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Abstract 

Accounting for the finding that brief prime durations facilitate 
perception of immediate word repetitions whereas long prime 
durations are detrimental, Huber and O’Reilly (2003) proposed 
a neural network model in which the unwanted effects of 
perceptual persistence are counteracted through activity 
dependent synaptic depression. Rieth and Huber (in prep) found 
similar results with immediate face repetitions, manipulating 
featural versus configural processing by means of face 
inversion. We extend the neural network model to face 
perception and account for individual differences by assuming 
some participants perform the task on the basis of feature 
identification, corresponding to the second layer of the 3-layer 
network, whereas other participants perform the task on the 
basis of configural identification, corresponding to the top 
layer. Under these assumptions, the model is used to describe 
the dynamics for each type of processing, with the resultant 
parameters revealing that configural identification integrates 
information at a faster rate than feature identification.  

Keywords: Face Perception; Neural Network Modeling; 
Immediate Priming 

Introduction 
One of the most highly specialized human perceptual abilities 
is the perception of faces. Without any conscious effort we 
are able to perceive, evaluate, recognize, and remember a 
large number of faces in any given day. This specialized type 
of expertise is often assumed to result from the rapid 
perception of configural aspects of faces, such as the distance 
between the eyes, nose, and mouth (Leder & Bruce 2000), 
although there is some debate as to the specifics of configural 
representation (Rakover, 2002). 

The reported simulation studies do not specify which 
features are used to define face configuration or how face 
configuration is specifically calculated. However, assuming 
that feature detectors feed into configural detectors in a 
perceptual cascade, we describe the dynamics for each type of 
processing. We report evidence that configural face integrate 
information more quickly than feature detectors, with 
configural identification occurring based on partial feature 
information.  

Huber, Shiffrin, Lyle, and Ruys (2001) developed an 
immediate priming paradigm that is particularly useful for 
assessing the dynamics of perceptual activation. Using 
visually presented words, they observed that briefly presented 
primes facilitated identification of an identical target whereas 

primes that were actively processed for several seconds were 
actually perceived less well. Weidemann, Huber, and Shiffrin 
(2005) modified the paradigm, demonstrating that these 
effects can be found simply as a function of prime duration. 
Rieth and Huber (in prep) applied this paradigm to the case of 
identification of novel faces, and these results serve as the 
focus of the reported simulation studies. 

Huber and O’Reilly (2003) developed a dynamic neural 
network to account for the reversals in the direction of 
priming as a function of the extent of prime processing. Most 
human cortical cells produce a transient behavior termed 
synaptic depression, in which critical resources of the synapse 
are lost as a function of recent activity, resulting in greatly 
diminished signaling to receiver cells (Tsodyks & Markham, 
1997). It is important to note that other biological 
mechanisms (e.g., calcium currents) also produce activity 
driven suppression, resulting in suppression of the entire cell 
rather than specific synapses. The results under consideration 
only included stimuli that were dissimilar or identical and, 
therefore, the reported simulations cannot speak to the 
difference between synapse specific depression versus 
depression of the entire cell. In any case, Huber and O’Reilly 
(2003) included such dynamics in a 3-layer neural network, 
proposing that activity driven suppression (e.g., synaptic 
depression) serves to dampen the unwanted effects of 
perceptual persistence, thereby clearing the way for 
subsequent perceptual items, at the possible expense of highly 
similar or identical items.  

For the case of word identification, they assumed that 
layer 2 of the network processes orthographic information 
whereas layer 3 processes lexical-semantic information (layer 
1 represents visual input, coding for different spatial 
positions). The model successfully accounted for patterns of 
results across the different priming manipulations and 
masking conditions by allowing each layer of the network to 
process information at its own rate, resulting in different 
degrees of persistence and inhibition within each layer. In 
accounting for word priming data, higher layers of the 
network were found to integrate more slowly.  

