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Testing Signal-Detection Models of Yes/No and Two-Alternative
Forced-Choice Recognition Memory

Yoonhee Jang, John T. Wixted, and David E. Huber
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The current study compared 3 models of recognition memory in their ability to generalize across
yes/no and 2-alternative forced-choice (2AFC) testing. The unequal-variance signal-detection model
assumes a continuous memory strength process. The dual-process signal-detection model adds a
thresholdlike recollection process to a continuous familiarity process. The mixture signal-detection
model assumes a continuous memory strength process, but the old item distribution consists of a
mixture of 2 distributions with different means. Prior efforts comparing the ability of the models to
characterize data from both test formats did not consider the role of parameter reliability, which can
be critical when comparing models that differ in flexibility. Parametric bootstrap simulations
revealed that parameter regressions based on separate fits of each test type only served to identify
the least flexible model. However, simultaneous fits of receiver-operating characteristic data from
both test types with goodness-of-fit adjusted with Akaike’s information criterion (AIC) successfully
recovered the true model that generated the data. With AIC and simultaneous fits to real data, the
unequal-variance signal-detection model was found to provide the best account across yes/no and

2AFC testing.

Keywords: signal-detection theory, yes/no recognition memory, two-alternative forced-choice recogni-
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Recognition memory refers to the ability to appreciate that a
stimulus was previously encountered. In the recognition mem-
ory literature, two basic recognition test formats are widely
used, namely, yes/no and two-alternative forced-choice
(2AFC). In the yes/no format, targets from a list are randomly
intermixed with lures, and these items are presented one at a
time for a decision (yes or no). In the 2AFC format, pairs of
items are presented on the recognition test instead. One item of
the pair is a target and the other is a lure, and the participant’s
job is to choose the target (e.g., left or right). It has long been
known that, all else being equal, performance on the 2AFC test
is reliably better than performance on the yes/no test. A viable
quantitative model of recognition memory should be able to
accurately predict the degree of improvement when the format
changes from yes/no to 2AFC, and the current study differen-
tiates between models of recognition memory on this basis.

Differentiating between competing models by evaluating
their ability to predict performance is complicated by the fact
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that models differ in a number of ways. As an analogy, consider
high school students who take the Scholastic Aptitude Test
(SAT) to obtain admission to undergraduate institutions. The
SAT measures critical thinking skills in three areas (mathemat-
ics, critical reading, and writing), yet institutions often simply
sum the scores across the three areas and compare that value
with some criterion of acceptance. If each of these three area
tests is valid and captures a different ability, why would insti-
tutions sum the scores? The reason is that with a limited number
of observations, a complex theory (e.g., that scholastic aptitude
is based on separate abilities) can exhibit less predictive reli-
ability than does a less complex theory (e.g., that scholastic
aptitude reflects a single ability), depending on what the model
is asked to predict. Thus, while acknowledging that there is no
single cause of a student’s aptitude, institutions nevertheless
sum SAT scores because this is the most reliable method for
predicting overall undergraduate education performance (i.e.,
generalizing to college grades in general rather than grades in
specific classes). These considerations suggest that greater pre-
dictive reliability does not automatically imply that the simpler
model is also the more valid model. Its predictive success can
arise either because it is the more valid model or because it is
a simpler model that most effectively predicts a summary
variable.

Similar issues of model flexibility, parameter reliability, and
generalization are important in elucidating the mechanisms that
underlie recognition memory. A model that has more parame-
ters may provide a better description of the observed data yet
fail in terms of its ability to generalize. This is alternatively
termed flexibility or complexity, and it refers to the ability of a
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model to flexibly capture many data patterns, resulting in a
solution that is assuredly fitting sampling noise and thus failing
to generalize (e.g., Myung, 2000; Pitt & Myung, 2002). How-
ever, assessing generalization with models that differ in flexi-
bility is nontrivial, and the exact manner in which one assesses
generalization needs to be carefully examined. For example,
simply examining parameter regressions across different testing
situations is confounded with the issue of parameter reliability.
In the present study, we shed light on these matters and perform
both behavioral and simulation studies to determine the best
method for comparing models of recognition memory in their
ability to generalize across two different test formats. We show
that past attempts to deal with the relationship between yes/no
and 2AFC performance were potentially compromised by a
failure to consider the tradeoff between predictive accuracy and
model complexity. We highlight a distinction between model
recovery, which is the ability to identify which model is most
likely the generating model behind the observed data, and
parameter recovery, which is the ability to identify the partic-
ular parameter values that generated the observed data under the
assumption that a certain model is true. Because these are not
necessarily related to each other (i.e., there could be a problem
with model recovery but not parameter recovery, or vice versa),
a careful consideration of this distinction is needed to choose
appropriate analyses. The goal of this study is to examine which
model should be preferred (i.e., model recovery rather than
parameter recovery) and to underline that using the technique of
parameter recovery is an inappropriate way to evaluate the
validity of competing models. Actual model recovery simula-
tion studies are a better test for model selection, and we use the
simulation study to examine model recovery, which is an issue
of what data patterns can or cannot be fit rather than whether the
parameters are sufficiently constrained.

Three Models Based on Signal-Detection Theory

Signal-detection theory (SDT) has long been a dominant
theoretical framework and mathematical tool for understanding
how people make decisions on recognition memory tasks
(Green & Swets, 1966; Macmillan & Creelman, 2005). The
theory provides a precise description and graphic notation for
analyzing decision making under uncertainty. The application
of SDT offers useful parametric measures such as d’ (sensitiv-
ity) and 3 (bias) as well as an ability to predict the shape of a
receiver-operating characteristic (ROC). An ROC is a plot of
the hit rate as a function of the false alarm rate and is typically
obtained by use of confidence judgments. A simple version of
the SDT, the equal-variance signal-detection (EVSD) model,
involves two equal-variance Gaussian distributions (one for
targets and the other for lures) and predicts a symmetrical
curvilinear ROC. However, a large number of studies in recog-
nition memory have observed asymmetrical ROCs (e.g., Glan-
zer, Kim, Hilford, & Adams, 1999; Ratcliff, Sheu, & Gronlund,
1992). To account for this asymmetry, three variants of the
EVSD model have been advanced: (1) the unequal-variance
signal-detection (UVSD) model (Egan, 1958), (2) the dual-
process signal-detection (DPSD) model (Yonelinas, 1994), and
(3) the mixture signal-detection (MSD) model (DeCarlo,
2002).!

Figure 1 illustrates the three signal-detection models. The
UVSD model assumes that recognition decisions result from a
strength-based process that is governed by two unequal-variance
Gaussian distributions, and it turns out that the standard deviation
of the target distribution exceeds that of the lure distribution (see
Figure 1A). The DPSD model assumes that recognition decisions
are based either on a threshold-based, recollection (R) process that
only applies to targets or on a strength-based, familiarity process
for targets and lures that is characterized by an EVSD model (see
Figure 1B). The MSD model holds that recognition memory de-
cisions are based on a continuous memory strength variable, but
the target distribution consists of a mixture of two equal-variance
Gaussian distributions (based on a mixing probability, \) with
different means: the higher mean distribution for attended items
and the lower mean (d*) distribution for partially attended or
unattended items (see Figure 1C).

Each of the three models contains one or two more parameters
than does the EVSD model. The UVSD adds one additional
parameter (the ratio of the standard deviation of the lure distribu-
tion to that of the target distribution: slope, s) as does the DPSD
model (the probability of threshold recollection). The MSD model
adds two additional parameters to the EVSD model, namely, the
mean of the upper target distribution and the probability (\) that a
target item will be drawn from that distribution instead of the
lower distribution.

