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Abstract. We report three behavioral experiments on the spatial characteristics evoking illusory face
and letter detection. False detections made to pure noise images were analyzed using a modified
reverse correlation method in which hundreds of observers rated a modest number of noise images
(480) during a single session. This method was originally developed for brain imaging research,
and has been used in a number of fMRI publications, but this is the first report of the behavioral
classification images. In Experiment 1 illusory face detection occurred in response to scattered dark
patches throughout the images, with a bias to the left visual field. This occurred despite the use of
a fixation cross and expectations that faces would be centered. In contrast, illusory letter detection
(Experiment 2) occurred in response to centrally positioned dark patches. Experiment 3 included
an oval in all displays to spatially constrain illusory face detection. With the addition of this oval the
classification image revealed an eyes/nose/mouth pattern. These results suggest that face detection
is triggered by a minimal face-like pattern even when these features are not centered in visual focus.
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1 Introduction

When looking at randomly positioned lunar craters, arbitrary wisps of cloud, or a scattered
pile of rocks, one often has the impression of seeing a face. Illusory detection is termed
“pareidolia”, and popular examples include the Man on the Moon, the face in the Cydonia
region of Mars, and the faces of numerous religious icons in toasted food (Svoboda 2007).
Providing many other examples, a blog called “faces in places” catalogs everyday objects that
look like faces (http://facesinplaces.blogspot.com/). Although these objects are not mistaken
for actual faces, they evoke the percept of a face in a compelling manner. In contrast to false
face recognition, which is the mistaking of one face for another, illusory face detection is the
reported detection of a face when no face image exists.

The process of falsely recognizing visible faces has been heavily investigated, particularly
as it relates to false identifications during police lineups (Lindsay et al 1991), but the processes
underlying face detection, especially illusory face detection, are not well understood at the
behavioral level (Lewis and Edmonds 2003). Nevertheless, recent research has examined
illusory detection and similar paradigms using neuroimaging. The fusiform face area (FFA)
is an area in the inferotemporal cortex that exhibits greater responses for faces than most
other objects (Kanwisher et al 1997). The FFA is not only preferentially active when viewing
faces (e.g., bottom-up processing) but is also active during top-down face processing—
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for example, when imagining faces (O’Craven and Kanwisher 2000), when anticipating
faces (Esterman and Yantis 2010), and when interpreting bistable images as faces (Andrews
et al 2002; Hasson et al 2001). However, these tasks either present a coherent bottom-up
signal (e.g., a bistable image that is easily interpreted as a face) or rely on the introspective
processes of the observer (e.g., instructions to imagine a face). To address these limitations,
we developed a new technique for eliciting illusory face detection that provides completely
ambiguous noise, thus providing a relatively pure measure of top-down processing without
reliance on introspection. Using this paradigm, we examined the neural correlates of both
illusory face detection and illusory letter detection (Li et al 2009, 2010; Liu et al 2010, 2011;
Zhang et al 2008). In the current experiments we used this same paradigm to provide the
first behavioral account of the visual template that observers likely used while experiencing
illusory detection in these fMRI experiments.

In this illusory detection paradigm faces or letters become progressively more difficult to
perceive throughout the experiment until, unbeknownst to observers, every trial presents
a pure noise image. Using observers’ detection responses in combination with measures
of neural activity, we found that the FFA is selectively active when detecting illusory faces
(Zhang et al 2008). Additionally, we identified a distributed network of brain areas involved
in illusory face detection (Li et al 2009, 2010). This network largely overlaps with regions that
are active when viewing actual faces (Fairhall and Ishai 2007; Ishai 2008), except that some
earlier visual areas are absent, such as the occipital face area. For illusory letter detection
a similar distributed network of brain regions was identified (Liu et al 2010, 2011). Missing
from these investigations is specification of the spatial attributes of a noise image that tend
to promote illusory detection of faces or letters. In other words, these studies tell us which
brain regions are involved in illusory detection, but they do not tell us what visual properties
activated those brain regions. The current experiments answer this question by replicating
the illusory face and letter detection experiments outside the scanner. Using a technique
called “reverse correlation” (Dayan and Abbott 2001), we computed correlations between
detection responses and the noise images. In this way, we determined the aspects of the
noise images that trigger illusory detection for faces and letters.

1.1 Outline of the current experiments
Faces and letters are two very different classes of objects in terms of their visual properties.
For instance, any two faces are much more visually similar to each other than are any two
letters. In light of these differences a comparison between illusory detection of faces and
letters may seem unwise. However, beyond the fact that our paradigm has already been used
in fMRI experiments with these two classes of stimuli there are other advantages to this
comparison. For instance, faces and letters are two classes of visual stimuli that have been
heavily studied, and most adults are expert at identifying both. Furthermore, letters and faces
appear to be processed in different parts of the brain; and, correspondingly, there are distinct
neuropsychological deficits for each stimulus class (e.g., prosopagnosia and dyslexia). Of
critical importance for the current experiments, the brain regions that are specialized for
faces and letters appear in opposite cortical hemispheres: the FFA typically resides in the
right hemisphere (Kanwisher et al 1997), while the visual word form area typically resides in
the left hemisphere (McCandliss et al 2003). This cortical laterality may exhibit itself in the
form of spatial laterality differences for the noise patterns that promote illusory detection of
faces and letters.

