to the
two most well-developed formal models of the AB: the epi-
sodic simultaneous type/serial token model (Wyble,
Nieuwenstein, & Bowman, 2009) and the boost and bounce
model (Olivers & Meeter, 2008).

Like all models of the AB, the perceptual wink model
contains fluctuating attention dynamics, but unlike other
theories, these attention dynamics passively follow per-
ceptual dynamics. For this reason, the perceptual wink
model only explains deficits in non-switching AB tasks.
Because other theories place the root cause of the AB
within attentional dynamics, they explain switching AB
tasks in the same manner as non-switching AB tasks.
This could be viewed as a limitation of the perceptual
wink model. However, we view this as a strength; by
placing the root cause of the blink in perceptual dynamics,
the perceptual wink model necessarily predicts interac-
tions of the AB with perceptual priming. Other theories
may be able to capture these priming effects in a post-hoc
manner through additional assumptions, but they do not
necessarily make predictions about perceptual priming.

In addition to predicting interactions between the AB and
priming, the perceptual wink model predicts that the AB
should be explainable by well-established perceptual dynam-
ics. The reported simulations specified perceptual dynamics
according to the nROUSE model of perceptual priming as
previously applied to word/letter identification. Aside from a
freely varying inhibition parameter, which was necessary to
capture the lack of visual crowding for singly presented letters
as opposed to letters in the context of words (Pelli, Palomares,
& Majaj, 2004), the only free parameters used to explain
Experiment 1 concerned the addition of an attentional gate
node, requiring two new parameters (an integration time con-
stant and an activation threshold), and a parameter capturing
the probability of guessing among the possible answers, im-
plemented as residual activation within STM for all possible
responses. The success of the model, despite using the previ-
ously established perceptual dynamics, served as a critical
sufficiency check; if the model had been unable to explain
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the attentional blink, this would have falsified the claim that
perceptual dynamics underlie the attention blink.

Although the placement of the blink dynamics within per-
ceptual representations is unique, the functional form of these
dynamics is not unique, appearing in several other AB
models. It is important to note that this does not reflect a
Bborrowing^ of these dynamics from other models—the equa-
tions dictating the dynamics of perceptual wink model were
first published in 2003 (Huber & O'Reilly, 2003).
Nevertheless, it is instructive to consider the similarities be-
tween these models. For instance, similar to the Locus
Coeruleus AB model of Nieuwenhuis, Gilzenrat, Holmes,
and Cohen (2005), the perceptual wink model assumes that
the deficit is a kind of neural refractory period. Similar to the
episodic simultaneous type/serial token (eSTST) model of
Wyble et al. (2009), the perceptual wink model does not im-
pose any resource limitations within the attentional system.
Similar to the boost and bounce (BB) model of Olivers and
Meeter (2008), the perceptual wink model assumes that T1
initiates an attentional response that carries over and enhances
encoding of the post-T1 item (a boost).

The BB model (Olivers & Meeter, 2008) was developed to
explain the spread of sparing in which the onset of the blink
can be delayed by a continual sequence of targets. In the BB
model, the continued presence of targets keeps the attentional
gate active, allowing the encoding of items into STM. This is
equally true in the perceptual wink model, although there are
limits to this spread in the perceptual wink model considering
that the target detector continues to accrue greater habituation
over the course of several targets. In contrast to these models,
the original simultaneous type/serial token (STST) model of
Bowman and Wyble (2007) could not explain the spread of
sparing. In the STST model, encoding into STM occurs via a
‘blaster’ that is triggered by T1. The blaster causes attentional
enhancement, producing sufficient input to trigger type pro-
cessing (e.g., which letter) of the target and thus the binding of
the type into an episodic token (e.g., an instance of that letter).
The initiation of binding triggers inhibitory feedback to the
blaster, shutting down attention to reduce interference be-
tween competing types. This inhibition produces the blink.
However, in the original STST model, the onset of inhibition
has a fixed time course. Lag-1 sparing was explained as the T2
binding to the same token as T1, but this process could not be
extended to multiple targets in succession. The eSTST model
remedied this situation by allowing flexibility in the dynamics
of the blaster, delaying inhibition in the presence of continued
targets, with each target receiving its own token.