The DPSD and MSD models are both hybrid models that
combine continuous, strength-based and discrete, probabilistic
processes. Although the two models assume different processes of
memory, mathematically the DPSD model is nested under the
MSD model, with the extra parameter of upper mean in the MSD
model determining this nesting relationship. In the DPSD model, it
is assumed that familiarity does not support higher levels of
confidence than does recollection. Mathematically, recollection is
equivalent to the higher Gaussian distribution in the MSD model
having a mean of infinity. In other words, when the upper mean is
set to infinity, then the mixing proportion in the MSD model is
identical to the probability of recollection in the DPSD model.
However, the DPSD model is a subset of the MSD model because
the MSD model allows the mean of the higher distribution to take
on any positive value including infinity.

From a statistical viewpoint, Figure 2 represents a nested hier-
archy of the models for recognition memory. These hierarchical
relationships between the models are indicated by unidirectional
solid-line arrows connecting the models. The EVSD model is a
nested subset of the UVSD (by setting the ratio of standard
deviations to 1) or DPSD (by setting the probability of recollection
to 0) model, and so the EVSD model is the least flexible model

! We chose the standard UVSD, DPSD, and MSD models because they
are the ones most commonly referred to in the literature, assuming dis-
tinctive processes for each, and because the first two are the models
addressed by Smith and Duncan (2004), whose method we find deficient
(this will be described throughout the article). Our intent is not to exhaus-
tively investigate all signal-detection models but rather to reexamine the
procedure used by Smith and Duncan. Nonetheless, we also include a
subset of the MSD model with d* = 0, because the constraint can be
psychologically supported (i.e., participants pay full attention on some
items and no attention at all on others).
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(having only a single parameter).” As indicated above, the DPSD
model is nested under the MSD model, and so the MSD model
(with three parameters) is more flexible than the DPSD model
(with two parameters), which is in turn more flexible than the
EVSD model. There is no nested relationship between the UVSD
and DPSD models, each of which has two parameters. Further-
more, because there is no nesting relationship between the UVSD
and MSD models, these models cannot be directly compared in
terms of flexibility even though the MSD model contains an
additional parameter. Finally, as an attempt to constrain parame-
ters within the MSD model, a subset of the MSD model where d*
is set to 0, the MSD™ model, is included (i.e., participants pay full
attention to some items and do not attend at all to others). Since the
MSD™ model has two free parameters, there is no nested relation-
ship with the UVSD model or with the DPSD model, and the
EVSD model is nested under the MSD* model. We consider two
kinds of model comparison, one in which the models being com-
pared have different numbers of free parameters (i.e., vertically
compared, as shown in Figure 2), and the other in which the
models being compared have the same number of free parameters
(i.e., horizontally compared, as shown in Figure 2). One goal of the
current study is to assess model flexibility for nonnested model
comparison through simulation studies.
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Figure 1. Three signal-detection models: unequal-variance signal-

detection (UVSD) model (A), dual-process signal-detection (DPSD) model
(B), and mixture signal-detection (MSD) model (C). d" = sensitivity; o, =
standard deviation of the lure distribution; o, = standard deviation of the
target distribution; R = recollection; N = mixing probability; d* = sensi-
tivity for partially or not attended items.

Most flexible MSD model
(best fit) (d',d’, and 1)
o /l
i [uvsD model| | DPSD model| | MSD" model
: (d’and s) (d’and R) (d', d’, and 1)
Least flexible EVSD’modeI
(high reliability) (a)

Figure 2. Nested hierarchy for the signal-detection models. Unidirec-
tional, solid-line arrows indicate subset relations between models. The
bidirectional, dotted-line arrow on the left-hand side represents the degree
of flexibility and reliability. UVSD = unequal-variance signal detection;
DPSD = dual-process signal detection; MSD = mixture signal detection;
MSD™ = subset of the MSD model where d* = 0; EVSD = equal-variance
signal detection; d’ = sensitivity; d* = sensitivity for partially or not
attended items; N = mixing probability; s = slope of the receiver-operating
characteristic; R = recollection.

Testing Models and Yes/No and 2AFC Recognition
Memory

In prior research, the ability of these three models to fit yes/no
recognition data has been presented as evidence of their validity.
For instance, Yonelinas (1994, 1997, 1999; also see a review,
Yonelinas & Parks, 2007) argued that the DPSD model fits some
data better than does the EVSD or UVSD model, whereas others
(e.g., Heathcote, 2003; also see a review, Wixted, 2007a) argued
that the UVSD model typically provides a superior fit. Providing
another example, DeCarlo (2007) demonstrated that the MSD
model fits mirror effect (Glanzer & Adams, 1985) recognition
results more accurately than does the DPSD or UVSD model.

A model’s ability to describe a set of data is often assessed with
maximum likelihood estimation and the chi-square goodness-of-fit
statistic. For the hierarchical relationships illustrated in Figure 2,
standard comparison procedures for nested models (e.g., Batch-
elder & Riefer, 1990) can be used; this comparison examines the
difference in chi-square error between the nested models with one
degree of freedom, corresponding to the one extra parameter. This
test indicates whether the extra flexibility associated with the extra
parameter is justified. Other traditional methods for model com-
parison should be used when comparing nonnested models that
differ in the number of free parameters. These include Akaike’s
information criterion (AIC; Akaike, 1973) and the Bayesian infor-
mation criterion (BIC; Schwarz, 1978). However, these techniques
assume that each additional parameter provides the same amount
of extra flexibility, which may be incorrect depending on the
particular models. Therefore, we performed simulations to deter-
mine the appropriate information criterion when comparing the
models, which are nonnested and differ in the number of param-
eters.

Instead of maximum likelihood estimation and goodness-of-fit
comparisons, another approach to model testing is generalization

2 Model flexibility (or complexity) varies depending on both the number
of free parameters and model’s functional form. In this hierarchy, the
models are differentiated in terms of the number of free parameters.
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across tasks. Several previous studies have used the two different
but theoretically related recognition memory tasks—namely,
yes/no and 2AFC—to test whether a model provides appropriate
estimates across different testing formats (e.g., Green & Moses,
1966; Jesteadt & Bilger, 1974; Kroll, Yonelinas, Dobbins, &
Frederick, 2002; Smith & Duncan, 2004; Wickelgren, 1968).
Much of the early work focused simply on the relationship be-
tween yes/no d’ and 2AFC d’ (e.g., Green & Moses, 1966; Jesteadt
& Bilger, 1974; Wickelgren, 1968). To additionally assess gener-
alization across a range of criteria, two recent studies used the
ROC analysis of yes/no and 2AFC tasks to compare competing
models of recognition memory (Kroll et al., 2002; Smith & Dun-
can, 2004). Kroll et al. (2002) found that the DPSD model cor-
rectly predicted proportion correct in 2AFC on the basis of fits to
yes/no data, but the EVSD model was shown to perform less well.
However, Smith and Duncan (2004) pointed out several possible
problems with this analysis. First, because many different combi-
nations of parameters for a yes/no model can give rise to the same
percent correct value on a 2AFC test, the important question is not
whether a model can predict percent correct but whether the
model’s parameters are consistent across the two tasks (a more
stringent test). Also, in finding fault with the signal-detection
model, Kroll et al. (2002) focused mainly on the EVSD model,
whereas the UVSD model is the more appropriate competitor.

Smith and Duncan (2004) addressed these concerns by ap-
proaching the problem in a different way. Specifically, they com-
pared the UVSD and DPSD models by fitting the two models
separately to the yes/no ROC data and to the 2AFC ROC data to
provide two estimates of model parameters on the basis of data
from the same participants under each test format.> Each model
assumes a particular relationship between parameters estimated
from yes/no data versus parameters estimated from 2AFC data,
and so the parameters based on yes/no were converted to equiva-
lent parameters if instead memory had been tested with 2AFC. A
simple linear regression was then performed for the predicted
parameter values estimated from the yes/no data as compared with
the observed parameter values estimated from the 2AFC data. This
simple linear regression thus produced a percentage variance ac-
counted for value that was used to compare the models. Although
we adopted the same procedures as Smith and Duncan used, we
note that these procedures could just as easily take parameters
from 2AFC data and convert them to equivalent yes/no parameters,
thus performing regression with equivalent yes/no parameters.
This would presumably produce similar, but not necessarily iden-
tical, results depending on the error in estimating parameters from
yes/no versus the error in estimating parameters from 2AFC.
Nevertheless, this highlights the fact that neither direction for the
transformation and comparison is more predictive than the other.
For this reason, we adopt the more neutral descriptive term,
parameter regression, in referring to this model generalization
procedure.

