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Retrieval practice can produce forgetting, but it remains unclear using only behavioral data

whether this forgetting is caused by targeted inhibition versus interference. Therefore,

Wimber et al. (2015) used pattern classifier analyses of fMRI data to track individual

memories in a novel variant of retrieval induced forgetting. After initial learning, people

recalled target images across selective retrieval practice trials, and cortical activity patterns

gradually became more similar to those evoked by the target pictures (i.e., pattern

enhancement) and less similar to those evoked by competing pictures (i.e., pattern sup-

pression). The key question was whether this inhibition of competing memories would

cause forgetting. Wimber et al. found a significant forgetting effect (p< :01) on a subsequent

forced choice picture recognition test, with lower accuracy for competitors than for

baseline items. Because fMRI data is correlative, a causal interpretation of the data would

require, at a minimum, more forgetting following cortical pattern suppression (as occurred

for competitors) than cortical pattern enhancement (as occurred for targets). The inter-

action necessary to reach this conclusion was significant (p ¼ :041). However, reanalyzing

the original data revealed that the interaction depended on the decision to code missing

responses as equivalent to choosing the wrong picture. Even if missing trials reflected

memory failures, at worst they would produce 50/50 guessing, rather than an error every

time. Treating these trials as missing, or setting them to chance performance, resulted in

no reliable forgetting difference between competitors and targets. Because this might

reflect inadequate statistical power, we undertook two replication attempts of the

behavioral paradigm, failing both times to observe more forgetting for competitors than

targets. In fact, we failed to find any forgetting at all. We conclude that the study of Wimber

et al. does not support the conclusion that forgetting is caused by targeted inhibition.
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1. Introduction

Over a lifetime, many things are learned but then forgotten.

For instance, after moving, you receive a new phone number,

and the repeated retrieval of this new phone number seems to

eliminate the memory of your old phone number. It is widely

accepted that learning something new (e.g., your new phone

number), can cause greater forgetting as compared to a

baseline situation without new learning (e.g., for instance, if

after moving you retained your old number, but did not use

it for a period of time). Why does practice retrieving one thing

at the expense of another (i.e., selective retrieval) cause

forgetting? Do you actively suppress your old phone number

to clear the way for your new phone number (i.e., targeted

inhibition)? Or does the recently-practiced new phone num-

ber block access to the old phone number (i.e., interference)?

Since the 1970s, formal memory models have explained

forgetting through interference (e.g., Hintzman, 1986;

Murdock, 1982; Raaijmakers & Shiffrin, 1981). These models,

and modern versions of them, explain many results from

behavioral studies of memory. However, the last few decades

have seen support for an intriguing theoretical alternative: in

some circumstances, particularly as a result of retrieval

practice, a competing memory might be actively suppressed,

and the lingering consequences of this suppression cause

forgetting for that memory (Anderson, Bjork, & Bjork, 1994).

This forgetting via targeted inhibition is said to be selective

(i.e., uniquely applied to the competing memory) because

forgetting is observed regardless of the cues used to prompt

retrieval (Anderson & Spellman, 1995). The cause of selective

retrieval forgetting has been fiercely debated (e.g.,

Raaijmakers & Jakab, 2013), and interference models have

been proposed to explain results previously explained by

targeted inhibition (Jonker, Seli, & MacLeod, 2013; Tomlinson,

Huber, Rieth, & Davelaar, 2015). Thus, there is something of a

stalemate between the theoretical alternatives based on the

behavioral data.

Neural data indicates that some form of unlearning occurs,

such as with the long-term depression of synapses (Richards

& Frankland, 2017). However, the weakening of synaptic

connections is not necessarily the same thing as the targeted

inhibition of memories; the function of synaptic weakening

might be equivalent to learned interference in a distributed

representation (Norman & O'Reilly, 2003). Nevertheless, neu-

ral data can be used to distinguish between the different

functional accounts of forgetting. The study ofWimber, Alink,

Charest, Kriegeskorte, and Anderson (2015) took this

approach, tracking neural responses over the course of new

learning to determine: 1) if competing memories are down-

regulated in some manner in the course of retrieval practice;

and 2) whether this down-regulation causes subsequent

forgetting.We now consider this study in detail as our findings

call into question some of the conclusions reached by the

original authors.

The study of Wimber et al. (2015) used a novel variant of

Retrieval Induced Forgetting (RIF: Anderson et al., 1994). Fig. 1

presents a brief visual summary of the experimental design.

In this study, after pre-exposure to the entire set of pictures,

participants learned wordepicture pairs with a subset of the
pictures. The pictures fell into three categories, showing

either faces, scenes, or objects. The words were randomly

chosen (unrelated to the pictures). This initial learning was

assessed by showing a previously studied word and asking

participants to name the corresponding picture. After naming

the picture, visual memory of the picture was tested with a

forced choice between the picture and a highly similar picture

depicting the same object, face, or scene. For instance, as seen

in the first row of Fig. 1, after learning to associate the word

‘sand’ with a picture of Marilyn Monroe, a participant would

practice recalling Marilyn's name in response to a memory

probe with ‘sand’ and then complete a practice two-

alternative forced-choice (2AFC), attempting to choose the

correct picture of Marilyn Monroe. These wordepicture pairs

were tested twice, with accuracy feedback following each test

trial (a green box would highlight the correct picture). Next,

participants completed an additional study/test session with

the same words once again, but each word was now paired

with a novel picture drawn from a different category of pic-

tures. For example, in the second row of Fig. 1, participants

might study the word ‘sand’with a picture of a hat. Thus, this

first stage of the experiment involved three study/test cycles,

with the first two establishing strong learning for a first pic-

ture while the third established weaker learning for a

competing picture from a different category.

This initial learning was followed by selective retrieval

practice, inside the MRI scanner, in which participants were

shown three fourths of the cue words (the remaining fourth

was held out to provide baseline conditions). Each selective

retrieval trial presented a cue word and participants were

instructed to create a mental image of the first picture (e.g.,

Marilyn Monroe) rather than the second picture (e.g., a black

hat). Thus, the first picture was the ‘target’ and the second

picture was the ‘competitor’ that might inadvertently intrude

during this task. Following an interval of 4 s in which to create

thismental image, participants gave a key press indicating the

category of the target picture (face, scene, object, or “un-

known”). If a response was made within 1.5 s, they received

feedback (this feedback indicated the correct category but did

not indicate the specific picture). Indeed, during the first cycle

of selective retrieval trials, participants often selected the

competitor category by mistake. However, across four cycles

of selective retrieval, accuracy improved as the propensity to

recall the competitor category declined.

Selective retrieval practice was followed by a final recog-

nition test with a forced choice between two pictures (the

same forced choice between highly similar picture pairs as

occurred during initial testing). The competitor pictures, and

their corresponding baseline pictures, were tested in a block of

trials before testing the target pictures, and their corre-

sponding baseline pictures. The instructions for the final task

asked subjects to respond as quickly as possible, and to guess

if they could not remember. In the RIF literature, the behav-

ioral test of interest for this final task is whether there is

forgetting specifically for competitor images that were

assigned to the selective retrieval condition, assessed by

comparing the difference in performance between these im-

ages and the competitor images assigned to the baseline

condition. Indeed, Wimber et al. found significant forgetting
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Fig. 1 e Visual summary of the experimental design used by (Wimber et al., 2015). Participants learned wordepicture pairs

andwere instructed to create vivid visual memories (e.g., by having the images interact with the words). After learning, they

completed an initial test phase. On each test trial, they engaged in verbal recall, speaking out loud the name of the picture

associated with the presented cue word. Next, they attempted to pick the correct picture in a choice between two highly

similar pictures showing the same face, scene, or object. Following each response, the correct picture was highlighted in

green. Study and testing was broken up into blocks of 24 wordepicture pairs. In the first block they completed two cycles for

pictures assigned to be targets, and in the second block they completed a single cycle for pictures assigned to be

competitors, with both blocks using the same cue words (e.g., the cue wordmight be associated with a face in block one and

then an object in block two). Next, they completed selective retrieval practice (cued categorization) with 75% of the

wordepicture pairs while undergoing fMRI scanning. On each trial they saw the cue word andwere given 4 s to visualize the

picture that had been studied with that cue word in the first block. After visualization, they indicated the category (face,

object, scene, or unknown) of the picture and then the correct category was highlighted in green. Finally, participants

carried out force-choice recognition testing between the same picture pairs used during initial testing. No accuracy feedback

was given during final tests and participants were given 3.5 s to respond. This final recognition was blocked, with testing of

competitor pictures occurring before target pictures.
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for competitors based on the accuracy data. Additionally,

therewas a 2� 2 interaction, significant at p¼ .041, supporting

a conclusion of more forgetting for competitors than targets.

Somewhat surprisingly, the difference for targets also indi-

cated forgetting, although this difference was not significant.

After this final recognition, participants viewed the same

pictures once again, presented one at a time, while fMRI data

were collected. This provided an item-by-item voxel pattern

for different cortical regions, with these patterns used to

assess the fMRI responses collected across the four trials of

selective retrieval practice. In previous work, memory was

assessed categorically (Kuhl, Rissman, Chun,&Wagner, 2011),

but this approach was more fine-grained, asking whether

specific memories were suppressed. Supporting this conclu-

sion, across the four trials of selective retrieval, the voxel

pattern elicited during the imagery task became progressively

less similar to the voxel pattern evoked when viewing the

competitor picture (this was true for visual areas and the

hippocampus). At the same time, this voxel pattern became

progressively more similar to the voxel pattern evoked when

viewing the target picture. For visual areas, the suppression

effect became significantly negative, indicating that the

mental image created during retrieval was less like the

competitor as compared to a different image drawn from the

same category as the competitor.