In the BB model, the blink occurs as a result of the post-T1
distractor. T1 causes attentional enhancement (boosting the
attentional gate neurons), with this boost being delayed some-
what so as to also affect the post-T1 item, producing lag-1
sparing. However, if the post-T1 item is a distractor, the mis-
taken encoding of that distractor triggers inhibition (a bounce),

and thus an attentional blink. In other words, the BB model
requires a distractor to initiate the blink. This can be contrasted
with the eSTST model, which assumes that the blink is initi-
ated by encoding T1 into STM, with the caveat that additional
targets can delay the onset of this inhibition. Simply put, in the
BB model, the blink is triggered by a target followed by a
distractor, whereas in the eSTST model the blink is triggered
by a target followed by the absence of a subsequent target. In
this regard, the perceptual wink model sits somewhere be-
tween these alternatives. When distractors are presented be-
tween T1 and T2, the blink in the perceptual wink model
reflects both lingering habituation for the target detector (akin
to inhibition of the blaster in the eSTST model) and inhibition
of the target detector owing to competing activation of the
distractor detector (akin to the bounce in the BB model). If
blank screens are presented between T1 and T2, the perceptual
wink model still produces a blink (as does the eSTST model)
because of lingering habituation, although the magnitude of
the blink is reduced owing to the lack of inhibition from the
distractor detector (as well as weaker forward masking of T2).

In light of the different mechanisms for triggering the
blink in each of these models, the results of Chen and Zhou
(2015) are particularly informative. The TTT condition
produced a spread of sparing, which the original STST
model cannot handle, but the BB, eSTST, and perceptual
wink models can handle. However, the reversal of the
spread of sparing by inserting a blank screen between the
second and third Ts cannot be handled by the BB model
because in the absence of an intervening distractor, no
blink is initiated. The eSTST model does not handle this
result with its default parameters, but can handle this with a
change of its parameter values. In contrast, the perceptual
wink model predicts this result regardless of its parameter
values. In the perceptual wink model, two initial targets
provide greater habituation of the target detector as com-
pared to one initial target (i.e., the TT of the TTT condition,
as compared to the TD of the TDT condition). However,
this habituation is more than offset by the priming advan-
tage of the target detector being kept continually active and
by the absence of a competing distractor, with these two
factors producing the spread of sparing for a third target. In
the event of an intervening blank screen, the target detector
loses its activation (no target detector priming) and the
distractor detector also loses its activation (no competing
distractor). Thus, after a sufficiently long blank screen be-
tween the second and third targets, the TTT condition is
necessarily worse than the TDT condition (regardless of
parameters) because of greater habituation following two
initial targets. Critically, the perceptual wink model was
developed without its authors knowing of this result, and
this was a true prediction.

In terms of non-switching AB tasks, the eSTST and per-
ceptual wink models seem to fair equally well, but do so for
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completely different reasons (perceptual habituation versus
attentional inhibition). Because these two models assume dif-
ferent root causes of the blink, the perceptual wink model
cannot explain switching AB tasks (unless it was aug-
mented with task-switching dynamics) whereas the
eSTST model cannot explain the transition from positive
to negative perceptual priming (unless it was augmented
with perceptual dynamics). Additional work on the
switching/non-switching distinction and the interplay be-
tween perceptual dynamics and the attentional blink is
needed to adjudicate between these models.

