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We present a signal detection-like model termed the stochastic detection and retrieval model (SDRM) for
use in studying metacognition. Focusing on paradigms that relate retrieval (e.g., recall or recognition) and
confidence judgments, the SDRM measures (1) variance in the retrieval process, (2) variance in the
confidence process, (3) the extent to which different sources of information underlie each response, (4)
simple bias (i.e., increasing or decreasing confidence criteria across conditions), and (5) metacognitive
bias (i.e., contraction or expansion of the confidence criteria across conditions). In the metacognition
literature, gamma correlations have been used to measure the accuracy of confidence judgments.
However, gamma cannot distinguish between the first 3 attributes, and it cannot measure either form of
bias. In contrast, the SDRM can distinguish among the attributes, and it can measure both forms of bias.
In this way, the SDRM can be used to test competing process theories by determining the attribute that
best accounts for a change across conditions. To demonstrate the SDRM’s usefulness, we investigated
judgments of learning (JOLs) followed by cued-recall. Through a series of nested and non-nested model
comparisons applied to a new experiment, the SDRM determined that a reduction in variance during the
confidence process is the most likely explanation of the delayed-JOL effect, and a stronger relation
between information underlying JOLs and recall is the most likely explanation of the testing-JOL effect.
Following a brief discussion of implications for JOL theories, we conclude with a broader discussion of
how the SDRM can benefit metacognition research.
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Research on metacognition typically involves memory para-
digms in which participants provide confidence judgments before,
during, or after recall or recognition (Nelson & Narens, 1994). For
example, in a judgment of learning (JOL) experiment, participants
(a) study a list of stimulus–response pairs, (b) at some point view
each stimulus and rate their confidence (JOL) that when presented
with it again they will be able to recall the associated response, and
(c) undergo cued-recall testing. The results of many metacognition
experiments were analyzed with the Goodman–Kruskal gamma

correlation between rated confidence and memory performance
because gamma was believed to have desirable statistical proper-
ties (Gonzalez & Nelson, 1996; Nelson, 1984; although see Mas-
son & Rotello, 2009). Gamma, also called resolution, provides an
index of how well confidence judgments predict actual memory
performance (i.e., metacognitive accuracy) on an item-by-item
basis. However, it is a blunt tool to use for testing hypotheses
generated from theoretical predictions because it ignores the rich
quantitative complexity of the data that may serve to constrain
theory. Formal cognitive models are required for this purpose.

Despite the substantial empirical literature on metacognition
that has developed over the years (a search of the PsycINFO
database using the keyword of metacognition yielded nearly 4,500
publications), the field suffers from a dearth of formal models.
Notable exceptions are the JOL model proposed by Sikström and
Jönsson (2005) and the source activation confusion model (Sc-
hunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997).
The former invokes slow and fast drifts in memory trace strength
to explain the relation between JOLs and subsequent cued-recall
performance, and the latter is a network model applied to para-
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digms that involve predictions of future recognition of a currently
unrecalled item. Augmenting these process models, we propose a
measurement model, which provides a formal framework for the-
ory testing. The core of this model assumes two samplings of
memory strength per stimulus (e.g., one for retrieval and the other
for confidence), allowing separate descriptions of the confidence
and retrieval processes. We developed this framework upon real-
izing that experimental manipulations may affect memory re-
trieval, use of the confidence scale, or the type of information used
for each process, and that current methods of theory formulation
and testing cannot distinguish among these possibilities. This
model, which we call the stochastic detection and retrieval model
(SDRM), is closely linked to signal detection theory (SDT; Green
& Swets, 1966; Macmillan & Creelman, 2005) in general and
specifically to SDT models of recognition memory. In the spirit of
SDT, the SDRM can be applied to a wide variety of memory
retrieval and confidence judgments.

The remainder of this article is organized as follows. First, we
motivate and develop the SDRM and discuss its relation to SDT.
Next, we describe how to use the SDRM as a tool for testing
hypotheses about latent processes underlying recall and judgment.
This section illustrates the power of the SDRM by applying it to
theoretical issues currently under dispute in recall and JOL re-
search. Then, we briefly describe a new experiment to address the
issues, apply the SDRM to the data, and draw theoretical conclu-
sions much stronger than those available from the gamma-based
analyses typically found in this literature. Finally, the article con-
cludes with discussions about the status of metacognition research
and about the SDRM itself.

The SDRM and Its Relation to SDT

The SDRM is similar to SDT in assuming that latent real-valued
continuous decision variables underlie memory retrieval and con-
fidence judgments and that observed responses depend on the
location of a sampled decision variable relative to one or more
criteria. Like SDT, the SDRM is not intended as a model for
predicting behavior but is instead a tool for measuring the cogni-
tive processes that lead to the latent decision variables and there-
fore can be used as a vehicle for testing hypotheses about the
underlying processing. Like some of the SDT recognition memory
models (see, e.g., Jang, Wixted, & Huber, 2009), the SDRM is a
family of multinomial signal-detection-based models and allows
for nested model comparisons (e.g., Batchelder & Riefer, 1990).

However, the SDRM differs from SDT in three important ways.
We first list these ways and then justify or amplify them.

1. SDT applies only to paradigms that include two (or some-
times more) independently defined categories of stimuli (e.g.,
studied and non-studied words; presented and non-presented
items; benign and non-benign tumors), and therefore SDT does not
apply to tasks such as recall memory that involve a single stimulus
category. In contrast, the SDRM categorizes trials on the basis of
the participant’s retrieval behavior (e.g., recalled and not-recalled
stimuli).

2. SDT assumes that the decision variable is sampled once per
stimulus, and the same sample is used for both binary choice
behavior and a confidence rating. In contrast, the SDRM assumes
two distinct (possibly related) memory strength samplings, X and

Y, with one providing a strength value that is compared to a
retrieval threshold and the other proving a strength value that is
compared to confidence criteria. The SDRM operationalizes these
assumptions in the form of an X–Y bivariate memory-strength
distribution.

3. Due to its mathematical structure, SDT cannot identify noise
in the confidence rating process (e.g., criterion variance) separate
from memory strength variability. In contrast, the SDRM can in
some (but not all) paradigms identify the relative contribution of
trial-by-trial noise in the confidence and retrieval processes.

To justify Point 1, we assume that information underlying recall
exists along a strength continuum, consistent with the fact that
people often have partial memories when they cannot fully recall
an item or event (e.g., Koriat, Levy-Sadot, Edry, & de Marcas,
2003; Nelson & Narens, 1994). Because there are only targets (and
no foils) in a recall memory experiment, the two distributions on
this strength continuum, one for recalled and the other for not-
recalled memories, result from the internal processes of the ob-
server rather than from independently defined stimulus states (for
the recognition memory paradigm, see Clarke, Birdsall, & Tanner,
1959; Galvin, Podd, Drga, & Whitmore, 2003; Pollack, 1959).

