
ORIGINAL PAPER

Neural Habituation Enhances Novelty Detection: an EEG Study
of Rapidly Presented Words

Len P. L. Jacob1
& David E. Huber1

# Society for Mathematical Psychology 2019

Abstract
Huber and O'Reilly (Cognitive Science, 27(3), 403–430, 2003) proposed that neural habituation aids perceptual processing,
separating neural responses to currently viewed objects from recently viewed objects. However, synaptic depression has costs,
producing repetition deficits. Prior work confirmed the transition from repetition benefits to deficits with increasing duration of a
prime object, but the prediction of enhanced novelty detection was not tested. The current study examined this prediction with a
same/different word priming task, using support vector machine (SVM) classification of EEG data, event-related potential (ERP)
analyses focused on the N400, and dynamic neural network simulations fit to behavioral data to provide a priori predictions of the
ERP effects. Subjects made same/different judgements to a response word in relation to an immediately preceding brief target
word; prime durations were short (50 ms) or long (400 ms), and long durations decreased P100/N170 potentials to the response
word, suggesting that this manipulation increased habituation. Following long duration primes, correct “different” judgments of
primed response words increased, evidencing enhanced novelty detection. An SVM classifier predicted trial-by-trial behavior
with 66.34% accuracy on held-out data, with greatest predictive power at a time pattern consistent with the N400. The habituation
model was augmented with a maintained semantics layer (i.e., working memory) to generate behavior and N400 predictions. A
second experiment used response-locked ERPs, confirming the model’s assumption that residual activation in working memory
is the basis of novelty decisions. These results support the theory that neural habituation enhances novelty detection, and the
model assumption that the N400 reflects updating of semantic information in working memory.
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Introduction

Pyramidal cells exhibit temporary synaptic depression, ow-
ing to neurotransmitter depletion, which limits the ability of
sending cells to signal receiving cells (Abbott et al. 1997).
This reduces post-synaptic activity by an order of magni-
tude, but many theories of object identification
(Riesenhuber and Poggio 1999) do not include this dynamic.
Furthermore, these theories do not specify how the visual

system resets itself for each new visual input. Huber and
O'Reilly (2003) proposed that short-term synaptic depres-
sion, which in this context we refer to as neural habituation,
exists to solve this temporal parsing problem, allowing un-
obstructed perception of the current stimulus by suppressing
the response of recently identified visual objects; because
previously viewed objects are suppressed, any new object
is highly salient in comparison. However, if an object is
repeated, this suppression may make it difficult to identify
that object on its second presentation. Huber and O’Reilly
developed an artificial neural network model with synaptic
depression to explain such repetition blindness effects.
However, the benefits of neural habituation were not previ-
ously demonstrated. Using computational modeling, support
vector machine (SVM) classification of trial EEG, and
event-related brain potential (ERP) analyses of the N400,
we report evidence that temporary neural habituation as a
result of short-term synaptic depression enhances novelty
detection when reading rapidly presented words.
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According to the habituation model, brief presentations
(less than 100 ms) produce a burst of neural activity that
carries over, blending with the next visual input. Longer pre-
sentations reduce neural activity (reducing blending), making
it difficult for previously active cells to respond to new input.
Behavioral evidence of this dynamic in low-level vision is
found in the “missing dot” paradigm developed by Di Lollo
(1980). Subjects report the position of a single missing dot in
an array of 5 × 5 dots shown in two separate presentations,
each displaying 12 dots. An accurate performance requires
visual integration between the two displays (i.e., blending)
and performance increases with the increasing duration of
the first display up to 100 ms. However, additional increases
in duration reduce performance, termed the “inverse duration
effect.” Prior work documented similar inverse duration ef-
fects for higher-level stimuli, such as words (Huber 2008)
and faces (Rieth and Huber 2010). However, inverse duration
effects are not necessarily a detriment when there is a need to
parse visual information between each display, rather than
integrate across displays. The current study tested the benefits
of decreasing visual persistence in a novelty detection task
while examining EEG responses to identify the neural basis
of enhanced novelty detection.

