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a b s t r a c t

The present study employed dynamic causal modeling to investigate the effective functional connectiv-
ity between regions of the neural network involved in top-down letter processing. We used an illusory
letter detection paradigm in which participants detected letters while viewing pure noise images. When
participants detected letters, the response of the right middle occipital gyrus (MOG) in the visual cor-
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tex was enhanced by increased feed-backward connectivity from the left inferior frontal gyrus (IFG). In
addition, illusory letter detection increased feed-forward connectivity from the right MOG to the left
inferior parietal lobules. Originating in the left IFG, this top-down letter processing network may facili-
tate the detection of letters by activating letter processing areas within the visual cortex. This activation
in turns may highlight the visual features of letters and send letter information to activate the associated
phonological representations in the identified parietal region.
ynamic causal modeling

. Introduction

Reading is a fundamental skill for individuals living in any mod-
rn society. Difficulty in reading can have debilitating social and
ognitive consequences. Although there is evidence of holistic word
rocessing during reading (for a review, see Cohen & Dehaene,
004), identification of each separate letter is necessary to read
word (Pelli, Farell, & Moore, 2003). Recent studies of the neural
echanisms supporting reading have identified a hierarchical cor-

ical model of visual word processing (Dehaene, Cohen, Sigman, &
inckier, 2005; Vinckier et al., 2007). This word processing network
tarts in the primary visual cortex, which processes the separate
ine segments forming each letter. Higher areas within the visual
ortex process the letters in an increasingly abstract manner. Ulti-
ately, information is projected to the left middle fusiform gyrus,
pecifically a region termed the ‘visual word form area’ (VWFA),
here letters are integrated to identify specific combinations of

etters (i.e., letter strings) independent of location, size, and case
Cohen & Dehaene, 2004; McCandliss, Cohen, & Dehaene, 2003; but
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see Price & Devlin, 2003; Reinke, Fernandes, Schwindt, O’Craven, &
Grady, 2008 for other interpretations of this area). Demonstrating
the importance of this area, deafferentation of the VWFA from the
visual cortex input is associated with reading impairments (Cohen
et al., 2003).

Beyond this network that projects to the VWFA, recent stud-
ies have also revealed a network involving the visual, parietal
and prefrontal regions specific to letter processing. For example,
Flowers et al. (2004) demonstrated that the left middle occip-
ital gyrus (MOG) and bilateral inferior frontal gyrus (IFG) were
activated by a single letter as compared to a symbol or a color.
More recently, James and Gauthier (2006) revealed that the left
fusiform gyrus and the left IFG showed a greater response to let-
ters than to that of objects and faces. Finally, Joseph, Gathers,
and Piper (2003) found letter-selective activation as compared to
objects and noise images within the left inferior parietal regions
and the left insula. However, these studies can only specify the
nature of this network in terms of bottom-up, or stimulus driven,
letter processing because they used clearly visible high contrast
letters.
Despite this focus on bottom-up processing with neuroimag-
ing studies, behavioral studies have consistently demonstrated an
important role for top-down expectations in letter and word pro-
cessing (Nazir, Jacobs, & O’Regan, 1998; Reicher, 1969). Little is,
however, known about the neural networks involved in top-down
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Fig. 1. Examples of stimuli and i

rocessing of letters and only a handful neuroimaging studies have
xamined top-down letter processing. For instance, Kosslyn et al.
1993) found more activation within the bilateral dorsolateral pre-
rontal cortex for imagery of a letter as compared to perception
f a letter. James and Gauthier (2006) found that imagining let-
ers induced a greater response in the left IFG relative to drawing
etters. Stokes, Thompson, Cusack, and Duncan (2009) found that
he bilateral lateral occipital complex (LOC) was activated by both
erception and imagination of specific letters.

Recently, Liu et al. (2010) used an illusory detection paradigm
o identify the network involved in top-down letter processing.
n their study participants were presented with noisy images and
nstructed to indicate whether a letter was present. In fact, after an
nitial training period of increasing detection difficulty, the images
ontained only noise. This method of studying top-down influences
y eliciting illusory detection has advantages over both pure men-
al imagery paradigms that present no stimulus, and paradigms
here a letter is actually presented. Although activations during
ental imagery are purely top-down, they may not activate the

reas involved in the visual perception of letters, and thus have dif-
culty to specify the role that these visual perception areas may
lay in top-down letter processing. In contrast, presentation of
ctual letters will activate the visual perception areas, but may fail
o strongly evoke the top-down network. Illusory perception strikes
balance by providing some visual input, which activates low-level
isual areas, while highlighting the role of top-down expectations
uring perception because the visual input does not strongly indi-

ate a particular perception. Using this pure noise illusory letter
etection paradigm, Liu et al. (2010) found that the left IFG, the

eft superior parietal lobule (SPL), and the right MOG were more
ctive when participants falsely detected a letter while viewing a
ure noise image (the letter response) as compared to trials where
tion of experimental paradigm.

they did not detect a letter (the no-letter response). Thus, these
brain regions appear to be involved in the top-down processing of
letters.