Regarding Point 2, some studies found dissociations between
confidence and recall accuracy (e.g., Begg, Duft, Lalonde, Mel-
nick, & Sanvito, 1989; Benjamin, Bjork, & Schwartz, 1998; Nel-
son & Narens, 1994), leading to the claim that a variety of different
cues are used for confidence judgments that might or might not be
consistent with the factors underlying recall (for detail, see, e.g.,
Jang & Nelson, 2005; Koriat, 1997). To address this matter, the
SDRM assumes that distinct real-valued memory traces underlie
confidence judgment and recall tasks. Thus, the SDRM assumes
two samplings of memory, one in the service of recall and the other
leading to a confidence judgment, and therefore two types of
response thresholds (or criteria). When sampling memory for
recall, a trace above some threshold leads to recall of that item.1

When sampling to provide a confidence estimate, the resulting
judgment depends on the trace strength relative to the locations of
confidence criteria. This perspective is consistent with results in
recognition memory research suggesting that different memory
strength distributions underlie old/new decisions and confidence
judgments (e.g., Busey, Tunnicliff, Loftus, & Loftus, 2000; Tulv-
ing, 1981; Van Zandt, 2000). If the two separate samples (or the
two different detections) rely on the same underlying information
(e.g., encoding strength), and furthermore, if that information
remains unchanged between the confidence rating and retrieval,
then the samples will be perfectly, or at least very strongly,
correlated. However, if some types of information are more im-
portant for one process or the other, or if the strength distribution
decays or changes in some manner between the confidence rating

1 It is easy to imagine that multiple memories may exceed the threshold,
in which case, the strongest trace would determine the response. Because
the strongest trace tends to be the correct one for cued-recall, we limit
theorizing in this article to the assumption that the correct trace either is or
is not above the threshold and do not distinguish errors of omission due to
no trace exceeding threshold from errors of commission due to a mislead-
ing trace being the highest above threshold. This could be modeled in the
SDRM by including an additional sampling distribution for extra-list items,
although we leave this extension to future development.
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and retrieval, then these two samples may be somewhat less
correlated. The SDRM represents the two samplings by means of
a bivariate, instead of a univariate, memory strength distribution,
which allows any degree of correlation between the two sampled
memory strengths. With this double-detection model, collection of
confidence in relation to recall can be a useful method for illumi-
nating the nature of both recall and confidence.

To address Point 3, although criterion variability is mathemat-
ically non-identifiable under standard applications of SDT, some
receiver operating characteristic (ROC) analyses in recognition
memory research have considered it. That is, the non-linearity
sometimes found in individual z-transformed ROC (zROC) curves
(e.g., Heathcote, 2003; Ratcliff, McKoon, & Tindall, 1994) can be
interpreted as a consequence of decision noise. Indeed, recent
work in recognition memory has challenged the fundamental as-
sumption that criterion placement is a noise-free process and has
extended SDT to include decision noise (e.g., Benjamin, Diaz, &
Wee, 2009; Mueller & Weidermann, 2008). In suitable paradigms,
the SDRM can identify the relative contribution of such variance
in both the retrieval and confidence processes by using the ap-
proach developed for the stochastic judgment model (SJM; Wall-
sten & González-Vallejo, 1994), which has been applied to state-
ment verification and probability judgment tasks. The SJM
decomposes covert confidence into a knowledge and an error
component, and an overt response is treated as a decision based on
a degree of covert confidence, which itself depends on the item in
question and possibly on momentary fluctuations. Like the SJM,
the SDRM assumes that on a trial-by-trial basis, or perhaps as a
result of cumulating learning or fatigue, confidence judgment
criteria and the recall thresholds may vary.

To summarize and amplify these ideas a bit further, the SDRM
allows two samplings of memory traces, one that subserves mem-
ory retrieval and another that subserves ratings of confidence. The
strength variables at these two different stages may be correlated
perfectly, not at all, or anywhere in between. It is convenient,
therefore, to represent the memory strength variable by a bivariate
X–Y distribution. Memory retrieval is successful when the X sam-
ple is sufficiently strong, modeled as exceeding a possibly noisy
threshold, and the confidence estimate depends on where the Y
sample falls relative to possibly noisy confidence criteria. Because
this approach makes no assumptions regarding the timing of the
two types of tasks, the model structure is identical for confidence
judgments that precede or follow memory retrieval (i.e., prospec-
tive or retrospective confidence judgments). Additionally, there is
nothing special about the bivariate distribution, which simply
allows us to handle the two tasks within a single coherent structure.
If the paradigm called for a third task, say another confidence
estimate or recall opportunity, we could assume a trivariate distri-
bution. For purposes of this article, we only implement a bivariate
distribution. The SDRM is potentially applicable to a wide variety
of phenomena in both recall and recognition memory that involve
comparisons between different types of judgments. The SDRM
assumes two (or more) samplings of memory strength per stimulus
but does not specify the representation of those traces or factors
that may affect their strength. Like SDT, the SDRM is a theoretical
framework within which multiple contrasting assumptions can be
tested and compared.

Model Details

To facilitate understanding of the SDRM, consider the example
data sets in Figure 1, which summarize results from a JOL-recall
experiment that we describe subsequently. Each panel displays the
joint JOL-recall outcome response distribution from a different
experimental condition. The abscissa shows the six JOL rating
scale categories, and the filled and empty bars represent unsuc-
cessful and successful recall performance, respectively. For exam-
ple, the left-most filled bar in the delayed-JOL panel shows that
approximately 40% of the stimuli led to both unsuccessful recall
upon testing and a JOL rating of 0% confidence that recall would
be successful. The job of the SDRM is to explain these joint
response distributions across experimental conditions to determine
which latent variables changed between experimental conditions
and therefore affected the degree of correspondence between
memory retrieval and confidence judgments (e.g., as indexed by
gamma). Finally, SDRM-predicted distributions are shown by the
circles and are explained below.

In any one condition, the joint response distribution over the 2 �
6, recall-outcome (correct vs. incorrect) by confidence-rating (0%,
20%, . . . , 100%) matrix may be due to factors operating during
the process of recall, the process of confidence estimation, or the
relation between the two. For simplicity’s sake, we first describe
the SDRM for a single condition as represented in any one of the
panels and then show how it is used to compare two conditions,
that is, across panels.

In the SDRM, responses arising from the memory retrieval and
confidence judgment processes depend on the sampled memory
strength relative to the operative and possibly variable criteria. The
top panel of Figure 2 portrays the SDRM representation of this
process: Memory strength lies along a continuum X, and an item is
recalled if its strength exceeds a memory criterion, CM. The
probability of recall on any given trial, therefore, is the area under
the density curve that is above CM on that trial. As commonly done
in SDT, the SDRM makes the simplifying assumption that the
memory strength distribution (the broader distribution over X in
the figure) is a standard normal distribution with a mean of 0.0 and
a standard deviation of 1.0. All other parameters and distributions
are scaled relative to the memory strength distribution. We allow
variability in CM, which we illustrate as the taller distribution (M)
centered at CM with standard deviation �M.2 We refer to this noise
in the retrieval process as memory.3 Of critical importance is the
realization that �M indicates the relative contribution of recall
criterion variability compared to variability in the memory strength
underlying recall, �X, which is set to the arbitrary constant 1.0.
Thus, memory indicates the relative level of noise in the retrieval
process as compared to noise in the memory strength distribution.

Consider next the confidence component (i.e., noise in the
confidence rating process as realized through criterion variability).

2 Because criterion variability is typically less than memory variability,
the criterion distribution is narrow and tall relative to the short and broader
memory strength distribution.

3 Throughout this article, we list the three components of the SDRM that
directly affect the gamma correlation in italics. A bias change is a change
in the average positions of the criteria and does not affect the correspon-
dence between confidence and retrieval. In contrast, a change in criterion
variability for either the memory retrieval of confidence processes will
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Just as with memory retrieval, the rated confidence that a given
item will be or has been recalled depends on memory strength for
that item at the time of the JOL rating, as illustrated in the middle
panel of Figure 2 (the broader distribution over Y). As with the
trace strength distribution at recall, we assume that this distribution
is normal with a mean of 0.0 and a standard deviation of 1.0. The
participant provides a rating that corresponds to the location of the
strength variable relative to the decision criteria on that trial: for
example, 0% sure if the variable is below C1, 20% sure if it is
between C1 and C2, 40% sure if it is between C2 and C3, . . . , or
100% sure if the variable is above C5. Just as with the memory
criterion, we assume that the confidence criteria are variable, and
that all are normally distributed with standard deviations �C as
illustrated by the taller distributions (C) centered on the criteria.
Similar to the memory criterion, �C indicates the relative contri-
bution of confidence criterion variability as compared to variabil-
ity in the memory strength underlying confidence, which is set to
the arbitrary constant 1.0. The criteria may vary in a linked
fashion, or they may vary independently of each other. The two
possibilities lead to distinct models. To our knowledge, neither is
a special case of the other. We cover both cases below.