Next, we consider the theoretical conversion from yes/no pa-
rameters to equivalent 2AFC parameters. The SDT model assumes
that the relation between yes/no and 2AFC data is as follows:

2dYes/N0

d'sare =
2 AFC \/Sle

where dy. . 1S the difference between the means measured in
units of the target distribution standard deviation and s is the slope
of the ROC on the basis of the yes/no data (dy..n, 1S equal to
d'vegno When s = 1). Unlike the decision axis of yes/no, which is
memory strength (or familiarity), the decision axis of 2AFC is the
difference between the memory response to the left choice versus
the memory response to the right choice (rather than comparison
with a criterion). Therefore, this model assumes a symmetrical
2AFC ROC even if the yes/no ROC is asymmetrical (i.e., even if
s < 1). If sis equal to 1 in the yes/no data, then the UVSD model
reduces to the EVSD model and the relation between the two tasks
is summarized by the well-known \/Ed’ conversion (Macmillan &
Creelman, 2005). For the DPSD model, its recollection parameter
should be the same across test formats (i.e., R,apc = Ryeyno) and
the familiarity parameter is converted by the \ﬁ rule (i.e.,
d'sarc = \/Ed,Yes/No)-

Using these procedures, Smith and Duncan (2004) found that
the d’ regression across test formats of the UVSD model accounted
for 66% of the variance. In contrast, the DPSD model performed
much worse, especially the recollection component; the familiarity
parameter d' accounted for only 31% of the variance and the
recollection parameter accounted for less than 1% of the variance.
On the basis of these results, Smith and Duncan rejected the DPSD
model in favor of the UVSD model. However, it is important to
note that the parameter regressions for the UVSD model were
performed on a single parameter (d'), whereas the parameter
regressions for the DPSD model were performed on two parame-
ters (d' and R). As explained next, this occurred because the
UVSD model is more constrained in fitting 2AFC data, and this
greater constraint may have produced more reliable parameter
estimates, which serves as a confounding factor in using the
method of parameter regressions.

More generally, the technique of separately fitting yes/no and
2AFC data and then examining parameter regressions is flawed
both because it is a test of parameter recovery rather than model
recovery and because 2AFC ROC data are symmetric and are
therefore less able to constrain the parameters. Figure 2 illustrates
why parameter regressions across tasks may not be an appropriate
method of model comparison. As indicated in the figure, model
flexibility and parameter reliability are inversely related such that
the fewer parameters involved, the higher is parameter reliability.
As such, a model with low flexibility (e.g., the one-parameter
EVSD model) may yield highly reliable parameter values and thus
good parameter regressions across tasks (e.g., people with high d’
in one task have high d' in the other task), even though the EVSD
model is known to produce consistently poor fits to yes/no ROC
data (i.e., the EVSD model is rejected on the basis of goodness of
fit). These considerations may explain why the DPSD model
performed so poorly in terms of parameter regressions across test
formats. Although the DPSD model and the UVSD model have the

3ROCs for the 2AFC test format are found by considering left/right
position of the test alternatives. For instance, a false alarm is found when
choosing the left item when the target is on the right, and a hit is found
when choosing the right item when the target is on the right. The fit to the
2AFC data includes an individual’s left/right preference, but the 2AFC
ROCs are typically symmetric because they are created by collapsing over
left and right (see also, Smith & Duncan, 2004).
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same number of free parameters when they are fit to a yes/no ROC,
the UVSD model effectively has one fewer parameters when the
models are fit to 2AFC ROC data. For both the EVSD model and
the UVSD model, 2AFC ROCs should be symmetric, which means
that the UVSD slope parameter will always be 1 (except for
random error). Thus, for the UVSD model (as well as the EVSD
model), only one parameter (d') is needed to provide a good fit.
For the DPSD model, 2AFC ROCs are either symmetric (when
R = 0) or slightly asymmetric with other parameter values (a
subtle difference from the 2AFC ROC symmetry, and perhaps not
noticeably so). Thus, the parameters of the DPSD model as applied
to 2AFC ROC data are not easily identifiable (i.e., low parameter
reliability). As a consequence, it is not surprising that the param-
eters of the DPSD model yielded a low regression between yes/no
and 2AFC tasks; for the DPSD model, two parameters from the
yes/no fit were regressed onto the two parameters from the 2AFC
fit. In contrast, for the UVSD model, two parameters from the
yes/no fit, (d' and slope), were used together to produce a single
regression for the single parameter from the 2AFC fit (d', with
slope assumed to be 1). Given the greater parametric complexity of
the DPSD model for 2AFC ROC data, the reliability of its param-
eter estimates might be worse even if it is the correct model
(similar to the situation in the SAT example discussed earlier).
In light of these potential drawbacks to the parameter regression
analysis, we adopted a different approach to determine which
model was best able to account for yes/no and 2AFC performance
on a recognition memory task. First, we replicated and reexamined
part of the Smith and Duncan (2004) method by presenting sub-
jects with a single list of words and then testing their memory with
the two recognition test formats (yes/no for some items and 2AFC
for others). In this way, we held memory constant while changing
the decision rule. However, instead of using the parameter regres-
sion approach that Smith and Duncan used for model comparison,
we fitted each model to the two ROC data sets simultaneously.
Beyond replacing Smith and Duncan’s (2004) method—that is,
replacing separate fits and parameter regressions with simulta-
neous fits—we made another change; we included the MSD model
as a third detection model capable of fitting asymmetric yes/no
ROCs. We also added the EVSD model to help clarify the issues
of model flexibility and parameter reliability; even though the
EVSD model is known to produce a bad fit to yes/no ROC data, if
our hypotheses regarding complexity and parameter reliability are
correct, then the EVSD model should produce the highest param-
eter regression across test formats, even while producing the worst
simultaneous fit to the data of both formats. As indicated earlier,
the assumed relationship between d'y..n, and d', e for the
EVSD model is the \/5 rule (ie., d' s pc = \Ed/Yes/No)' For the
MSD model, the parametric relationships between yes/no and
2AFC are as follows: The means of the two target distributions
should be related by the \°5 rule (i.e., d5ppc = \/Ed*YCS,NO, and
d' yavc = \/Ed’Yes,No), and the attention parameter should be the
same (i.e., Myarc = Ayeuno)- It is expected that, in contrast to the
greater parameter reliability with the simplicity of the EVSD
model, the MSD model’s parameters will be even less reliable
because d”°, d’, and \ are all estimated from the same ROC data.
For the MSD model, 2AFC ROCs are either symmetric (when A =
0, .5, or 1) or slightly asymmetric (like those for the DPSD model).
In other words, 2AFC ROCs do not constrain the parameters of the

MSD model, and so the model has two redundant parameters to fit
the shape of the 2AFC ROC. Thus, the MSD model is expected to
produce the worst parameter regressions even though it can po-
tentially produce the best simultaneous fit to the data of both test
formats.

To validate our approach, we additionally quantified model
mimicry, which is defined as the ability of a model to account for
data generated by a competing model (for the issue of model
mimicry, see Navarro, Pitt, & Myung, 2004; van Zandt & Ratcliff,
1995; and Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). Even
if a model fits a set of data better than competitor models do, this
need not indicate that the winning model is closest to the true
generative process underlying the data, particularly if the winning
model is overly flexible. As such, a choice between models should
be based on a measure that takes into account and properly adjusts
for the flexibility of the models. The approach we used can be
illustrated as follows. Given two models, A and B, suppose that
Model B is found to provide a superior fit. Before concluding that
it is the superior model, we generate artificial simulated data sets
from both models and then fit both models to the artificial data
produced by Model B as well as produced by the alternative
model. Suppose we find that Model B is better able to account for
data than is Model A even when the data were generated by Model
A. In that case, the observed goodness-of-fit advantage for Model
B when fitting the real data should be reinterpreted as possibly
resulting from Model B’s inherent flexibility (not its theoretical
validity). We used just this artificial data approach to determine the
appropriate criterion (e.g., AIC and BIC) in comparing goodness
of fit for the EVSD, UVSD, DPSD, and MSD models as simulta-
neously applied to yes/no and 2AFC recognition data. These
artificial data simulations also demonstrate that the technique of
parameter regressions (which involves the issue of parameter re-
covery) is flawed and that a simultaneous fitting method (which
validates model recovery) is more appropriate for model selection.