It is tempting to consider the below baseline voxel pattern

a direct measure of inhibition. However, this needn't be the

case. For instance, a below baseline response could arise from

avoiding thoughts of the competitor (while allowing thoughts

of other pictures from the competitor category). The crucial

question was whether this voxel pattern suppression caused

subsequent forgetting. If so, this would support a targeted

inhibition account of the observed neural activity. Thus, the

key result hinged on the behavioral outcome (Krakauer,

Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). To

establish that inhibition (as evidenced by pattern suppression)

causes forgetting, one would want to know, at a minimum,

that pattern suppression produced more forgetting than its

opposite: pattern enhancement. The fMRI results revealed

pattern suppression for competitors and pattern enhance-

ment for targets, and so the interaction between item type

(targets vs competitors) and selective retrieval condition (cued

vs baseline) is necessary to support the conclusion that

pattern suppression caused more forgetting than pattern

enhancement. In the absence of such an interaction, one is

left with the conclusion that pattern change caused forgetting

(including pattern enhancement). Such a conclusion would

not support forgetting through targeted inhibition; if the data

cannot distinguish between the behavioral outcome following

pattern suppression and the behavioral outcome following

pattern enhancement, then the results do not support a causal

role for pattern suppression.

Regarding the importance of the statistical interaction, it

should be noted that a reliable interaction has not been

deemed necessary in the RIF literature for establishing that

forgetting occurred. However, the establishment that forget-

ting occurred is not the same as establishing the cause of

forgetting. By analogy, consider a hypothetical study seeking

to establish whether smoking causes lung cancer. Study par-

ticipants are tracked over time providing initial baseline
cancer rates and then cancer rates at the end of the study.

With a simple comparison, suppose that the study finds that

the rate of lung cancer increased for thosewho smoked during

the period of the study. Furthermore, the same study failed to

find a significant increase in lung cancer for non-smokers. At

this point, it would be tempting to conclude that smoking

causes lung cancer, but, upon further examination, it is

revealed that the significant increase for smokers was sup-

ported by a statistical test with p ¼ .049 (just under the .05

significance level) whereas the apparent lack of increase for

non-smokers was based on p ¼ .051. This problem is often

referred to with the adage that the difference between sig-

nificant and non-significant is not necessarily significant

(Nieuwenhuis, Forstmann, & Wagenmakers, 2011). If both

groups reveal a numerical increase in cancer rates, this might

just reflect the passage of time (i.e., cancer rates increase with

age) that just happened to produce a slightly lower p-value for

one group than the other. To conclude that smoking was a

cause, it needs to be established that the increase for smokers

was reliably greater than the increase for non-smokers. This

difference of differences in a 2 � 2 design (pre-/post-crossed

with smoker/non-smoker) is a statistical interaction. Return-

ing to the Wimber et al. study, this analogy should make it

clear that the conclusion regarding the cause of forgetting (i.e.,

that forgetting was caused by cortical pattern suppression)

critically hinges on the p ¼ .041 interaction.

In light of these considerations, we obtained the original

behavioral dataset to consider, for instance, whether reaction

times during recognition testing could shed light on these

forgetting effects. In the course of our investigation, we found

that some of the trials labeled as errors did not include a re-

action time. We contacted the original authors, who

confirmed that on some trials subjects failed to make a deci-

sionwithin the 3.5 s allowed for forced choice recognition, and

that when this occurred, the trial was considered an error,

equivalent to choosing the wrong picture.

In cued and free recall tasks it is standard practice to

label the failure to respond as an error, equivalent to

responding with the wrong answer. This is a sensible

treatment of the data under the assumption that a failure to

respond within the allotted time indicates that the subject

cannot remember the answer, in which case the best they

could possibly do would be to randomly guess. If the correct

answer is a particular word, then the probability of

randomly guessing that word from all known words is

vanishingly small. In other words, the missing trial is

replaced with the guessing probability of zero. However, the

task used by Wimber et al. was not a recall task but rather

two-alternative forced choice recognition. In this case, the

guessing probability was 50% rather than 0%. Thus, the

decision to replace these trials with 0% values did not

respect the accuracy scale, which was lower bounded at 50%

in the absence of any memory.

We are unaware of anymemory process that causes people

to reliably choose thewrong answer in a forced-choice task, as

opposed to guessing randomly. Nevertheless, to assess this

possibility, we performed an analysis of the reaction time

data. If these missing trials were indicative of a choose-the-

wrong-answer memory process, we would expect to see a

reaction time distribution for error trials that extended out to
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the 3.5 s response deadline, with the missing trials corre-

sponding to the chopped off tail of the error distribution.

Instead, the data revealed something quite different; the very

slowest observed error trial across all conditions and all sub-

jects was nearly one whole second before the response

deadline. Thus, these missing trials did not appear to be

anything like the other error trials. Given that the missing

trials did not appear to be part of the error distribution, they

are best eliminated from the data analyses. We simply do not

knowhowpeoplewould have responded on these trials if they

had been given more time. It is even possible (and perhaps

likely) that these missing trials would have produced better

performance than the other trials if the reason that subjects

missed the response deadline was because they were engaged

in an in-depth analysis of the small visual differences be-

tween the two pictures.

The instructions for the recognition task stated “This task

is about speed!” and “Select the correct picture as fast as

possible, and guess if you cannot remember.” Despite these

instructions, subjects failed to respond on 4.7% of the trials.

This may seem like a small proportion but our analyses

revealed that these missing responses played an important

role in producing the reported results.We report evidence that

this occurred because of the unbalanced design inwhich there

were three times as many competitor trials (54 for each sub-

ject) as compared to the corresponding baseline trials (18 for

each subject). Considering that forgetting is always assessed

relative to baseline, the low trial count for the baseline con-

dition makes the measure of forgetting highly variable. Our

analyses revealed similar proportions of missing trials for

competitors versus targets (5.2% vs 4.9%). However, the pro-

portions of missing trials for the corresponding baseline

conditions was quite different, with 2.7% missing for the

competitor baseline versus 4.6% for the target baseline. Thus,

because of the baseline trials, the decision to code these

missing trials with zeros biased the results in favor of more

forgetting for competitors than for targets. Although these

numbers are small, the magnitude of the difference of dif-

ferences for selective forgetting was also small (i.e. the extent

to which there was more forgetting for competitors than

targets).

We reanalyzed the original data, removing missing re-

sponses rather than labeling them as errors. We found that

across all methods for assessing an interaction between

target/competitor status and cued/baseline condition, the

interaction was below acceptable levels of reliability.

Furthermore, this was the case even if the missing trials were

replaced with chance performance (50%) rather than labeling

them as errors. If this interaction does not hold, it cannot be

said that there was more forgetting for competitors than for

targets, and without being able to reach this conclusion, it

cannot be said that pattern suppression (but not pattern

enhancement) caused forgetting.

It is important to note that a failure to find a reliable effect

does not necessarily provide evidence against that effect.

Instead, it may be that the study ofWimber et al. (2015) did not

include sufficient statistical power to reach this conclusion,

particularly in light of the missing trials, and in light of the

unbalanced design. For this reason, we sought to replicate the

behavioral results from this paradigm.
Our first replication attempt used a balanced design in a

shorter version of this paradigm. We used the same pictures

and words as the original study and we randomly assigned

pictures to conditions. Unfortunately, this random assign-

ment was the same for all subjects because the random

number generator used to order stimuli in the experimentwas

set to the same seed. This did not introduce a confound

(assignment was random rather than systematic) but made

analyses difficult as this produced a between-items design,

similar to a typical linguistics experiment. As reported in the

supplementary materials, we used a mixed-effects analysis

that properly addresses the role of item variability in a

between-items design (Note the mixed effects models cannot

parse out possible order effects introduced by a failure to

counterbalance stimuli). Considering that the RIF effect is

fairly well-established even when the final test is recognition

(for a review, see Spitzer, 2014) we were surprised when this

initial replication attempt failed to produce any forgetting

effects, let alone more forgetting for competitors than targets.

However, in light of this failure to counterbalance the stimuli,

we next focus on our subsequent two attempts to replicate the

reported forgetting effects, which used a different random

assignment of stimuli for each subject.

Our second replication attempt used a design that was

closer to the original study by collectingmore data per subject,

and by inducing a context shift between initial learning and

retrieval practice (such as would occur when learning picture-

word pairs outside the scanner followed by retrieval practice

inside the scanner). This study randomly counterbalanced the

assignment of items to conditions across subjects, but did not

use a blocked design for the final recognition memory test.

Instead, the order of competitor versus target images were

intermixed. As with our initial replication attempt, this study

failed to produce any forgetting, let alone more forgetting for

competitors than targets.

We finally conducted a third highly powered pre-registered

replication, this time matching the blocked design used by

Wimber et al. for the final recognition test. Among our at-

tempts, this replication was the closest to the original study.

Furthermore, we had double the subjects of the original study,

allowing us to identify sub-groups that better matched the

performance of the original subjects. Nonetheless, with both

our pre-registered and sub-group analyses, we again failed to

find any forgetting, let alone more forgetting for competitors

than targets.

Here we report on our second and third replication at-

tempts and our analyses of the original data. Our goal is to

correct the publication record, demonstrating: 1) that this

novel variant of the retrieval induced forgetting paradigm

does not appear to produce more forgetting for competitors

than targets, and in fact does not appear to produce any

forgetting at all; and 2) the original dataset does not support

the conclusion that cortical pattern suppression caused more

forgetting than pattern enhancement.
2. Method

In Fig. 1 we introduced the design used byWimber et al. (2015),

and we refer the interested reader to that study for additional
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procedures details. Below, we compare and contrast the

original design against our replication attempts. Any un-

mentioned procedural details (e.g., the initial picture famil-

iarization stage) were kept the same as the original study to

the best of our knowledge, based on the reported procedures

of the original study and our reanalyses of the original data.

