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To study top-down face processing, the present study used an experimental paradigm in
which participants detected non-existent faces in pure noise images. Conventional BOLD
signal analysis identified three regions involved in this illusory face detection. These regions
included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA)
and right occipital face area (OFA), both of which were previously known to be involved in
both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling
(DCM) and Bayesianmodel selection to further analyze the data, revealing both intrinsic and
modulatory effective connectivities among these three cortical regions. Specifically, our
results support the claim that the orbitofrontal cortex plays a crucial role in the top-down
processing of faces by regulating the activities of the occipital face area, and the occipital
face area in turn detects the illusory face features in the visual stimuli and then provides
this information to the fusiform face area for further analysis.
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1. Introduction

Humans are exceptionally skilled at face perception. Over a
wide range of viewing conditions we effortlessly detect and
recognize faces accurately and quickly. Traditionally, face
processing is viewed as a feed-forward, bottom-up process in
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which facial identity is processed first in the ventral visual
stream and then passed along to more anterior regions of the
brain such as the frontal cortex. This face processing model
has been supported by many existing studies. However, in
these experiments the stimuli are high quality images of
actual faces, maximizing bottom-up information. This may
tion, Chinese Academy of Sciences, Beijing 100190, China. Fax: +86
almer Road, Toronto, Ontario, CanadaM5R2X2. Fax: +1 416 978 6485.
Lee).

.

mailto:tian@ieee.org
mailto:kang.lee@utoronto.ca
http://dx.doi.org/10.1016/j.brainres.2010.04.044


41B R A I N R E S E A R C H 1 3 4 0 ( 2 0 1 0 ) 4 0 – 5 1
swamp any top-down influences on face perception, thus
biasing interpretation of experimental results in favor of
bottom-up driven processing models.

Providing evidence that supports the bidirectional interactive
face processing model proposed by Haxby et al. (2000), recent
studies using novel stimuli and paradigms have questioned the
traditional view about the neural systems of face processing.
These studies focused on top-down face processing by requiring
participants to imagine faces (Ishai et al., 2000; Mechelli et al.,
2004), or to interpret ambiguous face stimuli such as Mooney
faces and vase/face illusion (Andrews and Schluppeck, 2004;
Hasson et al., 2001), or to detect impoverished face stimuli
(Gosselin and Schyns, 2001; Summerfield et al., 2006; Wild and
Busey, 2004), or to even make illusory face detection of pure
visual noise stimuli (Li et al., 2009; Liu et al., 2010; Zhang et al.,
2008). It was found that top-down feed-backward mechanisms
play an important role in face processing, which is perhaps
engendered by the neural system's use of face-relevant knowl-
edge and learned expectations that regulate the bottom-up
processing of visual stimuli (Mechelli et al., 2004; Summerfield
et al., 2006). Further, these studies revealed a distributed cortical
network for top-down face processing (Li et al., 2009), which
overlaps to a large extent with the face processing network
reported in traditional bottom-up face processing studies (for
reviews, see Haxby et al., 2000; Ishai et al., 2005; Ishai, 2008).
Taken together, the findings from bottom-up and top-down
paradigms suggest that the neural system for processing
faces involves a network of neural regions distributed from
occipital to frontal cortices that has both feed-forward and feed-
backward connections (Fairhall and Ishai, 2007; Haxby et al.,
2000; Ishai, 2008; Li et al., 2009;Mechelli et al., 2004; Summerfield
et al., 2006).

Previous studies of top-down illusory face processing (Li
et al., 2009; Zhang et al., 2008) used conventional analyses that
cannot determine in which direction signals flow andwhether
connections between brain regions are modulated during the
task. The term “effective connectivity” is used in referring to
the connection strength between different brain regions and
how these strengths vary with experimental manipulations.
To understand the top-down face processing network in terms
of effective connectivity, the analyses reported here used
Dynamic Causal Modeling (DCM: Friston et al., 2003). This
analysis not only determines the active neural connections
between brain regions during the experiment, but it also
determines the direction of the intrinsic and modulatory
cortical pathways specifically involved in top-down face
perception.

The present study focused on three cortical regions
identified by traditional analyses: the fusiform face area
(FFA), occipital face areas (OFA), and orbitofrontal cortex
(OFC). It is now well established that the FFA and OFA play
an important role in face processing and are part of the
bottom-up and top-down face processing networks (Fairhall
and Ishai, 2007; Liu et al., 2009; Mechelli et al., 2004;
Summerfield et al., 2006; Zhang et al., 2009). Thus, these are
“core regions” of face processing. However, the function of the
OFC and its relation to the core face processing regions is less
clear.