One way to more precisely address the issue of dynamics 
at different layers of this perceptual cascade is by means of 
experimental manipulations that selectively harm one layer of 
processing. Face inversion is a particularly good example in 
that the exact same stimuli can be used for upright and 
inverted faces. Specifically, there is evidence that inverted 
faces are identified based on feature information whereas 
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upright faces are identified based on configural aspects 
(Leder, & Bruce, 2000). Furthermore, studies with Event-
Related Potentials (ERPs) find that inverted faces have an 
increased and delayed N170 component (Rossion et al., 
1999). In accounting for immediate word repetition ERP 
results, Huber, Curran, O’Reilly, and Woroch (submitted) 
assumed that layer 3 of the network is the neural generator 
responsible for N170 effects. Therefore, in extending the 
model of Huber and O’Reilly (2003) to the case of face 
perception, it follows that layer 3 corresponds to configural 
processing, and that changes in the behavioral dynamics with 
face inversion are due to changes to this layer of processing. 

In producing an account of face identification, we adopt 
the same 3-layer perceptual cascade model not because we 
believe the same brain areas are involved in words and faces, 
but rather because the functional form of different domains of 
visual expertise should be similar, with both face and word 
identification forming progressively complex representations 
and activity driven suppression in order to minimize temporal 
source confusion. By comparing resultant parameters 
between the face and word networks we can begin to specify 
structural and representational differences. 

Immediate Face Repetition 
Method 
The modeled experiment (Rieth & Huber, in prep) was 
similar to that reported by Weidemann, Huber, & Shiffrin 
(2005) except that faces were used rather than words, and the 
orientation of the primes was modified from two vertical 
prime presentations to two horizontal presentations, (see 
Figure 1). In order to normalize the size and layout of the 
faces and to obtain a large number of unique faces to ensure 
that faces were not repeated over the course of the 
experiment, the FACES computer program was used to create 
1,000 different faces. Half the trials presented upright prime 
faces and upright target faces, whereas the other half of trials 
presented inverted prime faces and inverted target faces. In 
the sequence of events, two identical prime faces were 
immediately followed by a briefly flashed target face. The 
prime face was either identical to the target face or identical 
to the incorrect foil face.  Primes were presented for durations 
of 17, 50, 150, 400, or 2000 milliseconds. Target durations 
were determined separately for each participant by testing 
four different target durations intermixed across a series of 
trials, and then selecting the target duration that yielded 
performance closest to 75%. This was done to place target 
perception at threshold and accuracy in its most sensitive 
range. The tested target durations were 33, 50, 67, or 83 ms, 
although a target duration of 100 ms was possible if still 
under 75%. Target face presentations were immediately 
followed by a pattern mask. The duration between onset of 
the target face and offset of the pattern mask was fixed at 500 
ms. Participants were given trial by trial feedback in order to 
discourage strategies in relation to the prime faces, and they 
were furthermore instructed that there could be no effective 
strategy because the prime face was just as likely to be 
identical to the wrong choice as the correct choice. 

 
 

Figure 1: Sequence of events for the face priming experiment. 
All faces were male in appearance and included various 

forms of facial hair and hairstyles. 

Results 
A first experiment ran 28 participants using only upright 
faces and a second experiment (see Figure 2) ran 40 
participants with both upright and inverted faces, with the 
results for upright faces replicating the first experiment. The 
qualitative pattern of correct responses as a function of 
prime duration and prime type (foil primed or target primed) 
was similar to word priming except that the transition from 
priming benefits to deficits occurred at a somewhat slower 
pace as a function of prime duration. For words, the largest 
deficit for the foil prime condition occurs at approximately 
50 ms, however in faces the largest deficit did not occur 
until 150 ms. For both words (not shown) and faces, it is 
important to note that the crossover between the target and 
foil primed conditions is related to, but not identical to the 
point at which the primes are identified. 

Individual differences were investigated with a split half 
analysis; selecting participants who had target duration 
thresholds of 33 or 50 ms (low threshold group) versus those 
that required 83 or 100 ms (high threshold group). For 
participants who had a low threshold, the pattern was more 
similar to the word priming results, with a full crossover in 
the difference between the target and foil primed conditions 
as a function of prime duration. For the high threshold 
participants, the suppression of prime faces after extended 
prime durations was apparently not as pronounced, only 
managing to eliminate, but not reverse the priming effects.  