Because Liu et al. (2010) used a conventional BOLD analyses, it is
unclear how these top-down letter processing regions are function-
ally connected during top-down letter processing. Previous studies
found that the response of category-preferential regions within
the visual cortex can be modulated by feed-backward connec-
tions from the frontal cortex (Mechelli, Price, Friston, & Ishai, 2004;
Summerfield et al., 2006). In the current study, we hypothesized
that a top-down projection from the identified anterior brain areas
(e.g., the left IFG) may exert feedback on the right MOG. Our hypoth-
esis was based on the existing findings regarding top-down letter
processing. By examining letter naming (Joseph, Cerullo, Farley,
Steinmetz, & Mier, 2006), letter imagining (James & Gauthier, 2006)
and illusory letter detection (Liu et al., 2010), the left IFG’s involve-
ment in top-down letter processing has been identified. However,
no prior neural imaging studies have identified whether this
involvement of the left IFG occurs through feed-backward connec-
tions. The present study was thus conducted to test this hypothesis
specifically.

To ascertain the existence of this hypothesized top-down con-
nection, the present study used the same pure noise image
paradigm as Liu et al. (2010). In addition, to identify the effective
connections among the neural regions involved in top-down let-
ter processing, we used dynamic causal modeling (DCM, Friston,
Harrison, & Penny, 2003). DCM treats the brain as an input-state-

output system, and uses the known input design and the time
course of measured responses in each brain region to estimate var-
ious parameters that characterize the interaction between brain
regions. This method allowed us to identify feed-backward and
feed-forward connections among the regions of the neural net-
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Fig. 2. (A) The group results comparing the letter responses to the no-letter
responses during the experimental test sessions (p < 0.007 FDR corrected, k > 30);
(B) the group results comparing the viewing of real letters to the viewing of pure
J. Liu et al. / Neuropsych

ork recruited when participants detected letters in pure noise
mages.

. Methods

.1. Participants

Eighteen healthy, right-handed Chinese adults (8 males, age: 18–28) with nor-
al or corrected-to-normal vision participated in the present study after giving

heir informed consent. All participants had at least ten-year’s experience read-
ng Roman letters since at least Grade 1. This study was approved by the Human
esearch Protection Program of Tiantan Hospital, Beijing, China.

.2. Stimuli and procedure

Three types of stimuli were used: pure-noise images, ease-to-detect letters, and
ard-to-detect letters. Easy-to-detect letters and hard-to-detect letters were pro-
uced by subtracting a blurred version of a letter (a, s, c, e, m, n, o, r, or u) from
he pure-noise image at 60% and 35% of its full value, respectively (for more details
ee Liu et al., 2010). Checkerboard-images were used as the baseline stimulus. Fig. 1
hows an example for each stimulus type.

The experiment included an initial training period, a testing period, and a func-
ional localizer period. Participants were scanned only during the testing period and
he functional localizer period. As shown in Fig. 1, the training session consisted of
ix 56-s letter-detection blocks, each of which included randomly presented 20 task
mages and 8 checkerboard images. The first two blocks contained an equal num-
er of easy-to-detect letters and pure-noise images. The next two blocks contained
n equal number of hard-to-detect letters and pure-noise images. In the last two
locks of the training period, all images were pure noise images. Participants were
old that in each block, half of the 20 task images contained letters, and half did
ot. They were instructed to press a button on a response device with their left
r right index finger (counterbalanced across participants) if they detected a let-
er in the task image. Alternatively, if they decided that the image did not contain
letter, they were to press a button with their index finger of the opposite hand.
o responses were required to the checkerboard images. Both the task images and
heckerboards were presented for 600 ms after a 200-ms fixation crosshair. Follow-
ng each task image, a blank screen appeared for 1200 ms. The training session was
esigned to teach participants the nature of the experiment, and to keep them on
ask at detecting letters even when viewing pure noise images.

Following training, there were four testing sessions, each of which contained 40
heckerboard images and 120 pure-noise task images presented in random order.
he procedure for these test trials was the same as the last two blocks of the training.
he test trials only contained pure-noise images although participants were told that
alf of the images contained letters and the other half did not.

To identify brain areas responsive to real letters, two functional localizer ses-
ions were performed after the letter detection task. Both localizer sessions included
wo 20-s real letter or noise image epochs with 14-s intervals of fixation between
pochs. During the localizer sessions, participants monitored the images and pressed
response key whenever an intermittent white square appeared at the edge of the
icture (this procedure ensured that participants were paying attention during the
assive viewing task).

.3. Functional MRI data acquisition

Structural and functional MRI data were collected using a 3.0 T MR imaging
ystem (Siemens Trio, Germany) at Tiantan Hospital. Whole brain fMRI volumes
ere acquired using a single shot, T2*-weighted gradient-echo planar imaging (EPI)

equence (interleaved orders, TR/TE = 2000/30 ms; FOV = 240 mm; matrix = 64 × 64;
2 slices; 4 mm thickness). High-resolution structural images were acquired
sing a three-dimensional enhanced fast gradient-echo sequence (FOV = 256 mm,
atrix = 256 × 256; 256 slices; 1 mm thickness).