Our preregistration script may be found at https://

AsPredicted.org/u5z76.pdf. The experimental materials,

scripts, and analyses for all three replications are freely

available at https://github.com/rettopnivek/Wimber_et_al_

replication_3.

There are four important procedural details that were

not reported in the original Wimber et al. (2015). For

completeness, we present these details here. First, as

mentioned in the introduction, Wimber et al. labeled

missing trials from the final forced choice recognition test

as errors, equivalent to choosing the wrong picture; during

each final forced choice recognition trial, subjects were

given 3.5 s to respond, and if no response was given within

this time period, the experimental program automatically

moved on to the next test trial. Second, the final recognition

test list was blocked, testing all of the competitor picture

pairs (and the corresponding baseline picture pairs) before

testing the target picture pairs. This has become a standard

approach in the RIF literature, in the attempt to avoid

alternative explanations of forgetting for competitors based

on output interference from already retrieved targets. Third,

although the supplementary methods indicated that the

assignment of picture pairs to conditions ‘was counter-

balanced such that across participants, each picture equally

often served as a target, competitor and baseline item.’, our

analyses found that this was not the case, raising the pos-

sibility of unacknowledged item effects. To counterbalance

the stimuli, Wimber et al. assigned picture pairs equally

often to be first associates (i.e., target pictures which were

initially studied and tested twice), versus second associates

(i.e., competitor pictures which were initially studied and

tested just once). However, the original study had an

inherently unbalanced design, with 54 of the word cues

appearing during selective retrieval, while only 18 word

cues were held out from selective retrieval to provide each

of the corresponding baseline conditions. In other words,

there were three times as many target/competitor recogni-

tion tests as compared to the corresponding baseline

recognition tests. Because of this, it was impossible to

counterbalance assignment of pictures to the baseline and

selective retrieval conditions. Out of the 24 subjects, each

picture was assigned to the selective retrieval condition for

18 of the subjects on average, but that same picture was

assigned to the baseline condition for only 6 of the subjects

on average. Furthermore, these are just average numbers

and there was a great deal of variability across pictures. For

instance, for the baseline conditions, the number of times

each picture was actually assigned to be a competitor

baseline item or a target baseline item ranged from 2 to 10.

Finally, it was not reported that the final recognition in-

structions emphasized speed, asking subjects to respond as

quickly as possible and to guess when they did not know the

correct answer.
2.1. Participants

2.1.1. Original design
Wimber et al. recruited 24 subjects from a volunteer panel at

the MRC Cognition and Brain Sciences Unit. The sample con-

sisted of 20 females and 4males, ranging from 20 to 32 years of

age with a mean of 24.2.

2.1.2. Second replications
For the second replication attempt, 35 subjects were recruited

via word of mouth and leaflets from the university campus.

Subjects received $20 for their participation. The replication

was approved by the UMass Amherst IRB and written

informed consent was obtained from all subjects. We origi-

nally collected data from 25 subjects. However, 10 subjects

received instructions that flipped the key assignments for two

responses during the selective retrieval stage. Therefore, we

ran an additional 11 subjects. In the main text, we report the

results for the 25 subjects that received the correct in-

structions. In our supplementary material, we report the re-

sults for all 35 subjects, alongwith an evaluation of the impact

of the incorrect instructions.

For our second replication, we removed certain subjects

and responses based on a priori criteria. First, we removed

subjects whose overall accuracy during the practice test was

at or below chance performance. To determine this, we fit

each subject's accuracy data with a simple beta-binomial

model with uniform priors, and we excluded subjects

whose 95% credible intervals included (or fell below) a

probability of .5. Also, we removed subjects who made an

excessive number of time-out responses (i.e., trials where

they failed to make a response within a set time limit of 4 s

for the selective retrieval phase, and 3.5 s for the recognition

memory phase). If 25% or more of the total number of re-

sponses were time-out responses, that particular subject

was removed (although this cut-off is somewhat arbitrary,

we note that it was made in advance of data collection).

Finally, we removed any time-out responses (whereas

Wimber et al. labeled time-out responses as incorrect). After

excluding the 10 subjects with reversed instructions, we had

22 subjects who met the inclusions criteria for the second

replication. We note that if these exclusion criteria are

applied to the data from Wimber et al., two subjects would

have been excluded due to at-chance performance during

the practice tests, leaving only 22 subjects for the original

study as well.

2.1.3. Third pre-registered replication
We recruited 53 subjects via word of mouth and leaflets from

the University of Massachusetts Amherst campus, paying

subjects $20 for their participation. The third replication was

approved by the university IRB and written informed consent

was obtained fromall subjects. 4 subjects did not complete the

study, and one subject provided no responses during the se-

lective retrieval stage. This left us with 48 subjects with

complete data, our desired sample size (as noted in the pre-

registration script). This sample size was chosen based on

an a priori power analysis: we simulated data 1000 times from

a hierarchical logistic regressionmodel with a simple effect of

https://AsPredicted.org/u5z76.pdf
https://AsPredicted.org/u5z76.pdf
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forgetting for competitors. The original study reports an effect

of 7%, and if missing data is trimmed, the effect is still 5%.

However, we determined that with a sample size of 48 sub-

jects, our power to detect an even smaller effect of forgetting

for competitors of 4% was above 95%. Our sample consisted of

22 females and 26 males. The mean age was for our sample

was 24.65 (SD ¼ 5.21); the youngest subject was 18, while the

oldest was 39. Note that for our third replication, we did not

exclude subjects or trim any data based on the criteria from

our previous replications. This approach is consistent with

Wimber et al.’s original methodology.

2.2. Materials

Wimber et al. used 72 English words taken from the MRC

linguistic database (http://www.psych.rl.ac.uk/). They

selected words that had relatively low image ability and

concreteness ratings, to avoid having the words themselves

elicit mental images while subjects were in the scanner.

Wimber et al. also used 144 picture pairs, with three sets of 48

picture pairs of well-known faces, scenes, and everyday ob-

jects. For example, subjects could see pictures of Marilyn

Monroe's face at two different angles, two different soccer

balls, or two different angles of the Acropolis. Pictures in the

pairs were assigned to either be studied pictures or lure pic-

tures, and this assignment was the same across all subjects

(i.e., picture pairs are the base unit for item effects considering

that the same picture was the lure picture for all subjects).

Wimber et al. selected these pictures from a variety of data-

bases and the internet, converted them to grayscale, rescaled

them to cover the same visual angle, and stripped the back-

ground from the faces and objects pictures (but not the

scenes).Wimber et al. kindly provided uswith their stimuli, so

for all three replication attempts wewere able to use the same

materials.

2.3. Design and procedure

2.3.1. Second replication
We now discuss the procedure and design of our second

replication attempt, focusing for brevity on how it differed

from the original study. The second replication used the full

stimulus set, but in contrast used a balanced design. 36

picture pairs were randomly assigned to each condition.

This contrasted with the unbalanced design of Wimber

et al., where 54 picture pairs were assigned to the selective-

retrieval conditions and only 18 picture pairs were assigned

to the baseline conditions. Also, Wimber et al. used a

blocked final recognition test in which subjects were first

tested on all of the competitor pictures before being tested

on the target pictures. For the second replication, the order

of target and competitor pictures was randomized during

the final recognition test (because the nature of the blocked

design was unreported, we assumed a mixed final test list,

only learning of this blocking after our first two replication

attempts). We also attempted to impose a context shift by

having subjects complete the selective retrieval and recog-

nition memory phases in an EEG testing room whereas the

initial training phase occurred in a simple testing room in a

different part of the building.
2.3.2. Third pre-registered replication
Weused the same stimuli and the blocked, unbalanced design

used in the original study. However, due to our large sample

size, we randomly assigned picture pairs to each of the four

conditions instead of counterbalancing assignment to first

associates versus second associates. Unlike Wimber et al., we

statistically controlled for potential item effects. As per our

previous two replications, we used a purely behavioral design.

Subjects did not undergo fMRI scanning during the selective-

retrieval phase. It should be noted that a subject's perfor-

mance can consistently differ when undergoing fMRI scan-

ning. For example, van Maanen, Forstmann, Keuken,

Wagenmakers, and Heathcote (2016) found that subjects

exhibited slower motor responses and attenuated attentional

focus in the scanner (the balance between motor slowdown

and poorer focus was task specific). Unfortunately, if the

original forgetting effect can only be replicated when subjects

are in a scanner, then it can hardly reflect the mechanisms

underling everyday memory failures.

Unlike our second replication, subjects completed the

entire task (which took approximately 2 h) in a single room.

Also, we had subjects complete a 5-point Likert scale at the

end of the study indicating to what extent they visualized the

images they were supposed to recall during the selective-

retrieval stage. The response categories were: 1) I only

thought of the name of the category, 2) I very rarely mentally

visualized the image, 3) sometimes I was able to create a

mental image but not always, 4) I typically was able to create

mental images, and 5) on nearly every trial I was able to create

detailed mental images.
3. Analyses

In this section, we describe our analytic approach. We used a

different statistical framework and set of tools to analyze our

data compared to Wimber et al., so we first describe their

approach and our motivation for using different analyses. We

then focus in detail on our analyses for assessing the results of

the selective retrieval and final recognition memory stages of

our replication attempts.We also further report on our a priori

power analysis for our pre-registered design, and note the

priors we used in our Bayesian analyses. However, for ease of

comparison, we also report Wimber et al.’s original analyses

as applied to our data sets. Critically, it did not matter howwe

analyzed our results and in every case, our replication at-

tempts failed to produce any forgetting, let alone more

forgetting for competitors than for targets.

3.1. Original analyses

The primary behavioral results of interest in Wimber et al.’s

experiment involved the selective retrieval stage, and most

critically, the final recognition memory test. To analyze these

data, Wimber et al. used the standard suite of statistical tools

known to psychologists.