Finally, memory strength sampled from the Y distribution during
the confidence stage may or may not be correlated with that
sampled from the X distribution at recall. The bottom panel of
Figure 2 shows the X–Y bivariate distribution with positive cova-
riance for illustrative purposes. The strength of the correlation
between X and Y depends on the extent of overlap in the memory

information sampled at the two stages. At one extreme, the same
information underlies both judgments, and the distributions are
perfectly correlated with unit covariance; at the other, the sampling
is independent in the two cases, and the distributions are unrelated
(i.e., 0.0 covariance). We represent this range of possibilities with
a linear correlation parameter � between X and Y and refer to this
component of the SDRM as correlation. Thus, in the SDRM, the
memory strength distribution is bivariate normal with both vari-
ances set to 1.0, with both means set to 0.0, and with a single �
parameter determining the relation between X and Y.

In summary, the degree of correspondence between confidence
ratings and memory retrieval, such as traditionally measured with
a gamma correlation, is determined by the level of noise in the
retrieval process (i.e., memory threshold variability), noise in
the confidence process (i.e., confidence criteria variability), or the
correlation between the information underlying each process.

To implement the SDRM, we consider the linked-confidence-
criteria version first because of its simpler mathematics. The
assumption here is that the confidence criteria move up or down on
Y in lockstep, depending on the randomly sampled criterion noise
term. Still just focusing on a single condition of a JOL-recall
experiment, consider the joint probability that an item is both
successfully recalled and receives JOL rating Ji, where the rating

affect the gamma correlation as will a change in the correlation between
the information used for each process.

Figure 1. Recall-confidence joint distributions from the reported experiment. The top panels show the delayed
(left) and immediate (right) judgment of learning (JOL) conditions, and the bottom panels show the testing (left)
and no-testing (right) JOL conditions. The no-testing condition and the immediate condition are functionally
identical (both are immediate JOLs without any testing experience), although the data were collected from
separate groups of participants. The small dots indicate performance of the stochastic detection and retrieval
model with the reported best fitting parameters.
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is neither the lowest nor the highest allowed (i.e., 0 � i � n, where
n is the number of confidence criteria and n � 1 is the number of
JOL categories). This probability is given by

p�Ji, recalled� ��� h�x,y,��N�x�CM,�M��N�y�Ci�1,�C�

� N�y�Ci,�C�	dxdy, (1)

where N�x�CM,�M� is the cumulative probability that the sampled
recall criterion is less than the sampled memory strength x, given
criterion mean CM and standard deviation �M, and therefore recall
is successful. The difference term within the brackets is the prob-
ability that the sampled memory strength y falls between confi-
dence thresholds Ci and Ci�1, given unbiased random error around

the confidence thresholds with standard deviation �C. The bivari-
ate normal density term in Equation 1 is the usual

h�x,y,�� �
1

2
�1 � �2 exp�x2 � 2�xy � y2

2�1 � �2� �,

with correlation parameter �. This equation assumes that the dis-
tributions of memory strengths underlying both recall and confi-
dence have a mean of 0.0 and a standard deviation of 1.0.

The probability that a response is not correctly recalled and
receives confidence estimate Ji is given by

p�Ji, not recalled� ��� h�x,y,���1 � N�x�CM,�M�	

� �N�y�Ci�1,�C� � N�y�Ci,�C�	dxdy. (2)

Equation 2 differs from Equation 1 only in the memory term,
within the first set of brackets, which estimates the probability that
the recall criterion falls above the sampled memory strength x.

Applying Equations 1 and 2 to all confidence judgments, J0, J1,
. . . , Jn, with suitable changes in the confidence term for the
end-value judgments J0 and Jn, provides a mutually exclusive and
exhaustive partitioning (MEE) of the unit area under the bivariate
memory trace strength distribution h(x, y, �).

The situation is slightly more complicated when the modeled
criteria are allowed to vary independently of each other, with the
potential to become out of order (e.g., Rosner & Kochanski, 2009;
Treisman & Faulkner, 1985). Because criterion order is not pre-
served, Equations 1 and 2 no longer lead to a MEE of the area
under h(x, y, �), and a normalization procedure is required. Com-
plete equations and details for both linked and independent criteria
are available in Section A of the supplemental materials.

In the modeling that follows, we implemented the SDRM with
both linked and independent criteria and found that the two ver-
sions yield qualitatively similar results, although the independent
criteria model tends to provide a better fit to recall data. Therefore,
the results we report below reflect the independent criteria version
of the SDRM.

Using the SDRM

To reproduce observed data distributions, as in Figure 1, the
parameter space of the SDRM is searched using maximum likeli-
hood estimation (MLE) procedures. For a single condition, the 11
degrees of freedom contained in the 12 response categories only
lightly constrain the SDRM, which has nine free parameters (�M,
�C, �, CM, and 5 Cis). The SDRM, therefore, readily captures the
data in any single condition. For example, it accounted for 99.92%
of the variance of the empirical proportions for the delayed-JOL
condition (top left panel of Figure 1). Importantly, fitting the
model to the data of a single condition is of no help in testing
theoretical predictions. For example, the almost perfect fit to this
single condition provides no information as to why JOL accuracy,
as measured by gamma, is better in the delayed (� � .93) than the
immediate (� � .32; top right panel of Figure 1) JOL condition.

The goal, however, is not merely to fit the SDRM to data from
different experimental conditions but to use the model across two
or more conditions to test hypotheses about how the experimental
conditions affect cognitive and metacognitive processing. This

Figure 2. Three components of the stochastic detection and retrieval
model that can affect judgment of learning accuracy. The top panel
represents the memory component: the distribution (X) of memory strength
underlying recall responses, which is a standard normal distribution with a
mean of 0.0 and a standard deviation of 1.0, and the distribution (M) of the
criterion that separates recalled from not-recalled items, which is a normal
distribution with a mean of CM and a standard deviation of �M. The middle
panel represents the confidence component: the distribution (Y) of memory
strength underlying confidence judgments, which is a standard normal
distribution with a mean of 0.0 and a standard deviation of 1.0, and the five
criteria distributions (C) that separate the six confidence judgments (i.e.,
from 0% sure to 100% sure), which are normal distributions with a mean
of Ci (i � 1–5) and a standard deviation of �C. The bottom panel represents
the correlation (�) component, which determines the relation between X
and Y through a bivariate normal distribution (� � .75 in this example).
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goal is accomplished by constraining some parameters to equal
each other across conditions and allowing others to vary. For
example, if a particular theory specifies that two conditions differ
only in processing at the time of recall, then a version of the
SDRM that allows memory to differ while constraining all the
other parameters to be equal across conditions should be non-
significantly different from the full model, which allows all the
parameters to vary. Or if the theory implies that an independent
variable affects processing only at the time of the confidence
rating, then a model that allows only confidence to vary across
conditions should not differ significantly from the full model.
Likewise, if the theory suggests that different information under-
lies recall and confidence judgments, then a model that allows only
correlation to vary across conditions should fit as well as the full
model.

These examples invoke the logic of testing both nested models
(i.e., comparing a superordinate model to one subsumed under it
by virtue of constraining some parameter estimates) and non-
nested models (i.e., comparing two models, neither one of which is
a special case of the other, such as comparing a memory-
constrained model to a confidence-constrained model). Both
nested and non-nested tests are necessary in the service of theory
development and testing: the former to establish the descriptive
validity of the SDRM and the latter to compare specific theories of
underlying recall and confidence judgment processes.