.4. Statistical parametric mapping analysis

Image analysis included preprocessing and statistical analyses, which were
erformed using the Statistical Parametric Mapping software (SPM5, Wellcome
epartment of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm
riston et al., 1995). After slice-timing correction (reference slice = 31) and spatial
ealignment and normalization to the MNI152 template (Montreal Neurological
nstitute), all testing session scans were resampled into 2 × 2 × 2 mm3 voxels, and
hen spatially smoothed with an isotropic 6 mm full-width-half-maximal (FWHM)
aussian kernel to decrease spatial high frequency noise and ensure the validity of

nferences based on parametric tests.
For each participant, the four testing sessions were concatenated into one sin-
le session with an additional four regressors to account for sessions effects (Bitan
t al., 2005). This one session was high-pass filtered (high-pass filter = 128 s) to
emove low frequency noise such as scanner drift (Friston et al., 1995). Trials were
lassified according to whether participants produced the letter response or the no-
etter response. A General Linear Model (GLM) applied to the data included three
egressors corresponding to letter responses, no-letter responses, and pure-noise
noise images during the functional localizer session (p < 0.007 FDR corrected, k > 30);
and (C) the basic model with full reciprocal intrinsic connections. The input was
assumed to drive the right MOG directly. MOG, the middle occipital gyrus; IPL, the
inferior parietal lobules; IFG, the inferior frontal gyrus; FG, the fusiform gyrus.

images regardless of the chosen response. Each regressor was created by con-
volving a canonical hemodynamic response function (HRF) with a delta function
corresponding to the presentation sequence of each stimulus category. Movement
parameters were used in the GLM as regressors to account for residual effects related
to movement.

With respect to the localizer sessions, the fMRI data for each participant were
processed using the same steps as those used for the testing sessions, except that two
regressors were created for viewing real letters versus viewing pure noise images.

Participant-specific contrast images were calculated using a whole brain analy-
sis. One of these contrast images compared letter responses and no-letter responses
for the testing sessions and the other compared real letters and pure noise images
for the localizer sessions. Group results were obtained using random effects analysis
by averaging participant-specific contrast images across all participants, as tested
with a statistical threshold of p < 0.007 (FDR corrected for multiple comparisons)
and cluster threshold of k > 30.
2.5. DCM analysis

Using the DCM, three sets of parameters can be estimated: the extrinsic influ-
ence of inputs on regional responses, the intrinsic connections between regions that
reflect the interregional impact in the absence of experimental manipulations, and

http://www.fil.ion.ucl.ac.uk/spm
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Table 1
Group activation results comparing letter responses versus no-letter response and comparing passive viewing of letters versus pure noise images (p < 0.007 FDR corrected,
k > 30).

Brain regions Hemisphere Cluster voxels MNI coordinates Z

x y z

Letter response minus no-letter response
Inferior frontal gyrus Left 73 −52 6 30 4.57
Inferior parietal lobules Left 195 −40 −48 52 4.87
Middle occipital gyrus Right 44 52 −60 −12 4.85
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No-letter response minus letter response
N

Viewing real letters versus viewing pure noise
Fusiform gyrus Right 81

he modulatory effect that reflects the change in intrinsic connections induced by
he processing of specific experimental stimuli (Friston et al., 2003; Mechelli et al.,
004). Given the purpose of the present study, we were most interested in the mod-
latory effect for letter responses. As adopted by Stephan, Marshall, Penny, Friston,
nd Fink (2007) and Chow, Kaup, Raabe, and Greenlee (2008), a two-level proce-
ure was used for the DCM analysis in the present study. In the first-level, candidate
odels were produced for each participant and the best model was selected using

ayesian model selection. All these analyses were implemented with the DCM tool
n SPM5 (Friston et al., 2003; Penny, Stephan, Mechelli, & Friston, 2004).

.5.1. Region selection and time series extraction
Regions showing more activation during the experimental testing sessions for

etter responses than for no-letter responses were used to define volumes of interest
VOIs), which were included in the DCM models. As revealed in the group results,

ore activation for letter responses than no-letter responses was observed in the
eft inferior frontal gyrus (IFG), the left inferior frontal lobules (IPL) and the right

iddle occipital gyrus (MOG) (Fig. 2A and Table 1).
Participant-specific VOIs were selected based on conventional SPM group

esults. To allow for individual differences in the peak activation locations, each
articipant’s t-contrast map was used to identify a participant-specific maximum,
hich was the nearest local maximum within 15 mm of the local maximum of the

roup analysis. Based on these maxima, regional responses were defined as the first
rincipal component of the time series from all voxels included in a 6-mm-radius
pherical volume centered at each participant’s maximum. It should be noted that
he present study used the same data (i.e., the testing sessions) for the definition of
OIs in conventional fMRI analyses and the time series extractions in the DCM anal-
sis. However, the conventional analysis and the DCM analysis aimed to address
enerally different issues, and thus there was not circularity in the analysis (see
tephan et al., 2010). Using these procedures, 3 VOIs were identified for each of 17
articipants: the left IFG (MNI: −51 ± 5, 7 ± 4, 30 ± 5), the left IPL (MNI: −38 ± 4,
46 ± 6, 50 ± 6), and the right MOG (MNI: 49 ± 3, −59 ± 5, −12 ± 4), and Table 2 lists

he loci of VOIs for each participant. One participant was not included in the DCM
nalysis because that participant did not produce 3 VOIs meeting all the criteria for
OI selection.