In the selective retrieval task, subjects could make one of

four possible responses for the subset of 54 word cues that

they saw. Subjects could correctly pick the category of the

target picture (a hit), incorrectly select the category of the

http://www.psych.rl.ac.uk/
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competitor picture (an intrusion), pick the third, unrelated

category (an error), or indicate that they did not know the

answer (unknown). Furthermore, subjects saw each cue word

4 times, allowing for an analysis of the change based on repeat

presentations.

Wimber et al. used a paired samples t-test to determine

that subjects had significantly more intrusions than errors

(t23 ¼ 6:53, p < .001). Additionally, they verified via a one-way

repeated measures ANOVA that the proportion of intrusions

varied significantly over repetitions (F3;69 ¼ 21:8, p < .001),

exhibiting a linear decline (F1;23 ¼ 55:4, p < .001).

In the final recognitionmemory task, subjects had to select

the studied picture instead of a similar looking lure picture.

There were four conditions in this task: pictures could either

be targets or competitors (i.e., first versus second associates),

and cue word associated with each picture could have been

shown during the cued categorization task (selective retrieval)

or not (baseline). Wimber et al. examined the proportion of

correct responses over these four conditions.

Wimber et al. conducted a 2� 2 repeatedmeasures ANOVA

on the proportion correct (after rounding these values to two

decimal places) with two factors: associate type (target vs

competitor) and assignment type (selective retrieval vs base-

line). The authors found a significant interaction (F1;23 ¼ 4:70,

p ¼ .041). Though it was not reported, there was also a main

effect of assignment type (F1;23 ¼ 13:61, p < .001), indicating a

general forgetting effect when collapsing across targets and

competitors. The authors then conducted planned compari-

son paired samples t-tests comparing the difference between

selective retrieval and baseline conditions for performance

with competitors and targets respectively. They found that

performance for competitor pictures that underwent selective

retrieval had significantly lower performance compared to

performance for competitors in the baseline condition (t23 ¼
4:91,p < .001), with an average proportion correct of .752

versus .821, respectively. In contrast, performance did not

differ significantly between selective retrieval and baseline

conditions for target pictures (t23 ¼ 0:57, p ¼ .713), with an

average proportion correct of .786 versus .797, respectively.

3.2. Motivation for a different approach

Our choice of statistical models differs from those used in the

original analyses by Wimber et al. for their behavioral data.

More specifically, because there was an a priori expectation

that wewould find a forgetting effect, we employed a Bayesian

framework such that the results of Wimber et al. served as

priors for our study, biasing our statistical analyses in favor of

the conclusions reached by Wimber et al. In addition, this

allowed us greater statistical power by appropriately

addressing the bounded, count nature of the data.

Wimber et al. primarily focus on the proportion of in-

trusions and correct choices when analyzing their behavioral

data. However, the t-test and ANOVA both assume the data

being analyzed are unbounded and continuous. In contrast,

proportions are bounded between 0 and 1 and based on finite

count data, meaning that they are not continuous. Therefore,

as noted by Jaeger (2007), the probabilitymodel underlying the

t-test and ANOVA can incorrectly assign probability mass to

impossible values when dealing with proportions (i.e., values
that fall below 0 or above 1). This issue is especially prob-

lematicwhen subjects have proportions close to the extremes,

a common occurrence in the current experimental paradigm.

Furthermore, Jaeger notes that the variability of count data

changes based on the underlying probabilities, with greater

variability in the data occurringwhen probabilities are near .5.

In other words, count data exhibits heteroscedasticity,

violating further assumptions of the ANOVA approach.

Wimber et al. also used a limited set of test items, exam-

ining the same 144 picture pairs across all 24 subjects. Our

analyses demonstrated substantial item effects, with some

picture pairs producing reliably better recognition perfor-

mance than others, regardless of experimental condition. For

instance, it is easy to distinguish a scene of the Acropolis from

its lure (viewed at a very different angle) relative to two very

similar looking soccer balls. This fact, combined with the

inherently unbalanced design used by Wimber et al., em-

phasizes a need to simultaneously control for both item and

subject effects. However, a repeated measures ANOVA can

only control for one effect or the other, but not both. Based on

these concerns, we elected to use mixed effects logistic

regression when analyzing the data for the final recognition

memory test from our replications.

3.3. Our analytic approach

We relied on two types of statistical models when analyzing

our replication attempts. First, we used a hierarchical cate-

gorical logit model (e.g., Stan Development Team, 2017c). This

model is useful for categorical data with multiple response

types, such as the cued categorization task with its 4 response

categories (hits, intrusions, errors, and “unknown” re-

sponses). The model assumes that the data follow a categor-

ical distribution (i.e., separate probabilities for each response

type that sum to one), and uses a softmax link function (also

known as the normalized exponential function) to estimate an

associated set of unbounded, continuous parameters. We

assumed separate parameters for every subject that were

informed by a single set of groupelevel parameters. This type

of model captures the bounded nature of the count data, the

variability due to individual differences, and the inherent

dependencies between response types (e.g., a high proportion

of hits means a much lower proportion of intrusions, errors,

and “unknown” responses).

We also used hierarchical logistic regression with mixed

effects to analyze dichotomous count data. This model as-

sumes the data follow a binomial distribution, and uses the

log of the odds as the link function. The resulting unbounded,

continuous parameter can be decomposed into the standard

weighted sum of a set of predictors. We used this model to

analyze linear trends in the cued categorization task,

collapsing the 4 response types into a binary response (e.g.,

intrusions versus all other response types). We assumed a

randomeffect for subjects, and used a planned contrast to test

for a linear trend. In the cued categorization task, we were

most interested in the trend on hits and intrusions across the

4 selective retrieval trials that tested the same cue. Logistic

regression is very useful in this scenario because the in-

trusions in particular were close to the boundary of 0. We also

used the hierarchical logistic regression to examine accuracy
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Fig. 2 e The power to detect a forgetting effect of 4% or

lower using a confirmatory mixed effects logistic

regression model, computed via Monte Carlo simulations

over 1000 repetitions. The solid line indicates the power for

a sample size of 48 (the number of subjects for our pre-

registered design) while the dashed line indicates the

power for a sample size of 24 (the number of subjects from

the original study). The degree of Monte Carlo error is

about 2%.
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performance in the final recognition memory task. Here we

assumed random effects for both subjects and for items (i.e.,

picture pairs).

We estimated parameters within the Bayesian framework.

Compared to the frequentist approach, the Bayesian frame-

work has a more coherent approach for testing hypotheses,

and allows for amore intuitive interpretation of uncertainty in

parameter estimates (Morey, Hoekstra, Rouder, Lee, &

Wagenmakers, 2016). Furthermore, the Bayesian framework

is well suited for the estimation of hierarchical models.

Finally, the Bayesian approach is inherently well-suited to

replication attempts, as the posteriors for model parameters

from the original analysis can be used as priors for the sub-

sequent analyses of the replication. We conducted all ana-

lyses using the statistical software R (version 3.4.1, R Core

Team, 2017). We estimated the hierarchical logistic regres-

sion models using the R package ‘rstanarm’ (version 2.15.3

Stan Development Team, 2017a), and we estimated the cate-

gorical logit models using custom scripts written with the R

package ‘rstan’ (version 2.16.2 Stan Development Team,

2017b). Again, our analysis scripts are freely available at

https://github.com/rettopnivek/Wimber_et_al_replication_3.

3.4. Analyses for pre-registered design

We have outlined the core statistical models we used to

analyze our replication attempts. We now describe the

specific details for the pre-registered analyses used with our

third, final replication effort. First, when analyzing the final

recognition memory task, we specified a confirmatory sta-

tistical model instead of a purely descriptive one. For the

fixed effects in the hierarchical model, we specified an

intercept term to represent performance in the baseline

conditions for both targets and competitors as well as the

selective-retrieval condition for targets. We specified a

separate coefficient capturing the change owing to selective

retrieval practice.

Hence, the statistical model specifically predicted the type

of crosseover interaction needed to support Wimber et al.’s

conclusion that cortical suppression, not enhancement, leads

to forgetting. The model could not account for interactions or

main effects of a different nature, providing a strongly

confirmatory test of Wimber et al.’s original findings. More-

over, while the confirmatory model was designed to test for

the interaction originally found inWimber et al.’s data, rather

than the simple comparison typically of interest in the RIF

literature, it is important to note the confirmatory model can

still provide an estimate of RIF that closelymatches that of the

simple comparison.

As noted earlier, we checked whether this confirmatory

test had sufficient power to detect a forgetting effect. Fig. 2

reports the power our confirmatory model had to detect a

forgetting effect of 4% or lower based on a sample size of 48

(solid line) or 24 (dashed line) subjects, determined from

Monte Carlo simulations using 1000 repetitions (therefore

estimates of power can vary by ± 0.02). As the figure shows,

with our pre-registered sample size of 48 subjects, we had

over 95% power to detect an effect of 4%, and we still had

above 80% power to detect an effect of 3%. Recall that

Wimber et al. originally reported an effect of 7% (5% after
correcting for missing data). Therefore, we had a high-

powered pre-registered replication design.

Because we estimated the statistical models within a

Bayesian framework, it is important to note the priors that

we used in our analyses. To specify the priors, we first

reanalyzed Wimber et al.'s original data. Once we obtained

the marginal posterior estimates, we set these as the new

priors for the analysis of our replication. This biases the

results to favor the findings of the original study, but it

greatly increases our power to detect greater forgetting for

competitors as compared to targets. We assumed normally

distributed priors for the logistic coefficients for the fixed

effects in our models, and we report the values using the

format N (m, s), where m refers the mean and s the standard

deviation. For the initial reanalysis, we placed a N (1.775, .3)

prior on the intercept, and a N (-.3, .3) prior on the coeffi-

cient. The subsequent marginal posteriors (and new priors

for the analysis of the replication) were N (1.57, .12) and N

(-.28, .08). Note that these values differ from those reported

in the preregistration script (which were based on a statis-

tical model with an additional covariate for the effect of

training). A common concern often raised regarding priors is

that they allow for additional researcher degrees of

freedom, which can inflate Type I error rates (Simmons,

Nelson, & Simonsohn, 2011). Fortunately, because we used

the posteriors from the original data and pre-registered the

analysis of our third replication, this concern is not appli-

cable for our situation.