Experiments 1 (illusory face detection) and 2 (illusory letter detection) are direct repli-
cations of our fMRI experiments (Li et al 2009, 2010; Liu et al 2010, 2011; Zhang et al 2008)
except that the current experiments collected data from many more observers to determine
the spatial attributes of the noise images that tend to promote illusory detection. Experiment
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3 tested whether additional bottom-up constraints could eliminate the noncentrality of face
detection by including an oval in the noise images.

Reverse correlation techniques were originally developed to study the spatial characteris-
tics of neural receptive fields (Dayan and Abbott 2001; Jones and Palmer 1987; Movshon et
al 1978; Ringach and Shapley 2004). To determine the spatial characteristics that promote
detection responses, a correlation is calculated for each observer at each pixel position for the
relationship between luminance (e.g., gray scale value as determined by adding pixel noise
to an image) and whether the observer detected a target on the corresponding trial (in the
case of a neuron, detection is determined by spike rate). This analysis creates a “classification
image” (CI) showing regions of the noise images where luminance correlated with responses.
To study illusory detection, our design and analysis deviated from typical behavioral reverse
correlation experiments by using all noise images, averaging detection responses over a large
number of observers, using complex but random images, and establishing the expectancy of
targets though training blocks instead of through inclusion of targets on a subset of trials.
Figure 1 provides a graphical summary of the typical techniques used and an overview of
the design of the current study. This variant is new, and our results demonstrate its ability to
identify the biases and expectations that underlie detection of an object class.

Most reverse correlation experiments based on behavioral responses present a true target
image combined with independent pixel noise such that detection is influenced by the
particular noise pattern on each trial (e.g., Ahumada 1996; Gold et al 2000; Kontsevich and
Tyler 2004). This is also true for studies using neural measurements in humans (Smith et al
2008, 2009). For example, to find the visual features necessary to detect a smile, observers
were shown the Mona Lisa combined with noise and asked to rate her emotional expression
on a scale from sad to happy (Kontsevich and Tyler 2004). Using targets combined with
noise to investigate illusory detection of faces and letters is problematic for two reasons.
First, if a target is present, detection is not illusory. Second, a detection task for the same
target image on every trial may differ from illusory detection for any item from the object
class. To study top-down expectations for detection of faces and letters as object classes
without contamination from bottom-up information, we needed a task that did not include
actual target images during the critical experimental trials. We also needed observers to
expect any face rather than a particular face (or letter). Therefore, we used a training phase
that presented a variety of different centered face/letter images mixed with noise, with
these targets becoming progressively more difficult to detect. Eventually, target images were
omitted entirely, and only noise images were used for the remainder of the experiment. This
training established top-down expectations about what class of object to expect (faces in
Experiments 1 and 3, and letters in Experiment 2) and where to expect an exemplar from
that object class (in the center of the image). Although a previous study has used noise-only
images to create a behavioral CI (Experiment 1 of Gosselin and Schyns 2003), this is the first
time that this has been done with detection of an object class rather than a specific target
(e.g., the Mona Lisa’s smile) or a specific exemplar (e.g., the letter “s”). This is an important
distinction. With a known target observers may adopt a search strategy that is unique to that
target (i.e., reliance on specific low-level visual features). In contrast, for the detection of an
unknown target from an object class, observers are forced to rely on class general top-down
expectations.

The presence of visible targets appearing throughout the experiment helps observers
stay focused on the detection task across the thousands of trials used in a typical reverse
correlation experiment. However, illusory detection for an object class would be contami-
nated by including visible targets on a subset of trials because the preferred image would
be heavily biased towards the specific form of the most recently seen target. Therefore, to
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Figure 1. The top panel (a) illustrates the basic design of the experiments. Training started with 40 easy
trials, 50% of which contained actual targets. The second block of 40 trials was similar, but the target
faces or letters were more difficult to detect. Unknown to observers, the final 40 training trials used
only pure noise images. Following training, observers responded to 480 pure noise images presented in
blocks of 60. The panels (c) and (d) on the bottom left illustrate aspects of typical neural and behavioral
reverse correlation experiments. The bottom right (d) shows stimuli presented to observers during
Experiment 1 (top row), Experiment 2 (middle row), and Experiment 3 (bottom row). The same set of
pure noise images were used for all three experiments. Target stimuli for training used 20 different
pictures of male and female Asian faces in the face detection experiments, or the letters “s”, “o”, “r”, “u”,
“a”, “c”, “e”, “m”, and “n” in the letter detection experiment. The faces in the hard training images may
be hard to see at the size reproduced here but were clearly visible in the experiment, as evidenced by
the accuracy of observers.