To perform the simultaneous yes/no and 2AFC fits to real data,
we obtained the data from Smith and Duncan’s (2004) Experiment
2. We also conducted the following similar experiment.

Method
Participants

Thirty-four undergraduate students at the University of Califor-
nia, San Diego, were recruited and received credit for psychology
courses in return for their participation.

Materials

Stimuli for the experimental trials consisted of 490 moderately high
frequency (an average of 80 times per million: norms from Kucera &

4 The author of the MSD model (e.g., DeCarlo, 2002) did not specify the
manner in which the MSD model is applied to 2AFC data (personal
communication, July 2007). However, this relationship between 2AFC and
yes/no parameters follows if one assumes that the mixing of distributions
in the MSD model is entirely due to encoding, in which case some targets
in 2AFC should provide the appropriate higher familiarity value (d"), while
other targets provide the lower familiarity value (d*), and the probability of
mixing is the same as with yes/no testing.
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Francis, 1967), singular noun words from five to eight letters in
length. Two hundred eighty of the 490 words were randomly assigned
as study items, and the remaining 210 were used as new words. Of the
280 study items, 70 were randomly assigned as old for the yes/no task,
140 were randomly assigned as old for the 2AFC task, and 70 were
not tested. Of the 210 new words, 70 were randomly assigned for the
yes/no task, and 140 were randomly assigned for the 2AFC task. For
the practice trials, there were nine study items (three and six as old for
the yes/no task and for the 2AFC task, respectively) and nine new
items (three and six for the yes/no task and for the 2AFC task,
respectively), which were not included for data analyses.

Procedure

The procedure was identical to that of Smith and Duncan’s (2004)
Experiment 2 except as noted. During the study, participants were told
that they would be asked to remember a word list. The 280 study
items were presented, with each word appearing in the center of the
computer screen for a period of 5 s. After the study, test instructions
were presented. For the yes/no test trials, participants were told that
they would be given a single word and asked to press one of the
response keys—Certain NO, Probably NO, Guess NO, Guess YES,
Probably YES, and Certain YES (we put the confidence labels on the
keyboard and presented the rating scale under the word on the
screen)—depending on whether they thought the item was one they
had studied. For the 2AFC test trials, participants were told that they
would be given two words and asked to press one of the response
keys—Certain LEFT, Probably LEFT, Guess LEFT, Guess RIGHT,
Probably RIGHT, and Certain RIGHT—depending on which left/
right choice word they believed to be the studied item. After partic-
ipants understood the instructions, one of the tests was given per trial
at the test phase. The participants of Smith and Duncan were asked to
try to use each response key an equal number of times to scale their
confidence judgments. By contrast, the participants in this study did
not receive such instructions and were allowed to press whatever they
wanted; asking participants to spread their responses evenly across the
confidence categories might seem contrary to the DPSD model in
which recollected items demand high-confidence responses (Parks &
Yonelinas, 2007; Wixted, 2007a, 2007b). The assignment of study
and test items and the test order for yes/no and 2AFC were random-
ized anew for each participant.

Results

We fitted the three signal-detection models to both the data of
Smith and Duncan’s (2004) Experiment 2 and the data of our
experiment and report here both sets of findings.” The data of 1
participant from Smith and Duncan’s experiment and 1 participant
from our experiment were excluded because there were too many
missing response categories to allow for model fitting.

We first briefly report the overall results of ROC analyses.
Then, generalization across the two recognition tasks is evaluated
in two different ways: first, by regressing the expected proportion
correct in 2AFC on the basis of model fits of the yes/no ROC data,
as Kroll et al. (2002) did, and second, by examining parameter
regressions, as Smith and Duncan (2004) did. The limitations of
these methods are then described. Finally, simultaneous fits across
the two tasks are performed to determine the best model, which is
a method that we validate through a simulation study.

ROC Analyses

Parameter estimates from both group data and individual data were
computed. Figure 3 shows the group ROC fits and parameter esti-
mates for the UVSD, DPSD, and MSD models. For the yes/no test
(left-hand side), the group data (N = 4,620) were well fit by the
UVSD and MSD models, x*(3) = 1.88, p = .60; and x*(2) = 2.11,
p = .35, respectively, whereas the DPSD model showed significant
statistical deviation from the data, x2(3) = 19.82, p < .001. From the
individual data analysis, 93.94%, 78.79%, and 89.28% of the data
were well fit by the UVSD, DPSD, and MSD models, respectively.
For completeness, only 58.62% and 60.61% of the data were well
fitted by the EVSD model for Smith and Duncan’s (2004) experiment
and ours, respectively. For the 2AFC test (right-hand side), the group
data (N = 4,620) were well fitted by the DPSD and MSD models,
X’(3) = 5.59, p = .13; and x*(2) = 5.59, p = .06, respectively, and
the UVSD model showed marginal deviation, X2(3) =7.83,p = .05.
From the individual data analysis, 93.94%, 96.43%, and 92.86% of
the data were well fitted (i.e., observed deviations did not exceed
chance) by the UVSD, DPSD, and MSD models, respectively.® Not
surprisingly, 93.10% and 93.94% of the data were well fitted by the
EVSD model for Smith and Duncan’s experiment and ours, respec-
tively. These findings show that the UVSD, DPSD, and MSD models
somewhat equally well account for both yes/no and 2AFC ROC data
and that 2AFC ROCs do not constrain the parameters of these models
at all (i.e., the extra component of each model is not needed to fit the
shape of the 2AFC ROC). These are goodness-of-fit results to each
task separately; next we turn to the various techniques for assessing
generalization across test format.

Accuracy Regression

Observed proportion correct in 2AFC (M = .73, SD = .13) was
regressed onto the expected proportion correct on the basis of the
yes/no data as determined by each of the models. All models
including the EVSD model produced nearly identical regressions:
R*(31) = .69, p < .001, using the data from our experiment; and
R*(27) = .69 ~ .70, p < .001, using the data from Smith and
Duncan’s (2004) Experiment 2. These findings suggest that re-
gressing expected accuracy onto observed accuracy, as Kroll et al.
(2002) did, may not be a useful way to differentiate models.

5 The fitting procedure of Smith and Duncan (2004) contained several
constraints such that the lowest confidence criterion should be equal to or
less than 1, the rest of the confidence criteria should be greater than 0, and
the standard deviation of the target distribution of the UVSD model should
be greater than .5. We refitted the three models to their data without these
constraints. Although the precise values of parameter estimates of the
UVSD and DPSD models from individual data fits that they reported slightly
differ from those we report here, the pattern of the results is similar to each
other (e.g., none of the 1/s values of the UVSD model is less than .5).