A number of functional neuroimaging studies have iden-
tified OFC activation both during face processing and during
processing of non-face objects. It has been proposed that the
OFC is involved in encoding novel information (Frey and
Petrides, 2000; Frey et al., 2004) as well as in mediating the
perception of attractive and sexually relevant faces (Ishai,
2007; Kranz and Ishai, 2006; O'Doherty et al., 2001). More
importantly, recent studies of object recognition revealed that
the OFC plays a key role in top-down object processing (Bar
et al., 2006; Bar, 2009; Johnson, 2005; Kveraga et al., 2007a,b).
Specifically, it has been proposed that the OFC uses low spatial
frequency visual information to form a coarse prediction of
the most likely candidate object, which is used to prime the
corresponding object processing areas in the ventral occipital-
temporal cortex in a top-down manner. This hypothesis
predicts that during top-down face detection, the OFC should
have functional connections to the OFA or the FFA. The
present study tested this prediction.

Based on our recent investigation on top-down face
processing (Li et al., 2009; Zhang et al., 2008), we adopted a
novel paradigm that promotes illusory face detection in
response to images that only contain noise. Participants
were told that half of the images in the experiment contained
faces and the other half did not. Their taskwas to detect which
images contained faces. An initial training stage of the
experiment did indeed contain faces on 50% of the trials.
During this training, the faces becamemore andmore difficult
to detect by mixing higher degrees of noise with the faces.
Eventually, participants were only shown pure noise images,
although they were instructed that there were still faces on
50% of the trials and that face detectionwould be very difficult.
The noise imageswere amixture of Gaussian blobs of different
spatial frequencies placed randomly throughout the image.
These complex noise images lend themselves to a large
number of interpretations and participants readily continued
to detect faces. Thus, we were able to study top-down
influences using false detections of faces to images containing
only noise, which avoids contamination from strong bottom-
up face information. Furthermore, an independent localizer
task was performed to validate the ventral occipito-temporal
face-sensitive areas identified by the illusory face detection
task. Our recent study using this method revealed a complex
distributed cortical network for top-down face processing (Li
et al., 2009). However, this finding was obtained by using
simple correlational analyses (Psychophysiological Interac-
tion, or PPI) with the right FFA as the seed region. Not only is
this method unable to measure the directional effective
connectivity between different brain regions involved in top-
down face processing, but this method also has potential
methodological problems such as “double dipping” in which
the same data is used for more than one analysis (see
Kriegeskorte et al., 2009).

To determine the directional top-down effective connectiv-
ities involved in the top-downfaceprocessingaswell as toavoid
themethodological problems associatedwith PPI, we usedDCM
(Friston et al., 2003) in combination with Bayesian model
selection (Penny et al., 2004) to analyze the data obtained in Li
et al. (2009). The use of DCM has several advantages in addition
to avoiding double dipping (Stephan et al., 2010). First, this
analytic method provides information not only about the
intrinsic effective connectivities among various brain regions
(i.e., connections strengths that are constant throughout the
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Table 1 – Average cluster activation for the main effects of
“face” trials compared to “non-face” trials with
conventional analysis.

Regions BA Voxel Z Talairach

x y z

R fusiform gyrus 37 343 4.22 46 −51 −8
L fusiform gyrus 37 425 5.04 −40 −57 −11
R inferior occipital gyrus 19 343 4.39 44 −78 0
L inferior occipital gyrus 18 425 4.45 −36 −84 −5
L inferior parietal lobule 40 665 5.41 −42 −40 44
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experiment), but it also provides information about enhanced
connectivities due to a specific processing demand (i.e., illusory
face detection). Rather than revealing simple correlational
relationships, DCM extracts directional relationships, providing
information about how different brain regions are functionally
connected during object processing (e.g. in a feed-forward or
feed-backward manner). This information is particularly im-
portant for the present study considering that we were
interested in the interplay between the FFA, OFA and OFC in
top-down face processing.
L orbitofrontal cortex 47 65 4.05 −28 21 −4
R inferior frontal gyrus 46 95 5.01 44 33 6

9 169 4.40 50 11 25
L inferior frontal gyrus 9 50 4.19 −53 7 29
L middle frontal gyrus 46 79 5.11 −40 30 11
L middle frontal gyrus 10 51 4.33 −46 51 3
R precuneus 7 274 5.1 24 −52 43
Medial frontal gyrus 8 57 4.61 −2 24 49
Declive 74 4.87 12 −71 −17

Coordinates of the peak voxel are shown for each cluster. All
activations are significant at p<0.0001 (uncorrected); k cluster≥50
voxels; R, right hemisphere; L, left hemisphere; BA, Brodmann's
area; voxel size is 2×2×2 mm3.
2. Results

2.1. Behavioral results

The average proportion of trials on which subjects responded
“face” was 34%, with a standard deviation (SD) of 14%, across
the 480 pure noise images. The mean reaction times of the
“face” and “no face” responses were 723 ms (SD=126 ms) and
698 ms (SD=119 ms) respectively, which are not significantly
different from each other (t(10)=1.6, p=0.169).