In the current study, subjects made same/different judge-
ments to each response word in relation to an immediately
preceding target word; neural habituation was manipulated
by varying the duration of a prime word presented immedi-
ately prior to the target word. For brief primes (50 ms), there
was confusion (blending) between the prime and a different
target word, and performance was near chance when the re-
sponse word repeated the prime. However, when the prime
duration was longer (400 ms), there was a large increase in
accuracy, reflecting the benefits of enhanced novelty detec-
tion. We examined the N400 as a neural marker of novelty
detection (Kutas and Federmeier 2011), considering that prior
work observed smaller N400s for repeated words (Rugg
1985). Such effects are often termed “repetition suppression,”
and neuronal fatigue has been proposed as a possible under-
lying cause for this effect (Grill-Spector et al. 2006). Here, we
propose that synaptic depression, as an underlying cause of
neuronal fatigue, enhances novelty and indirectly affects the
N400, while also providing further evidence that synaptic de-
pression can underlie repetition deficits. Our model stands
apart from existing perceptual identification and N400models
due to its ability to predict repetition benefits and deficits
alike, and to simultaneously predict other ERP components
(P100 and N170).

The habituation model is a general account of perceptual
dynamics and beyond its application to other word identifica-
tion effects (Rieth and Huber 2017; Huber et al. 2008b; Potter
et al. 2018; Davelaar et al. 2011), it has been applied to repe-
tition effects with faces (Rieth and Huber 2010), categories
(Tian and Huber 2010, 2013), spatial attention (Rieth and

Huber 2013), and visual scenes (Irwin et al. 2010), in tasks
ranging from episodic recognition (Huber et al. 2008a) to the
attentional blink (Rusconi and Huber 2018). However, none
of the prior studies examined the relationship between neural
habituation and the perceptual decision-making process (nov-
elty detection). The current study does so by examining EEG
signals to the response word across two experiments.

Prior work with the neural habituation model examined
perceptual identification tasks as measured with two-
alternative forced choice testing (2AFC). To examine predic-
tions regarding novelty detection, the current study used same/
different testing so that the neural response to a single re-
sponse word could be examined. 2AFC testing can be directly
related to same/different testing using signal detection theory
(Macmillan and Creelman 2005), under the assumption that
2AFC is a direct comparison process whereas same/different
testing is a criterial process. A key component of the current
study is a specific proposal regarding the neural basis of the
criterial process. This extension of the neural habituationmod-
el to same/different testing required a new, post-perceptual
(i.e., working memory) layer designed to maintain the identi-
ties of recently seen words for comparison with perception of
the response word. This extension also required a specific
measure used for perceptual decision-making. In augmenting
the model, we assumed that the participant assesses the extent
to which the response word was already active in working
memory prior to its appearance as the response word. This
residual activation for the response word is compared against
a criterial value in deciding that the response word is the
“same” (more residual activation than the criterion) or “differ-
ent” (less residual activation than the criterion) than the target
word.

The current experiments sought to test these specific neural
assumptions regarding the perceptual decision-making pro-
cess. The first experiment did so with non-speeded decision-
making (a response delay reduced contamination from motor
responses) examining stimulus-locked ERPs. This experiment
confirmed key predictions regarding the updating of words in
the newly proposed maintained semantics layer. The second
experiment did so with speeded decision-making using
response-locked ERPs to test the assumption that residual ac-
tivation in the maintained semantics layer is the signal under-
lying perceptual decision-making.

Experiment 1: Stimulus-Locked ERPs

Material and Methods

Experimental Design and Behavioral Data Analysis Twenty
subjects aged 18–35 participated in the study. Every partici-
pant provided written informed consent, and all study proce-
dures were approved by the University of Massachusetts
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Amherst Institutional Review Board. Volunteers either re-
ceived Psychology course credit or a payment of $12/h as a
compensation for participating. Subjects were right-handed
native English speakers who were neurologically healthy
and possessed normal or corrected-to-normal vision.