¢ The finding that the MSD model fit worse than the DPSD and EVSD
models did even though both of these models are nested under the MSD
model is purely due to different degrees of freedom (i.e., the MSD model
has fewer degrees of freedom than does the DPSD and EVSD models). The
accuracy of the nested relationship between these models was confirmed
by comparing the raw chi-square values for each fit to an individual’s data.
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Figure 3. Receiver-operating characteristic (ROC) curves for yes/no (left) and 2AFC (right) fits of the UVSD
model (panels A and B), DPSD model (panels C and D), and MSD model (panels E and F). 2AFC =
two-alternative forced choice; UVSD = unequal-variance signal detection; DPSD = dual-process signal detection;
MSD = mixture signal detection; d’ = sensitivity; s = slope of the ROC; R = recollection; d* = sensitivity for
partially or not attended items; A = mixing probability; P(HIT) = hit rate; P(FA) = false alarm rate.
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d' for each of the UVSD and DPSD models produced a significant
linear relationship (see Figures 4A and 4C, respectively), but

Figure 4 shows the 2AFC parameters expected from yes/no data estimates of R for the DPSD model from yes/no did not match R
for each participant plotted against parameters estimated from the in 2AFC (see Figure 4D). These findings are consistent with those
2AFC data. The figure also shows the results of a regression of Smith and Duncan’s (2004) Experiment 2. The regression
analysis performed on each scatter plot. The regression analysis of analyses of d’, d*, and N\ for the MSD model did not produce
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significant linear relationships (see Figures 4E, 4F, and 4G, re-
spectively). When d* was set to 0, the analysis of \ for the MSD*
model yielded a significantly improved regression line but that of
d' did not (see Figures 41 and 4H, respectively). However, the
regression analysis of d’ for the EVSD model yielded a significant
linear relationship (see Figure 4B), producing the highest percent-
age variance accounted for, R>.

We next conducted the regression analysis with simulated
data under the circumstances where the DPSD model was true
to examine whether the DPSD model could produce a reason-
able parameter regression in the best case scenario where the
data were generated by the DPSD model. A failure to find good
regression in this case would demonstrate that parameter re-
gression might be misleading due to low parameter reliability.
Using parameter values of the DPSD model that resulted from
the separate fits to observed 2AFC data and yes/no data for each
of our 33 participants, we then generated 33 artificial data sets
for equivalent simulated participants, with a set of artificial
2AFC and yes/no data per simulated participant. Finally, we
fitted both the DPSD and UVSD models to the yes/no and
2AFC simulated data and performed regression analyses on the
parameters estimated from each test format (just as we did for
the empirical data).

The results from the parameter regression analyses for the
DPSD model were somewhat better for the simulated data than
they were for the real data—specifically, for d’, R*(31) = .49,
p < .001; and for R, R?*(31) = .17, p < .05. However, the
regression analysis for d' in fitting the UVSD model to these
artificial data generated from the DPSD model also showed a
significant linear relationship, R*(31) = .81, p < .001, and,
more importantly, provided a much higher R* than did the
DPSD model. In other words, the parameter regression for the
UVSD model was better than that for the DPSD model even
though the DPSD model was the true model for these simulated
data. We next performed the same analyses for the 29 subjects
of Smith and Duncan’s (2004) Experiment 2. As reported by
Smith and Duncan, the regression for the DPSD model on the
basis of the actual data for the d’ and R parameters was
R*(27) = .32, p < .05; and R*(27) = .002, p > .05, respectively
(p- 621). Using parameter values of the DPSD model, we
generated 29 artificial data sets and found modest improve-
ments in the d' and R regression analyses, R*(27) = .43, p <
.001; and R*(27) = .43, p < .001, respectively. For d’ of the
UVSD model, the regression on the basis of true data produced
R*(27) = .55, p < .05 (p. 621), whereas our simulated data (as
generated by the DPSD model) showed a similarly high value
for d’', R*(27) = .68, p < .001. Thus, the parameter regression
test showed that the UVSD model outperformed the DPSD
model even when the DPSD model generated the data. These
findings suggest that the regression test is not a useful way to
differentiate between these models, particularly considering
that different numbers of parameters are estimated from the
2AFC data, which is likely to influence parameter reliability.
Similar considerations would apply to the MSD model, which is
likely to perform even worse in a regression analysis because
it has yet another parameter to estimate from the 2AFC
ROCs.

Simultaneous Fits

The method we used to test the models was to simultaneously fit
them to the yes/no and 2AFC data for each subject while requiring
that the expected relationship between the parameters holds true.
Thus, for example, when the EVSD model was fitted to the data
from a particular participant, all of the criteria were free to differ
with test formats except that d',,zc Was constrained to equal
VEd’YeS,NO. We performed these simultaneous fits for each model
by using our data as well as the data from Smith and Duncan’s
(2004) Experiment 2. For each fit, the only constraint was that the
theoretical relationship between a 2AFC parameter and its yes/no
counterpart was enforced.

Before concluding that one of the models was the best on the
basis of only goodness of fit to empirical data, we generated
simulated data on a per-participant basis for each model by using
the model’s parameter estimates obtained from that model’s si-
multaneous fit of the real data (the simulated data per individual
had the same number of observations).” That is, we fitted each
model simultaneously to the yes/no and 2AFC data of each indi-
vidual, and then we used these best fitting parameters to generate
one artificial data set according to each of the three models (the
UVSD, DPSD, and MSD models). In parametric bootstrap simu-
lations (Efron, 1979; Efron & Tibshirani, 1993), a model with a
single set of parameters is used to generate many simulated data
sets. Our simulations also produced many simulated data sets, but
this was done as a function of individual differences (i.e., one
artificial data set per individual on the basis of fits of the models
to each individual). In this manner, we generated data for three
different artificial experiments, with each of these experiments in
accord with a particular model (the UVSD, DPSD, or MSD
model). Finally, we fitted each of these three artificial experiments
four different ways (including the EVSD model), to see if we could
recover the true model that generated the data. If a model is best
able to simultaneously account for the yes/no and 2AFC data that
were in fact generated by that model, then goodness of fit for
simultaneous fits is appropriate for model selection. Because these
models differ in number of parameters, we examined both AIC and
BIC values, which correct for the number of parameters, rather
than using raw goodness of fit. As reported next, AIC produced
values that allowed for recovery of the model that generated the

7 The reported simulation study used a single shot version of the para-
metric bootstrap simulation applied to the data of each individual, which
could be criticized as not including a sufficient number of stochastic
samples. In comparison, some articles have used a more complicated
simulation technique that involves not only multiple stochastic parametric
samples but also multiple nonparametric samples from the observed data
(e.g., Myung, Pitt, & Navarro, 2007; Wagenmakers et al., 2004). However,
it is not clear how to apply the results of that technique to situations
involving more than two models. In results to be reported elsewhere, we
applied this more complicated technique to the data of each individual from
the current two experiments by focusing on the UVSD and DPSD models.
This application produced nearly identical model recovery probabilities to
those reported here, which reduces concern for the small number of
stochastic samples used in the current situation.
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data, and so we report the AIC values below® (for completeness,
the BIC values are available in Appendix A).

Table 1 shows the AIC results of the parametric bootstrap
analysis by summing across individuals. For both Smith and Dun-
can’s (2004) Experiment 2 and our experiment, the models were
successfully recovered. That is, each model provided the best fit to
its own simulated data. These findings suggest that the simulta-
neous fitting method that uses the AIC correction provides a valid
method of identifying the true underlying model (unlike the re-
gression analysis discussed earlier). Thus, we turn now to a dis-
cussion of the simultaneous fits of the competing models to em-
pirical data, considering goodness of fit according to AIC, which
was demonstrated to recover the true model.

As shown in Table 2, for the empirical data from two experi-
ments (i.e., Smith & Duncan’s [2004] Experiment 2 and our data),
the UVSD model was best able to describe the relationship be-
tween yes/no and 2AFC recognition performance, providing the
lowest AIC value. For Smith and Duncan’s (2004) data, the UVSD
model provided the best fit for 65% of the participants. The DPSD
model was second best, providing the best fit to 21% of the
participants, and the MSD model was third in terms of AIC value
(but providing the best fit for 0% of the participants). We also
computed Akaike weights (Akaike, 1978; Wagenmakers & Farrell,
2004), which are calculated by using the raw AIC values and can
be interpreted as conditional probabilities for each model. From an
inspection of the Akaike weights in Table 2, the UVSD model is
1.88 and 3.50 times more likely (i.e., .49/.26 and .49/.14) than the
DPSD and MSD models, respectively, to be the best model.