Simple Bias and Metacognitive Bias

The average positions of the confidence criteria (the Cis) and the
memory threshold (CM) affect the marginal distributions of con-
fidence ratings and memory performance, respectively, but these
variables do not affect the correspondence between confidence and
memory retrieval.4 Thus, these variables index bias. More specif-
ically, the confidence criteria can shift upward, representing a
tendency to give lower confidence ratings, or downward, repre-
senting a tendency to give higher confidence ratings. We refer to
such a shift as simple bias. In application to JOLs across different
conditions, we did not observe a change in simple bias, and greater
constraint was imposed by using the same criteria values across
conditions. However, a different kind of bias shift tends to occur
with a change in the correspondence between confidence and
memory retrieval. When the correspondence is high (i.e., a high
gamma correlation), participants tend to use the extremes of the
confidence scale giving both high and low confidence ratings (e.g.,
Dunlosky & Nelson, 1994; Koriat & Goldsmith, 1996; Koriat,
Sheffer, & Ma’ayan, 2002); in contrast, when the correspondence
is low (i.e., a low gamma correlation), participants tend to use the
middle of the confidence scale. These data patterns correspond to
a contraction or expansion of the confidence criteria, respectively,
and we refer to such a coordinated shift as metacognitive bias. We
measured the extent of metacognitive bias by setting the criteria of
one condition equal to the criteria of another condition multiplied
by a metacognitive bias parameter,  � 0. When  � 1, the
confidence criteria in the condition to which  applies are spread
further apart than in the other condition, and the judgment distri-
bution tends to be more of an inverted-U shape. When 0 �  � 1,
the criteria are closer together, and the distribution tends to be
more of a U-shape.

Current Accounts of the Underlying Processes of
Recall and JOLs

To illustrate the power of the SDRM, we next apply it to new
data within the JOL paradigm for the purpose of distinguishing
among competing theoretical accounts. This section first summa-
rizes the relevant JOL phenomena and then explores the different
theoretical explorations in terms of the SDRM’s components.

Delayed-JOL Effect

Typically, JOL accuracy as measured by gamma is much better
when recall confidence is judged at least 30 s after study than when
it takes place immediately. Nelson and Dunlosky (1991) first
observed this phenomenon and called it the delayed-JOL effect. To
explain it, they proposed the monitoring-dual memories (MDM)
hypothesis, which asserts that when assessing the likelihood of a
subsequent successful retrieval, one monitors information re-
trieved from both short- and long-term memory (STM and LTM).
STM information retrieved during immediate JOLs is strong and
effectively adds noise to the prediction of subsequent recall be-
cause it is not available at the time of recall. STM information is
much weaker for delayed JOLs and therefore does not interfere
with LTM information, which more reliably predicts recall suc-
cess.

Spellman and Bjork (1992) offered a different account of the
delayed-JOL effect. They assumed that individuals covertly at-
tempt recall when providing JOLs, which results in retrieval prac-
tice, and therefore items retrieved in the service of a JOL are more
easily retrieved in the final recall. However, this retrieval practice
is not particularly effective with immediate JOLs because the
words were viewed just a few seconds ago. Nelson, Narens, and
Dunlosky (2004) termed this the self-fulfilling-prophecy (SFP)
hypothesis, and Kimball and Metcalfe (2003) called it the memory
hypothesis.

There is an ongoing debate whether the MDM or the SFP
hypothesis provides a better explanation of the delayed-JOL effect.
The MDM hypothesis postulates that the difference between im-
mediate and delayed JOL performance is due to changes within the
confidence process (i.e., metamemory improvement after a delay),
whereas the SFP hypothesis postulates that it is due to changes in
the recall process (i.e., memory improvement after a delay). Em-
pirical comparisons of the two accounts have not been decisive
(e.g., Kimball & Metcalfe, 2003; Nelson et al., 2004). The SFP
hypothesis is supported if recall following delayed JOLs is greater
than recall following immediate JOLs or nothing (control). How-
ever, summarizing the relevant studies, Sikström and Jönsson
(2005) concluded that recall was not systematically enhanced after
delayed JOLs. Kimball and Metcalfe (2003) and Nelson et al.
(2004) tested these accounts independently by re-exposing the
items following JOLs. However, this manipulation itself could
affect gamma correlations because the JOLs and recall were

4 However, average criterion placement can affect the gamma correla-
tion by changing the proportion of dyads that produce ties. For instance, if
adjacent confidence criteria are placed far apart, it becomes more likely
that any two JOL judgments will yield the same JOL value and such ties
are eliminated from the calculation of gamma.
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achieved before and after the re-exposure, respectively (Sikström
& Jönsson, 2005).

The SDRM provides a means for formulating competing pre-
dictions from the two theories. Within the SDRM, the MDM (or
metamemory) hypothesis corresponds to changes in confidence
judgments because it assumes that the process underlying the JOL
responses has been changed. In contrast to this account, from the
SDRM perspective, the SFP (or memory) hypothesis appeals di-
rectly to the recall process because it predicts decreases in retrieval
variability following delayed JOLs. In other words, if the MDM
account is correct, the immediate and delayed conditions differ in
the confidence judgment stage, and if the SFP account is correct,
they differ in the recall stage.

How do these different predictions translate to different param-
eter constraints in the SDRM? The MDM and SFP hypotheses are
verbal theories, and neither provides formal quantitative specifi-
cation of the joint distribution between JOLs and recall. Therefore,
it is difficult to state with certainty how the confidence and
retrieval processes should be affected under each account. Never-
theless, we posit the most natural mapping when relating each
account to the components of the SDRM. Because the MDM
hypothesis assumes that STM introduces noise to the JOL process,
this implies that �C varies between the immediate and delayed
conditions. In contrast, the SFP hypothesis assumes that recall is
more reliable due to previous retrieval attempts with delayed JOLs,
which implies that �M varies between the immediate and delayed
conditions. When interpreting changes in these parameters, it is
important to note that the criterion variability parameters are
expressed as the ratio of criterion variability relative to memory
strength (X or Y) variability, which is set to 1.0 for convenience.
Thus, observed differences in estimates of either of these two
parameters could be due to changes in criterion variability or to
changes in the relevant memory strength variable, X or Y. The
important conceptual point is that one account assumes that the
relative noise level occurring during the judgment process is
affected, whereas the other account assumes that the relative noise
level occurring during the recall process is affected.

Testing-JOL Effect

JOL accuracy is also affected by practice. In what we call the
testing-JOL effect, JOL accuracy as measured by gamma improves
when participants cycle through the study, JOL rating, and test
phases more than once (e.g., Finn & Metcalfe, 2007; Koriat, 1997;
Koriat et al., 2002). Critically, this cycling involved repeated
testing of the same items, which provides not only practice with
JOL ratings in general but also a chance to develop item-specific
JOL knowledge.

During multi-trial learning, people tend to accurately distinguish
previously recalled and not-recalled items and can monitor their
knowledge of the outcomes of previous tests (Bisanz, Vesonder, &
Voss, 1978; Gardiner & Klee, 1976; Klee & Gardiner, 1976;
Robinson & Kulp, 1970). Consequently, they learn items effi-
ciently on subsequent study trials. Such results suggest that re-
trieval practice can play an important role in metacognitive judg-
ments. Indeed, the JOL to a repeated item is more strongly
correlated with recall on the previous test of that item than with
recall on the subsequent test of that item (Finn & Metcalfe, 2007;
King, Zechmeister, & Shaughnessy, 1980; Koriat, 1997; Lovelace,

1984), which suggests that JOLs are based on information pertain-
ing to the outcome of the previous recall. In other words, JOLs
constitute at least in part postdiction based on previous retrievals.
Finn and Metcalf (2007) referred to this account as the memory for
past test (MPT) hypothesis.

In terms of the SDRM, the MPT hypothesis corresponds to
different information sources underlying the JOLs in the first and
second study-JOL-test cycles. This is because the MPT hypothesis
assumes that second cycle JOLs depend on the information from
the previous recall test, whereas this information is not available
during the initial cycle. Thus, the correlation between memory
sampling at test and at JOL should be different between the first
and second cycles.