2.2. Conventional fMRI analysis

In the localizer task, in the right hemisphere, all twelve subjects
showed activation in the right middle fusiform gyrus and the
right lateral occipital cortex in response to passive viewing of
faces, as compared with other objects. In contrast, in the left
hemisphere, only seven subjects exhibited face-specific
responses in the left middle fusiform gyrus and eight subjects
did so in the left lateral occipital cortex. This right hemisphere
dominance is highly consistent with the existing findings
(Kanwisher et al., 1997; Kimet al., 1999; O'Craven andKanwisher,
2000). For the group level results of the localizer task (uncorrected
p<0.0001, extent threshold: 15 voxels), the peak coordinates of
the middle fusiform gyrus (Talairach coordinate, right: 42, −51,
−14; left: −38, −49, −18) and the lateral occipital cortex (right: 48,
−72, −6) are consistent with the loci of the FFA and the OFA
reported in previous studies of face processing (Grill-Spector
et al., 2004; Kanwisher et al., 1997; Rossion et al., 2003) (Fig. 1A).
We also found significant activation in the group map for the
right posterior superior temporal sulcus (57, −52, 3). However,
only six subjects exhibited face-specific responses in this area at
the individual level. Consequently, this area was not included in
the following DCM analysis.

To identify brain regions specifically contributing to top-down
face processing, blood oxygen level dependent (BOLD) responses
Fig. 1 – (A) Group level statistical analysis maps of the localizer t
stimuli. The threshold was set at T>5.45 (p<0.0001, uncorrected
maps of the “face detection” trials compared to the “no face” tria
analysis. The threshold was set at T>5.45 (p<0.0001, uncorrected
circles indicate the ROIs used in the DCMmodels, which includes
changes for “face detection” trials and “no face” trials across 11 su
as identified by the illusory face detection task. (D) Mean percent
across 11 of the same subjects in the two ROIs of the right FFA and
standard errors. FFA, Fusiform Face Area; OFA, Occipital Face Ar
during the “face detection” trials and “no face” trials were
contrasted. Table 1 and Fig. 1B present the patterns of activation
at the group level. Themaximaof clusters (uncorrected p<0.0001,
extent threshold: 50 voxels) were used as the reference for
choosing the individual regions of interests (ROIs) (Table 1 and
Fig. 1B). The loci were in agreement with the results of the
localizer task and the findings of the existing studies for the right
FFA (46, −51, −8) (Kanwisher et al., 1997), right OFA (44, −78, 0)
(Rossion et al., 2003), and left OFC (−28, 21, −4) (Bar et al., 2006;
Kveraga et al., 2007a).

As shown in Fig. 1C, a greater intensity of themean Percent
Signal Changes (PSCs, calculated using Marsbar 0.41, http://
marsbar.sourceforge.net/) across 11 subjects (one subject was
excluded due to the lack of identifiable OFC ROI) were found in
all three ROIs defined by the illusory face detection task for the
“face detection” trials compared to the “no face” trials. Paired t
tests were conducted between the two conditions (“face
detection” trials and “no face” trials) on the three ROIs across
all 11 subjects, which revealed significant differences in all
ROIs (t(10)=12.2, p<0.001 in right FFA, t(10)=10.4, p<0.001 in
right OFA, and t(10)=8.4, p<0.001 in left OFC).

We also calculated the mean PSCs between the “face
detection” trials and “no face” trials in the ROIs for the FFA and
the OFA defined by the localizer task for each subject. Similar
ask defined by contrasting fully visible faces with non-face
) and cluster>15 voxels. (B) Group level statistical analysis
ls which was used to select ROIs for the individual level
) and minimum cluster volume=50 voxels. The areas in blue
the right FFA, right OFA and left OFC. (C) Mean percent signal
bjects in the three ROIs of the right FFA, right OFA and left OFC
signal changes for “face detection” trials and “no face” trials
right OFA as identified by the localizer task. Error bars denote
ea; OFC, Orbitofrontal Cortex.

http://marsbar.sourceforge.net/
http://marsbar.sourceforge.net/


Table 2 –Model comparison between the optimalmodel of Model 12a and othermodelswith DCM: Group Bayes factors (GBF)
and binomial p values.