For our data, the UVSD model provided the best fit for the
largest group of participants (40%). The DPSD model was third in
terms of AIC value, providing the best fit to 24% of the partici-
pants. The MSD model was second in terms of AIC value but
provided the best fit for the smallest group of participants (12%).
The UVSD model is 1.38 and 1.56 times more likely (i.e., .36/.26
and .36/.23) than the DPSD and MSD models, respectively, to be
the best model. On the whole, our results support Smith and
Duncan’s (2004) conclusion that the UVSD model is best able to
account for yes/no and 2AFC recognition performance, even
though we take issue with the method they used to arrive at that
conclusion. Somewhat surprisingly, the MSD model performed
poorly, capturing 12% of the participants in our data but none of
the participants in Smith and Duncan’s data. However, AIC pe-
nalizes the MSD model for including an additional parameter, and
so this is not the same as saying that the MSD model fitted the data
poorly in terms of chi-square goodness of fit.

Furthermore, we followed the same procedure to compare the
UVSD, DPSD, and MSD™* models. We generated data for three
different artificial experiments, with each of these experiments in
accord with a particular model, and fitted each of these experi-
ments three different ways. Because these models have the same
number of parameters, we used raw goodness of fit. Table 3 shows
the goodness of fit by summing across individuals. For both Smith
and Duncan’s (2004) Experiment 2 and our experiment, the mod-
els were successfully recovered, and therefore we report the si-
multaneous fits of the competing models to real data.

As shown in Table 4, for the empirical data from two experi-
ments, the UVSD model was best able to describe the relationship
between yes/no and 2AFC recognition performance, which is

consistent with the findings when the full version of the MSD
model was compared with the UVSD and DPSD models.® For
Smith and Duncan’s (2004) data, the UVSD model provided the
best fit for 69% of the participants. The DPSD model was second
best, providing the best fit for 17% of the participants, and the
MSD model was third, providing the best fit for 14% of the
participants. For our data, the UVSD model provided the best fit
for the largest group of participants (43%). The DPSD model was
third in terms of chi-square goodness of fit, providing the best fit
for 36% of the participants. The MSD model was second in terms
of chi-square goodness of fit but provided the best fit for the
smallest group of participants (21%). These results also show that
the UVSD model is best able to account for yes/no and 2AFC
recognition performance even when the MSD model is reasonably
constrained to have only two free parameters (i.e., the MSD"
model), as with the UVSD and DPSD models.

Finally, we consider the four possible nested model comparisons
according to Figure 2, not only to provide a method based on statis-
tical analyses for quantifying the degree of misfit in light of the
number of free parameters but also to examine whether we find
converging evidence in concert with the AIC results. First, the DPSD
and MSD models were compared by taking advantage of the fact
that the DPSD model is nested under the MSD model.'° If there is
no significant difference in chi-square value between these two
models with one degree of freedom for each participant, then the
conclusion would be that adding a free parameter to the MSD

8 Because AIC penalizes model flexibility according to the number of
free parameters and is valid for large data sets, we also calculated AIC,,
which includes the sample size (n) correction:

2V(V+ 1)
AIC, = — 2log(L) + 2V + h=v=1
where L and V represent the maximum likelihood and number of
free parameters, respectively. The results between AIC and AIC,
were not different across all individual data sets of the two experiments,
and therefore we report only the results of AIC.

9 Although all models are rejected for our data, this is the expected result
given enough power. Only in the unlikely case in which the winning model
fully and accurately characterized the performance of every participant
would the data not be expected to significantly deviate from the model,
given enough power. The goodness-of-fit statistics in this case have high
power considering that the simultaneous fit included fewer parameters per
condition than did the fit of the data from a typical six-confidence-scale
yes/no recognition memory experiment.

19 The DPSD model is nested under the MSD model by setting d’ of the
MSD model to infinity. This may appear to be problematic in terms of
parameter distributions. However, the use of chi-square in nested model
comparison does not assume anything regarding the form of the models
and is instead based on data distributions. Nevertheless, there may be a
concern that the data were at the extremes of the probability space. To
validate the use of the chi-square test, we confirmed that the difference in
likelihood between the DPSD and MSD models is distributed as a chi-
square distribution with df = 1. This was done by generating 1,000
simulated data from the DPSD model and then fitting both the DPSD and
MSD models to the simulated data to calculate the likelihood difference.
We found that the use of the chi-square test is warranted (i.e., the histogram
of the likelihood difference between the two models was nearly identical to
the chi-square distribution with df = 1).
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Table 1
Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and AIC Value
Fitted model
Smith & Duncan’s (2004) Experiment 2 Our experiment
True model UvVSD DPSD MSD EVSD UvVSD DPSD MSD EVSD
UVSD
Rank order 1 3 2 4 1 3 2 4
AIC value 20536 20623 20603 20804 25795 25877 25873 25956
DPSD
Rank order 2 1 3 4 2 1 3 4
AIC value 20889 20859 20896 20994 26085 26051 26109 26160
MSD
Rank order 3 2 1 4 2 3 1 4
AIC value 20791 20787 20784 20903 25747 25771 25739 25846
Note. Rank order ranges from 1 = best to 4 = worst. AIC value = —2log(L) + 2V, where L and V represent the maximum likelihood and number of free

parameters, respectively, that enter into the likelihood calculation. AIC = Akaike’s information criterion; UVSD = unequal-variance signal detection;
DPSD = dual-process signal detection; MSD = mixture signal detection; EVSD = equal-variance signal detection.

model cannot be justified and may merely capture random error.
Comparing the fit across participants in Smith and Duncan’s
(2004) Experiment 2 for the DPSD model revealed no significant
improvement in the fit for the MSD model, x*(29) = 35.09, p =
.20. However, there was a significant improvement in the MSD
model compared with the DPSD model for the data of our exper-
iment, X2(33) = 71.33, p < .001. Second, we applied the same
analysis to the MSD versus MSD* models. Adding the free pa-
rameter, d", to the full version of the MSD model was justified,
X*(29) = 68.40, p < .001; x*(33) = 62.78, p < .01, for Smith and
Duncan’s data and our data, respectively. Third, we applied the
same analysis to the DPSD versus EVSD models. Adding a free
parameter to the DPSD model compared with the EVSD model
was justified, x*(29) = 336.40, p < .001; x*(33) = 276.48, p <
.001, for Smith and Duncan’s data and our data, respectively. The
last nested model comparison was conducted between the UVSD
and EVSD models. There was also a significant improvement in
the UVSD model compared with the EVSD model, x*(29) =
384.95, p < .001; x*(33) = 309.92, p < .001, for Smith and
Duncan’s data and our data, respectively. These findings provide
the same conclusions as found with AIC.

Discussion

The present study used various methods to examine signal-
detection models of recognition memory with data that were

Table 2

obtained from two different tasks, yes/no and 2AFC. First, we
found that using the parameters estimated from yes/no ROC to
make model-specific predictions of proportion correct on the
2AFC task was not an appropriate method of model selection. The
EVSD model as well as all three of the considered SDT model
variants predicted proportion correct equally well. Second, a
theory-driven comparison of parameters with regression analyses
based on separate ROC fits of the two tasks merely served to
identify the least flexible model (with the best parameter recov-
ery), not the most valid model. In fact, with that method, the EVSD
model provided the best account. Moreover, in our simulation
studies, this method failed to identify the DPSD model even when
the simulated data were generated by that model. These findings
confirm that parameter regressions are inadequate as a method for
comparing the models in terms of their ability to generalize across
test format. By contrast, our simulation studies indicated that
simultaneous fits of both tasks successfully recovered the true
model (good model recovery). Using that method, we determined
that the UVSD model produced the most parsimonious interpre-
tation of performance on the yes/no and 2AFC tasks.