The experimental task (Fig. 1) was displayed on a 24″ LCD
monitor with a 120-Hz refresh rate. Visual stimuli were gen-
erated using PsychToolbox (Brainard 1997; Kleiner et al.
2007) implemented in MATLAB (version 2015a;
MathWorks). Each trial began with a fixation cross of a dis-
play duration that was adjusted according to prime duration
for that trial (650 ms on short prime trials, 300 ms on long
prime trials) such that there was a fixed time between the start
of the trial and the briefly flashed target word. After the fixa-
tion cross, a blank screen appeared for 300 ms followed by a
doubled-up prime word. The prime word was doubled-up to
provide a visual difference between prime and target even for
conditions where the target was the same word as the prime.
The prime word was presented for either a short (50 ms) or
long (400 ms) duration.

A prior ERP study used prime durations of 150 ms and
2000 ms with a 2AFC testing version of this task (Huber
et al. 2008b). That short duration was chosen because
150 ms is long enough to allow explicit identification of the
prime; previous work by Huber et al. (2008a) demonstrated

that 100ms primes are readable. Thus, the resulting effects
could not be attributable to the difference between supra versus
subliminal primes. The short duration in the current experi-
ments was set shorter to maximize positive priming; Huber
(2008) ran a study with a range of prime durations from 17
to 2000 ms, revealing similar positive priming effects at 50 ms
and 150 ms, but with a larger effect at 50 ms. That study also
found that both 400 ms and 2000 ms produced equally strong
negative priming, and so 400 ms was chosen for the current
experiment to shorten total trial duration. In any event, an
analysis of the ERP effects to the target word in the current
experiment (not reported here) replicated the target word ERP
findings of Huber et al. (2008b) even though each experiment
used slightly different short and long prime durations, suggest-
ing that although 50 ms may be too brief to allow explicit
identification of the prime word, the current results do not
reflect the difference between supra versus subliminal priming.

Immediately following the prime, a target word was briefly
flashed; presentation duration was unique to each subject as
determined from a block of threshold trials using a staircase
adjustment of the target duration to achieve 75% accuracy.
Average target word display duration was 75 ms. After the
target word, a pattern mask was displayed for 500 ms minus
the target display duration, followed by a single-word response
displaywhich remained onscreen. Seven hundredmilliseconds
following initial response word display presentation, a re-
sponse cue was shown above and below the response word,
and subjects had 1.5 s to respond; failure to provide a response
within that time resulted in a “no response” feedback.

Subjects judged whether the response word was “same” or
“different” than the briefly flashed target word. Responses
were collected with a custom-made button box with three
buttons: a left button, which always corresponded to the re-
sponse “same”; a right button, which always corresponded to
the response “different”; and a center button, which was not
used. Subjects held the button box with both hands, pressing
the left button with the left thumb, and the right button with
the right thumb. To minimize motion artifacts, subjects were
instructed to not move or respond until a response cue was
shown 700 ms after the response word was initially displayed.
Feedback was provided immediately after the response,
followed by a break to allow blinking/motion that lasted until
the subject pressed any button to continue.

There were eight experimental conditions in total, four per
prime duration (see Table 1). These conditions were a product
of three factors, each with two levels: prime duration (long or
short), whether the response word matched the prime word
(primed or unprimed), and trial type (same or different).
These three factors were used in all behavioral and ERP sta-
tistical analyses. It is important to note that “primed or
unprimed” can also refer to target word priming (see
Table 1), but present analyses focused on the relationship be-
tween prime and response words.

Fig. 1 Experimental paradigm. Each trial began with a fixation cross
(650 ms or 300 ms, according to prime duration), followed by a blank
screen (300ms) and a doubled-up prime (50ms or 400ms). A target word
was then briefly flashed (duration adapted for each subject; average
75 ms), followed by a pattern mask (500 ms minus target duration) and
finally, the response display. Subjects were instructed not to press any
button until the response cue was shown 700 ms later, at which time they
made a same/different judgment of the response word in relation to the
target word
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In labeling these conditions, we use the letters “A” or “B”
to refer to each word in the sequence of events (each trial
required no more than two unique words), across the prime,
target, and response word presentations. Thus, the same-
primed condition is A-A-A (the same word for all three pre-
sentations), the same-unprimed condition is A-B-B, the
different-primed condition is A-B-A, and the different-
unprimed condition is A-A-B.