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b

GBF=9.9e+116 GBF=8.6e+101 GBF=9.1e+38 GBF=1.0e+47 GBF=2.6e+76 GBF=3.9e+75 GBF=9.4e+35 GBF=2.5e+44
p=0 p=0 p=0** p=0** p=0 p=0 p=0.011* p=0**

Model 5a Model 5b Model 6a Model 6b Model 7a Model 7b Model 8a Model 8b

GBF=1.4e+65 GBF=4.2e+67 GBF=1.3e+67 GBF=3.9e+72 GBF=1.2e+69 GBF=9.4e+71 GBF=9.9e+116 GBF=1.9e+61
p=0 p=0 p=0.006 p=0 p=0* p=0 p=0 p=0

Model 9a Model 9b Model 10a Model 10b Model 11a Model 11b Model 12a Model 12b

GBF=2.7e+163 GBF=3.4e+95 GBF=8.1e+30 GBF=4.7e+23 GBF=1.7e+42 GBF=1.3e+37 – GBF=348
p=0 p=0 p=0 p=0* p=0 p=0 – p=0***

Model 13a Model 13b Model 14a Model 14b Model 15a Model 15b Model 16a Model 16b

GBF=1.1e+12 GBF=5.1e+11 GBF=2.5e+13 GBF=4.8e+15 GBF=1.3e+25 GBF=2.2e+24 GBF=9.7e+34 GBF=6.8e+33
p=0 p=0.006 p=0* p=0 p=0* p=0** p=0** p=0**

Three subjects (***), two subjects (**) and one subject (*) not included because AIC and BIC did not favor the same model.
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results were obtained (Fig. 1D): significant differences of PSCs
between the “face detection” trials and “no face” trials were
found in both the localizer defined FFA (t(10)=5.07, p<0.001)
and OFA (t(10)=3.25, p=0.004) across the same 11 subjects.
These results indicated that the ROIs defined by the contrasts
between the “face detection” trials with the “no face” trials in
the illusory face detection task can be defined as face-selective
ROIs in the subsequent DCM analysis.

2.3. DCM results

2.3.1. Model comparison
Table 2 shows the group Bayes factors (GBF) and the binomial p
values for all model comparisons between thirty-two possible
models of directional connections among the FFA, OFA, and
OFC based on the existing studies (Fig. 4 for allmodels; also see
Fig. 2 – Connectivity parameters for the optimal Model 12a. Stren
connections and direct input effects. (B) Modulatory effects for th
noise image regardless of face detection (blue). Solid lines indicate
dotted lines indicate non-significant effects.
the method below). In all comparisons, strong evidence
(GBF>348, p<0.015) was found in favor of Model 12a.
Therefore, this model was assumed to underlie the top-
down face processing task and the resultant parameters for
this model were considered next.

2.3.2. Effective connectivity analysis
The group averaged parameters of Model 12a were calculated
using the DCM averaging routing of the SPM5 package.

2.3.2.1. Intrinsic connectivities and direct input effects. In-
trinsic connectivities represent the default state of interre-
gional coupling and are measured through interactions
among brain regions that are independent of the task (Friston
et al., 2003). Fig. 2A summarizes the significant intrinsic
connectivities among the three brain regions. All of the three
gths averaged across individuals are presented. (A) Intrinsic
e “face detection” trials (black) and those for presentation of a
significant intrinsic (A) ormodulatory (B) effects (p>0.95) and
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intrinsic connectivities were highly reliable, as revealed by
posterior probabilities of 1.0. The strength of influence of the
OFA on the FFAwas 0.37, the OFA on the OFCwas 0.33, and the
OFC on the OFA was 0.78. The direct input effect of visual
stimuli (presentation of a noise image) on the OFA was 0.09
and significant (posterior p=1.0) (Fig. 2A).

2.3.2.2. Modulatory effects. Modulations of the connectivi-
ties between the three regions for the “face detection” trials as
well as those for all noise images are depicted in Fig. 2B.
Regarding themodulatory effects of the “face detection” trials,
it was found that the reciprocal connectivities between the
OFC and the OFA were enhanced significantly (into the OFC:
strength=0.63, posterior p=1.0, from the OFC: strength=0.26,
posterior p=1.0), and the OFA had a significant modulatory
effect on the FFA (strength=0.13, posterior p=1.0).

In contrast, with regard to the modulatory effects of all
noise images (regardless of face detection), only the OFC was
found to have significant positive modulatory effects on the
OFA (strength=0.3, posterior p=1.0). Moreover, the OFA had a
significantly strong negative modulatory effect on the OFC
(strength=−0.17, posterior p=1.0) but very weak positive
modulatory effect on the FFA (strength=0.008, posterior
p=0.56).
3. Discussion

The present study examined illusory face detection to pure
noise images to investigate the neural networks involved in
top-down face processing. Consistent with previous findings
using PPI (Li et al., 2009), conventional BOLD signal analysis
identified three core brain regions, namely the FFA, OFA, and
OFC, that were highly responsive to trials on which partici-
pants detected a face. Focusing on these three regions,
application of Bayesian model selection to Dynamic Causal
Modeling determined the model that best accounted for both
intrinsic and modulatory effective connections among the
three areas.