.5.2. Definition of anatomical connection and driving input
A basic model was constructed with reciprocal intrinsic connections between

he VOIs (Fig. 2C). The regressor encoding the pure-noise images was defined as the
riving input. This input was assumed to drive the right MOG (Fig. 2A, red circle)
ecause the right MOG is located in the visual cortex (i.e., among these 3 VOIs, the
ight MOG is likely the locale to receive information from the lower visual areas)
nd because the location of the right MOG was highly consistent with (1) the region
esponding more to passively viewed letters than passively viewed noise images
Fig. 2B, green circle), (2) prior knowledge from the existing neuroimaging studies
Dehaene et al., 2005), and (3) neuropsychological studies (Cohen et al., 2003). Thus,
he activation to a pure noise image was assumed to be propagated from the right

OG to other regions (i.e., the left IPL and the left IFG) by the assumed intrinsic
onnection between the VOIs.

.5.3. Definition of modulatory inputs
With the assumed basic model, we examined how the intrinsic connections

hanged as a function of illusory letter detection. We were most interested in
hether there were enhanced feed-backward connections from the high-order cor-

ical regions (i.e., the left IPL or the left IFG) to the visual cortex (i.e., the right MOG)
hen a letter was detected while viewing a pure noise image. Therefore, the regres-

or that encoded the letter responses was used as a modulatory input specified on
he intrinsic connections between two VOIs of the basic model. Additionally, because

he above GLM results suggest that all three VOIs were co-activated during the letter
ersus no-letter responses, we assumed that all modulatory models must satisfy the
riterion whereby each VOI must modulate at least another VOI. Further, because
e had no a priori knowledge about the directions of the interactions between

he VOIs, we tested all possible directions of interaction for each connection: feed-
orward, feed-backward, or reciprocal. With these considerations, an exhaustive
ults

48 −56 −10 5.10

set of 54 possible modulatory models was generated by specifying the modulatory
effect of letter responses on different combinations of intrinsic connections of the
basic model (Fig. 3, M1–M54).

However, these models only included the modulatory effects of the letter
response but not that of the no-letter responses. Thus, even when the intrinsic con-
nections of these models might be enhanced during the letter response trials, one
may not be able to attribute such modulatory effects to the letter responses per se.
This is because these enhanced effects could be due to the shared effects of the let-
ter responses and the no-letter responses. In other words, the letter detection task
demand itself, not just the illusory detection of non-existent letters, might engender
the modulatory effects. To address this issue, another set of 54 possible models was
generated. Unlike the above 54 possible models, the new set of 54 possible models
specified both the modulatory effects of the letter responses and those of the no-
letter responses (Fig. 4, M55–M108). As a result, there were 108 candidate models in
total in the present DCM analysis, between which Bayesian model selection (BMS)
was performed.

2.5.4. Bayesian model selection
For each participant, after all candidate models were estimated, they were com-

pared in a pairwise fashion using Bayesian model selection (BMS) to determine
which DCM model was the best (Penny et al., 2004). To compare model mi and mj ,
the Bayes factor (BF) was calculated based on the Bayesian information criterion
(BIC) as well as the Akaike information criterion (AIC) using the equation:

BFij = p(y|mi)
p(y|mj)

If the BFs based on both BIC and AIC are ≥e, there is said to be consistent evidence
for the superiority of mi over mj (Penny et al., 2004). At the group level, the com-
parison among models was usually based on the group Bayes factor (GBF), which
was defined as the product of all individual BFs. However, because the GBF is sus-
ceptible to outliers, we additionally used the ‘Positive Evidence Ratio’ (PER) as a
supplemental measure in the selection of the best model (Raftery, 1995; Stephan &
Penny, 2006). This more conservative measure stipulates that model i is superior to
j only for BF > 3. It should be noted that the GBF index corresponds to a fixed effects
(FFX) analysis whereby it assumes all participants have the same optimal model
(see Stephan, Penny, Daunizeau, Moran, & Friston, 2009; Stephan et al., 2010 for
discussion of potential limitations of this procedure).

2.5.5. Second-level analysis of model parameters
After model selection, a one-sample t-test was performed separately for each

parameter of the intrinsic connections and modulatory effects for the best model.
The aim of these tests was to examine whether the parameters were larger than zero
in general, across all 17 participants. A conservative statistical threshold of p < 0.05
with Bonferroni’s correction was adopted for the one-sample tests.