Experiment: JOL Accuracy and JOL-Recall Joint
Distributions

Having now cast these theories in terms of restrictions on the
SDRM across experimental conditions, we briefly describe an
experiment that yielded data to which we applied the model. The
experiment had additional purposes as well. Because the testing-
JOL effect is new and not yet fully explored, one purpose was to
establish its cause more precisely. Using S, J, and T to refer to
study, JOL rating, and test, respectively, previous studies have
compared JOL accuracy when cycling through SJT once (the usual
procedure) to that when cycling through a second time with the
same items. Based on these previous studies, it is unclear whether
the improvement on the second SJT cycle is due to the entire prior
cycle, to only one component of the prior SJT cycle, or to some
combination: for example, the prior S (with JT being irrelevant),
the prior SJ (with T being irrelevant), and so on. Another purpose
of the experiment was to look at the delayed- and testing-JOL
effects jointly, which has not yet been done. Thus, this experiment
crossed the immediate-delay variable with type of prior practice
(i.e., none, which serves as the control condition, S, SJ, ST, and
SJT).

The experimental method is described completely in Section B
of the supplemental materials. Here, we provide a very brief
overview. The experimental design was a 5 � 2 mixed factorial
with type of practice (control, S, SJ, ST, and SJT) preceding a full
SJT cycle manipulated between subjects (45 participants per con-
dition) and JOL timing (immediate and delayed) manipulated
within subjects. Concrete unrelated noun–noun pairs (Paivio,
Yuille, & Madigan, 1968) were used: 24 pairs for each of the
immediate and delayed JOLs. Participants were instructed to study
word pairs and to indicate their JOL for a pair (i.e., to predict the
future recall probability: 0%, 20%, 40%, 60%, 80%, and 100%)
whenever the cue word appeared alone. Immediate JOLs were
elicited right after the offset of each pair, and the delayed JOLs
were elicited after all the pairs had been studied. In both cases,
JOL responses were self-paced. Finally, during the recall phase,
participants typed the target word when cued by the first word of
the pair.

Before applying the SDRM, we compared gamma values across
experimental conditions to provide a point of contact with other
studies. In short, we replicated the delayed-JOL effect and identi-
fied the causal event in the testing-JOL effect. Specifically, the
delayed-JOL effect showed up under each of the five practice
conditions, a testament to its robustness. In contrast, the testing-
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JOL effect was evident only in the immediate conditions (ST and
SJT), apparently due to a ceiling effect for the delayed conditions.
In addition, this experiment is the first to demonstrate the aspect
(S, J, or T) that induces a testing-JOL effect—because the ST and
SJT conditions revealed a testing-JOL effect, whereas the S and SJ
conditions did not, this demonstrates that the testing-JOL effect
depends on a prior recall test. The complete results are reported in
Section B of the supplemental materials, and here we focus mainly
on the JOL-recall joint distribution data (to which the SDRM is
applied).

As noted previously, gamma is a blunt tool for theory testing
and is insensitive to response distributions, such as those displayed
in Figure 1. The top panels of this figure show the immediate and
delayed JOL distributions for the control condition participants,
and the bottom panels show the no-testing and testing immediate
JOL distributions for the SJT condition participants. We note that
the no-testing condition and the immediate part of the control
condition are functionally identical (these are items from the first
study list to which participants gave immediate JOLs), although
the data were collected from separate groups of participants. These
four distributions exemplify the delayed- and testing-JOL effects
(top two and bottom two, respectively). For completeness, the
remaining distributions are available in Section C of the supple-
mental materials. Next, we apply the SDRM to the two distribu-
tions for each effect to determine whether the observed increases
in JOL accuracy are due to reduced noise in the recall process,
reduced noise in the JOL process, the use of more consistent
information for the two processes, or a change only in metacog-

nitive bias. Arriving at the most descriptive sub-models for each
effect provides a means for examining the MDM and SFP hypoth-
eses of the delayed-JOL effect and the MPT hypothesis of the
testing-JOL effect.

Applying the SDRM

In this section, we demonstrate how the SDRM uses the full
response distribution data to determine the best explanation for the
difference in JOL accuracy across conditions.

Model Hierarchy

Each descriptive theory implies a different set of constraints on
the parameter values of the SDRM, which in turn defines a
different sub-model under the unconstrained, or full SDRM. Com-
paring the goodness-of-fit (GOF) statistics of these models pro-
vides a means for evaluating and comparing the descriptive valid-
ity of the competing theories. Figure 3 shows the model hierarchy
that guides this process for the two experimental conditions: delay
versus immediate (under no testing), and testing versus no testing
(under immediate).

M1, the full model, shows a full set of parameters across the two
conditions. The second subscript, 1 or 2, for each parameter
denotes the respective conditions. As described earlier, the means
and standard deviations of the bivariate X–Y memory strength
distribution are set at (0, 0) and (1, 1), respectively, and are
therefore not shown.

Figure 3. Model hierarchy for nested model comparisons. Directed arrows between models indicate subset
relations between models.
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M1 accounts for changes in metacognitive bias by using com-
pletely independent confidence criteria for each of the two condi-
tions. With so many free parameters (i.e., 10 confidence criteria),
it is difficult to identify the cause of the change in JOL accuracy.
Therefore, M2, nested under M1, is a much more constrained
model that still allows for a change in metacognitive bias; in this
model, the five criteria in Condition 2 differ from the five in
Condition 1 only by a multiplicative factor .

Models M3a, M3b, and M3c, all equivalently nested under M2,
are obtained via parameter restrictions at different processing
stages. Thus, M3a represents the case in which Conditions 1 and 2
entail the same relation between the two memory strength sam-
plings X and Y, represented as �1 � �2 � �. M3b assumes that the
level of noise in the recall process is the same for both conditions,
represented as �M1 � �M2 � �M. Finally, M3c assumes that the
level of noise in the JOL rating process is the same in both
conditions, represented as �C1 � �C2 � �C.

Models M4a, M4b, and M4c are each nested under the two
models above them, as indicated by the directed arrows, and
combine the corresponding two sets of restrictions. Thus, M4a
represents theories that assume that Conditions 1 and 2 differ only
in the variance of underlying memory recall processes. M4b rep-
resents theories that assume the two conditions differ only in the
variance underlying JOL ratings. M4c represents theories that
assume the conditions differ only in the relation between the
memory processes at recall and at JOL ratings.

Finally, M5 is nested under all three M4 models. M5 is a
necessary comparison because a change in metacognitive bias can
by itself cause an apparent change in JOL accuracy due to poor
resolution when using a small number of discrete confidence
ratings. This can be seen by considering an extreme situation in
which the metacognitive bias parameter, , is set to infinity (i.e.,
all of the confidence criteria are placed at either positive or
negative infinity), in which case all of the memory strength sam-
ples fall between the same two criteria (i.e., the same JOL rating
is given for all items), and JOL accuracy is at chance. Thus, as
metacognitive bias becomes more liberal (i.e., a small value of 
places the criteria closer to the center, which results in a U-shaped
confidence distribution), there is more opportunity for differences
in the JOL ratings to indicate differences between recalled and
not-recalled items. Comparing M5 to the M4 models tests whether
metacognitive bias alone explains the differences in JOL accuracy.

Model Recovery Probabilities

Our primary interests are in comparisons across the non-nested
models of M4a, M4b, and M4c for theory testing. It is important
that we investigate whether model mimicry can occur among these
non-nested models—if one model can mimic the behavior of
another, but not vice versa, then that model is more flexible and
can fit a greater range of data patterns without necessarily being
more accurate. We examined model mimicry by means of para-
metric bootstrap simulations5 (for detail, see Navarro, Pitt, &
Myung, 2004; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004),
which allowed us to determine whether the true model can be
recovered when it is in competition with other models. The details
are reported in the Appendix.