keep observers engaged throughout the experiment, and to reduce boredom and fatigue, we
used both a smaller number of trials (480) and complex noise images. The use of complex
noise images has been shown to produce reliable results and to reduce the number of trials
required for behavioral reverse correlation (Hansen et al 2010). By using complex noise
images that lend themselves to many interpretations, it is more plausible that a particular
image might contain a target. Nevertheless, even complex noise images cannot produce a
reliable CI from only 480 observations.
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To gain the necessary statistical power, we analyzed the results over a large group of
observers. This allowed us to statically generalize the resulting CI across observers rather
than relying solely on within-observer analyses. However, it is possible that each observer
might base their detection responses upon a unique, observer-specific spatial pattern. To the
extent that this occurs, this introduces additional noise into the results, reducing reliability
of the CI. Furthermore, if each observer viewed a different small set of noise images, the
resultant CI would include sampling noise across observers and sampling noise across
different noise images (i.e., both observer and noise image would be random factors). To
account for this, in our paradigm we used the same set of 480 noise images for all of the
observers instead of using a completely different noise image every trial. In other words,
we increased reliability by using a repeated measures design. However, this introduced
the issue that our results, while reliable, may be driven by the particular sample of noise
images. Therefore, we also counterbalanced the orientation of the 480 noise images across
different groups of observers to ensure that the particular sample of noise images did induce
particular spatial attributes of the CI, such as horizontal or vertical asymmetries. This is an
important control given that several variables of interest were spatial distribution analyses of
the classification images (e.g., central versus peripheral or left versus right). A lateral bias
that changed with the orientation of the noise images would indicate that the lateral bias was
inherent in the noise images and, accordingly, that illusory detection was strongly influenced
by bottom-up attributes.

2 Materials and methods

2.1 Observers
In total, 699 undergraduate students participated across three experiments: 229 in Experi-
ment 1, 211 in Experiment 2, and 259 in Experiment 3. All observers participated for course
credit, gave informed consent, and were debriefed as to the nature of the experiment. The
study was approved by the University of California, San Diego (UCSD) institutional review
board.

2.2 Stimuli
Noise images for the experiment were created by combining dark blobs at random spatial
positions. The randomly positioned blobs were two-dimensional Gaussian distributions with
three different spatial standard deviations, resulting in three different blob sizes. Furthermore,
the number of randomly positioned blobs varied inversely with their size. These three spatial
scales were combined to create 480 different noise images that were 480×480 pixels in size.
As viewed, these images subtended 14 deg of visual angle horizontally and vertically. The
same 480 noise images were used for all observers in all experiments except for the addition
of an overlaid oval in Experiment 3. An additional 120 noise images were created for training.
We previously used these same stimuli in several fMRI studies with Chinese observers (Li et
al 2009, 2010; Liu et al 2010, 2011; Zhang et al 2008).

Every image on every trial contained a black fixation cross in the middle of the image.
Target stimuli for face training were created by overlaying each noise image with a true
face image that was centered. In total, there were 20 different true face images (10 male, 10
female) that were of approximately the same size. Because we sought illusory detection of
any face, we could have used a mix of different size faces, although doing so would have
reduced the reliability of the CI (i.e., we induced consistency in terms of the size and location
of the targets but not the specific form of the targets). These 20 faces were all Asian in
appearance, which was a reasonable constraint considering that the largest segment of the
UCSD undergraduate population is Asian. To promote a bias for the center of the display,
the image mixing proportion between the true images and the noise images was a Gaussian
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distribution centered on the image, thus causing the edges of the face to fade into the noisy
background. Two different mixing proportions were used for the first (easy) and second (hard)
blocks of training, such that the true images were either easily seen or barely discernible. For
letter training in Experiment 2 noise images were combined with true images of the letters
“s”, “o”, “r”, “u”, “a”, “c”, “e”, “m”, and “n”. In pilot testing we found that letters with only straight
segments were too easy to detect (i.e., illusory detection of straight letters seemed unlikely),
most likely because the noise images contained no straight segments. Thus, we chose this
group of letters because they contained curved line segments, which allowed the impression
that the pure noise images might contain one of these letters. Participants were not informed
that these were the only letters that would appear. Letter stimuli were created using the Arial
typeface and blurred with a 7 pixel Gaussian blur to remove hard edges. In the bounded
images used in Experiment 3 an oval roughly the size of the training faces was added to all
images in the experiment. Examples are shown in Figure 1.

2.3 Procedure
Observers were instructed to detect faces (Experiments 1 and 3) or letters (Experiment 2).
For example, observers who detected faces with the left key were told:

You will see a number of images. The task is to press the left arrow if you think there could be a
face, or the right arrow if not. The task will start easy, but will get very hard. You may feel like
you are guessing but other research suggests you can be quite accurate. Focus on the fixation
in between images. You should respond with the presence of a face about half the time. The
images will only stay on screen briefly so respond quickly.

Observers completed three training blocks of 40 trials each, followed by six experimental
blocks of 80 trials that contained only pure noise images. Between blocks, observers rested
for at least 15 s. The trials within each block were presented in a random order for each
observer. For the first two blocks of training half of the trials presented a true image in noise
(face or letter, as appropriate), while the other half presented pure noise images. The first
training block presented easy to detect targets, the second block presented hard to detect
targets, and the third block presented only pure noise images. Between the training blocks
they were told that the task would get harder. Before the experimental blocks they were told
the difficulty of the task would be maintained. Before both the pure noise training block
and the first experimental block they were encouraged to respond with detection responses
about half of the time.