Conclusions

In conclusion, the reported experiments and modeling
suggest that non-switching AB tasks are something of a
misnomer. Although the blink reflects the waxing and
waning of selective attention, the root cause of this
waxing and waning does not lie within the attentional
system. Instead, attention simply follows the time course
of perceptual activation and habituation. Thus, attention is
fully prepared and capable of accepting a second target,
but fails to do so because perceptual processes fail to
identify that a second target occurred (see Schneider &
Shiffrin, 1977 Experiment 3a for a target detection task
that produced an apparent blink). Similar to the proposal
made by Awh et al. (2004), this perceptual wink explana-
tion follows from an appreciation for the multifaceted na-
ture of perception, with the blink reflecting a deficit for
one perceptual attribute (e.g., the ability to detect the tar-
get) which leaves intact other perceptual attributes (e.g.,
the ability to identify the target).
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Appendix A: Model details

Figure 2 depicts the connectivity of the perceptual wink model
as applied to a letter-case AB task (Layer 1 simulating low-
level visual responses and Layer 2 simulating orthographic
responses). The equations reported here are equivalent to the
ones reported in the original nROUSE paper (Huber &
O'Reilly, 2003). However, rather than presenting their most
general form, we clarify the operations of the model by
unpacking them into separate equations for separate layers/
inputs.

When the preferred visual stimulus is displayed, the
dynamic activation of node i in the visual layer is

captured by the average membrane potential, vi, which is
updated by the amount, Δvi, every millisecond according
to Equation A1.

Δvi
S1

¼ 1−við Þ−vi Lþ I1 ∑
∀ j

o j

( )
ðA1Þ

S1 is the integration time constant for visual nodes (layer 1),
L is the magnitude of leak current, I1 is an inhibition constant
that scales the output, oj, from each visual node j of items
presented in the same screen position (including self-inhibi-
tion). Because action potentials only occur above a certain
threshold (θ), output is defined by Equation A2, which applies
equally to all nodes j in all layers of the model.

oj ¼ v j−θ
� �

aj if v j > θ
0 otherwise

�
ðA2Þ

Equation A1 drives activation towards the maximum value
of 1.0 when the preferred stimulus is presented. However,
when that stimulus is removed, Equation A1 mathematically
reduces to EquationA3, and activation approaches zero quick-
ly, if other visual nodes are active (i.e., visual masking through
inhibition), or slowly (i.e., iconic persistence), owing to leak
current L.

Δvi
S1

¼ −vi Lþ I1 ∑
∀ j

o j

( )
ðA3Þ

The variable aj in Equation A2 is the current level of syn-
aptic resources (e.g., neurotransmitter) available to node j for
effective signaling of receiving cells. Thus, Equation A2 is the
probability of an action potential multiplied by the post-
synaptic effect of each action potential. Every node j has a
unique time-varying level of available resources as deter-
mined by Equation A4.

Δaj

Sn
¼ R 1−a j

� �
−Doj ðA4Þ

As with Equation A2, Equation A4 applies equally to all
nodes in all layers of the model, although the integration time
constant, Sn, is set to the appropriate value for layer n in which
node j resides (e.g., for the nodes of the visual layer, Sn = S1).

Equations A1 and A3 describe membrane potential update
for Layer 1 based on the presence or absence of visual input,
respectively. In the case of Layer 2, Equation A5 is used to
update the membrane potential of node k based on the sum of
all output values j from nodes in Layer 1, each multiplied by
the connection weight,wkj, between the sending node j and the
receiving node k.

Δvk
S2

¼ 1−vkð Þ∑
∀ j
wkjo j−vk Lþ I2 ∑

∀l
ol

� �
ðA5Þ
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Connection weights are set to either 1 or 0, depending on
whether each pair of nodes is or is not connected (as indicated
by the arrows in Figure 2). Inhibition for layer 2 nodes is based
on the sum over the output of all layer 2 nodes, l, that are
engaged in the same type of identification. In other words,
as indicated in Fig. 2, the letter identities mutually inhibit each
other (i.e., they compete to determine which letter is currently
present) and, separately, upper versus lower-case mutually
inhibit each other (i.e., these two nodes compete to determine
the case of the currently presented letter).