3. Results

3.1. Statistical parametric mapping results

Participants detected letters on 37.7% (SD: 20.0%) of the
480 pure noise detection trials. There was no significant differ-
ence in response time between letter responses and no-letter
responses (letter response: Mean = 789.05 ms, SD = 197.54 ms; no-
letter response: Mean = 774.79 ms, SD = 180.15 ms; t(17) = 0.752,

p = 0.462).

As shown in Fig. 2A, for the experimental testing sessions,
regions showing more activation for letter response trials than for
no-letter response trials were identified within the left IFG, the left
IPL, and the right MOG with a significant threshold of p < 0.007 (FDR
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Fig. 3. Model 1–Model 54. For each candidate model, the arrowed line between two regions indicates a directional modulatory effect of letter-response specified at the
intrinsic connection between those two regions. MOG, the middle occipital gyrus; IPL, the inferior parietal lobules; IFG, the inferior frontal gyrus.
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Fig. 4. Model 55–Model 108. For each candidate model, the arrowed line between two regions indicates a directional modulatory effect of letter response as well as a
directional modulatory effect of no-letter response specified at the intrinsic connection between those two regions. MOG, the middle occipital gyrus; IPL, the inferior parietal
lobules; IFG, the inferior frontal gyrus.
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Table 2
Individual VOI corresponding to each activated region of letter response relative to no-letter response.

Left IFG Left IPL Right MOG

x y z x y z x y z

Participant01 −46 −2 34 −40 −40 42 48 −52 −8
Participant02 −52 12 24 −38 −48 42 52 −54 −10
Participant03 −50 8 36 −38 −58 54 50 −64 −14
Participant04 −44 6 20 −36 −46 48 50 −54 −16
Participant05 −50 4 30 −38 −44 52 46 −54 −8
Participant06 −40 8 24 −32 −58 48 46 −66 −10
Participant07 −52 8 28 −34 −46 46 48 −60 −14
Participant08 −50 6 36 −42 −52 54 44 −64 −10
Participant09 −54 8 36 −40 −48 58 50 −60 −16
Participant10 −58 6 28 −34 −42 44 42 −62 −18
Participant11 −52 4 32 −32 −40 46 52 −62 −4
Participant12 −48 8 28 −42 −40 48 48 −54 −16
Participant13 −58 6 28 −36 −48 56 48 −52 −14
Participant14 −56 16 30 −34 −42 58 52 −60 −8
Participant15 −54 8 34 −44 −42 46 46 −60 −12
Participant16 −54 8 28 −44 −50 50 48 −60 −14
Participant17 −52 0 34 −46 −38 60 56 −62 −14

−46 50 49 −59 −12
6 6 3 5 4

T ferior parietal lobule; MOG, middle occipital gyrus.
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Fig. 5. Results from the best model (M19) selected by Bayesian model selection. (A)
The intrinsic connections of M19. With a pure noise image as input, the right MOG,
the left IPL and the left IFG were reciprocally connected to each other (ps < 0.002). (B)
The modulatory effect of detecting a letter when viewing a pure noise image. When
the participant detected a letter, both the feed-forward connection from the right
Mean −51 7 30 −38
Std 5 4 5 4

he loci of VOIs are labeled using MNI coordinate. IFG, inferior frontal gyrus; IPL, in

orrected) and a cluster threshold k > 30, while the reverse compar-
son did not identify significant activations anywhere in the brain
Table 1).

For the functional localizer session using the same significance
nd cluster thresholds as the above, regions showing more activa-
ion for passively viewed real letters compared to pure noise images
ere identified within the right fusiform gyrus (Table 1 and Fig. 2B).

.2. DCM results

Supplemental Table 1 reports the GBF for each pairwise Bayesian
odel selection between the candidate models averaged across

he 17 subjects. Supplemental Tables 2 and 3 report the frequency
cross 17 participants that each model was the most likely as a
esult of the pairwise Bayesian model selection with the criteria of
F > 3 (PER) and BF > 1, respectively. As revealed by these results,
odel 19 (M19) was superior to the other candidate models at

he group level (i.e., across the 17 participants). For the conve-
ience of description, Table 3 summarizes the results of Bayesian
odel selection between the best model (i.e., M19) and the other

andidate models. Fig. 5 shows the intrinsic connections and the
odulatory effects induced by letter responses for M19.
When viewing pure noise images in general (i.e., the intrinsic

onnections), the right MOG, the left IPL, and the left IFG were
eciprocally connected (ps < 0.002). In contrast, regarding the mod-
latory effect, when a letter was falsely detected while viewing a
ure noise image, the feed-backward connection from the left IFG
o the right MOG (t(16) = 3.285, p = 0.005) and the feed-forward con-
ection from the right MOG to the left IPL (t(16) = 12.856, p < 0.001)
ere both significantly enhanced.