These 4 conditions stem directly from prior work with
2AFC testing. In prior studies (Huber et al. 2002; Huber and
O'Reilly 2003; Huber 2008;Weidemann et al. 2008; Rieth and
Huber 2017), the transition from positive to negative priming
resulted from comparing a “target-primed” condition to a
“foil-primed” condition. In the case of 2AFC testing, this
priming referred to which of the two choice words was
primed. These 2AFC conditions could be labeled as A-A-A/
B (target-primed) versus A-B-A/B (foil-primed) where the
final two letters represent the target and foil choice alterna-
tives. The 4 same/different conditions tested here are chosen
by breaking each 2AFC condition into two corresponding
same/different conditions. Thus, when considering both prim-
ing of the target word, and priming of the response word,
every condition of the current experiment involved some kind
of priming (there was no fully unprimed baseline condition,
such as with A-B-C, which is one component of the “neither-
primed” 2AFC condition: A-B-B/C).

Words were presented in upper case Arial font size 36,
white against a black background. They were randomly
drawn without replacement from a pool of 1087 five-
letter words with a minimum written language frequency
of 4 per million as defined by Kucera and Francis (1967).
Each trial used a unique set of words. Subjects performed
16 practice trials, followed by 80 threshold trials during
which target display duration was adjusted every 16 trials
in order to achieve the desired 75% accuracy. EEG record-
ing was done during the subsequent 480 experimental tri-
als, which were split into 6 blocks of 80 trials, with a
mandatory break of at least 20 s between blocks. Every
experimental block contained 10 instances of the 8 condi-
tions in a randomly presented order. Between the third and
fourth experimental blocks, an electrode impedance check
was performed.

Habituation Model The habituation model as applied to this
paradigm used perceptual dynamics identical to the repetition

priming model reported by Huber et al. (2008b) for forced
choice testing, with parameter values reported for
Experiment 1 of Rieth and Huber (2017). However, same/
different testing is different than forced choice testing, requir-
ing comparison with a response criterion rather than a direct
comparison between two alternatives (Macmillan and
Creelman 2005). More specifically, the same/different task
requires a comparison between the currently displayed re-
sponse word and recently viewed words to assess the degree
of match. The habituation model was thus augmented with a
working memory layer representing maintained semantics,
with this new layer receiving input from the unchanged base
structure that simulates perceptual processing. This new layer
was used to generate ERP prediction for the N400 component.
We refrained from modifying the base model to highlight the
habituation theory’s ability to generalize across subjects and
experimental paradigms.

The maintained semantics layer is a completely new addi-
tion to the model, with qualitatively different dynamic param-
eters to enable short-term maintenance of recent semantic rep-
resentations. It can be contrasted with the episodic familiarity
layer employed by Huber et al. (2008a), which captured epi-
sodic long-term familiarity by modifying weights related to
previously studied words. While the episodic familiarity layer
had a slow time constant, the maintained semantics layer up-
dates very rapidly and does not carry information across trials.
The goal of the maintained semantics layer is to hold onto all
previous viewed words within the trial, rapidly updating
working memory to include the meaning of each word as it
appears. To assess whether the response word is “same” or
“different” than the target word, the key determinant is how
easy it is to update working memory to also include the mean-
ing of the response word. If the response word is already in
working memory, it will have a high residual activity in the
maintained semantic layer and it will therefore be easy to
update working memory to include that word’s identity.
However, if that word was not seen previously in the trial,
there will be little or no residual activation for that word,
making it more difficult to update working memory with that
word (a larger N400), suggesting that the correct answer is
“different.” To achieve this dynamic, there is no inhibition in
the maintained semantics layer (no competition between
words), the rate of processing is high (large time constant
parameter), and maintenance is strong (low leak current and
depletion parameters).

Table 1 Experimental conditions
within each prime duration
category

Condition Same/different? Target word primed? Response word primed?

A-A-A Same Primed Primed

A-A-B Different Primed Unprimed

A-B-B Same Unprimed Unprimed

A-B-A Different Unprimed Primed
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The habituation model structure is detailed in Fig. 2. Each
node in the model simulates the activity of a large number of
neurons with similar inputs and outputs. Model input is deter-
mined by all-or-none input (zeros or ones) to the nodes in the
retinotopic layer: during the time course of a simulation, while
the prime is being presented, the retinotopic prime node re-
ceives input of one; when the target is presented, the prime
node’s input becomes zero, and the target node’s input be-
comes one; and so forth.