This describes the basic nROUSE dynamics used in all
previous publications of the model. The model parameters
were set to ‘default’ values that were developed to explain
the Experiment 1 word repetition priming results reported by
Huber (2008), and, as seen in Fig. 1. A recent study (Rieth &
Huber, 2017) replicated these results and provided a more
accurate fit of the word priming results by modifying the I,
S1 and S2 parameters, and these values are used here. More
specifically, these parameters were: L = .15, I = .9844, θ = .15,
D = .324, R = .022, and S1 = .0294, S2 = .0609. The inhibition
parameter was set to its default value for the orthographic
layer (I2 = .9844) but it was a free parameter for the visual
layer (I1). The reason for this change is that presentation of a
word necessarily involves visual crowding between adjacent
letters (Pelli et al., 2004). Thus, the strength of visual inhibi-
tion determined from the word priming data likely overesti-
mates the degree of inhibition for a single letter presented
without any flanking letters. Indeed, as compared to word
priming value of .9844, the best-fitting visual inhibition pa-
rameter was estimated to be .1128 for the AB results of
Experiment 1.

Previous applications of the nROUSE model did not
need to address the selection of items allowed into STM,
but this is a crucial component of any AB model, consid-
ering that most AB tasks use more items than can be main-
tained in STM. We assume that STM encoding is dictated
by an attentional gate node, which is labeled α in Fig. 2.
Because the attentional-set for this AB task was to report
upper-case but not lower-case letters, the connection
strengths between the attentional gate node and the
upper/lower-case nodes were +1 and –1, respectively.
The attentional gate node is a new addition to the
nROUSE model requiring two new free parameters. As
previously mentioned, it was assumed that this node does
not experience habituation. This is implemented by fixing
the synaptic resources (a) at 1.0. With this assumption, the
cause of the AB must lie in the dynamics of the upper/
lower-case nodes. How rapidly the attentional gate node
responds to input from the letter-case nodes is dictated by
the integration time constant (S3), which was a free param-
eter dictating the timing delay between when the upper-
case node activates and when letter identities are encoded

into STM. Unlike other nodes, which use the default firing
threshold (θ = .15), the threshold for the attentional gate
node was a free parameter, serving to rescale the magni-
tude (but not the dynamics) of the blink. In summary, these
two free parameters can shift the letter-case dynamics
(delays) and can rescale the letter-case dynamics, but they
cannot change the rapidity with which a blink is initiated or
the rapidity with which the AB recovers—instead, these
dynamics were fixed a priori by prior applications of the
nROUSE model to the word priming data.

A ubiquitous finding in neuroscience is divisive nor-
malization whereby the activity of one neuron is normal-
ized (i.e., inhibited) by the activity of other neurons in the
same region (e.g., Barlow, 1953). The inhibition parame-
ters in the nROUSE model implement divisive normaliza-
tion within perceptual responses, and we assume that di-
visive normalization also occurs for the encoding of letter
identities into STM and for the decoding of letter identities
out of STM when making overt responses. In an abstract
sense, divisive normalization can be thought of as produc-
ing a probability distribution over the possible items, as
described by Equation A6.