The Role of Parameter Reliability in Model Selection

The testing of quantitatively instantiated models is one of the
most important aspects of scientific inquiry. The goal is to select
the most parsimonious model that gives an accurate description of

Model Comparison: Rank Order of Simultaneous Fit to Empirical Data, AIC Value, Akaike Weight, and Percentage of the Best

Simultaneous Fit

Smith & Duncan’s (2004) Experiment 2

Our experiment

Variable UVSD DPSD MSD EVSD UVSD DPSD MSD EVSD
Rank order 1 2 3 4 1 3 2 4
AIC 20750 20799 20827 20987 25997 26026 26022 26167
w(AIC) 49 .26 .14 A1 .36 .26 .23 15
Best fit (%) 65 21 0 14 40 24 12 24
Note. Rank order ranges from 1 = best to 4 = worst. AIC = Akaike’s information criterion; UVSD = unequal-variance signal detection; DPSD =

dual-process signal detection; MSD = mixture signal detection; EVSD = equal-variance signal detection; w(AIC) = Akaike weight.
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Model Recovery: Chi-Square Value and Percentage of the Best Simultaneous Fit to Simulated Data

Fitted model

Smith & Duncan’s (2004) Experiment 2

Our experiment

True model UVSD DPSD MSD* UVSD DPSD MSD*
UVSD
X 181.96 289.40 204.65 207.17 292.63 258.04
Best fit (%) 62 21 17 70 15 15
DPSD
NG 213.76 182.82 223.81 287.81 262.26 315.80
Best fit (%) 21 62 17 27 61 12
MSD*
X 237.56 215.05 160.93 307.78 337.48 248.97
Best fit (%) 14 24 62 12 24 64

Note.

psychological phenomena. Goodness-of-fit measures are exten-
sively used to measure the adequacy of a model to account for the
data, and the model that provides the smallest deviation is often
preferred. A possible problem with this method of model selection
is that flexible models can fit data well even if they are invalid.
Taking a different approach, Smith and Duncan (2004) argued that
best fitting parameter estimates may not generalize across tasks if
a model fits well only because it is highly flexible. They instead
tested the ability of competing models to produce expected param-
eter estimates across two different tasks that were theoretically
related to each other, namely, yes/no and 2AFC recognition, and
they found that the UVSD model exhibited the best expected
relationship according to linear regression.

However, a model that produces the best expected relationship
between its estimated parameters in different situations is not
necessarily the most valid model. Instead, such a model may
simply be the least flexible model, thus producing the most reliable
parameter estimates. In Smith and Duncan’s (2004) regression
technique, the EVSD model enjoys an advantage even though it is
not likely to be a viable model of recognition memory. In fact, this
result is hardly surprising because reliability is maximized when it
is measured through the total variability in the instrument. This
also explains why all models (including the EVSD model) pre-
dicted proportion correct equally well; all models were compared
in terms of a single entire measure, proportion correct. Indeed, we
found highly reliable parameter values of the UVSD model even
when it was fitted to data generated by the DPSD model. It should
be noted that it is not because the UVSD model is more flexible

Table 4

UVSD = unequal-variance signal detection; DPSD = dual-process signal detection; MSD™ = mixture signal detection (with d* = 0).

than the DPSD model (and therefore the UVSD model mimics the
DPSD model). It is instead because a single parametric prediction
of the UVSD model (namely, d’, s zc) is derived from both d' . no
and slope, whereas the predicted d’, s and R, pc of the DPSD
model were each calculated separately from the corresponding
yes/no parameters.

Although the use of parameter reliability is not appropriate for
model selection, it is true that reliability sets a limit on validity. If
a measure is unreliable, it obviously cannot be shown to be valid.
Indeed, the regression coefficient indicates the extent of the
tradeoff between parameters in a model. In other words, parame-
ters play off against one another for the better fit, which can
happen more often to more flexible models. Although the focus of
this article is on model recovery, not on parameter recovery as
indicated earlier, the parameter reliability can be examined. Ap-
pendix B shows the regressions between the generating and recov-
ered parameter values of the simultaneous fits, which reveals
overall good parameter recovery for the simultaneous fitting tech-
nique (except for d’ of the MSD model of Smith and Duncan’s
[2004] data).

Model Flexibility

Any goodness-of-fit measure reflects the model’s ability to
approximate the underlying cognitive process as well as its ability
to fit random error. The process of model selection is complicated
because in most cases a model with more free parameters provides
better fits but is more flexible and may therefore overfit the data.

Model Comparison: Chi-Square Value and Percentage of the Best Simultaneous Fit to Empirical Data

Smith & Duncan’s (2004) Experiment 2

Our experiment

Variable UVSD DPSD MSD* UVvSD DPSD MSD*
X2 196.68 245.24 278.54 249.38 282.82 274.27
p .59 <.05 <.001 <.05 <.01 <.001
Best fit (%) 69 17 14 43 36 21

Note.

UVSD = unequal-variance signal detection; DPSD = dual-process signal detection; MSD™ = mixture signal detection (with d* = 0).
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In the worst case scenario, a good fit can be accomplished by a
model that is extremely good at fitting noise even though it
provides a poor approximation of the cognitive process. It is
undesirable to refer to the most complex model as the best, and
instead it is generally accepted that the best model is the one that
provides an adequate account of the data while using a minimum
number of parameters (e.g., Myung, 2000; Pitt & Myung, 2002;
Wagenmakers & Farrell, 2004).

It is clear that because the MSD model has an extra parameter
it is more flexible than the DPSD model, and a relevant question
is whether such flexibility is warranted. The MSD model is math-
ematically identical to the DPSD model not only when the MSD
model has an extremely high value of d' but also under the
following situations: (a) when d’ of the DPSD model is equal to d’
of the MSD model, which is also equal to d* of the MSD model,
and R of the DPSD model is 0; (b) when \ of the MSD model is
equal to 1, R is equal to 0, and d' of the DPSD model is equal to
d’ of the MSD model; and (c) when X\ and R are equal to 0 and d’
of the DPSD model is equal to d’ of the MSD model. Indeed, such
cases were found in around 38% of Smith and Duncan’s (2004,
Experiment 2) data and 36% of our data. Moreover, the low
reliability of each parameter value but still good fits of the MSD
model suggest that there are multiple ways in which parameters
conspire to capture the same or similar data. For example, because
both the DPSD and MSD models contain two types of target
(recollected vs. familiar targets for the DPSD model and low- vs.
high-attention targets for the MSD model), overall hit rates can
remain unchanged in these models while the mixture between the
two types of target trades off with the hit rate provided by each
type of target. Such tradeoffs, or high interchangeability between
parameters, may in fact be psychologically valid and reflect dif-
ferent shapes in the ROCs. However, without clear a priori theo-
retical grounds, it is difficult to produce an unequivocal conclusion
from the results.

There have been a handful of measures in model selection to
dispel the problems of model flexibility, although there is no clear
consensus as to which of these techniques is most accurate. Fur-
thermore, the definition of an accurate method for comparing
models depends on the chosen properties that are to be optimized
in an application of a model. An early and well-known measure
that penalizes flexible models, AIC, addresses the most salient
difference among models, namely the number of free parameters.
The logic behind AIC is that the better fit obtained with more
parameters should justify the necessity of those parameters in more
accurately capturing data. BIC is another popular measure of
theoretical approaches. While the aim of AIC is to reduce errors
and to modify overestimation, the use of BIC is to interpret data as
a Bayesian measure that handles uncertainty based on probability
distributions. However, BIC sometimes penalizes a model having
additional parameters too much (i.e., a conservative criterion).
Beyond this difference, both AIC and BIC ignore the functional
form of the models under consideration, and they both penalize
models based on the number of free parameters. Yet this is
assuredly incorrect, and the ability of a model to fit data is not
purely a function of the number of parameters. The ability to fit
data also depends on a model’s functional form (e.g., for some
models, an extra parameter may allow a higher degree of addi-
tional freedom to capture data). Another tool to address the func-
tional form of a model is to investigate model mimicry (e.g., using

simulation studies), which can help to identify the relative flexi-
bility of models even if they have the same number of free
parameters. Assessing model mimicry can be accomplished by
using a parametric bootstrap based on the full sample of the
observed data, or perhaps in concert with a nonparametric boot-
strap to incorporate sampling error in the data. Furthermore, one
could perform a parametric bootstrap without any reference to
observed data.'" In the current case, we used a simulation analysis
to ask a specific question: For these particular data, which
goodness-of-fit measure (AIC or BIC) penalized for the number of
free parameters in such a way as to enable model recovery?
However, the conclusion from this simulation study is not ex-
pected to generalize to other models or even to other data.