There are multiple ways to define a successful replication.

For example Nature Neuroscience, the journal in which

https://github.com/rettopnivek/Wimber_et_al_replication_3
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Fig. 3 e The predicted versus observed percentages of

missing data from Wimber et al.’s data for the final

recognition memory task. The x-axis shows the predicted

percentage of missing data for each subject, estimated
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Wimber et al. results were published, defines a successful

replication to be when the effects for the replication fall

within the credible intervals of the original data (A. Arguello,

personal communication, May 10, 2016). We therefore used

two criteria to assess whether we successfully replicated

Wimber et al.’s finding of forgetting for competitor images.

First, we used a posterior predictive check, generating the

range of plausible values for the average proportion correct in

each condition using the posteriors from the reanalysis of the

original data. If our replication data falls within the resulting

credible intervals, this indicates that the original estimates

can successfully predict new data from the same experi-

mental design. Note that because the original study had a

smaller sample size, these intervals will be wider and less

precise. As noted in our preregistration script, another way to

assess the success of our replication is to determine whether

the marginal posterior for the coefficient describing the

forgetting effect contains the original point estimate. How-

ever, this assessment is only appropriate if the statistical

model is able to fit the replication data in the first place.

Because we fit a confirmatory model, an important sub-step is

to generate a posterior predictive check with the replication

estimates and assess whether they actually fit the replication

results.
from how far away the log of the deadline (3.5 s) was from

their average log response time. The y-axis shows the

observed percentage of missing data for each subject.

Values above the dashed line indicate more missing data

than predicted.
4. Results

We first present our reanalysis of the data fromWimber et al.,

focusing on the appropriateness of labeling missing data as

incorrect, and the reliability of the interaction between the

type of associate (targets vs competitors) and condition

(whether images underwent selective retrieval or not). Next,

we report our findings for our first two replication attempts.

We then present our results for our pre-registered replication,

as well as the additional sub-group analyses we conducted.

4.1. Reanalysis of original data

One way to assess the appropriateness of coding missing data

as errors is to examine how close error response times

occurred relative to the deadline. If error responses were

especially slow, then it is reasonable to expect that a propor-

tion of these errors could extend past the deadline and be

registered as missing responses. This means that there would

be a gradually diminishing set of error response times that

would abruptly be truncated at the 3.5 s response deadline.

We can test this by taking the log-transform of the error re-

sponses times (to adjust for the fact that response time dis-

tributions are positively skewed), and then examine the

distance in standard deviation units of the deadline from the

mean of error response times for a particular subject. This can

then be converted into the predicted proportion of responses

to exceed the deadline via the standard normal cumulative

distribution. This approach can over-estimate the distance

from the deadline, but this over-estimation will be minuscule

given that the slowest error response made by the subjects

from the original study was 2.569 s. In other words, there was

a gap of 931 ms with no trailing error responses before the

deadline.
Fig. 3 shows a scatter plot of the predicted percentage

plotted against the observed percentage of missing responses

for each subject. Points that fall above the dashed line indicate

more missing responses observed relative to the predicted

amount, under the assumption that missing trials would have

been errors. As can be seen, the proportion of observed

missing responses far exceeds the predicted amount based on

error response times. Therefore, it more likely that the

missing data reflect ancillary processes rather than a retrieval

process that was destined to result in choosing the wrong

picture. In contrast, our replication data had far fewer time-

out responses (less than half of a percentage point).

4.1.1. Robustness of the interaction
Having confirmed that the labeling of time-out trials as

incorrect responses was inappropriate, our next question was

how reliable the interaction term was if these time-out trials

were instead treated as missing data. We examined the

robustness of the interaction term using four different sta-

tistical tests, ordered in descending fashion to reflect the level

of appropriateness for the current data. First, we report the

results of the standard repeated measures ANOVA as applied

to percent correct. Next, we report the results of a hierarchical

logistic regression that controlled for subject effects. We then

report the results for a hierarchical logistic regression that

also incorporates item effects. Finally, we report the results of

a hierarchical multinomial process model with subject and

item effects.
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The multinomial process model posits that subjects

either recognize the correct picture, or they guess with 50%

accuracy. This model therefore better accounts for the fact

that with a forced choice test, the hypothetical ‘floor’ is

50% accuracy rather than 0%. The standard logistic

regression approach assumes that the data follow a bino-

mial distribution governed by the probability P(Correct),

and the log-odds of this probability can be linearly

decomposed. In contrast, with the multinomial process

model, the probability governing the binomial distribution

is instead

PðRecognizedÞ þ 1
2
½1� PðRecognizedÞ� (1)

It is then the log-odds of the probability P(Recognized) that

is linearly decomposed.

We report the results of the four tests over the two datasets

in Table 1. The first column lists the type of statistical model.

The second column reports the type of scale (in percent units)

that the model assumes for the data. This column makes it

clear that the ANOVA and logistic regression approaches do

not correctly bound the response scale for the forced choice

test. Note that the logistic regression andmultinomial process

models have improved power to detect a reliable interaction,

especially after including item effects, since they parse out

additional variability in the data for which the original ANOVA

did not control.

We report the significance of the interaction between

associate type and condition for the original data in which

missing data was labeled to be errors, versus the original

data in which missing data is excluded from the analyses.

Statistically significant results are marked with asterisks.

When missing data were labeled as errors (rather than

trimmed), one interesting finding is that when one switches

from a repeated measures ANOVA to logistic regression,

which assumes more appropriate boundaries for the per-

centage correct, the interaction is only marginally signifi-

cant. This is because the relation between the underlying

linear structure and percentage correct is non-linear, and

only certain types of interactions are robust to these non-

linear transforms. However, incorporating item effects and

controlling for guessing via the multinomial process model

recovers the significance of the interaction for the original

data set. This again emphasizes how the multinomial pro-

cess model in particular has improved power to detect a

reliable interaction. Critically, though, if one trims out the

missing data, the interaction is not significant regardless of

the statistical test.
Table 1 e The p-values for the interaction of associate and
retrieval type.

Test Scale
(Percent)

Missing
(error)

Missing
(trimmed)

ANOVA � ∞ to þ∞ .041* .106

Logistic 0 to 100 .063 .145

Logistic (Items) 0 to 100 .053 .129

Multinomial process 50 to 100 .038* .071

* Significant at the a ¼ .05 level.
4.2. Second replication attempt

Fig. 4 presents the results for our second replication attempt.

Panel A shows the average response proportions (hits, in-

trusions, errors, and unknowns) and their associated uncer-

tainty (based on the categorical logit model) for the cued

category task during selective retrieval practice. In terms of

learning during selective retrieval practice, we replicated the

qualitative patterns from Wimber et al.’s study. On average,

subjects correctly identified the category for the target image

71% of the time. Subjects also hadmore intrusions than errors

(15% vs 9%, with a posterior p-value less than .001 for the

difference). Note, however, that quantitatively speaking our

subjects from the second replication made fewer hits on

average compared to those from the original study, who on

average identified the target 76% of the time. Furthermore, our

subjects had a greater number of intrusions and errors relative

to the original subjects, who on average only chose the

competitor image 9% of the time, and made an error 2% of the

time. Finally, our subjects on average picked “unknown” less

of the time (7% compared to 13% for the subjects of the orig-

inal study).

Panel B presents the trend analysis for hits and intrusions

using themixed effects logistic regressionmodel. The plots on

the left show the change in the proportion of hits and in-

trusions across the 4 selective retrieval trials that tested the

same cue word, and the plots on the right show the slope of

the linear trend estimated from the mixed effects logistic

model. Error bars represent 95% credible intervals. Demon-

strating that subjects learned during selective retrieval, there

was a significant improvement in hits and a decline in in-

trusions across the 4 trials. Again, while subjects had fewer

hits on average and more intrusions, we replicated the linear

trend reported by Wimber et al., which they argued was

consistent with the possibility that inhibitory control

rendered competitors less interfering over cue repetitions.

Panels C presents the results for the four conditions of the

final recognition memory task, averaged over subjects. The

solid lines and filled points represent the average proportion

correct for targets, whereas the dashed lines and empty

squares represent the average proportion correct for com-

petitors. Error bars represent the 95% credible intervals

generated via simulations based on the posterior samples,

indicating the range of plausible group means conditioned on

the observed data. We found no interaction (b ¼ � :113, pos-

terior p-value ¼ .273) nor forgetting for competitors (bB � bSR ¼
0:004, posterior p-value ¼ .511).

Applying Wimber et al.’s original analyses to the data for

the second replication leads to similar conclusions. The dif-

ference between the average proportion of intrusions and

errors is statistically significant according to a paired samples

t-test, t21 ¼ 5:461, p < .001. The one-way repeated measures

ANOVA applied to the proportion of intrusions over cue rep-

etitionswas significant, F3;63 ¼ 22:5,p< .001, and also exhibited

a linear decline, F1;21 ¼ 42:3, p < .001. However, for the final

memory task, the repeated measures ANOVA found no sig-

nificant effects. For the main effect of associate, F1;21 ¼ :168,

p ¼ .686, while for the main effect of condition, F1;21 ¼ :493,

p ¼ .49, and finally, for the interaction, F1;21 ¼ 0:126, p ¼ .726.
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Fig. 4 e Performance for the selective-retrieval phase and final recognition memory task for our second replication attempt.