 
Figure 2: Behavioral Results. Error bars are +/- one SEM. 
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Next we consider the effect of face inversion. For the low 
threshold group there was a sizable effect of inversion such 
that performance was worse, and, furthermore, the crossover 
as a function of prime duration failed to fully emerge. 
Surprisingly, there was no apparent effect of face inversion 
for the high threshold group, with performance roughly 
equivalent and a lack of crossover for both upright and 
inverted faces. In summary, only for the low threshold group 
with upright faces was there a crossover pattern. 

Considering that the low threshold group required shorter 
target durations for threshold performance, and considering 
the lack of inversion effects for the high threshold group, this 
suggests that low threshold participants processed upright 
faces in a configural manner, whereas the high threshold 
participants processed faces on the basis of individual 
features, even when those faces appeared in their proper 
upright orientation. In general, identifying faces on the basis 
of individual features (e.g., hair styles, nose size, etc.), is not 
viewed as particularly effective, although such a strategy may 
have been tempting in this experiment considering the 
heterogeneity in the features used to comprise these particular 
faces. Of course these claims are generalities, and it is 
unlikely that such strategic differences should exactly align 
with a split half analysis of participants. Nevertheless, 
assuming that in general the low threshold participants 
processed faces in a configural manner when viewing upright 
faces, the results of the split half analysis are particularly 
useful for specifying the dynamics of configural and featural 
face processing. 

As described next, we applied the neural network model 
Huber and O’Reilly (2003) to these data, providing further 
support for the claim that the high threshold participants 
engaged in feature based identification, regardless of face 
orientation, whereas the low threshold participants engaged in 
configural processing for upright faces, but necessarily fell 
back upon feature processing for inverted faces. Furthermore, 
for the case of the low threshold group in which there were 
inversion effects, the resultant best-fit parameters yield a 
quantitative measure for the speed of processing for 
configural as compared to feature representations. 

A Neural Network Model of Face Processing 
 The reported simulation studies used an artificial neural 
network consisting of the three layers seen in Figure 3. The 
layers in the model as applied to face processing, consist of a 
lower visual layer that encodes sensory input from different 
regions of the visual field, followed by a middle layer that 
encodes face features, and finally a top layer that encodes 
specific face configurations. We did not employ learning in 
the construction of the model. The goal of the model is to 
capture the dynamic properties of face perception, rather than 
specify the particular representations.  

Because similarity was not manipulated in the 
experiment, a localist representation was employed with full 
(parameterized) connection strengths between the units 
encoding for a particular face and connection strengths of 0.0 
between units encoding for different faces. Each unique face 

was assigned a different representative featural unit and a 
different representative configural unit. Because the visual 
layer encodes for different areas of the visual field, each face 
was assigned a different visual unit for each location 
presented within the sequence of events. These units mapped 
to the same featural unit regardless of location. This many to 
one mapping produces temporal integration across different 
presentations of the same face.  

 
Figure 3: Neural network organization. 

 
All-to-all lateral inhibition was utilized within each layer 

of the network to dampen excessive activation. This 
inhibition produces masking effects for items presented in the 
same visual location. Application of the model to these novel 
faces did not include feedback between layers under the 
assumption that novel faces look somewhat similar to known 
faces, but the overall effect of feedback is negligible (for 
familiar words, feedback between the lexical-semantic layer 
and orthography was set to .25, and there was no feedback to 
the visual layer). In other words, a novel face may look like 
the configuration of a known face, but that known face is just 
as likely to provide top-down support for the incorrect 
features as the correct features. In any case, future research 
will manipulate item familiarity and assess how these 
manipulations relate to connection strengths within the 
network. 

Activation Dynamics 
The model builds upon the LEABRA framework of O’Reilly 
and Munakata (2000). Individual simulated neurons 
represented activity through a rate code (i.e., probability of 
spiking), and, as such, can be viewed as a stand-in for entire 
assemblies of neurons that have similar inputs and outputs. 
Further simplifying from the known biology, these simulated 
neurons are “point neurons”, and do not explicitly include 
temporal delays or non-linearities that may result from 
transfer of charge along dendrites and axons as in 
compartmental artificial neurons. Membrane potential in 
these simplified neurons is updated as a function of the 
excitatory inputs to the neuron, lateral inhibitory connections, 
and leak currents as in Equation 1. 
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The change in membrane potential per unit time (Dvi
n) 