. Discussion

We used DCM to investigate the effective functional connectiv-
ty between regions of the cortical network that underlie top-down
etter processing. As indicated by the optimal model (i.e., M19),

hen a letter was ‘detected’ while viewing a pure noise image, the
eed-backward connection from the left IFG to the right MOG and

he feed-forward connection from the right MOG to the left IPL were
oth enhanced.

One may argue that such modulatory effect was possibly due
o the shared effect of the letter response and no-letter responses
e.g., viewing pure noise images or task demand itself) rather than
MOG to the left IPL (t(16) = 12.856, p < 0.001) and the feed-backward connection
from the left IFG to the right MOG (t(16) = 3.285, p = 0.005) were enhanced. MOG,
the middle occipital gyrus; IPL, the inferior parietal lobules; IFG, the inferior frontal
gyrus.

the illusory letter detection per se. However, M19 only included
the modulatory effect of the letter responses and was found to
be superior to all other candidate models, especially including the
models with the modulatory effects of both the letter responses
and no-letter responses. Thus, the significant modulatory effects

found in the present DCM analysis were likely to be generated by
participants’ illusory detection of letters.

Recent studies suggest that object specific expectations are
implemented within the brain via an internal template (Beck &
Kastner, 2009; Summerfield et al., 2006). When we look for a spe-
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Table 3
The results of Bayesian model selection between M19 and the other candidate models.

Models GBF >3 >1 Models GBF >3 >1 Models GBF >3 >1

M1 3.9E+06 (7,1) (11,6) M37 1.2E+19 (14,0) (15,1) M73 4.2E+13 (13,0) (14,1)
M2 7.2E+67 (11,2) (14,3) M38 1.9E+13 (13,0) (15,0) M74 6.3E+20 (13,2) (14,3)
M3 2.0E+80 (12,1) (14,3) M39 3.1E+14 (15,1) (16,1) M75 5.9E+20 (13,0) (13,0)
M4 2.3E+07 (6,0) (12,5) M40 1.1E+16 (14,0) (16,1) M76 3.6E+29 (14,0) (14,0)
M5 2.9E+11 (11,1) (16,1) M41 2.8E+13 (13,1) (14,2) M77 3.3E+22 (13,0) (14,0)
M6 4.2E+09 (10,1) (15,1) M42 5.2E+23 (15,1) (15,1) M78 3.2E+28 (14,0) (15,0)
M7 2.0E+13 (14,1) (16,1) M43 4.8E+19 (15,1) (15,1) M79 2.3E+23 (13,1) (14,1)
M8 5.6E+76 (13,1) (15,1) M44 6.6E+13 (13,1) (14,2) M80 1.8E+74 (16,0) (16,0)
M9 1.1E+15 (10,3) (12,5) M45 3.5E+19 (15,1) (16,1) M81 1.4E+28 (13,1) (13,1)
M10 1.1E+75 (11,2) (14,3) M46 3.4E+22 (15,0) (15,1) M82 1.4E+15 (11,0) (14,1)
M11 3.2E+76 (10,2) (12,5) M47 2.4E+11 (13,2) (14,2) M83 1.5E+10 (13,2) (13,2)
M12 8.1E+16 (10,2) (14,3) M48 1.2E+27 (15,0) (15,0) M84 1.6E+29 (14,1) (14,1)
M13 6.5E+14 (12,1) (15,1) M49 1.2E+24 (15,0) (16,0) M85 9.2E+82 (15,0) (16,0)
M14 2.1E+19 (13,1) (15,1) M50 6.1E+22 (16,0) (16,0) M86 3.1E+18 (11,1) (13,1)
M15 4.1E+21 (14,1) (15,1) M51 6.3E+21 (14,0) (14,0) M87 7.9E+26 (13,0) (13,1)
M16 1.8E+77 (12,1) (14,1) M52 3.3E+27 (15,0) (16,0) M88 5.4E+86 (16,0) (16,0)
M17 7.9E+17 (8,4) (11,6) M53 1.3E+20 (14,0) (15,1) M89 8.4E+36 (13,0) (13,0)
M18 2.4E+75 (11,2) (13,4) M54 1.3E+20 (14,0) (15,0) M90 2.7E+16 (12,1) (12,1)
M19 0.0E+00 (0,0) (0,0) M55 1.2E+17 (8,2) (13,3) M91 7.6E+28 (13,0) (13,0)
M20 1.3E+09 (9,3) (11,6) M56 6.0E+59 (13,0) (16,1) M92 1.7E+25 (13,0) (13,0)
M21 2.4E+04 (9,2) (12,3) M57 4.1E+76 (13,0) (15,1) M93 4.8E+20 (14,1) (14,1)
M22 4.1E+12 (10,1) (15,1) M58 1.5E+11 (8,2) (11,2) M94 9.3E+26 (13,0) (14,0)
M23 1.8E+14 (11,1) (13,1) M59 5.7E+21 (14,1) (14,1) M95 1.2E+27 (13,0) (13,0)
M24 1.1E+06 (6,1) (14,1) M60 6.0E+13 (10,0) (13,0) M96 2.7E+39 (14,0) (14,0)
M25 3.6E+17 (10,1) (12,2) M61 6.8E+10 (11,2) (12,2) M97 2.3E+33 (13,0) (14,0)
M26 1.4E+71 (13,1) (13,1) M62 8.3E+72 (15,0) (16,0) M98 1.7E+26 (13,0) (13,0)
M27 1.4E+18 (12,1) (15,1) M63 8.2E+20 (11,2) (12,3) M99 3.0E+24 (13,0) (13,0)
M28 4.7E+08 (10,0) (16,0) M64 5.7E+67 (15,0) (16,0) M100 1.0E+36 (12,0) (13,0)
M29 9.8E+06 (12,1) (16,1) M65 3.0E+75 (12,0) (15,1) M101 8.7E+30 (13,0) (13,0)
M30 2.3E+17 (14,1) (15,1) M66 1.2E+24 (13,2) (13,3) M102 1.7E+43 (13,0) (15,0)
M31 4.8E+78 (12,1) (15,1) M67 2.3E+25 (13,1) (13,1) M103 7.1E+33 (12,0) (14,0)
M32 9.0E+12 (10,1) (13,1) M68 1.4E+36 (14,0) (14,1) M104 7.8E+22 (12,1) (14,1)
M33 1.8E+24 (14,0) (15,0) M69 1.8E+28 (11,2) (13,2) M105 8.6E+32 (12,0) (13,0)
M34 1.2E+79 (13,1) (15,1) M70 1.9E+79 (15,0) (15,0) M106 1.7E+44 (13,0) (13,0)
M35 1.5E+23 (15,1) (15,1) M71 8.9E+16 (11,3) (12,3) M107 2.1E+37 (13,0) (13,0)
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M36 8.1E+15 (16,1) (16,1) M72 1.7E+7