Finally, beyond the issue of goodness of fit, we also took it a
step further. Myung (2000) argued that one way to improve model
selection is to assess how well a model’s fit to one data sample
generalizes to other samples generated by the same process. In
essence, that is the method that we used in this study. That is,
simultaneous fits were used to compare models in their ability to
generalize across different tasks that are theoretically closely re-
lated to each other, and the UVSD model emerged as the most
viable model.

The Role of Recollection and Familiarity

In light of much evidence supporting the dual-process theory of
recognition, one might wonder how the models under consider-
ation here can be reconciled with recollection and familiarity. This
question is especially relevant to the UVSD model in terms of its
superior ability to simultaneously account for yes/no and 2AFC
recognition performance. The DPSD model is inherently a dual-
process model. In the DPSD model, recollection is viewed as a
categorical, threshold-based process, and familiarity is viewed as a
continuous process (Yonelinas, 1994). Participants are assumed to
rely on the recollection process alone whenever possible (and it is
assumed to always support high confidence) and to otherwise rely
on familiarity (which is associated with varying degrees of confi-
dence). The UVSD model, by contrast, is not as readily reconciled
with dual-process theory. However, Wixted (2007a, 2007b) pro-
posed that recognition memory decisions are based on memory
strength where strength is a function of recollection and familiarity
combined. The combined model views both recollection and fa-
miliarity as continuous processes and suggests that different
sources of evidence are summed into an aggregate variable upon
which the decision is based. According to this view, the UVSD
model is compatible with dual-process theory even though deci-
sions are based on a unidimensional memory strength variable.

The same logic can be applied to the MSD model because the
MSD model also assumes dual processes. The two old distribu-
tions in the MSD model are based on a unidimensional memory
strength variable (or familiarity), and they are mixed together on
the basis of attention (DeCarlo, 2002). In a similar vein, partici-
pants may rely on memory strength where familiarity and attention
processes are combined.

"' More specifically, two parametric simulation methods exist: data
informed versus data uninformed. The former depends on the observed
data (which is the one we used) and the latter does not (for implications of
this distinction, see Navarro et al., 2004; and Wagenmakers et al., 2004).
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Conclusion

Our study investigated how well three different models of
recognition memory can account for data from two theoretically
related tasks. The results are of both methodological and theoret-
ical interest. At the methodological level, our results suggest that
one previously used method based on regression analysis serves
only to identify the least flexible model (not the most valid model).
By contrast, the simultaneous fitting method is better able to
identify the true model while maintaining the principle of parsi-
mony. Our analysis also underscores the importance of investigat-
ing model mimicry as a tool of model selection. At the theoretical
level, our findings suggest that, among the three models consid-
ered here, the UVSD model is best able to describe the relationship
between yes/no and 2AFC recognition performance.
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Appendix A

Results of Bayesian Information Criterion (BIC) Analysis

Here, BIC (Schwarz, 1978) values are reported in a comparison
of models having different numbers of parameters: the unequal-
variance signal-detection (UVSD), the dual-process signal-
detection (DPSD), the mixture signal-detection (MSD), and the
equal-variance signal-detection (EVSD) models. As reported in
Table A1, BIC produced values that did not allow for recovery of
the model that generated the data. BIC penalizes the model having
more parameters too much for including the additional parameters,

Table Al

and sometimes even the EVSD model fit the data best (it should be
noted that this does not mean that BIC is inappropriate in general
for comparing competitive models). For the empirical data of the
two experiments, the UVSD model was best able to describe the
relationship between yes/no and 2AFC recognition performance,
as shown in Table A2. Although this is consistent with the finding
of Akaike’s information criterion (Akaike, 1973), we do not dis-
cuss this BIC result because of its failure in the model recovery.

Model Recovery: Rank Order of Simultaneous Fit to Simulated Data and BIC Value

Fitted model

Smith & Duncan’s (2004) Experiment 2

Our experiment

True model UVSD DPSD MSD EVSD UVSD DPSD MSD EVSD
UVSD
Rank order 1 2 4 3 1 3 4 2
BIC value 21689 21776 21861 21851 27107 27189 27305 27149
DPSD
Rank order 3 1 4 2 3 2 4 1
BIC value 22041 22011 22154 22040 27398 27363 27541 27353
MSD
Rank order 2 1 4 3 2 3 4 1
BIC value 21943 21939 22042 21950 27060 27083 27171 27039
Note. Rank order ranges from 1 = best to 4 = worst. BIC value = —2log(L) + Vlog(n) where L, V, and n represent the maximum likelihood, number

of free parameters, and number of observations, respectively, that enter into the likelihood calculation. BIC = Bayesian information criterion; UVSD =
unequal-variance signal detection; DPSD = dual-process signal detection; MSD = mixture signal detection; EVSD = equal-variance signal detection.

Table A2

Model Comparison: Rank Order of Simultaneous Fit to Empirical Data, BIC Value, Schwarz Weight, and Percentage of the Best

Simultaneous Fit

Smith & Duncan’s (2004) Experiment 2

Our experiment

Variable UVSD DPSD MSD EVSD UVSD DPSD MSD EVSD
Rank order 1 2 4 3 1 2 4 3
BIC 21903 21951 22085 22034 27309 27339 27454 27360
w(BIC) 45 22 .02 31 .35 24 .05 .36
Best fit (%) 48 45 0 7 40 36 0 24
Note. Rank order ranges from 1 = best to 4 = worst. BIC = Bayesian information criterion; UVSD = unequal-variance signal detection; DPSD =

dual-process signal detection; MSD = mixture signal detection; EVSD = equal-variance signal detection; w(BIC) = Schwarz weight.

(Appendixes continue)
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Appendix B

Parameter Estimates of Simultaneous Fit

Model parameter estimates of simultaneous fit are reported here. timate of empirical data and parameter estimate of simulated data
Additionally, the proportion of variability between parameter es- is presented.
Table B1

Mean (SE) Parameter Estimate of Simultaneous Fit and Coefficient of Determination (R*) Between Parameter Estimate of Empirical
Data and Parameter Estimate of Simulated Data

Smith & Duncan’s (2004) Experiment 2 Our experiment
Model and
parameter Empirical Simulated R* Empirical Simulated R?
UVSD
d 1.93 (0.11) 1.93 (0.11) .94 1.34 (0.15) 1.30 (0.14) .98
s 0.63 (0.03) 0.62 (0.03) 457 0.74 (0.04) 0.75 (0.04) 80"
DPSD
d 0.92 (0.10) 0.92 (0.10) 76" 0.64 (0.07) 0.68 (0.08) 617
R 0.39 (0.03) 0.36 (0.04) a7 0.27 (0.04) 0.24 (0.04) 80"
MSD
d 6.61 (0.71) 5.11(0.72) 08" 6.27 (0.85) 5.48 (0.82) 16"
d 0.54 (0.13) 0.28 (0.17) 767 0.08 (0.14) -0.09 (0.16) 347
A 0.51 (0.04) 0.60 (0.05) 647 0.45 (0.05) 0.50 (0.06) 617"
MSD*
d 3.07 (0.31) 3.38 (0.60) ST 3.68 (0.52) 3.49 (0.52) 18"
A 0.76 (0.03) 0.78 (0.03) 747 0.60 (0.05) 0.61 (0.04) S

Note. UVSD = unequal-variance signal detection; d' = sensitivity; s = slope of the receiver-operating characteristic; DPSD = dual-process signal
detection; R = recollection; MSD = mixture signal detection; d* = sensitivity for partially or not attended items; A = mixing probability; MSD™ = mixture
signal detection (with d* = 0).

Tp=.14 *p<.05 **p<.00l
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