for neuron i in layer n is updated as a function of the previous 
time step’s voltage (vi

n), the weighted output of the neurons 
from the layer below (wijoi

n-1), the leak parameter (L), lateral 
inhibition (I), the output of other neurons within the layer (ok), 
and, most importantly for the current situation, the value Sn 
representing a proportion of change for each millisecond, 
which is used to capture different rates of integration for 
different layers. Activity in these neurons is thresholded, with 
no response occurring when membrane potential fails to 
achieve the requisite value (q). This thresholded membrane 
potential is additionally scaled by a dynamically varying term 
(see Equation 2) that captures the resources available at the 
synapse (a), with the product of these two terms providing the 
output (o) for any particular neuron.  

† 

o =
(v -q)a

0
v > q

v £ q

Ï 
Ì 
Ó 

                 (2) 

As a function of recent output (o), synaptic resources are 
depleted according to Equation 3, thereby simulating 
suppression from synaptic depression. As with membrane 
potential, the same rate of integration parameter Sn is used for 
updating synaptic resources for the neurons of layer n. This 
parameter represents a general metabolism for the activity 
within a layer, and is therefore applied to both membrane 
potential update as well as synaptic resources update. In this 
manner the rate of synaptic depression is kept proportional to 
the rate of temporal integration (although note that synaptic 
depression is itself a very dynamic property, with above 
threshold membrane potential the driving force behind 
synaptic depression). The parameter R is the rate of recovery 
for synaptic resources, and D is the rate of depletion for 
synaptic resources, with each of these fixed to the same 
values for all neurons. By multiplying thresholded membrane 
potential by a dynamically varying value for synaptic 
resources, as well as the influence of connection strengths, 
which are set to 0 or full strength (1.0 for input to the first 
layer, and free parameters for connections between the other 
layers), the magnitude of excitatory input to receiver neurons 
reflects:  pre-synaptic activity, available synaptic resources 
and connection strength. 

† 

Dai
n (t)

Sn

= R(1- ai
n ) - Doi

n                       (3) 

The model was run in time steps of 1 millisecond, and input 
to the visual layer was set at 1.0 when stimuli were presented 
and 0.0 otherwise. As the resultant activation travels up the 
perceptual cascade, the effect of temporal integration 
(Equation 1) produces persistence, with the duration of 
persistence increasing with each additional layer. 
Furthermore, with the output of each layer subject to synaptic 
depression, the response of each layer above the visual layer 
reaches a peak level and then falls off, with higher layers 
peaking at progressively later delays.  
 Because participants are placed at their perceptual 
threshold (i.e., target duration set such that performance is 
only 75% with forced choice testing), we assumed that 

explicit identification of the briefly flashed target face was 
not possible, and, therefore, performance was based upon 
partial information in a matching process to the choice 
alternatives. Such partial information could be assessed 
through the level of remaining activity at the time of the 
choice alternatives, although this measure has the undesirable 
characteristic that very long target durations actually result in 
worse performance due increases in synaptic depression. 
Instead, Huber and O’Reilly (2003) assumed a fluency 
measure of partial information in which the choice alternative 
that reaches its peak response first is chosen. This decision 
rule is essentially to choose the face that “leaps out” at the 
participant first. Furthermore, this decision rule is roughly 
equivalent to a horse race model of forced choice testing 
(although the racers are not fully independent due to lateral 
inhibition), and, as Huber and Cousineau (2004) 
demonstrated, such a horse race model is capable of capturing 
both correct and error reaction time distributions for these 
immediate priming tasks with forced-choice testing. 

In the current application, the model was run in a 
deterministic manner with the difference between the time-to-
peak response of the target versus the foil converted into an 
accuracy measure through a logistic sigmoid function with 
the parameter N (see Equation 4, TF and TT are the time to 
peak of the foil and target neurons), with N inversely related 
to amount of noise (higher values of N result in better 
performance). This rescaling of the difference between the 
time to activate each choice alternatives is envisioned as 
resulting from processing noise in the update equations, 
although exact specification awaits future modeling studies. 