Each trial began with a fixation cross presented for 200 ms followed by an image that
remained on the screen until a response was given or 600 ms elapsed, which was immediately
followed by the fixation cross of the next trial. Observers made responses by pressing labeled
keys to indicate detection or nondetection. No feedback was given. Across observers, image
orientation was counterbalanced by presenting the 480 noise images either in their original
orientation or 180◦ rotated. This manipulation demonstrated that the observed left visual
field bias for face detection was not an artifact of the particular 480 pure noise images.
Experiment 3 included an additional left/right control by counterbalancing response key
across observers. Furthermore, in Experiment 3 all of the images (training and noise) were
horizontally flipped as compared with their presentation in Experiments 1 and 2 so that the
right side of the image was mapped to the left side of the image. Unlike rotation, which would
invert any face-like pattern that appeared in a particular noise image, horizontal mirroring
would preserve any face-like pattern but would place it in the opposite visual field.

3 Results

A few observers guessed the nature of the experiment and never detected targets during
experimental trials. However, during postexperiment questioning, the vast majority of
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observers indicated that they were convinced that targets appeared on some proportion
of experimental trials. Across all observers the proportions of trials for which participants
indicated illusory detections were 32%, 36%, and 36% for Experiments 1, 2, and 3, respectively
(s.e.m = .013, .012, and .012). Observers whose hit rate for the first training block with
easy targets was less than 40% or who had fewer than five illusory detections during the
experimental trials were eliminated from further analysis. These criteria eliminated 24.5% of
participants from Experiment 1 (173 remained, 79 with the original image orientation and
94 with the rotated), 11.0% from Experiment 2 (188 remained, 86 with the original image
orientation and 102 with the rotated), and 22.4% from Experiment 3 (201 remained, 53 with
mirrored images and the original response keys, 52 with mirrored images and the swapped
response keys, 43 with mirrored and rotated images and the original response keys, and 53
with mirrored and rotated images and the swapped response keys). Response statistics for
the remaining observers are shown in Table 1.

Table 1. Mean response measures for the observers that met the criteria for inclusion.

Block Hit rate False alarm
rate

d ′

Easy training
Experiment 1: face detection 0.97 (0.004) 0.05 (0.007) 3.44 (0.042)
Experiment 2: letter detection 0.91 (0.006) 0.07 (0.006) 2.94 (0.045)
Experiment 3: bounded face
detection

0.96 (0.004) 0.03 (0.003) 3.48 (0.033)

Hard training
Experiment 1: face detection 0.96 (0.004) 0.06 (0.007) 3.33 (0.042)
Experiment 2: letter detection 0.89 (0.007) 0.10 (0.008) 2.74 (0.050)
Experiment 3: bounded face
detection

0.96 (0.003) 0.04 (0.004) 3.45 (0.033)

Noise-only training
Experiment 1: face detection na 0.29 (0.011) na
Experiment 2: letter detection na 0.32 (0.011) na
Experiment 3: bounded face
detection

na 0.31 (0.011) na

Noise-only experimental
Experiment 1: face detection na 0.39 (0.011) na
Experiment 2: letter detection na 0.38 (0.011) na
Experiment 3: bounded face
detection

na 0.41 (0.010) na

Note: Standard error of the means are given in parentheses; na = nonapplicable.

Because our experimental method is new we used two methods to analyze the results.
Both reached the same conclusions regarding the spatial distribution of correlation values
across the classification images. In the first analysis we created a separate CI for each observer
in the traditional manner and compared the median correlations between different image
regions using a repeated measures ANOVA. Because each observer rated only 480 images,
these median correlation values based on individual CIs were small. However, because these
values were analyzed across individuals, regional differences were reliable. This method
of analysis allowed us to make claims regarding the population of observers, and it also
allowed us to evaluate the role of between-observer control factors such as image orientation.
However, because this method was based on median correlations within a spatial region, it
did not allow analyses of the distribution of correlation values across pixels within a spatial
region. To analyze these distributions, a second analysis method evaluated a single between-
observer CI for each experiment by correlating the proportion of detection responses for
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each image with the luminance of each pixel. The significance of this CI and measurements
of it were then evaluated using null sampling distributions that were generated by repeatedly
shuffling observer responses (i.e., Monte Carlo sampling).

3.1 Repeated measures analyses of individual CIs
In the first analysis method a CI was created for each observer by correlating their detec-
tion/nondetection response with the luminance (i.e., gray scale value) of each pixel across
the 480 noise images viewed during the experimental portion of the study. The spatial
distribution of CIs for each experiment were analyzed by finding the median pixel correlation
within different spatial regions of interest for each observer’s CI. These median correlation
values were then analyzed using an ANOVA with observer as a random factor. Control factors
such as image rotation and response key were included in the analyses. Correlation values
were largest for the central regions, and so all analyses were performed on the center ninth
of the CIs, based on an evenly spaced three-by-three grid over the entire image.