3.1. The optimal intrinsic effective connectivity model

Out of 32 plausible intrinsic (i.e., response independent)
effective connectivity models between the OFA, FFA, and
OFA, the optimal model was as follows. First, there were
reciprocal connections between the OFC and the OFA,
although the feed-backward connection of the OFC to the
OFA was stronger (0.78). This is consistent with a recent
proposal that the posterior OFC facilitates visual recognition in
a top-down manner based on low spatial frequency informa-
tion; within the dorsal magnocellular pathway, this low
spatial frequency information is rapidly available through
projections fromearly visual areas to the prefrontal cortex (Bar
et al., 2006; Kveraga et al., 2007a,b).

Second, there were significant feed-forward connections
from the OFA to the FFA. This is consistent with the proposal
that the OFA is involved in the initial processing of face-like
features before providing this information to the FFA for
further analysis (Fairhall and Ishai, 2007; Kveraga et al., 2007a;
Mechelli et al., 2004).
Third, therewas a failure to find reciprocal connections from
the OFC to the FFA. This finding is inconsistent with a recent
study that found top-down facilitation of object recognition by
the OFC (Kveraga et al., 2007a). In contrast to our results, this
study found feed-backward connectivity from the OFC to the
FFA but not to the OFA. However, in the previous study, the
testedmodels included only feed-forward connectivity from the
OFA to the OFC and a reciprocal connectivity between the OFC
and the FFA. Thus, it is possible that the feed-backward
connectivity from the OFC to the OFA was misattributed to the
FFA due to the lack of the feed-backward connection between
theOFCand theOFA. In contrast, we testedmodels that allowed
reciprocal connectivities between the OFC and the OFA and
between the OFC and the FFA.

3.2. The modulatory effects of the optimal intrinsic
effective connectivity model

Our analysis further revealed that feed-backward connectivity
from the OFC to the OFA was enhanced significantly above its
intrinsic values both for “face detection” trials and also in
response to the pure noise image, regardless of face detection.
This result is consistent with recent studies reporting that the
OFC is involved in the top-down visual processing of objects
within posterior areas (Bar et al., 2006; Kveraga et al., 2007a). It
has been suggested that the OFC provides a top-down analysis
of low-frequency information through feed-backward con-
nections to visual areas. This feed-backward connectivitymay
aid the OFA's analysis of feature information when searching
for a face in a pure noise image.

We found that the feed-forward connectivity fromtheOFA to
the FFA was enhanced significantly (strength=0.13, p=1.0) for
“face detection” trials, but it was not significant when we only
considered the modulatory effects of presenting a noise image
without regard to face detection. This result is consistent with
connectivity patterns of the OFA and FFA in face processing
found in previous studies (Fairhall and Ishai, 2007; Mechelli
et al., 2004). This result also fits well with recent reports that the
right FFA represents the identity of faces based on face features
initially identified by the OFA (Rotshtein et al., 2005).

Furthermore, we found that the positive feed-forward
connectivity from the OFA to the OFC was enhanced signifi-
cantly (strength=0.63, p=1.0) in the “face detection” trials. In
contrast, when the modulatory effect of the pure noise images
regardless of face detection was considered, this connectivity
was significantly negative. These results are consistentwith the
suggestion that the OFA plays a critical early role in the analysis
of faces by detecting face features to construct an initial
representation of a face image (Calder and Young, 2005; Haxby
et al., 2000; Pitcher et al., 2007). In our paradigm, when
participants formed an expectation that the pure noise images
contained face-like features, the OFCmay have sent signals via
the feed-backward connectivity from the OFC to the OFA to
assist face detection and extraction of face-like features in the
noise image.On this account, if face-like featuresweredetected,
the enhanced feed-forward connectivity from the OFA to the
OFC enhanced the expectation that the noise image contained a
face, which in turn enhanced the likelihood that the OFA
detected and extracted face-like features from the noise image
(and so on, recursively). However, when the OFA did not detect



Fig. 3 – Example stimuli and illustration of the experimental design used. (A) Sample stimuli used in the experiment for easy-
to-detect-face trials, hard-to-detect-face trials, pure noise trials and checkerboard trials (from top left to bottom right). (B) The
sequence of displays in a trial from both the training stage and the illusory face detection task stage. (C) The types of
experimental design utilized in the training stage and the illusory face detection task stage respectively. A block design was
employed in the training stage and an event-related design was employed in the illusory face detection task stage.
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any face-like features, the connectivity from the OFA to the OFC
was de-activated, resulting in a negativemodulatory effect (see
Friston et al., 2003; Plailly et al., 2008).
It should be noted that in both the intrinsic andmodulatory
networks, the OFA played a central role. One might expect the
FFA to play a larger role because it typically reveals a high level