he left numbers in the brackets of column labeled by “>3” and “>1” indicate the fr
riterion of BF > 3 and BF > 1, respectively, while the right numbers indicate the resu

ific object in the environment, we attempt to match the bottom-up
nformation against its internal template. Bottom-up visual fea-
ures that match are weighted more heavily, which biases our
erception in favor of the expected object (Beck & Kastner, 2009). In
he present study, participants were trained with real letters before
iewing pure noise images. Perhaps this training served to prime
etter specific expectations such that participants readily reported
eeing letters among the pure noise images when certain features
f these pure noise images appeared to resemble those of letters.

As revealed by our DCM analysis, when a letter was ‘detected’
hile viewing a pure noise image, the response of the right MOG
as enhanced via increased connectivity from the left IFG. The locus

f the right MOG (Fig. 2A, red circle, Talairach: 51, −59, −7) was
onsistent with that found in the recent studies such as Pernet,
elsis, and Demonet (2005) (Talairach: 46, −63, −12) and Gauthier
t al. (2000) (Talairach: 50, −59, 3). It was also consistent with the
ortical regions (Fig. 2B, green circle, Talairach: 48, −55, −6) iden-
ified through our functional localizer task that compared easily
een real letters to pure noise images. Our results indicate that the
esponse of the letter-preferential regions in the visual cortex can
e modulated by top-down influences from the prefrontal cortex.

Recent studies (for a review see Beck & Kastner, 2009; Miller &
’Esposito, 2005) support our finding that there is a feed-backward
onnection from the left prefrontal cortex to the occipitotemporal
ortex. For example, Mechelli et al. (2004) found that when par-

icipants imagined objects from a particular category (e.g., faces,
ouse, and chairs), the responses of category-preferential regions
ithin the occipitotemporal cortex preferentially associated with

hat category were enhanced by increased connectivity from the
(14,1) (15,1) M108 1.0E+36 (13,0) (14,0)

cy across 17 participants that the M19 won the other corresponding models with
the reverse comparisons. GBF, group Bayes factor.

left prefrontal cortex to these regions. Additionally, studies of illu-
sory face detection with the same paradigm used in the current
study found that the left IFG (Talairach: −48, 13, 24) and the
face-preferential region of the occipitotemporal cortex (i.e., the
Fusiform Face Area, FFA; Kanwisher & Yovel, 2006) were both acti-
vated by face responses relative to no-face responses (Zhang et al.,
2008). Moreover, the functional connectivity between these two
regions was greater for face responses than for no-face responses
(Talairach: −50, 3, 24, Li et al., 2009).