First, we compared the left and right halves of the center region (see insets at the top of
Figure 2). Dark areas on the left of images were more correlated with detections than the right
for both Experiment 1, F (1,171) = 4.19, p = .042, η2 = .024, and Experiment 3, F (4,197) = 6.88,
p = .009, η2 = .034, but not for Experiment 2, F (1,186) < 1. Next, the top and bottom halves of
the center region were compared, revealing no differences for Experiment 1, F (1,171) < 1, or
Experiment 2, F (1,186) < 1, but a slight bias toward the top for Experiment 3, F (4,197) = 3.91,
p = .049, η2 = .019.

To provide a more fine-grained spatial analysis, the center region, which resulted from
a three-by-three grid over the whole image, was itself further divided into three rows by
three columns (see inset of Figure 2, upper right). For Experiment 1 the only significant
effect was an effect of column, F (2,170) = 4.21, p = .016, η2 = .047. The pattern over columns
was middle, to left, to right, and post hoc tests, αadj = .017, showed that the middle column
was more correlated than the right, t(172) = 2.98, p = .003. For Experiment 2 there were
significant interactions between row and column, F (4,183) = 5.67, p < .001, η2 = .110, as
well as main effects of row, F (2,185) = 14.77, p < .001, η2 = .13, and column,F (2,185) = 17.69,
p < .001, η2 = .161. Post hoc corrected t-tests assessing the interaction, αadj = .0014, found
these effects were largely driven by the center region, which had much larger correlations
than all other regions, t(187) ≥ 4.64, all p-values < .001. The upper-middle, middle-left,
middle-right, lower-left, and lower-middle regions were additionally more correlated than
the lower-right region, t(187) ≥ 3.39, all p-values ≤ .001. For Experiment 3 there was again
a row-by-column interaction, F (4,194) = 3.93, p = .004, η2 = .075, as well as main effects of
row, F (2,196) = 4.32, p = .015, η2 = .042, and column, F (2,196) = 9.53, p < .001, η2 = .089.
In contrast to Experiment 2, corrected comparisons showed that pixels in the upper-left
region had stronger correlations than the middle-left, middle-right, and lower-right regions,
t ≥ 3.39, p-values ≤ .001, and that the center and lower middle had higher correlations than
the middle right and lower right, t (200) ≥ 3.26, p-values ≤ .001.

Next, we report the results of the control variables. These control variables were coun-
terbalanced across observers, and the focus of these analyses was on interactions between
the control variables and the spatial characteristics of the CIs. There were no interactions
with image orientation for Experiment 1, F-ratios < 1.45, p-values > .238. In Experiment
2, however, image orientation interacted with left/right half, F (1,186) = 17.94, p < .001,
η2 = .088, and with top/bottom half, F (1,186) = 7.55, p < .001, η2 = .039. Additionally, there
was an interaction with column for the three-by-three analysis, F (2,185) = 9.32,p < .001,
η2 = .092. The interactions of image orientation with halves are shown along the left and
middle columns of Figure 2. For the images shown in their original orientation, the right was
significantly more correlated than the left, t(85) = 2.26, p = .026, and there was a marginal
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difference such that the bottom was more correlated than the top, t(85) = 1.93, p = .056.
Both of these effects reversed when the images were rotated: left more correlated than right,
t (101) = 3.82, p ≤ .001; top more correlated than bottom, t (101) = 1.99, p = .049. Examination
of the column-by-orientation interaction,αadj = .017, showed that for the original orientation
images there were differences between the center columns and each side: both t (85) ≥ 3.22,
both p-values ≤ .002. But for the rotated images both the center and left regions had stronger
correlations than the right: both t (101) ≥ 4.158, both p-values < .001. In Experiment 3 there
were no significant interactions with image rotation or response key for any of the analyses,
F-ratios ≤ 1.34, p-values ≥ .256.

Figure 2. Repeated measures analyses of individual classification images (CIs) based on the median
correlations within different regions of each observer’s CI. The left column compares the left and right
halves of the center region of the image as indicated by the inset at the top of the column. Between
observers the 480 noise images were rotated, and the results of this control variable are shown, which
produced an interaction effect only for illusory letter detection. Error bars are ±1 standard error of the
mean difference between the median left and median right correlation for each observer. The center
column shows the correlations in the top and bottom center regions of the image in a similar manner.
Error bars are ±1 standard error of the mean difference between the median top and median bottom
correlation for each observer. The right column compares correlation values in the three-by-three grid
shown in the inset. Error bars are ±1 standard error of the mean median correlation.
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3.2 Monte Carlo analyses of between-observer CIs
A second set of analyses was based on between-observer CIs rather than on the individual
CIs. A between-observer CI was calculated based on the correlation between pixel luminance
(i.e., gray scale value) and the proportion of observers who gave detection responses to
an image containing that pixel. The detection proportions for each image were computed
as the number of detection responses divided by the sum of the number of detection and
no-detection responses (i.e., excluding no-response trials). Including no-response trials
did not change the results. It is worth noting that these between-observer CIs were nearly
identical in appearance to the average of the individual CIs. Null hypothesis distributions
were determined separately for each pixel location. Thus, if there were a systematic bias in
the noise images (i.e., a tendency for dark areas to be on the left), it would be reflected in
the null sampling distributions. These analyses allowed a fine-grained spatial evaluation by
examining clusters of pixels within the CIs.