Fig. 4 –Model networks of interregional connections and experimental inputs. Both the “face detection” trials and presentation
of noise images regardless of face detection modulated all couplings among the FFA, OFA and OFC.
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of activations to faces with the use of conventional BOLD
signal analyses. Furthermore, FFA activation is high regardless
of whether bottom-up face information is strong (Gauthier
et al., 2000; Kanwisher et al., 1997; Kanwisher and Yovel, 2006)
or weak (Li et al., 2009; Zhang et al., 2008). However, it is
important to keep separate the notions of connection strength
versus resultant activation. More specifically, although the
OFA may serve as a key generator of illusory face detection,
the largest activation may still be in the FFA considering that
the FFA receives input from the OFA (Fairhall and Ishai, 2007;
Haxby et al., 2000). Furthermore, the pure noise images in the
present study forced participants to search for local informa-
tion that resembled facial features. Had we instructed or
primed the participants to search for configural facial
information, the role of the FFA might have been enhanced
(Schiltz and Rossion, 2006). This possibility needs to be tested
in future studies.

In conclusion, the present study used an illusory face
detection paradigm to study top-down face processing in
response to pure noise images. Conventional BOLD signal
analysis revealed three regions specifically involved in illusory
face detection. These regions also included the orbitofrontal
cortex in addition to the fusiform and occipital areas that were
previously known to be involved in both top-down and
bottom-up processing of faces. Analysis using Dynamic
Causal Modeling and Bayesian model selection revealed both
intrinsic andmodulatory effective connectivities among these
three cortical regions. These results suggest that the OFC plays
a crucial role in top-down face processing by regulating OFA
activity, and the OFA in turn detects elements of the noise
images that resemble face features and then provides this
information to the FFA for further analysis.
4. Experimental procedures

4.1. Subjects

Twelve normal, right-handed subjects (seven males, age
23.8±1.4 years), with normal or corrected-to-normal vision,
participated in this study. All subjects gave written
informed consent for the procedure in accordance with
protocols approved by the Human Research Protection
Program of Tiantan Hospital, Beijing, China.

4.2. Design and procedure

The experiment included two stages: an initial training
stage and an illusory face detection task stage (Fig. 3C).
Four types of stimuli were used: face images overlaid with
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50% noise which are easy for participants to detect faces,
face images overlaid with 75% noise which are hard for
face detection, pure noise images which did not include
faces, and checkerboard images that were used as the
baseline (Fig. 3A). During the initial training stage, a block
design was employed, and subjects completed one session
which consisted of six blocks of progressively more difficult
face detection (Fig. 3C). The first two blocks used an even
mix of pure noise images (noise trials) and face images
overlaid with 50% noise (easy-to-detect-face trials), the
second two blocks used an even mix of pure noise images
(noise trials) and face images overlaid with 75% noise
(hard-to-detect-face trials), and the final two training blocks
consisted of pure noise images (noise trials) only. Partici-
pants were instructed that in each block, half of the 20 noise
images contained a face. They were told that the task would
becomemore difficult over time and to indicate whether or not
they saw a face in the noise image with their left or right button
press (counterbalanced across subjects). For each trial, the
image was presented for 600 ms after a 200ms fixation cross,
followed by a blank screen for 1200 ms (Fig. 3B). The training
stage taught participants the nature of the experiment and
gradually brought them to a point that promoted illusory face
detection.

After training, subjects completed four sessions of the face
detection task which used an event-related fMRI procedure.
Forty checkerboard images (checkerboard trials) where used
as control trials and 120 pure noise images (noise trials) were
presented randomly in each of session. Subjects were
instructed that the task was the same as the third phase of
training and that of 50% of the noise trials would include faces.
During the checkerboard trials, no responses were required.
The responses from each participant were divided into “face
detection” trials (when the subject reported detecting face)
and “no face” trials (when the subject reported not-detecting
face). Participants were scanned in the same session for both
the training task and illusory face detection task. However,
only those data recorded during the task stage were analyzed.
Behavioral data were obtained by recording the participants'
responses during performance of the tasks while in the MRI
scanner.