We also developed and estimated a new model comparison
statistic, which we term the Bayesian recovery probability (BRP).

Using Bayes rule and an assumption of equal priors, the BRP uses
the results of the Monte Carlo simulations to estimate the proba-
bilities that each model is the correct one given that it emerged as
the model that best fit the observed data. The BRP therefore
provides a measure of certainty for the model selection process
that factors in the functional form of the models. Based on our
delayed- and testing-JOL effect data, these values ranged from
.772 to .921, as reported in the Appendix: that is, assuming that
one of the three models is correct, it is unlikely that an error was
made when concluding that the best fitting one was the true model.

Using the SDRM to Test Theoretical Accounts

Delayed-JOL effect. To compare theoretical explanations of
the delayed-JOL effect, we fit the nine versions of the SDRM
shown in Figure 3 to the response distributions of the delayed
versus immediate data set for Conditions Control, S, and SJ (i.e.,
the conditions that do not show the testing-JOL effect). The results
for each fit were very similar, and we report here only those for the
control condition: For completeness, the best fits of Conditions S
and SJ are available in Section C of the supplemental materials.

The results of fitting the SDRM to the control condition delayed
versus immediate data set are shown in Figure 4. The Models
M1–M5 are those illustrated in Figure 3, and the chi-square values
superimposed on the directed arrows were obtained via maximum-
likelihood tests comparing each nested model to the one above it,
or in the case of M1 to a model that used the observed data to
define a multinomial distribution. The chi-square degrees of free-
dom (dfs) equals the difference in the number of free parameters
when comparing two nested models, or between the number of
observed data types (i.e., 24 combinations of JOL and recall levels
across experimental conditions) and M1. Values significant at � �
.05 are indicated by solid arrows, and non-significant values are
indicated by dotted lines.

Note that M1 is a significantly worse model than one based on
the data (i.e., a model with a free parameter for each observed
frequency), and M2 is a significantly worse model than M1, as
measured by chi-square GOF difference. However, considering the
huge Ns involved in this experiment (i.e., 45 participants � 24
words � 2 conditions � 2,160), this does not necessarily mean
that these models are fitting poorly in an absolute sense. Indeed,
these models captured the data pattern extremely well, explaining
95% and 83% of the variance of the empirical proportions, respec-
tively.

M2 is the first substantive model that includes some constraint
between the conditions of interest, and we take this model as the
point of departure in drawing theoretical conclusions regarding the
underlying explanation behind changes in JOL accuracy. In mov-
ing down Figure 4 from M2, the paths of interest are the ones in
which the lower model does not differ significantly from the one
above it, implying that the extra free parameters of the upper
model are unnecessary. The logic of this process is based on Type

5 The procedure of Wagenmakers, Ratcliff, Gomez, and Iverson (2004)
included non-parametric sampling of the observed data set for each Monte
Carlo simulation as well parametric data generation. However, for signal-
detection models of recognition memory, there was little or no difference
between Monte Carlo simulations that did or did not include non-
parametric sampling (Jang, Wixted, & Huber, 2011).
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1 error rates when deciding whether a nested model is significantly
worse than the one above it. The associated Type 2 error rate is
unknown, although as noted above, power was very high for this
experiment. As seen in Figure 4, this nested model comparison
process identified Models M3a and M3b as non-significantly dif-
ferent from M2. Continuing down the figure, M4b is non-
significantly different from both M3a and M3b. Model M5, how-
ever, differed significantly from M4b.

On the basis of comparing successively nested models, M4b
clearly appears to provide the best description of the data as
represented by M2. Moreover, Models M4a and M4c differ sig-
nificantly from M2, whereas M4b does not. This point is seen by
summing the chi-square values (and their dfs) on the distinct paths
connecting M2 to each M4 model. The results are shown in the top
row of Table 1. Thus, M4b, which allows noise in the confidence
judgment process to change between the two conditions, provided
the best fit among all the models that included some form of
constraint between the conditions of interest. The top panels of
Figure 1 show the fit of M4b compared to the data: The circles
show the predicted joint response distributions based on the M4b
MLE parameters. The M4b response proportions accounted for
82% of the variance of the empirical proportions.

The empirical data column on the delayed versus immediate
side of Table 2 reports the best fitting parameter values based on
M4b. The simulated data column shows the parameter averages
and standard deviations from fitting the 1,000 Monte Carlo simu-

lations that generated artificial data based on the best fitting
parameters listed in the empirical data column. A comparison
between the parameter estimates based on the empirical versus the
simulated data demonstrates that parameter recovery was fairly
reliable.

Note from the delayed-JOL parameter estimates in Table 2 that
the position of the memory criterion (CM) was lower for the
delayed condition (0.23) than the immediate condition (0.54). This
difference reflects different levels of proportion correct recall for
the two conditions (in this experiment, M � 0.32, SE � 0.04 for
immediate; and M � 0.37, SE � 0.04 for delayed), although this
change cannot explain the difference in JOL accuracy.6 Note next
that the estimate of noise in the confidence judgment process (�C)
was greater for immediate JOLs (2.27) than for delayed JOLs
(0.05), a result that supports the MDM hypothesis of less noise
from STM with delay. Finally, note that the metacognitive bias
parameter () is lower for the delayed condition (0.45) than the
immediate condition (1.00), which indicates that the confidence
scale was used in a more liberal fashion for delayed JOLs. How-
ever, metacognitive bias alone does not provide a good explanation
of the data, as can be seen by comparing M5 to M4b and noting the
substantial reduction in GOF.

Testing-JOL effect. To account for the testing-JOL effect,
we fit the nine versions of the SDRM shown in Figure 3 to the
response distributions of the testing versus no-testing data set (i.e.,
the second SJT cycle vs. the first SJT cycle in Condition SJT), in
the same manner as for the delayed versus immediate data set. As
illustrated in Figure 5, the nested model analysis clearly identified
M4c as the best account of the data in terms of non-significant
paths from one model to another for the paths between Models M2
and M4c as well as the significant path between M4c and M5. The
summed values, as shown in Table 1 (bottom row), confirm this
conclusion by showing that Models M4a and M4b differed signif-
icantly from M2, whereas M4c did not. Thus, comparing across the
three models, M4c, which allows different correlations between
the two memory strength samplings in the testing and no-testing
conditions, provided the best explanation of the testing-JOL effect.
The circles of Figure 1 (bottom panels) show the predicted joint
response distributions based on the M4c best fitting parameters.
The M4c response proportions account for 82% of the variance of
the empirical proportions.

6 Accurate JOLs occur when higher confidence ratings reliably predict a
higher probability of recall, which is a function of the joint probability
distribution rather than the marginal distribution represented by the overall
probability of recall. For further discussion on this issue, see, for example,
Kimball and Metcalfe (2003), Nelson and Dunlosky (1992), and Sikström
and Jönsson (2005).

Figure 4. Chi-square statistics comparing nested models for the delayed
versus immediate data set. Chi-square values significant at � � .05 are
shown via solid arrows. Non-significant values are shown via dashed
arrows. Among the models that include some form of constraint between
the conditions (i.e., M2–M5), the bold box (M4b, confidence) provides the
best account of the delayed-judgment-of-learning effect.

Table 1
Goodness-of-Fit Difference Between M2 and M4

Data set df

Memory Confidence Correlation

(M4a) (M4b) (M4c)

Delayed vs. Immediate 2 23.46 1.93 32.81
p � .38

Testing vs. No testing 2 53.69 54.36 0.39
p � .82
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Similar to the delayed-JOL effect results, Table 2 shows there
was a decrease in CM for the testing condition (�0.19 vs. 0.60 for
the no-testing condition) because as expected, recall accuracy was
higher in that condition (in this experiment, M � 0.27, SE � 0.03
for no-testing JOLs, and M � 0.62, SE � 0.04 for testing JOLs).