The expected distribution of correlation values at each pixel location from random
responding was determined by running 5,000 Monte Carlo simulations for each experiment.
For each Monte Carlo simulation the mapping between the 480 detection probabilities and
the 480 images was randomly reshuffled. The resulting means and standard deviations at
each pixel location were used to calculate z-scores for each observed pixel correlation, which
are displayed in the right column of Figure 3. To verify that the correlation values were
normally distributed, we performed a Lilliefors test (i.e., a Kolmogorov-Smirnov test with
unknown parameter values) separately for each of the 230,400 pixels of each experiment.
Setting α= .05, 5% of the pixels produced correlation distributions that differed significantly
from a normal distribution (i.e., the proportion of rejections was exactly as expected based
on the chosen type-I error rate).

Next, the distribution of correlation values was assessed by counting the number of pixels
in the top versus bottom and in the left versus right that exceeded a chosen correlation
threshold. Correlation thresholds were defined by the proportion of the largest absolute
correlations; a rank-ordered list of all the absolute correlations for the entire image was
formed from largest to smallest, and different proportions of this list were included in the
analyses. As shown in Figure 4, the pixel counts for one region were subtracted from the
other region to yield a measure of relative spatial bias. The black lines in the figures show the
observed biases, and the dashed red lines show 95% confidence intervals for this measure
based on the Monte Carlo simulations. Similar to the repeated measures analyses, these
analyses were carried out only for the middle region of the display, as shown by the insets
of the figure. As seen in the left column of Figure 4, face detection revealed a left bias (both
Experiment 1 and Experiment 3), replicating the ANOVA analyses. As seen in the right column
of Figure 4, only bounded face detection (Experiment 3) showed any reliable vertical bias,
with the most reliable correlations found in the top half.

Beyond assessing different spatial regions, the between-observer CIs were used to assess
the nature of pixel clusters (i.e., correlations between pixels). To some degree, regions of
correlated pixels were expected because the noise images contained Gaussian blobs rather
than independent pixel noise. However, because the noise images contained Gaussian blobs
of different sizes, we could evaluate biases for pixels of different cluster sizes across the
three experiments. Regions were defined as groups of contiguous pixels with the absolute
value of correlations above a threshold proportion. The number of contiguous regions, mean
size of regions, and standard deviation of region sizes were computed for varying threshold
proportions for the observed between-observer CIs and the Monte Carlo CIs. The results are
plotted in Figure 5. For small threshold proportions the observed data of all three experiments
revealed fewer clusters than expected by chance and that those clusters were larger and more
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Figure 3. Left: the average of the 40 true images viewed during training. Right: the between-observer
classification images (CIs) for Experiment 1 (top, N = 173), Experiment 2 (middle, N = 188), and
Experiment 3 (bottom, N = 201). Each pixel’s color is defined by its z-score as calculated from a null
distribution generated by 5,000 Monte Carlo simulations. The z-score color map scales are shown to the
right of each CI. A Šidák correction for α= .05 places the z-cutoff at −5.05: only negative z-scores (i.e.,
the yellow and red regions) reliably correlated with the proportion of detection responses, indicating
that observers based their detections on dark rather than on light patches. The color mapping is
scaled for each experiment so that the top and bottom 0.1% of correlations are shown with the same
minimum or maximum color.

variable in size than would be expected. However, these effects were greatly magnified for
letter detection, which had the smallest number of regions that were of the largest size.

4 Discussion

4.1 Summary of results
In a pure noise illusory detection paradigm Experiment 1 produced a distributed, but reliable,
CI that was biased towards dark areas of the left side of the noise images. The observed
correlations were significant and larger than would have occurred with random responding,
and yet there was no obvious structure to the CI. Instead, the CI revealed a seemingly random
pattern of peripheral dark patches with a left bias. This distributed pattern occurred despite
the use of a fixation cross on all trials and centered faces during initial training. Experiment
2 used the same technique for a task that induced illusory letter detection, addressing the
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Figure 4. The distribution of correlation values within different regions of the between-observer
classification images (CIs). These graphs show the difference in the number of pixels that fall into one
region of the CI versus another region (e.g., left minus right) as a function of a threshold proportion
that determined which pixels to include in the analysis (i.e., the threshold proportion indicates the
proportion of all pixels to include in the analysis based on the absolute magnitude of correlation
values). Thus, in moving from left to right, the graphs use an increasingly liberal criterion for inclusion
of pixels. The black line shows this analysis based on the observed data, and the red dashed lines are
95% confidence intervals as determined by Monte Carlo sampling. The left column shows lateral bias
(left minus right), and the right column shows vertical bias (top minus bottom), with these regions
shown in the insets.

possibility that illusory detection of any object class would yield similar results. However,
there was no consistent laterality bias, and letter detection was strongly influenced by dark
patches in the center of the pure noise images (in fact, these correlations were more central
than expected based on the training images, as can be seen by comparing the left and right
columns of Figure 3). Furthermore, there were interactions for letter detection between the
orientation of the images and the lateral biases in the images, which was not seen in the
face detection experiments. Experiment 3 used the same procedure as Experiment 1 with
the addition of an oval on the noise images to test if this would induce a more face-like CI
by spatially constraining the location of illusory detections. The CI for Experiment 3 does
have the rough appearance of a face, but still reveals a left bias. The regions corresponding to
the dark areas of a face (eyes/eyebrows, nostrils, and mouth: upper left, center, and lower
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Figure 5. Monte Carlo analyses of between-observer classification images to evaluate clusters of
correlated pixels. For pixel correlations greater in magnitude than the proportion threshold the number
(left column), size (middle column), and standard deviation (right column) of spatially contiguous
groupings of pixels are plotted. The experimentally observed values are in black, and 95% confidence
intervals from the Monte Carlo sampling are plotted as red dashed lines.

middle, respectively) correlated more strongly with detection responses, with a tendency for
the left to be more strongly correlated than the right.