(A) The average percentage in which the categories for a particular picture type (target, competitor, incorrect, or unknown)

were chosen collapsed over all selective retrieval trials. Error bars represent 95% credible intervals from a categorical logit

model. (B) A trend analysis of the percentage of hits (correctly picking the target) and intrusions (incorrectly picking the

competitor) over the 4 selective retrieval trials that presented the same cue word. 95% credible intervals for the slope of the

linear trend from a logistic regression analysis are shown to the right. (C) Performance in the final recognition memory task

averaged over the 22 subjects. The conditions for target images are denoted by filled circles and solid lines, while the

conditions for competitor images are denoted by empty squares and dashed lines.
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We then ran the planned comparison paired sample t-tests.

The comparison for competitors versus baseline was not sig-

nificant, t21 ¼ � 0:176, p ¼ .862, nor was the comparison for

targets versus baseline, t21 ¼ � 0:838, p ¼ .411.

We can also examine the significance of the interaction

over progressively more powerful statistical tests and

differing treatment of missing data, as we did with the data

from the original study. As seen in Table 2, the interaction is
Table 2 e The p-values for the interaction of associate and
retrieval type (Second replication).

Test Scale
(Percent)

Missing
(error)

Missing
(trimmed)

ANOVA � ∞ to þ∞ .726 .726

Logistic 0 to 100 .681 .681

Logistic (Items) 0 to 100 .631 .631

Multinomial process 50 to 100 .438 .435
not significant regardless of the test. Furthermore, coding

missing responses as errors had no impact, which is unsur-

prising as there were only two time-out responses for the 22

subjects.

However, the experimental designs of our second replica-

tion attempt differed from the original study by using a

randomly ordered rather than blocked final test list and by

using a balanced design. In typical RIF designs, the blocked

design is important to negate an alternative interpretation of

the results in terms of output interference. We therefore focus

on the results of our third, pre-registered design, which

closely matched Wimber et al.’s original study.

4.3. Pre-registered replication attempt

Fig. 5 reports the results of our pre-registered replication

attempt (in black) compared against Wimber et al.’s original

findings (in red). Panel A shows the average response pro-

portions (hits, intrusions, errors, and unknowns) and their
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Fig. 5 e Performance for the selective-retrieval phase and final recognition memory task for the pre-registered direct

replication (in black). For easy comparison, the results from the original study are included (in red). (A) The average

percentage in which the categories for a particular picture type (target, competitor, incorrect, or unknown) were chosen

collapsed over all selective retrieval trials. Error bars represent 95% credible intervals from a categorical logit model. (B) A

trend analysis of the percentage of hits (correctly picking the target) and intrusions (incorrectly picking the competitor) over

the 4 selective retrieval trials that tested the same cue word. 95% credible intervals for the slope of the linear trend from a

logistic regression analysis are shown to the right. (C) Posterior predictive checks based on applying a confirmatory

hierarchical logistic regression to the original data. Pink bars represent 95% credible prediction intervals. The model

captures the original data, but fails to predict the replication's higher performance for competitor pictures from the

selective-retrieval stage. (D) Posterior retrodictive checks based on applying a confirmatory hierarchical logistic regression

to the replication with priors based on the original data. Grey bars represent 95% credible prediction intervals. The model

fails to capture the replication's lower performance with competitor pictures from the baseline stage.
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associated uncertainty (based on the categorical logit model)

for the selective retrieval task. Error bars represent the 95%

credible intervals generated via simulations from the poste-

rior samples, indicating the range of plausible group means

conditioned on the observed data. Similar to our previous at-

tempts, we replicated the qualitative findings of Wimber

et al.’s study. On average, subjects correctly picked the cate-

gory for the target image 71% of the time, and had more in-

trusions than errors (15% vs 9%, with a posterior p-value less

than .001 for the difference). Again, our subjects had more

intrusions and errors relative to Wimber et al.’s participants,

but they selected “unknown” less often (5% vs 13%).

Panel B presents the trend analysis for hits and intrusions

using themixed effects logistic regressionmodel. The plots on

the left show the change in the proportion of hits and in-

trusions across the 4 selective retrieval trials that tested the
same cue word, and the plots on the right show the slope of

the linear trend estimated from the mixed effects logistic

model. Like the original study and previous replication at-

tempts, subjects once again showed a significant improve-

ment in hits and a decline in intrusions with across the 4

trials.

We evaluated the presence of forgetting effects in the

replication data via twomethods. First, we fit the confirmatory

model to Wimber et al.’s original data, and then conducted a

posterior predictive check. If we successfully replicated the

original forgetting effect, then the new replication data should

fall within the 95% credible intervals based on estimation

from the original study. Panel C shows the results of this test.

Again, filled circles represent average proportion correct for

target pictures, while empty squares represent average pro-

portion correct for competitor pictures. The pink boxes
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represent the 95% credible intervals for the posterior predic-

tive check for each group mean. The confirmatory model

nicely fits Wimber et al.’s original data, but fails to predict the

higher average proportion correct for competitor pictures that

underwent selective retrieval with the replication data. Note

that Wimber et al. had only 24 subjects in their sample

compared to the 48 subjects in our pre-registered replication,

resulting in more uncertainty in the credible intervals (i.e.,

wider intervals) and a greater likelihood of finding a successful

replication. Despite this bias, we still failed to replicate the

original pattern of results.

In our preregistration script, we planned to evaluate the

posterior estimates for the effect of forgetting for our confir-

matory model. However, this approach is conditional on the

confirmatory model successfully fitting the replication data.

To evaluate whether themodel fit our new data, we conducted

a posterior retrodictive check, the results of which are shown

in Panel D. Here, the gray boxes represent the 95% credible

intervals generated via simulations based on the posterior

samples from fitting the replication data, using the posteriors

from the previous analysis of the original study as new priors.

This approach biases the analysis to favor the results of the

original study. Despite this, the confirmatory model fails to fit

the replication data, as it cannot capture the lower proportion

correct for competitor pictures in the baseline condition.

Hence, we failed to replicate Wimber et al.’s results based on

two differing tests of replication success. Furthermore, given

that the confirmatory model cannot fit our replication data,

there is no justification to evaluate the posteriors for the

parameters.

Again, applying Wimber et al.’s original analyses to the

data for the third replication leads to similar conclusions. The

difference between the average proportion of intrusions and

errors is statistically significant according to a paired samples

t-test, t47 ¼ 8:679, p < .001. The one-way repeated measures

ANOVA applied to the proportion of intrusions over cue rep-

etitions was significant, F3;141 ¼ 36:5, p < .001, and also

exhibited a linear decline, F1;47 ¼ 89:6, p < .001. However, for

the final memory task, the repeated measures ANOVA found

no significant effects. For the main effect of associate, F1;47 ¼
2:522, p ¼ .119, while for the main effect of condition, F1;47 ¼
0:309, p ¼ .581, and finally, for the interaction, F1;47 ¼ 1:909,

p ¼ .174. As before, we followed up with the t-tests for the

planned comparison. The comparison for competitors versus

baseline was not significant, t47 ¼ � 1:364, p ¼ .179, nor was

the comparison for targets versus baseline, t47 ¼ 0:662,

p ¼ .511.

We can again examine the significance of the interaction

over progressively more powerful statistical tests and

differing treatment of missing data. As seen in Table 3, the
Table 3 e The p-values for the interaction of associate and
retrieval type (Third replication).

Test Scale
(Percent)

Missing
(error)

Missing
(trimmed)

ANOVA � ∞ to þ∞ .174 .163

Logistic 0 to 100 .155 .157

Logistic (Items) 0 to 100 .159 .159

Multinomial process 50 to 100 .106 .102
interaction is not significant regardless of the test. Further-

more, coding missing responses as errors once again had no

noticeable impact, since only .3% of the trials were missing.

4.4. Sub-group analyses

One possible critique of our replication attempts is that our

subject composition may have differed substantially from the

original study. For instance, astute readerswill note thatwhile

we replicated the qualitative trends reported by Wimber et al.

in the selective-retrieval phase, our subjects on average had

more intrusions and errors. A possible concern, then, is that

our subjects may not have properly inhibited the competitor

images during selective retrieval, whichmay have reduced the

magnitude of any forgetting effects (note that the linear trend

analysis weakens this argument, as our subjects clearly pro-

duced fewer intrusion with each repetition of the cue word

during selective retrieval, indicating that they gradually

learned to avoid responding with the competitor category).

Another possibility is that our subjects did not properly visu-

alize the images during the cued categorization task (This

argument is weakened by the fact that we used the same in-

structions as Wimber et al. for our second and third replica-

tions). Nonetheless, we explored both of these possibilities via

a sub-group analysis of our third replication. Our large sample

size for the third replication study allowed us to select sub-

groups with matching or similar sample sizes to the original

study, meaning they still had equivalent power to the original

design.

We considered two sub-groups: 1) the subjectswho had the

lowest number of intrusions during cued categorization (low-

intrusion), and 2) the subjects who indicated that they could

typically or almost always visualize the image during the cued

categorization task (high-visualization). To create our first

sub-group, we ranked subjects based on their proportion of

intrusions and took the first 24 with the lowest values. For the

second sub-group, becausewe included the end-of-study one-

question survey, we were able to assess how well subjects

were actually able to visualize the images as instructed. We

identified 21 subjects who reported that they typically or

almost always were able to visualize the images, and we

separated out their data.We also determined that subjects did

not have to engage in a high degree of visualization to do well

in both the selective retrieval phase and the finalmemory test.