† 

p(c) =
eN (TF -TT )

1+ eN (TF -TT )
                  (4) 

With this decision rule, briefly presented prime faces 
result in persistent activity, providing a head start for the 
primed choice face. This explains why performance is 
enhanced in the target primed condition and harmed in the 
foil primed condition for briefly presented primes. However, 
following excessively processed primes (i.e., long prime 
durations), the extent of this persistent activity is greatly 
diminished due to synaptic depression. Beyond this reduction 
in the amount of persistence (which would only reduce, but 
not reverse priming effects), synaptic depression also serves 
to slow down the re-activation of a face that has recently been 
viewed. This sluggishness to respond is not due to any single 
layer in isolation, but is instead emergent from the dynamics 
of processing across layers. Thereby, this “disfluency” 
produces a full reversal in the direction of priming. 

In order to fully understand the pattern of model 
behavior, the role of inhibition is important. Related primes 
have a direct effect on the decision process through 
persistence and synaptic depression, but in addition there is an 
indirect effect due to inhibition, which affects target 
performance regardless of priming condition, primarily by 
diminishing how much additional activation is accrued in 
response to the briefly flashed target. Primes reach their 
maximal activation around 150 ms for the reported 
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parameters, and so the detrimental effects of inhibition are 
maximized for prime durations of 150 ms. This explains why 
overall performance initially decreases with increasing prime 
duration, up to approximately 150 ms, but then overall 
performance increases for even longer prime durations. 

Mapping Layer Responses to Strategies 
This model is only intended to capture the dynamics of 
perception and does not attempt to explain attentional and 
response factors that may vary as a function of the task. We 
simplify the situation by assuming performance based on 
feature identification is achieved through the fluency response 
(i.e., time-to-peak) for the output of layer 2, whereas 
performance based on configural identification is achieved 
through the fluency response for the output of layer 3. 
Additional work is required to fully integrate this model into a 
general cognitive architecture, thereby explicating how the 
decision process can be reformulated to selectively attend to 
one type of fluency response versus the other. With this 
simplification, the model was applied to the face priming data 
by assuming low threshold participants used layer 3 fluency 
for upright faces but layer 2 for inverted faces. Furthermore, 
the high threshold group was assumed to use layer 2 fluency 
for both upright and inverted faces. Under these assumptions, 
application of the model to these data is used to ascertain the 
relative speed of processing (Sn) for each layer. 

We modeled the face priming results with the inhibition, 
leak, depression, recovery, and threshold parameters that 
Huber and O’Reilly (2003) used for this same paradigm with 
immediate word repetitions. Even though brain areas 
involved in face processing may be different in important 
ways from the areas involved in the perception of words, 
these parameters represent general properties of neurons and 
should not vary significantly throughout the cortex, 
particularly in two areas both involved in visual perception. 
The values of these fixed parameters were: inhibition, I = 0.3, 
threshold, q = 0.15, leak, L = 0.15, first layer rate of 
integration, s1 = .054, depression, D = 0.324, and recovery, R 
= .022. To capture the face perception data, connection 
strengths from the first to second and second to third layer, 
the integration speed of the second and the third layer, and the 
noise term in the logistic function were freely varied. 

Simulation Results 
As seen in Figure 4, the model successfully captured the 

qualitative patterns of results as a function of prime duration, 
upright versus inverted presentation, and also for the two 
groups of participants. A chi square measure of goodness of 
fit with one degree of freedom was computed for each of the 
40 conditions as described in Batchelder & Riefer (1990), 
with 320 data points per condition. The median chi square 
was 2.07. The model was not statistically different from the 
behavioral data in 24 conditions (a = .05). The best fitting 
parameters for the low threshold subjects were: C12 = 1.20 
(connection strength from the visual layer to the feature 
layer), C23 = 1.09 (connection strength from the feature layer 
to the configural layer), NUP = .022 (noise term for upright 

faces with the output of layer 3), NINV = .043 (noise term for 
inverted faces with the output of layer 2), s2 = .014 (speed of 
integration for the feature layer), and s3 = .021 (speed of 
integration for the configural layer). For the high threshold 
subjects the best fit parameters were: C12 = .754, NUP = .062 
(note these noise terms are used with layer 2 output), NINV = 
.040, and s2 = .014 (there was no need to include layer 3 
parameters for the high threshold group).  

 
Figure 4: Neural network results. 