Our results provide additional evidence in support of the
claim that category-preferential regions within the visual cortex
are modulated by top-down signals originating in higher cor-
tical regions such as the prefrontal cortex (Heekeren, Marrett,
Bandettini, & Ungerleider, 2004; Kastner & Ungerleider, 2000;
Miller & D’Esposito, 2005). In the present study, the left IFG was
more active when the participant ‘detected’ a letter when view-
ing a pure noise image. Increased activation of the left IFG has also
been reported in other top-down word and letter processing related
tasks (e.g., object naming [Talairach: −47, 5, 27, Joseph et al., 2006],
imagined letters [Talairach: −43, 15, 23, James & Gauthier, 2006],
and word generation [MNI: −45, 4, 35, Tremblay & Gracco, 2006]),
as well as non-word processing tasks (e.g., illusory face detection
[Talairach: −53, 7, 29, Li et al., 2010] and perception of impover-
ished objects [Talairach: −40, 5, 25, Ganis, Schendan, & Kosslyn,
2007]). The loci of activation in these studies were consistent with

the region identified in the present study (Talairach: −51, 7, 27).
Additionally, James and Gauthier (2006) found that this region
is activated by writing the first letter of the word that names a
presented shape as compared to drawing that shape. This finding
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uggests that the left IFG also plays a significant role in retriev-
ng letter shapes from memory. Note that the cognitive operations
n all above-mentioned studies require the access of our existing
nowledge about the properties or meanings of certain objects.
hus, the left IFG may be involved in the successful retrieval of
emantic information from memory, which can facilitate the subse-
uent top-down processing (Curtis & D’Esposito, 2003; Ganis et al.,
007). Our DCM results, taken together with these existing find-

ngs, suggest that the left IFG may provide an important top-down
ignal based on the expected (e.g., remembered) letter shapes. On
his account, the left IFG sends a top-down signal to the visual cor-
ex (i.e., the right MOG) to search for letter features in the visual
nput, which in turn biases participants to falsely detect letters

hen viewing pure noise images by highlighting letter-like fea-
ures contained within the noise images (Gilbert & Sigman, 2007;

iller & D’Esposito, 2005).
Our DCM results also revealed increased connectivity from the

ight MOG to the left IPL when letters were “detected”. In the
resent study, the left IPL, like the left IFG, was more active when

etters were ‘detected’ when viewing a pure noise image. In line
ith our results, recent studies found that the left IPL is more

nvolved in letter naming than letter discrimination, which sug-
est that this region may be selectively involved in the phonological
ranslation of letters into sounds (Joseph et al., 2006). Furthermore,
he locus of the left IPL in these studies (−38, −50, 48) was consis-
ent with the present finding (−40, −44, 50). The suggestion that
he left IPL plays a role in phonological decoding is also supported
y converging evidence from other neuroimaging (Price, Wise, &
rackowiak, 1996) and neuropsychological (Friedman, Ween, &
lbert, 1993) studies. Unlike faces, which are a highly similar class
f object, each letter has a distinct shape and a distinct sound. These
wo modalities of letter perception are so interconnected that when
letter is identified based on one modality (e.g., shape), the other
odality (e.g., phonology) is automatically evoked. Demonstrating

his connection in the current study, many participants reported
ilently reading the letter they ‘found’ in the pure noise images
ven though their only task was simple letter detection by means
f a button press rather than letter identification. On this account,
hen the bottom-up information of a pure noise image contained

eatures suggestive of a particular letter, the right MOG may have
rovided the identity of that letter to the left IPL whereupon that

etter was mapped into the corresponding phonological informa-
ion. Thus, the increased connectivity from the right MOG to the
eft IPL on letter detection trials may have supported retrieval of
honological information for the specific illusory letter that was
etected.

One caveat should be noted about the present findings. The
resent study used a relatively rapid event-related design, for
n important reason. As indicated by the behavior results of the
resent study, the illusory detection of letters from noise-only

mages was relatively rare (only about 38% with a SD of 20.0%).
o increase the statistical power of contrasting trials of the letter
esponses and those of the no-letter responses for each partici-
ant, we needed to include a sufficiently large number of trials.
owever, the task was relatively difficult and demanded a greatly
nhanced level of attention, a prolonged scanning time would likely
ave produced inattention, fatigue, or other possible confounds.
he present design thus attempted to strike a balance in meet-
ng these two constraints. However, the reduced inter-stimulus
nterval (ISI) might have reduced experimental efficiency because
he hemodynamic responses elicited in different conditions were

argely overlapped. In future studies, one could improve the exper-
mental efficiency by both increasing and varying the ISI, the
mplementation of which may require data collection in multiple
essions.
49 (2011) 1177–1186 1185

5. Conclusion

In the present study, we investigate the neural interactions
between regions of the cortical network involved in top-down
letter processing. When participants ‘detected’ letters when view-
ing pure noise images, the response of a letter-preferential region
within the visual cortex (i.e., the right MOG) was enhanced by the
increased connectivity from the left IFG. The response of the left
IPL was in turn enhanced by increased connectivity from the right
MOG. Our results suggest that the top-down signal for letter pro-
cessing originates in the left IFG, which directly affects the visual
cortex. This feed-backward connection may facilitate the detection
of letters by increasing the activity of the cortical region that repre-
sents the features contained within each letter. In turn, the specific
letter identity is forwarded to the left IPL by means of increased
connectivity, which may facilitate retrieval of the phonological
information associated with that letter. Our findings also suggest
that letter processing and perhaps the processing of many other
visual stimuli (e.g., faces) may involve active interactions between
top-down signals from the prefrontal cortex and bottom-up infor-
mation from the visual cortex.
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