4.2 Methodological implications and considerations
Unlike previous studies using behavioral reverse correlation, these experiments investigated
illusory detection of an object class rather than a specific target exemplar. Furthermore, these
experiments demonstrated that between-observer classification images can be obtained
using a small number of noise images with many observers.

The use of an illusory detection paradigm (i.e., only noise images) introduces a complica-
tion in that some observers may produce much higher false alarm rates than other observers
(Wenger et al 2008). To the extent that this occurs, it introduces noise in the CIs because some
observers respond due to a bias to respond in general rather than respond based on a good
match between the noise image and their internal template. For this reason it was important
to carefully assess the reliability of the CIs for illusory detection, and so we used two different
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analysis techniques to test the generality of the statistical conclusions. While there were
individual differences in response rates, both analysis techniques produced qualitatively
similar results: (1) illusory face detection was left lateralized despite the expectation of
central targets; (2) unbounded face detection occurred in response to dark patches dispersed
throughout the noise image; and (3) illusory detection of letters occurred in response to
central dark patches and was more consistently driven by the bottom-up information
contained in the noise images.

In interpretating these results, we must consider the training images that established the
demand characteristics of the detection task. To promote reliable results, the training images
appeared in the same location, were roughly the same size, and did not include the full
diversity of all possible faces or letters. If training had presented faces or letters of different
sizes and at different positions, then the CIs would most likely have been dispersed in all
conditions (although for methods examining reverse correlation with detection at different
locations, see Tjan and Nandy 2006). Rather than using training images, Gosselin and Schyns
(2003) used a pure noise procedure with only verbal instructions about what to detect.
Their paradigm required a few dedicated observers taking part in multiple sessions, and the
target stimulus was a specific letter or the form of a mouth within the context of visible face
outline rather than an object class. Their mouth detection experiment is of particular interest
because it most closely corresponds to our Experiment 3 in that both studies provided the
outline of the face while asking that observers detect interior components of the face. Similar
to their results, Experiment 3 produced the CI that most closely resembled a face. This
validated our paradigm, which was very different from the Gosselin and Schyns paradigm
in many respects. This validation was important because Experiment 1 produced radically
different results from other uses of reverse correlation, suggesting that observers detected
faces in different regions of the pure noise images despite the use of a fixation cross and
despite initial training that faces would occur only in the center of the display.

One potential concern in comparing the results of letter and face detection is that the
images of the letters viewed during training were slightly smaller than the faces viewed during
training (although note that, as presented in noise, their subjective sizes are comparable; see
Figure 1). Even so, the CI for the letter detection task revealed a pattern that was more
centralized than the actual letters viewed during training, whereas the CI for the face
detection task of Experiment 1 revealed a pattern that was less centralized than actual
faces viewed during training. Thus, slight differences in the size of the training objects cannot
explain the difference in the spatial dispersion of the CIs.

4.3 Theoretical implications
This paradigm was originally developed to study the neural correlates of illusory detection
with fMRI, which is a technique that is limited to a modest numbers of trials. The fMRI
experiments identified distributed patterns of neural activation involved in top-down
illusory face and letter detection (Li et al 2009, 2010; Liu et al 2010, 2011; Zhang et al 2008).
By collecting data from a large number of observers, the current experiments examined
behavioral results with this paradigm to ascertain the spatial patterns that tend to promote
illusory detection. Thus, between the prior fMRI experiments and the current behavioral
experiments we have identified both the neural and visual attributes of illusory face and
letter detection.

Unlike face detection, the spatial distribution for letter detection was more tightly focused
on the center. This difference is consistent with the hypothesis that top-down face processing
is less constrained by spatial position, which produced the seemingly random pattern in
Experiment 1 due to the superposition of separate spatially displaced face-like patterns.
Unlike illusory letter detection, illusory face detection also revealed a left bias, which is
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consistent with prior work with visible faces and with the anatomical location of face-specific
areas of the cortex. However, this left bias in Experiment 1 could have resulted from an
expectation for faces to appear on the left, or from a central form that was itself left biased
(e.g., stronger emphasis on the left eye), such as observed in Experiment 3. It is notable
that the observed correlations in Experiment 3 resemble the dark central features of a face
(e.g., eyes/nose/mouth) but not other face features such as ears or forehead. In summary,
by stripping away bottom-up visual information, we obtained support for the claim that
top-down face processing is relatively unconstrained by the task demand to detect objects at
the point of fixation.