There was also a decrease in metacognitive bias () for the testing
condition (0.83 vs. 1.00 for the no-testing condition), although this
effect by itself was unable to account for the change in JOL
accuracy. As shown in Table 2 for the testing-JOL effect, the
estimate of the relation (�) between the memory strength under-
lying recall and the memory strength underlying confidence was
greater after testing (.68) than prior to test experience (.35). This
result supports the MPT hypothesis (i.e., more diagnostic JOL
information with test experience).

Finally, recall that the immediate and no-testing control condi-
tions are functionally the same condition except that they involved
different groups of participants. Therefore, it may seem surprising
that many of the parameters in Table 2 differ when comparing
these conditions. However, this does not reflect poor reliability
when applying the SDRM, as demonstrated by the small parameter
standard deviations seen in Table 2, and as demonstrated by
successful model recovery. Instead, this occurred because the best
model for the delayed-JOL effect was a different, non-nested
model than the best model for the testing-JOL effect (i.e., M4b and
M4c, respectively). When the same model is applied to the
delayed- and testing-JOL effects, the nominally identical control
condition for each effect does in fact produce nearly identical best
fitting parameter values. This highlights the fact that the SDRM is
not a single model; instead, it is a framework for comparing
different measurement models that may correspond to different
process models of interest.

General Discussion

The SDRM as a New Method for Contrasting Theories

Based on detection theory, the SDRM identifies sources of
variance in related memory and judgment tasks and compares
confidence criteria placement across tasks. We created this model
to examine confidence accuracy of memory performance and to
provide parsimonious explanations of theoretical issues.

Focusing on JOL research, we demonstrated that the SDRM is
useful for distinguishing among competing theories. In the case of

Figure 5. Chi-square statistics comparing nested models for the testing
versus no-testing data set. Chi-square values significant at � � .05 are
shown via solid arrows. Non-significant values are shown via dashed
arrows. Among the models that include some form of constraint between
the conditions (i.e., M2–M5), the bold box (M4c, correlation) provides the
best account of the testing-judgment-of-learning effect.

Table 2
Best-Fitting SDRM Parameter Estimates of Empirical Data and Simulated Data

Parameter

Delayed vs. Immediate (M4b: Confidence) Testing vs. No testing (M4c: Correlation)

Empirical data Simulated data Empirical data Simulated data

Delayed Immediate Delayed Immediate Testing No testing Testing No testing

C1 �1.89 �1.93 (0.33) �1.02 �1.08 (0.13)
C2 0.27 0.32 (0.21) �0.18 �0.17 (0.05)
C3 1.41 1.52 (0.26) 0.33 0.37 (0.10)
C4 2.43 2.62 (0.21) 0.81 0.85 (0.05)
C5 3.51 3.64 (0.24) 1.32 1.36 (0.05)
CM 0.23 0.54 0.28 (0.05) 0.45 (0.05) �0.19 0.60 �0.19 (0.05) 0.61 (0.07)
 0.45 1.00a 0.43 (0.35) 1.00a 0.83 1.00a 0.74 (0.13) 1.00a

�M 0.45 0.52 (0.10) 0.05 0.06 (0.12)
�C 0.05 2.27 0.11 (0.22) 2.40 (0.36) 0.05 0.06 (0.14)
� 0.91 0.91 (0.02) 0.68 0.35 0.71 (0.07) 0.33 (0.07)

Note. Parameter standard deviations are in parentheses. The values on the simulated data column are the parameter averages from the 1,000 Monte Carlo
simulations. SDRM � stochastic detection and retrieval model.
a The parameter value was set to 1.00.
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the delayed-JOL effect, the SDRM found that the increase in JOL
accuracy was due to less noise in the confidence judgment process
with delayed than immediate JOLs. This result is consistent with
the MDM (metamemory) hypothesis but not with the SFP (mem-
ory) hypothesis. However, neither hypothesis is sufficiently spec-
ified to make quantitative predictions regarding the joint JOL and
recall distributions. Based on qualitative descriptions of these
theories, we assumed that the MDM hypothesis corresponds to a
change in variance within the JOL process, whereas the SFP
hypothesis corresponds to a change in variance within the retrieval
process. Proponents of the SFP hypothesis may disagree with this
assumption, in which case the SFP hypothesis may be compatible
with our results. Regardless, application of the SDRM has quan-
titatively specified the source of the delayed-JOL effect, which
should aid further development of either account.

In the case of the testing-JOL effect, the SDRM found that the
increase in JOL accuracy was due to a closer correspondence
between the information underlying JOLs and the memory
strength supporting recall after testing experience, supporting the
MPT hypothesis. The SDRM also revealed different metacognitive
biases across conditions for both the delayed- and testing-JOL
effects (which was not considered by any of the theories), although
changes in metacognitive bias alone were unable to explain the
increase in JOL accuracy with delay or testing experience. Thus,
the SDRM provides far stronger evidence for the supported theo-
ries than is possible under traditional gamma-based analyses.

Theoretical Mechanisms and Models of Recall
and JOLs

The most important theoretical point of the SDRM is that one
can (we would argue must) distinguish retrieval from confidence
judgment processes, considering that either can change the accu-
racy of confidence judgments. In support of this distinction, it has
been observed that recall and confidence judgments are dissociated
in patient populations (e.g., Shimamura & Squire, 1986), in
midazolam-induced amnesia (e.g., Merritt, Hirshman, Hsu, & Ber-
rigan, 2005), and with alcohol intoxication (e.g., Nelson, McSpad-
den, Fromme, & Marlatt, 1986). Nonetheless, the consequences of
this distinction have not been well considered. Full consideration
of this distinction leads to the realization that the observed relation
between confidence and retrieval can be affected by noise in the
confidence process, noise in the retrieval process, or the type of
information used for each process. Unlike simple correlation mea-
sures (such as gamma), the SDRM can separately measure each of
these influences.

A comparison between the SDRM and the formal model of
recall and JOLs proposed by Sikström and Jönsson (2005) is
warranted. Their model provided good fits of JOL distributions,
although the data were not separated into recalled versus not-
recalled JOL values (i.e., the model was fit to the marginal JOL
distribution rather than the joint distribution with recall). Specifi-
cally, this model assumes that confidence judgments only depend
on memory strength, which decays at different rates. Aside from
producing power-law forgetting, this model captures the delayed-
JOL effect due to the passage of time and intervening events rather
than the use of different processes. Intuitively, it seems that Sik-
ström and Jönsson’s model corresponds to a change in correlation
of the SDRM because it assumes that a different kind of informa-

tion underlies immediate JOLs (fast memory traces) compared to
delayed JOLs (slow memory traces). But intuitions can be mis-
leading, and it is difficult to conclusively determine whether this is
the case because their model was formulated in terms of prediction
accuracy rather than a detection process with decision noise. More
specifically, the equations of Sikström and Jönsson’s model ex-
plicitly produce a gamma correlation rather than constructing the
gamma correlation out of the joint probability distribution of
recalled and not-recalled at each confidence level.

Beyond Gamma

We now return to our original motivation for developing the
SDRM, which was to have a more sensitive way to compare the
predictions of competing theories than non-parametric measures
such as gamma. Nelson (1984) argued that gamma provides a
measure of confidence judgment accuracy that is free of the
assumptions entailed by SDT (for further discussion on this issue,
see Nelson, 1986; Swets, 1986a, 1986b). This proved to be a
persuasive argument, and gamma has been used in almost all
metacognition articles published since the mid-1980s.

Providing evidence against the preeminence of gamma, Masson
and Rotello (2009) demonstrated that the computation of gamma is
not free of distributional assumptions and that the empirically
determined value of gamma systematically deviates from its actual
value under realistic conditions (also see Rotello, Masson, &
Verde, 2008). The root of the problem is that calculation of gamma
excludes ties, which are pairs of test items that produced equiva-
lent JOL ratings or were equivalently recalled or not-recalled.
When ties constitute a substantial fraction of the data, the under-
lying distributions are modified in unsystematic ways, and the
results can be very misleading. In contrast, the SDRM uses all of
the data, and because the distributional assumptions are explicit,
they can be altered if necessary.