p ið Þ ¼ eγi
∑
∀ j
eγj

ðA6Þ

In this equation, the response probability of a particular
alternative i is the evidence e in favor of that alternative
raised to the power γ, as compared to the sum over all
possible responses j. If the power constant γ is set to
infinity, divisive normalization is winner-take-all (WTA)
and if the power constant is set to 1, this equation be-
comes Luce’s (1959) choice rule. In the case of STM
encoding, we assume WTA divisive normalization (e.g.,
only one item can be encoded into STM at any particular
moment). Thus, if two or more letter identities are simul-
taneously active, only the most active is encoded, with the
strength of encoding dictated by the attentional gate node
at that point in time (αt). This is captured by the summa-
tion equation shown in Fig. 2, in which δ is the delta
function, with δ = 1 for the most active letter identity at
time t and δ = 0 for the other letters. The summation is
over all time steps (the model is run millisecond by mil-
lisecond) during the RSVP sequence, and over all possi-
ble letter identities (i). Thus, this summation provides a
total evidence (e) accumulation in STM for each possible
letters identity. However, because of the actions of atten-
tional gating, only four letter identities tend to be encoded
to any degree: T1, the post-T1 distractor (in conditions
other than lag-1), T2, and the post-T2 distractor.
Nevertheless, it is assumed that all possible letters have
some residual degree of evidence accumulation at the start
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of the trial, perhaps through proactive interference from
previous trials (Wickens, Born, & Allen, 1963). This re-
sidual STM activation is the a third STM free parameter.

The process of giving two (or three) responses at the
end of the RSVP trial is explicitly modeled. The Luce
choice rule is applied to give a first response distribution.
Next, for each possible first response, a conditional sec-
ond response distribution is calculated by setting to zero
the evidence (ei) for the appropriate first response before
re-applying the Luce choice rule. This prevents the model
from producing the same response twice (which is not
allowed by the experimental procedures). In the case of
three responses, this procedure is applied recursively to
find conditional third response distributions for each pos-
sible sequence of first two responses. However, the data
were too sparse to allow a full analysis of response order
and/or a full analysis over all specific letter identities
(e.g., the probability of responding with the first
distractor in the RSVP stream, the second distractor,
etc.). Therefore, these first and second responses were
collapsed to provide the probability of giving both T1
and T2 (regardless of response order), T1 but not T2,
T2 but not T1, and neither T1 nor T2. Thus, even though
full response distributions are not analyzed, the probabil-
ity of responding with letter identities other than T1 and
T2 provides an important constraint on the model, serv-
ing to increase or decrease the probability that neither T1
nor T2 is identified.

In summary, four free parameters were used to explain the
40 joint probabilities of Experiment 1 (i.e., 10 conditions, each
with 4 joint probabilities of T1/T2, representing 30 degrees of
freedom in the observed data). The best-fitting parameter val-
ue for S3 was the maximum allowed value of 1.0 (above 1, the
model becomes unstable and may oscillate), indicating very
rapid attentional gating based on the activity of the upper/
lower-case nodes (as reported in the legend to Fig. S1, when
fitting the data of Experiment 2, this parameter took on a
smaller value, with the attentional gate delay capturing the
observation that T2 performance was higher than T1 perfor-
mance in the lag-1 condition). The firing threshold for the gate
node (θ3) was .2903 and residual STM activation was .3074.
Finally, visual inhibition (I1) was .1128. With these parameter
values, the model captured 95.6% of the variance across the
40 joint probabilities, with a chi-square value of 140.5. The
best-fitting parameter values and goodness of fit metrics for
the Chen and Zhou study are reported in the figure caption of
Fig. S2.

Application of the model to the study of Vul et al.
(2008) required two additional parameters. The first
reflected the strength of visual input from the circle that
surrounded targets. Because this symbol was larger than
the characters, it may have provided a more salient signal
for activation of the target detector as compared to

paradigms that triggered the target detector through an or-
thographic property of the target character (e.g., number/
letter category or upper/lower case). In the simulation, the
visual node corresponding to the surrounding circle had the
same dynamics as all of the other visual nodes, but the
best-fitting connection strength to the target detector was
55.6, rather than the default value of 1.0. It is critical to
note two things about this value. First, this does not mean
that the target detector was 55.6 times more active consid-
ering that membrane potential is bounded at 1.0. In fact,
this value scarcely changes the maximum activation of the
target detector, but it does result in the target detector being
activated more quickly. Second, because the dynamics of
the visual node corresponding to the circle were un-
changed, this greater connection to the target detector
should not be considered a greater connection weight
(which would have resulted in faster habituation owing to
more rapid loss of synaptic resources). Instead, this reflects
a greater number of neurons representing the surrounding
circle (55.6 times as many visual neurons were activated
by the surrounding circle, as compared to a target letter).