There was only a marginally significant correlation of R ¼ .28

(p ¼ .051) between the degree of visualization and perfor-

mance on the selective retrieval stage (i.e., correctly recalling

targets), and no significant correlation between degree of

visualization and overall performance on the final memory

test (R ¼ .18; p ¼ .213). Another benefit of both subgroups is

that they excluded three subjects who had an excessive

number of overly fast responses (more than 25% of the trials).

Fig. 6 presents our sub-group analyses compared against

Wimber et al.’s original results. We denote the results of the

original study in red, the results for the low-intrusion group in

blue, and the results for the high-visualization group in pur-

ple. Panel A shows the average response proportions (hits,

intrusions, errors, and unknowns) and their associated un-

certainty (based on the categorical logit model) for selective

retrieval performance. Error bars represent the 95% credible
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Fig. 6 e Subgroup analyses of the pre-registered direct replication. The original data is marked in red, the subgroup with a

low number of intrusions during the selective-retrieval stage is marked in blue, and the subgroup with high visualization is

marked in purple. (A) The average percentage in which the categories for a particular image type (target, competitor,

incorrect, or unknown) were chosen collapsed over all selective retrieval trials. Error bars represent 95% credible intervals

from a categorical logit model. (B) Performance for the final recognition memory task from the original study with 24

subjects. An interaction is present due to forgetting for competitors but not targets relative to a baseline condition. Error bars

represent 95% credible intervals based on a descriptive hierarchical logistic regression model. (C) Performance for the final

recognition memory task for the low-intrusions subgroup with 24 subjects. Subjects exhibited learning instead of forgetting

for competitors. (D) Performance for the final recognition memory task for the high-visualization subgroup with 21 subjects.

Subjects exhibited no forgetting for competitors.
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intervals generated via simulations based on the posterior

samples, indicating the range of plausible group means

conditioned on the observed data. We can see that the low-

intrusion subjects had matching proportions for intrusions

and errors relative to the original study (8% vs 9%, respec-

tively). Hence, we were able to identify a subgroup with a

similar pattern of results for the two most critical response

categories compared to the original study. In contrast, the

high-visualization group still reported a greater number of

intrusions and errors. Note that while subjects in either sub-

group for the replications never had as many average “un-

known” responses, this is not surprising, as the high average

proportion for “unknown” responses in the original study is

the result of a single subject who chose the “unknown” option

in about 50% of the trials.

Providing additional evidence against the claim that our

failure replicate stemmed from too many intrusions during

selective retrieval, we next report evidence that the originally
reported forgetting effects were primarily driven by subjects

who had more intrusions rather than fewer intrusions. Fig. 7

shows a scatter plot in which we predict the magnitude of

forgetting for competitors based on the percentage of in-

trusions subjects experienced during selective retrieval in the

original dataset. As can be seen, there is a trend in which

subjects with more intrusions had a greater degree of forget-

ting. This correlation (using Spearman's r) is significant if one

trims out the subject who had 17% missing data (highlighted

in red). According to this trend, because our subjects had a

greater competitor intrusion rate, we should have observed

larger forgetting effects rather than absence of forgetting

effects.

Panels B through D present the average proportion correct

over the four conditions in the final recognition task for the

original study and the low-intrusions and high-visualization

sub-groups from the third replication, respectively. Again,

filled circles represent average proportion correct for target
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Fig. 7 e Scatterplot of the percentage of intrusions

(incorrectly responding with the category of the competitor

picture) during selective retrieval plotted against the

magnitude of the estimated RIF effect for the data from the

original study. The correlation (using Spearman's r) and

line of best fit are marked in red. If the subject who had 17%

missing data is excluded, the correlation is significant, p ¼
:026.
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pictures, and empty squares represent average proportion

correct for competitor pictures. Error bars represent 95%

credible intervals generated from simulations based on pos-

terior samples. For presentational purposes, the posterior

samples were drawn from a descriptive hierarchical logistic

regressionwhere each conditionmeanwas assumed to have a

separate fixed effects intercept. The core pattern we sought to

replicate was the interaction shown in Panel B, with lower

performance for competitor pictures that underwent selective

retrieval. However, for both subgroups, there was no evidence

of forgetting for competitors. In other words, we failed to

replicate the pattern of findings reported by Wimber et al.

even though we identified a subgroup with similar perfor-

mance in the selective-retrieval stage and we isolated a sub-

group that engaged in a high degree of the visualization

emphasized in the instructions.
Table 4 e The p-values for the simple comparison between
competitors that did and did not undergo selective
retrieval.

Test Scale
(Percent)

Missing
(error)

Missing
(trimmed)

t-test �∞ to þ∞ < .0001* .003*

Logistic 0 to 100 .002* .016*

Logistic (Items) 0 to 100 .001* .012*

Multinomial process 50 to 100 .002* .005*

* Significant at the a ¼ .05 level.
5. Discussion

Acrossmultiple replication attempts, we failed to replicate the

finding of forgetting for competitors reported byWimber et al.

for their behavioral results. The third replication attempt was

a direct pre-registered replication, including twice as many

subjects as the original study. For this third replication

attempt, we identified sub-groups with matching character-

istics to Wimber et al.’s data, and yet there was no forgetting

even for these sub-groups. Furthermore, even within the

original dataset, the interaction between practiced (targets)

versus unpracticed (competitors) items that did or did not
undergo selective retrieval practice was an artifact of coding

missing forced choice recognition responses as errors. Thus,

within the original study, if cortical pattern suppression

caused forgetting of competitors, then it must be equally true

that cortical pattern enhancement caused forgetting of targets

considering that there was no greater forgetting for competi-

tors as compared to targets (numerically there was a differ-

ence, but this difference was not reliable). This is a radically

different interpretation of the neural data, suggesting that

retrieval practice caused forgetting, regardless of whether this

resulted in the neural response becoming more or less similar

to that evoked by to-be-remembered picture. However, even

this radically different interpretation of the neural data should

be taken with a grain of salt considering that our replications

failed to find any forgetting effects.

Our repeated failure to find any forgetting effects with this

paradigm came as a surprise; RIF is a well-documented effect

occurring even if the final test is recognition. After these

repeated failures to find forgetting, the preponderance of the

evidence suggests null effects in this paradigm. However,

because the original forgetting effect (but not the interaction)

appears robust over a variety of statistical tests (see Table 4),

irrespective of the treatment of missing data, we speculate on

the causes of the published forgetting effect, noting that these

are necessarily speculations in light of our failure to reliably

produce this effect.

5.1. Inflated false positive rate with an unbalanced
design and non-equivalent baselines

One possibility is that the original finding may have been a

false-positive owing to sampling error. One could argue that

the magnitude of the forgetting effect for competitors con-

tradicts this argument (7% or 5%, when missing data were

treated as missing rather than errors). However, the tradi-

tional repeated measures statistical test used to assess the

reliability of this effect can be misleading in light of the un-

balanced design used by Wimber et al. (54 trials for the se-

lective retrieval conditions and only 18 trials for the baseline

conditions). More specifically, the repeated measures ANOVA

analysis did not “know” that some of the probability values

going into the analysis were based on three times fewer data

points than other probability values. To make this clear,

consider an extreme example in which all of the data are

generated from pure chance (coin flips), with 3 of the 4 con-

ditions reflecting the average of 100 such coin flips for each

subject, while the fourth is just a single coin flip for each

subject. The probability numbers used in the repeated
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measures analysis for the 3 conditions with 100 coin flips will

of course hover around 50%. However, the probabilities for the

fourth condition will all be 0% or 100%, and, with a limited

sample size (e.g., just 10 subjects), this fourth conditions could

easily reveal a performance level that is radically different

than chance (and this might be deemed reliable owing to the

reliability of the other conditions, which are assumed by the

statistical null hypothesis model to have been generated in

the same manner).

The unbalanced design used by Wimber et al. was not as

extreme as in this example, and yet there is clear evidence of

such sampling effects within the original dataset. For instance,

consider the 15th subject. This subject had chance performance

during initial training (45% correct, with a Bayes factor ratio of

13 in support of the null hypothesis). During the selective

retrieval stage, this subject chose the “unknown” category in

50% of the trials and only identified the category for targets 31%

of the time during the selective retrieval phase (If a person

chose to guess instead of choosing the “unknown” category,

chance performancewould be 33%). Note that subjects received

feedback during this stage and yet this subject did not appear to

learn from this feedback, as a trend analysis using logistic

regression indicated that the number of times subject 15 chose

the target category was unchanged across the four repetitions

of the same cue word (p ¼ .746). Instead, it appears as if subject

15 became more confused, as there was an increase in the

proportion of ‘unkown’ responses (p ¼ .009). In summary, it is

clear that this subject failed to encode and recall the target

images, and thus his or her final forced choice recognition

performance should reflect pure guessing (i.e., coin flips).

Nevertheless, subject 15 had an estimated competitor forget-

ting effect of 11%, which is greater than the average of 7% re-

ported byWimber et al. If one trims out themissing recognition

responses, subject 15 still had an estimated forgetting effect of

7%, which exceeds the average of 5% after trimming missing

responses. The point of this example is that the average of 18

coin flips (the baseline condition in the absence of anymemory)

will be much more variable than 54 coin flips (the competitor

condition in the absence of any memory), and this variability

can give the appearance of a difference (even though there

cannot be a ‘real’ difference considering that this subject never

learned the pictures in the first place).

As this example makes clear, the unbalanced design pro-

duces variability unacknowledged by repeated measures

ANOVA. This variability becomes particularly pronounced in

situations of pure chance (i.e., for subjects who failed to learn

the pictures in the first stage of the experiment, meaning that

their forced choice responses were necessarily random). This

is particularly problematic because the experimental design

involves non-equivalent baselines for targets versus compet-

itors, considering that competitors were only studied and

tested once during initial learning whereas targets were

studied and tested twice. Thus, guessing was likely to play a

larger role for the small number of trials used to assess the

competitor baseline, and this larger role for guessing would

produce greater variability (i.e., an inflated false positive rate

for a statistical test that did not include these factors).