Conclusion

The SDRM emphasizes the role of stochastic variability during
the confidence and retrieval processes. Assuming that confidence
and retrieval can each be described by a criterial process, it is clear
that a lack of correspondence between confidence and retrieval can
arise from decision noise in one criterial process or the other.
Furthermore, the two criterial processes may be based on different
kinds of information. The SDRM, as a general method, distin-
guishes among different explanations for a change in confidence
accuracy. Although the current application was in the study of
cued-recall and JOLs, the SDRM can be used in any area of
metacognition (which involves both recall and recognition). The
SDRM specifies a family of measurement models depending on
which components are allowed to vary across experimental con-
ditions. Comparing models within the family provides a means for
differentiating between verbal theories that advocate different ex-
planations for a change in confidence accuracy. Furthermore, the
SDRM can measure both simple bias shifts and changes in meta-
cognitive bias.
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Appendix

Model Flexibility and Bayesian Recovery Probability (BRP)

Traditional flexibility correction procedures, such as Akaike’s
information criterion (Akaike, 1973) and Bayesian information
criterion (Schwarz, 1978) cannot apply here because the three
versions of M4 are at the same level in the hierarchy and therefore
have the same number of parameters. Model mimicry methods,
such as the parametric bootstrap cross-fitting method (Wagenmak-
ers et al., 2004), also cannot be applied in this instance because
they rely on pairwise comparisons, which may yield intransitive
results when comparing three or more models. Therefore, we
developed a new method, or the BRP, that avoids all these diffi-
culties by estimating the probability of recovering the true model
given that model and its competitors.

The procedure entails using each of the M4 models to generate
an artificial data set, which is followed by application of all of the
candidate models to each artificial data set to determine which
model yields the best fit. By carrying this process out thousands of
times, one can determine whether differential model flexibility is
a problem. We first determined the proportion of times each model

yielded the best fit to the 1,000 data sets generated for each model,
which are shown in Part A of Table A1.

These entries in Part A show the percentage of model i provid-
ing the best fit given that model j generated the data when the
competition is among models i, j, k. What we want, however, when
considering empirical data for which the true model is not known,
is the reverse probability, the BRP, which is the probability that
model i is the correct model given that it emerged as the best fitting
among candidate models i, j, k. We obtain the BRP by assuming
equal prior probabilities among the three models and applying
Bayes rule to the probabilities in Part A. The results are shown in
Part B. For example, when considering the delayed versus imme-
diate paradigm, the probability that M4a is the true model is .797
given that it best fit the data among candidate models, M4a, M4b,
and M4c. Continuing along this row where M4a provides the best
fit, the probability that M4b is the true model is .150, and the
probability that M4c is the true model is .053. It is apparent that the
models are approximately equal in flexibility.

(Appendix continues)

199STOCHASTIC DETECTION AND RETRIEVAL MODEL

http://dx.doi.org/10.1037/h0025327
http://dx.doi.org/10.1121/1.1907802
http://dx.doi.org/10.1121/1.1907802
http://dx.doi.org/10.1037/0278-7393.20.4.763
http://dx.doi.org/10.1016/S0022-5371%2870%2980012-3
http://dx.doi.org/10.1016/S0022-5371%2870%2980012-3
http://dx.doi.org/10.1037/a0014463
http://dx.doi.org/10.3758/PP.70.2.389
http://dx.doi.org/10.1037/0278-7393.23.1.3
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1037/0278-7393.12.3.452
http://dx.doi.org/10.1037/0033-295X.112.4.932
http://dx.doi.org/10.1111/j.1467-9280.1992.tb00680.x
http://dx.doi.org/10.1111/j.1467-9280.1992.tb00680.x
http://dx.doi.org/10.1037/0033-2909.99.2.181
http://dx.doi.org/10.1037/0033-2909.99.2.181
http://dx.doi.org/10.1037/0033-2909.99.1.100
http://dx.doi.org/10.1037/0096-1523.11.2.187
http://dx.doi.org/10.1037/0096-1523.11.2.187
http://dx.doi.org/10.1016/S0022-5371%2881%2990129-8
http://dx.doi.org/10.1016/S0022-5371%2881%2990129-8
http://dx.doi.org/10.1037/0278-7393.26.3.582
http://dx.doi.org/10.1016/j.jmp.2003.11.004
http://dx.doi.org/10.1037/0033-295X.101.3.490


Table A1
Model Recovery: (A) Percentage of the Best Fit to Simulated Data (N � 1,000 per Cell) and (B)
Probability of Each Model Given the Best Model Fit Under the Equal Priors of Bayes Rule (Bayesian
Recovery Probability)

Data set Fitted model

True model

Memory Confidence Correlation

(M4a) (M4b) (M4c)

(A) Delayed Memory (M4a) 84.0 15.8 5.6
vs. Confidence (M4b) 3.5 78.3 3.2

Immediate Correlation (M4c) 12.5 5.9 91.2

Testing Memory (M4a) 77.4 19.9 2.9
vs. Confidence (M4b) 6.5 77.3 4.8

No testing Correlation (M4c) 16.1 2.8 92.3

(B) Delayed Memory (M4a) 0.797 0.150 0.053
vs. Confidence (M4b) 0.041 0.921 0.038

Immediate Correlation (M4c) 0.114 0.054 0.832

Testing Memory (M4a) 0.772 0.199 0.029
vs. Confidence (M4b) 0.073 0.872 0.054

No testing Correlation (M4c) 0.145 0.025 0.830
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A correction to this article appears on page 221.
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Correction to Jang, Wallsten, and Huber (2011)

In the article “A stochastic detection and retrieval model for the study of metacognition,” by
Yoonhee Jang, Thomas S. Wallsten, and David E. Huber (Psychological Review, Online First
Publication. November 7, 2011. doi:10.1037/a0025960), incorrect equations were published. The
corrected forms of Equations (1) and (2) in this article are as follows:

p�Ji, recalled� ��� h�x, y, ��N�x�CM, �M��N�y�Ci, �C� � N�y�Ci�1,�C�	dxdy �1�

p�Ji, not recalled� ��� h�x, y, ���1 � N�x�CM, �M�	�N�y�Ci, �c� � N�y�Ci�1, �C�	dxdy �2�

The corrected forms of Equations in the Supplemental Material are as follows:

When i � 0,

p�Ji, recalled� ��� h�x, y, ��N�x�CM, �M��1 � N�y�Ci�1, �C�	dxdy,

p�Ji, not recalled� ��� h�x, y, ���1 � N�x�CM, �M�	�1 � N�y�Ci�1, �C�	dxdy,

when 0 � i � n,

Linked version of the SDRM:

p�Ji, recalled� ���h�x, y, ��N�x�CM, �M��N�y�Ci, �C� � N�y�Ci�1, �C�	dxdy,

p�Ji, not recalled� ��� h�x, y, ���1 � N�x�CM, �M�	�N�y�Ci, �C� � N�y�Ci�1, �C�	dxdy,

Independent version of the SDRM:

p�Ji, recalled���� h�x, y, ��N�x�CM, �M�N�y�Ci, �C��1 � N�y�Ci�1, �C�	dxdy,

p�Ji, not recalled���� h�x, y, ���1 � N�x�CM, �M�	N�y�Ci, �C��1 � N�y�Ci�1, �C�	dxdy,

and when i � n,

p�Ji, recalled� ��� h�x, y, ��N�x�CM, �M�N�y�Ci, �C�dxdy,

p�Ji, not recalled� ��� h�x, y, ���1 � N�x�CM, �M�	N�y�Ci, �c�dxdy.
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