After the illusory face detection task stage, a classical block
fMRI design used as a localizer task to identify the brain areas
activated while viewing fully visible faces. Each subject
completed two sessions separated into eight blocks of three
object types (faces, randomly selected objects, and scrambled
pictures). Each block consisted of 20 trials in which a stimulus
was presented for 600 ms after a 400 ms fixation cross. Of
these 20 stimuli, two randomly chosen stimuli contained a
white border, which was used as catch trial. Subjects were
instructed to press the right button on a response device
whenever a white border appeared around a picture. Follow-
ing each block, there was a fourteen second fixation baseline
condition.

4.3. Data acquisition

Functional and structural images were acquired using a 3.0 T-
whole body scanner (Siemens Trio a Tim, Erlangen, Germany) at
Tiantan Hospital. T1-weighted high-resolution (1×1×1 mm)
structural imageswere obtainedusing amagnetization prepared
rapid acquisition gradient echo (MPRAGE) sequence (FOV=256).
Functional images were acquired by using a multislice echo
planar imaging (EPI) sequence covering the whole cerebrum (32
axial slices acquired in interleaved sequence, 4 mm slice
thickness, TR=2 s, echo time (TE)=20ms, flip angle 90°, ma-
trix=64×64) with a resolution of 3.75×3.75 mm. Each session
consisted of 166 functional volumes. The first three volumes of
each functional scan were discarded to compensate for scanner
equilibration.

4.4. Conventional image analysis

Imaging data were analyzed using statistics parametric map-
ping software (SPM5, Wellcome Department of Cognitive
Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm). EPI
volumes were spatially realigned to correct for movement
artifacts, transformed to the MNI (Montreal Neurological
Institute) standard space, and smoothed using a 6-mm Gauss-
iankernel. Statistical analysis at the first level reliedonageneral
linear model (GLM), with the two types of trials (“face” versus
“no face” trials) as the conditions of interest and a regressor
encoding all noise image trials for illusory face detection task
and three types of conditions for localizer task. The trials from
the four separate illusory face detection task sessions were
concatenated to form a single session for each individual.
Session effects were accounted for by adding four session
regressors into the GLM (Bitan et al., 2005). To correct for low-
frequency components, a high-pass filterwith a cutoff period of
128 s was used (Friston et al., 2002). Task-specific activations
were obtained by contrasting hemodynamic responses during
the faceandno face trials for the illusory facedetection task, and
during the viewing of fully visible faces and non-face stimulus
for the localizer task. Statistical evaluation of group data was
based on second-level random effects analysis with a height
threshold of p<0.0001 (uncorrected) and extent threshold of
k>50 voxels for the illusory face detection task (see Table 1 and
Fig. 1B) or of k>15 voxels for the localizer task (see Fig. 1A). The
results of the localizer task were used to validate the ventral
occipito-temporal face-sensitive areas identified by the illusory
face detection task. The group results of the illusory face
detection task were then used for choosing the regions of
interest (ROIs) for the effective connectivity analysis as required
by DCM.

4.5. Selection of volumes of interest

The general goal of DCM is to make inferences about the
possible connectivity among brain regions and the influence
of one region on another in a given experimental context. The
three brain regions whose role in the top-down face proces-
sing was investigated were the right FFA, the right OFA, and
the left OFC (Table 1 and Fig. 1B). For the FFA and OFA, there is
overwhelming evidence from electrophysiological and imag-
ing studies that indicates a right hemisphere advantage for
face processing (Allison et al., 1999; Kanwisher et al., 1997; Kim
et al., 1999; O'Craven and Kanwisher, 2000), which is
supported by the results of our localizer task. For the OFC,
only the left hemisphere showed greater activity when
subjects detected a face, consistent with the previous studies

http://www.fil.ion.ucl.ac.uk/spm
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on top-down object processing (Bar et al., 2006). Thus, to
ensure sufficient power, we only used the right FFA, the right
OFA and the left OFC as the ROIs for the present DCM analyses.

For simplicity, the three regions of interest (ROIs) were
specified for each individual based on the coordinates of the
peak activation obtained in the group analysis of the illusory
face detection task. The center of each ROI (defined as a sphere
of 6-mm radius) was located at the most significant voxel that
was nearest to the peak coordinates in the group analysis for
each individual. Subject-specific local maxima were con-
strained to lie within 12mm (twice the width of the Gaussian
smoothing kernel) of the group maximum in the appropriate
SPM. In terms of individual ROI selection, of the twelve
participants, we could not identify a ROI for the OFC in one
participant. Thus, this participant's data were excluded from
the DCM analysis.