We interpret this as evidence that top-down face detection is more strongly driven by form
than by the location of that form. In other words, if observers responded to face-like patterns
regardless of where on the screen those patterns occurred, then the summation of all the
separate face detections would produce a spatially distributed pattern similar to what was
observed. An alternative interpretation is that each observer consistently expected faces in a
different spatial region (e.g., some observers expected faces on the left, while others expected
faces on the right). The current results cannot determine whether the dispersion pattern
of Experiment 1 reflects individual observer differences or whether it reflects individual
trial differences. But regardless of which explanation is correct, both explanations entail
detection of faces in noncentral portions of the display despite the use of central faces
during training and the use of a fixation cross on all trials. These results suggest that face
detection is systematically triggered by sensory information even if that information is
found in unexpected locations. Thus, illusory face detection in everyday situations may
be a common occurrence due to a tendency to detect faces based on a simple minimal
eye/nose/mouth pattern not only within the current focus of the eyes but also for more
peripheral areas of a visual scene. This does not necessarily indicate that face detection is
more accurate than letter detection. Rather, because there is a high cost when failing to detect
a true face (e.g., mistaking your wife for a hat, Sacks 1985), there may be a lower threshold
for the information necessary to trigger face detection, even in locations where no face is
expected. This results in detection of faces that do exist at the cost of occasional illusory face
detection.

Both face detection experiments showed a left-side bias. This bias is consistent with
behavioral studies and neural evidence. Behavioral research has established a bias toward
the left side of faces (Ellis et al 1979; Gilbert and Bakan 1973; Hay 1981; Hellige et al
1984; Le Grand et al 2001; Levine and Koch-Weser 1982; Levine et al 1988; Rhodes 1985;
Sergent 1984). Furthermore, studies using the “bubbles” reverse correlation technique found
qualitative (Gosselin and Schyns 2001; Schyns et al 2002) and quantitative (Gosselin et al
2010) evidence for a left-side bias. Because the right hemisphere of the brain receives initial
input from the left visual field, electrophysiological studies finding larger responses in the
right cortical hemisphere when viewing a face are consistent with a left-side bias (Bentin et
al 1996; Campanella et al 2000; Rossion et al 2003; Yovel et al 2003). This right hemisphere
lateralization for faces was also confirmed with neuroimaging data (Kanwisher and Yovel
2006; Kanwisher et al 1997; Sergent et al 1992). Consistent with this mapping between the
left side of a face and the right hemisphere, observers with greater left-side bias in face
recognition had greater right lateralized fusiform gyrus activation when viewing faces (Yovel
et al 2008).

On average, illusory letter detection showed no lateral bias even though a right-side bias
might be expected due to the left hemisphere lateralization of language and reading (Binder
et al 1996; Damasio and Geschwind 1984; Geschwind and Levitsky 1968; McCandliss et al
2003) and perceptual biases for the right visual field while reading and detecting letters
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(Heron 1957; Mishkin and Forgays 1952; Rayner et al 1980; Robertshaw and Sheldon 1976).
However, these prior studies used clearly visible letters, whereas our experiments did not
include any consistent bottom-up information and created strong expectations that letters
would appear only in the center. Consistent with our results, other studies using reverse
correlation to study letter detection similarly failed to find spatial biases (Fiset et al 2009;
Gosselin and Schyns 2003).

Compared with illusory face detection, illusory letter detection produced stronger
correlations and interacted with the orientation of the specific stimuli (i.e., for letter detection
the images produced a right-side bias in their original orientation but a left-side bias
when rotated). This suggests that letter detection is more strongly driven by the bottom-up
information contained in the noise images and so there was greater reliability between
observers in determining which particular noise images did, or did not, appear to contain
a letter. Furthermore, the central pattern for letters suggests that illusory letter detection is
more spatially localized (e.g., the expectation that letters will be well foveated), which may
have contributed to the greater between-observer reliability for letters.

Finally, we consider the relation between these results and brain imaging studies of face
perception. Our results provide an important missing piece of the puzzle when interpreting
neural studies of face processing. In conjunction with the currently reported behavioral
results, this suggests that face processing has a frequently engaged top-down component
whereby the brain creates a face interpretation based on a minimal eyes/nose/mouth pattern,
regardless of visual location. These results suggest that the areas of the brain involved in face
perception may be wired to automatically identify faces across the entire visual scene to a
greater extent than letters.

5 Conclusions

Using a paradigm previously developed to investigate the neural correlates of illusory
detection, our experiments investigated the spatial patterns that promote illusory detection
of faces and letters. Our results suggest that a minimal face-like pattern is sought when
detecting faces (Experiment 3) and that, in the absence of face contour illusory, face detection
can occur in peripheral to the expected central location (Experiment 1). In contrast, letter
detection produced larger correlation values (i.e., it occurred more consistently in response
to particular intensities); and, unlike faces, letter detection revealed a strong central bias
(Experiment 2). Finally, unlike letters, which did not on average produce a lateral bias, face
detection was biased towards the left side of the display regardless of whether an oval was
included to constrain face detection. These results suggest that face detection is more heavily
top down and less constrained by task expectations (i.e., training that faces appear only in
the center) as compared with letter detection.
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