We formally addressed the role of guessing via a multino-

mial process model as applied to this unbalanced design. Be-

sides addressing the number of data points in each condition,
the multinomial process model provides a natural way to

control for the non-equivalence between targets and competi-

tors owing to different degrees of initial training. We developed

a simple null hypothesis model in which initial forced choice

performance was a direct indicator of final forced choice per-

formance (remember that the same picture pairs were used

during initial learning and during the final recognition test).

This is a null hypothesis model because it assumes no effect of

selective retrieval practice (neither learning nor forgetting for

either targets or competitors). Using this model, we obtained

95% confidence intervals via a bootstrap procedure, specifying

the distribution of expected differences from baseline perfor-

mance. For a given probability of recognition, as indicated by

initial performance using a correction for guessing (Equation

(1)), the number of pictures correctly identified in the 18 base-

line trials and 54 selective retrieval trials was simulated a large

number of times, and for each simulation, the difference in

percentage correct was computed. Based on 10,000 iterations of

this procedure, the 2.5% and 97.5% quantiles specified the outer

edge of the gray shaded 95% confidence interval seen in Fig. 8,

which plots the relationship between initial performance and

final performance: The y-axis indicates final test performance

differences from baseline, where positive values are forgetting

and negative values are learning. The figure nicely demon-

strates that as initial performance approaches the chance level

of 50% (i.e., pure guessing), the predicted magnitude of forget-

ting or learning due to chance alone can vary up to 30 per-

centage points.

In Fig. 8, we also overlaid each subject's observed degree

of forgetting/learning for targets (in black) and competitors

(in blue) against their observed level of initial performance.

As seen in the figure, nearly all of the observed values fall

within the gray shaded 95% null hypothesis region, with the

proportion outside of this region commensurate with a 5%

false positive rate. This comparison reveals an interesting

difference between the original study (Panel A) and the pre-

registered replication study (Panel B). Note that we trimmed

missing data for the results reported from the original study.

The subjects from the study of Wimber et al. had lower

initial performance levels in general, with this particularly

true for the competitors. In other words, the subjects from

the original study had notably worse performance for

competitors relative to our replication attempt, and this null

hypothesis model makes it clear that this is exactly the

circumstance in which the unbalanced design can produce

spurious results.

5.2. Verbal overshadowing

In light of the two failures to replicate, and in light of the

unacknowledged role of guessing in an unbalanced design

with non-equivalent initial training, we conclude that the

original forgetting effect in the published study is likely a false

positive. One might be tempted, however, to argue that the

conclusion of a false positive, even with two failed replica-

tions, is premature. After all, the RIF paradigm has been

replicated many times, finding robust forgetting effects even

with recognition memory (Spitzer, 2014), and even when

testing recognition of pictures (Maxcey and Woodman, 2014).

From this perspective, the priors for a forgetting effect are
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Fig. 8 e A comparison between observed values and a null hypothesis confidence interval that addresses the role of

guessing in the unbalanced design, with three times fewer trials used in the baseline conditions. The y-axis shows the

difference between final performance after selective retrieval as compared to baseline, with positive numbers indicating

forgetting and negative numbers indicating learning. The x-axis shows forced choice performance from the initial practice

test (the second practice test for targets or the only practice test for competitors). The 95% confidence interval is the gray

shaded region, revealing greater variability when initial performance is near the chance level of 50%. This confidence

interval assumes no effect of selective retrieval, with final performance only reflecting initial performance and random

guessing. Each point shows the observed performance of a single subject for either targets (in black) or competitors (in blue).

Panel A shows the results for the original study, while Panel B shows the results for the pre-registered replication. Missing

responses were trimmed. As seen in the figure, the proportion of observed values outside of the gray shaded region is

commensurate with this being a 95% null hypothesis confidence interval (e.g., approximately 5% fall outside the region,

with no greater tendency for this to occur for forgetting as compared to learning). The figure also demonstrates that subjects

in the pre-registered replication learned the picture pairs more effectively, as indicated by higher initial performance.
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high (although note that our statistical analyses used the

original dataset to set the priors, already biasing the results in

favor of a forgetting effect). However, the Wimber et al. study

is not like many previous RIF experiments in one critical way;

this paradigm involves a mismatch between the modality of

the retrieved content during retrieval practice versus the

modality of final testing. Although subjects were instructed to

visualize the image during selective retrieval, the actual task

they completed during this phase was cued categorization

(verbal, rather than visual). Irrespective of their visual mem-

ory, subjects only had to correctly categorize the target picture

as belonging to one of the ‘face’, ‘object’, or ‘scene’ categories.

In contrast, the final test was a forced choice between highly

similar pictures (i.e., two pictures that had equivalent verbal

descriptions). Prior RIF studies with recognition as the final

test have used categorical recall during retrieval practice (e.g.,

Hicks & Starns, 2004), and many RIF studies have used

different retrieval practice tasks as compared to the final test

(Aguirre, G�omez-Ariza, Andr�es, Mazzoni, & Bajo, 2017;

Saunders, Fernandes, & Kosnes, 2009; Veling & van

Knippenberg, 2004). However, in these studies, the retrieved

content during retrieval practice wasmatched to the final test;

if the retrieval practice involved words, the final test was for

words, and if the retrieval practice required a response to

pictures, then the final test was for pictures. Thus, it may be

that themodality mismatch in theWimber et al. study caused

forgetting in a different manner than other RIF tasks.
We reiterate that the most parsimonious explanation is

that the original result was a false positive, but we briefly

speculate on an alternative explanation (considering that we

were unable to replicate the forgetting effect, we were unable

to test this alternative explanation).

The act of verbally categorizing a visual memory is thought

to underlie forgetting from ‘’‘verbal overshadowing” (VOS;

Schooler& Engstler-Schooler, 1990), and this could potentially

explain the original results. The VOS paradigm is remarkably

similar to the Wimber et al. paradigm: in VOS paradigms, the

first stage presents information visually (e.g., a video of a

robbery), the second stage involves verbal categorization of

the visually imaginedmemory (e.g., a verbal description of the

robber), and the final stage is forced choice visual recognition

between items that have the same verbal description (e.g., an

eyewitness lineup). Forgetting effects in VOS are thought to

reflect a distortion process in which the visual memory is

altered by verbal categorization (e.g., by verbally labeling the

race of a criminal, the visual memory of an eyewitness is

altered to reflect a more stereotypical version of that race).

This distortion process critically needs both visualization (as

per instructions in the Wimber et al. study) and a verbal

categorization judgment (the overt responses given during

selective retrieval). The subjects in the Wimber et al. study

were clearly visualizing not only targets but also competitors

during selective retrieval as demonstrated both by their

erroneous selection of the competitor category and by above
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baseline pattern similarity for competitors on the first selec-

tive retrieval trial. Thus, if the mental images they created

were distorted by the verbal categorization task, this would

cause forgetting for both targets and competitors.

A recent large replication study of VOS found that it is a

reliable effect, and, furthermore, that VOS is more likely to

occur for weak visual memories (Alogna et al., 2014). By

example, if you see someone in passing, and later report their

race, your visual memory of their face may be easily dis-

torted. In contrast, reporting the race of someone in your

family is unlikely to alter the strong visual memory you hold

for their face. This interaction between VOS and memory

strength may explain why the original results revealed

numerically greater forgetting for competitors than for tar-

gets and it may also explain why we failed to find any

forgetting effects. More specifically, because the competitor

pictures were only studied once during initiation training,

whereas target pictures were studied twice, the visual

memories for the competitors was likely weaker than that of

targets, making the competitors more susceptible to VOS. On

this account, it is not the pattern suppression by the fourth

trial of selective retrieval that explains forgetting but rather

the pattern enhancement on the first trial of selective

retrieval that was the true cause of forgetting (there was a

significant pattern enhancement for competitors on the first

trial, indicative of competitor intrusions). This account ex-

plains why there was a main effect of forgetting, with

forgetting arising from pattern enhancement for both targets

(by the end of selective retrieval) and competitors (at the start

of selective retrieval). This account may also explain our

failures to replicate. More specifically, because our subjects

weremore effective in their initial learning of the pictures (as

revealed by performance on the initial forced choice recog-

nition testing), their stronger visual memories may have

been shielded from verbal overshadowing distortions during

the selective retrieval task.

5.3. Conclusions

Why does repeated retrieval of a new phone number cause

forgetting for an old phone number? Using behavioral mea-

sures, retrieval induced forgetting effects are equally well-

explained by targeted inhibition (e.g., inhibition of the old

phone number) and learning/interference (e.g., competition

from the new phone number). The study of Wimber et al.

pioneered a method for tracking individual item responses

with fMRI pattern analyses to investigate the causes of

forgetting. However, a demonstration that inhibition caused

forgetting necessarily relies on the behavioral outcome; inhi-

bition cannot be identified as the of the cause of forgetting if

there was no forgetting (i.e., if the forgetting effect was a false

positive). Furthermore, establishing the cause of something

requires a manipulation that produces one outcome in one

condition (e.g., forgetting following pattern suppression) but

not the other condition (e.g., relatively less forgetting

following pattern enhancement), which can be restated as a

difference of differences (i.e., a statistical interaction). Our

reanalysis of the original behavioral data demonstrated that

this interaction was an artifact of labeling missing trials as

errors, and thus the original data do not support greater
forgetting for competitors as compared to targets. Further-

more, across two replication attempts, we failed to find any

forgetting with this experimental paradigm, suggesting that

the original forgetting effect was a false positive. In summary,

while the neural classifier techniques developed by Wimber

et al. will be useful for testing theories of forgetting, the

outcome of that study does not provide evidence to favor an

inhibition account over other explanations.
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