The second new parameter concerned the judgment of
temporal order. If both of items sampled from STM (i.e.,
the two items slated as answers, according to two
implementations of the Luce choice rule in Equation
A6) had encoding values greater than the residual STM
activation, then it was assumed that temporal position in-
formation was available. In this case, the logistic equation
shown in Equation A7 was used.

p i before jð Þ ¼ 1

1þ et pos i−pos jð Þ ðA7Þ

This equation gives the probability of producing item i
before item j based on their positions in the sequence and
the logistic growth rate parameter, t. For instance, if the
position of i is much later than j, this equation approaches
0 (i.e., j is given as the first response), whereas if the
position of i is much earlier than j, this equation approach
1 (i.e., i is given as the first response). If the two items
have the same position (which is not possible in this par-
adigm because items were presented one at a time), then it
would be a toss-up as to which would be given as the first
response. The best-fitting growth rate parameter was 1.08.
In the event that just one of items was encoded above the
residual STM activation value, or if neither of the items
were encoded, then response order was a toss-up.

With these two free parameters, the 520 separate response
categories were fit (i.e., 26 possible letter responses, with each
one having a unique position relative to the position of T1, for
each of the first and second reports at each of 10 lags) captur-
ing 81% of the variance, with a chi-square of 3954 (488 de-
grees of freedom).
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Appendix B: Experiment 2 similarity tables
and analyses

We ran a 2 (distractor type: repeated vs. unrepeated) × 2
(similarity: similar vs. dissimilar) × 3 (Lag: lag 1, lag 3, lag
6) within-subjects repeated-measures ANOVA on the mean
proportion of T2 | T1 report. The analysis yielded a main
effect of distractor type, F(1,40) = 171.84, P < .001, η2 =
.261, due to the greater participants’ accuracy when the
distractors were repeated (M = .72, SDE = .03), than when
they were different (M = .5, SDE = .02). There was also a
main effect of similarity, F(1, 40) = 15.71, p < .001, η2 =
.009, indicating that participants were more accurate when
targets and distractors were dissimilar (M = .63, SDE =
.02) than when they were similar (M = .59, SDE = .02).
Finally, there was a main effect of Lag, F(2,80) = 101.5, P
< .001, η2 = .321, indicating that performance at Lag 1 (M
= .73, SDE = .02) was higher than accuracy at both Lag 6
(M = .64, SDE = .03), and Lag 3 (M = .45, SDE = .02), all
Ps < .001. The difference between performance at Lag 3
and Lag 6 was significant, P < .001.

The interaction between distractor type and similarity was
not significant, F(1,40) = .1, P = .748, η2 = .000, as well as the
one between similarity and Lag, F(1, 40) = .73, P = .398, η2 =
.001 [lower-bound correction], and the three-way interaction
among distractor type, similarity, and Lag, F(2,80) = .4, P =
.675, η2 = .000. The only significant interaction was the one
between distractor type and Lag, F(2,80) = 40.31, P < .001, η2

= .054. Specifically, in the trials in which the distractor was
repeated there was not a significant difference between per-
formance at Lag 1 (M = .77, SDE = .03) and at Lag 6 (M = .79,
SDE = .03), P = .340, and performance at Lag 3 (M = .58,
SDE = .03) was significantly worse than both at Lag 1 and at
Lag 6, all Ps < .001. When the distractors were different,
accuracy was greater at Lag 1 (M = .69, SDE = .02) than both
at Lag 6 (M = .49, SDE = .03) and at Lag 3 (M = .32, SDE =
.02), all Ps < .001. Also the performance at Lag 3 and at Lag 6
was significantly different, P < .001.
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