4.6. Dynamic Causal Modeling (DCM)

DCMtreats the brain as a dynamic input-state–output system. It
is a nonlinear system identification procedure and uses
Bayesian parameter estimation to draw inferences about the
effective connectivity between different regions of thebrain and
the manner in which experimental conditions affect this
connectivity (Friston et al., 2003). In DCM, three different sets
of parameters are estimated: (i) the direct influence of an
external stimulus on a given region, (ii) the intrinsic or latent
connection between regions representing the interregional
influence in the absence of any experimental manipulation,
and (iii) themodulatory effects representing changes in intrinsic
connection strength inducedby theexternal experimental input
(Friston et al., 2003). This modulatory effect can be used to
identify neural networks that are involved when subjects
detected faces in the pure noise images. The reported analysis
adopted a two-stage procedure that is formally identical to the
summary statistic approach used in a fixed effects analysis of
neuroimaging data. The parameters of the first level (subject-
specific) DCM models were taken to a second level (between-
subjects) using the fixed effects approach (Acs and Greenlee,
2008; Booth et al., 2008; Stephan et al., 2010).

4.7. Choice of models

The neural model analyzed in DCM is experiment dependent
and requires specific hypotheses. In other words, the user of
DCM must specify the brain regions included in the model,
which brain regions receive direct input from the presenting
stimuli, the anatomical connectivity between regions, and
which experimental conditions modulate connectivity (Penny
et al., 2004). To this end, we proposed thirty-two plausible
models. Each model contained three brain regions: the FFA,
OFA, and OFC. These regions were included because previous
studies found them to be involved in face or object processing
in general, and top-down processing in particular.

As shown in Fig. 4, all models assumed that the FFA receives
input from the OFA. It has been well established using DCM
analysis that the right OFA has a direct feed-forward influence
on the right FFA (Fairhall and Ishai, 2007; Summerfield et al.,
2006). Thus, in our models, we assumed feed-forward connec-
tivity from theOFA to FFA. As discussed in the Introduction, the
OFC has been found to be involved when encoding novel
information (Frey and Petrides, 2000; Frey et al., 2004) and
recognizing objects in a top-down manner (Bar et al., 2006;
Kveraga et al., 2007a,b). Consequently, we tested the role of OFC
in face top-down processing by assuming all possible connec-
tivity architectures between the OFA, FFA and OFC. In all
models, “face detection” trials were allowed to modulate all the
connections among the three regions to examine the effect of
top-down face detection. In addition, the presentation of a
noise image, regardless of face detection, was also allowed to
modulate all the connections among the three regions to test
the bottom-up effects of the pure noise images.

The difference between Model a versus Model b in Fig. 4
waswhether only the OFA received stimulus input, or whether
both the OFA and OFC received stimulus input, respectively.
This difference is motivated by the dual pathway face
processing model proposed by Johnson (2005). He suggested
that the face processing network may receive visual input
from two separate pathways. One is a cortical pathway that
receives visual input from the primary visual cortex to be
processed in face-responsive areas of the fusiform gyrus and
inferior occipital gyrus. The other is a subcortical pathway that
receives visual input from regions such as the superior
colliculus, pulvinar, and amygdala. This subcortical pathway
appears to provide input to a number of cortical regions that
are known to be involved in both top-down and bottom-up
face processing. Thus, the present study compared these
thirty-two models in regard to top-down face processing (see
Fig. 4).

4.8. Selection of the optimal model

An optimal model is one that fits the data well, but does so
with a minimum of free parameters (i.e., minimal model
complexity). Therefore, to determine which of the 32 compet-
ing models was optimal, Bayesian model selection (Penny et
al., 2004) was implemented using SPM5. This procedure
identified the connectivity model showing the highest posi-
tive evidence at the individual subject level in the applied
Bayesian framework (Raftery, 1995). Model evidence is calcu-
lated through the balance of model accuracy and model
complexity (Penny et al., 2004). At the group level, group Bayes
factors (GBFs) and binomial p values were used to determine
the winning model based on the results of subject-specific
Bayes factors for model comparison. Individual Bayes factors
were calculated bothwith theAkaike InformationCriterion (AIC)
and the Bayesian Information Criterion (BIC). If these differed in
their outcome, then that subject's Bayes factor was not included
in group results. GBFs were computed by multiplying the
individual Bayes factors of the same model comparison across
subjects (Stephan et al., 2007). Additionally, a conservative test
for the reliability of the GBF procedure was calculated by finding
the binomial p values for the probability of obtaining j or more
Bayes factors>1 in n subjects under an assumption of chance
(Ethofer et al., 2006).

4.9. The averaged model

The three sets of connectivity parameters of the winning
model from the individual subject models were then entered



50 B R A I N R E S E A R C H 1 3 4 0 ( 2 0 1 0 ) 4 0 – 5 1
into the DCM averaging routine provided by SPM5 to obtain a
representative averaged model at the group level (Acs and
Greenlee, 2008; Garrido et al., 2007). This allowed us to
summarize the results from the different subject-specific
DCMs.
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