Discussion 
Comparing Figures 4 and 2, this modeling investigation 
provides a reasonable approximation of the behavioral results 
under the assumption that different participants adopted 
different identification strategies corresponding to feature 
identification versus configural identification. Although the 
quantitative fit is not exact, the model captures all the 
qualitative aspects in the behavioral data. 

Besides an existence proof that the model assumptions 
can adequately explain the observed data, another use of 
computational modeling is interpretation of observed data in 
terms of the underlying psychological or biological 
parameters. In the current situation, one of the goals of this 
modeling exercise was to compare the rate of processing (Sn) 
for the feature layer as compared to the configural layer. The 
result that a crossover between the target and foil primed 
conditions as a function of prime duration only occurred for 
the low threshold group with upright faces is of particular 
importance under the assumption that configural processing is 
only used for upright faces, and the model captured this effect 
by setting the rate of processing for the configural layer to a 
higher value (.021) than for the feature layer (.014). For 
Huber and O’Reilly’s (2003) simulations with words, the 
speed of integration for lexical-semantic processing (layer 3) 
was much slower than orthographic processing (layer 2), 
whereas the opposite was true for the current application to 
faces. Assuming the model provides a reasonable 
approximation of the time course of perceptual processing, 
this is an important. This suggests that words are processed in 
a componential manner, with more abstract representations 
awaiting full verification from more concrete representations, 
whereas faces are processed more holistically, with configural 
representations essentially “jumping the gun” in their 
identification based on only preliminary feature information. 
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There may be multiple causes for this difference between 
componential and holistic processing when comparing words 
and faces. Lexical identification depends not only on the 
relative positions of letters within a word, but additionally on 
the exact identification of those letters. In contrast while 
feature identification undoubtedly plays some role in face 
perception, it is not clear that configural face identification 
requires complete identification of the features (e.g., Bob’s 
nose or Sally’s eyes), and may only rely upon identification 
of feature classes (e.g., a nose versus an eye). When 
considering the different degree of componentiality 
comparing words and faces, it may be advantageous to wire 
face processing with more rapid configural processing, 
whereas this would be detrimental for word processing. 

Beyond the degree of componentiality of words and 
faces, faces have been a dominant and important visual 
stimulus for the history of our species, and it is clear that we 
utilize special mechanisms for their perception. In contrast, 
writing has existed for less than 10,000 years, and is perhaps 
more reliant upon ontological adaptation. This specialization 
for rapid identification of configuration may therefore result 
from evolutionary mechanisms, providing a kind of expertise 
that cannot be equaled merely through a lifetime of learning.  

Providing additional support for our claims, split half 
analyses based on threshold target duration with words failed 
to produce the differences that we see with faces. According 
to the model, lexical-semantic processing occurs at a slower 
rate than orthographic processing and so layer 3 does not 
infer much additional suppression for words. As such, a 
strategy to focus on the lexical-semantic or orthographic 
representation does not produce much of a difference in terms 
of the crossover between target primed and foil primed. In 
contrast, the configural layer effectively “runs faster” for 
faces and therefore provides a healthy dose of additional 
suppression. As a result, face priming effects depend more 
heavily on the performance strategy, with more rapid 
identification and supression when attending to configuration. 

An alternative argument could be made that the division 
of participants into low and high threshold groups is not 
based on response strategy, but on individual differences in 
face perception ability. The key difference may be that while 
the target duration is tailored for each individual’s rate of face 
processing, the various prime durations are not specifically 
tailored for each individual. This would result in apparently 
more rapid priming effects (i.e., as a function of prime 
duration) for the low threshold group. Such an explanation is 
appealing, but fails to explain the interactions with face 
inversion, and also fails to explain why we do not see similar 
individual differences with word priming where there is even 
a larger range of individual differences in the required target 
flash durations to achieve threshold performance.  

In future work we will seek converging evidence for this 
interaction between prime duration and configural versus 
featural processing by using other techniques for 
manipulating configurality, such misalignment (Young, 
Hellawell, & Hay 1987). In addition we will see how these 
priming effects change as participants become progressively 
more familiar with a limited number of previously novel 

faces. It is hoped that with further experimentation and further 
refinement of the neural model, we can develop a more 
complete and accurate understanding of face perception.  
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