The activity of the node is captured with two dynamically
varying terms, with the product of these determining the sig-
naling that the node can provide to other nodes. The first term
is membrane potential (v), which is compared with the fixed
firing threshold (Θ) to determine the probability of an action
potential. Because the node implements the activity of many
neurons, simulations use this firing rate rather than simulating
spiking behavior. However, an action potential does not nec-
essarily produce a post-synaptic response if there are no ves-
icles available to release, and so the second terms captures the
current level of neurotransmitter resources (a). Equation 1 is
the product of the firing rate and neurotransmitter resources,
which is the output of the node.

o ¼ v−Θð Þa ð1Þ

In simulations, these terms are updated every millisecond.
At the start of the simulation, output and membrane potential
are set to 0, and neurotransmitter resources are set to 1, and
the update equations keep these terms between 0 and 1.

Membrane potential (v) is updated according to Eq. 2, which
computes Δv for each node i in each layer n. The first brack-
eted term corresponds to excitatory inputs, including bottom-
up connections from the n − 1 layer and top-down feedback
(when present) from the n + 1 layer, modulated by connec-
tion weight w (for the bottom-up connection) and feedback
strength F (for the top-down connection). In the current sit-
uation, the weights are set either to 1 or 0 according to
whether two nodes are or are not connected. The second
bracketed term corresponds to inhibitory inputs, which are
a combination of leak (L), the natural decay of activation,
and lateral inhibition (modulated by inhibition strength I),
generated by mutual inhibition between the nodes of a layer
(and thus affected by their present level of activity). The
level of lateral inhibition is the summation of all nodes with-
in the layer, capturing the effect of all-to-all connected inhib-
itory inter-neurons, which serve to limit excessive activity.
Finally, S corresponds to the rate of integration, also unique
to each layer.

Δvni tð Þ
Sn

¼ 1−vni
� �

∑
∀ j
wijon−1j þ F ∑

∀ j
wikonþ1

k

( )

−vni Lþ I ∑
∀ j
onl

( )

ð2Þ

The amount of neurotransmitter resources (a) within a node
is updated according to Eq. 3, which computes Δa as a func-
tion of neurotransmitter depletion rate (D) and recovery rate
(R), as well as the node’s output (o) and its layer’s rate of
integration (S).

Fig. 2 Habituation model structure, implementing the hierarchical nature
of visual processing. Each gray rectangle is a node that simulates the
activity of a large number of neurons with similar inputs and outputs.
The first layer represents retinotopic visual features; the prime node,
representing the features of the doubled-up prime word, either connects
to the target node (if the prime matches the target) or the foil node (if the
prime does not match the target) in the visual objects layer. The
retinotopic target node represents the features of the target display, and
also the response display, when it is the same as the target. The retinotopic

foil node represents the response display when it is different from the
target. The perceptual decision-making portion is a new addition to the
model, capturing the maintenance of each word’s semantic identity in
working memory during the course of the trial sequence for comparison
with the response word. Updating into this maintained semantics layer is
assumed to underlie the N400, and the degree of residual activation for
the response word in this layer is assumed to underlie the same/different
decision (i.e., more residual activation indicates that this response word
was previously seen in the trial, and thus, the correct answer is “same”)
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Δa
S

¼ R 1−að Þ−D*o ð3Þ

These equations and model structure are exactly the same
as in prior publications reporting the simulations with the ha-
bituation model. The new component of the model is the
maintained semantics layer, which differs from the perceptual
layers in the following aspects: it possesses no lateral inhibi-
tion (because it needs to maintain the activity of all previously
seen words within the trial; lateral inhibition was removed
prior to model fitting); the rate of integration is considerably
faster (because it needs to rapidly update its contents); the leak
value is considerably lower (because it needs to maintain ac-
tivity); and the depletion value is considerably lower (because
it needs to maintain its ability to signal the nature of its con-
tents). Other than the removed lateral inhibition, the parame-
ters were fit to the data. In summary, because the goal of
maintained semantics is maintenance and updating rather than
identification and temporal parsing, maintained semantics
operates quickly, with little synaptic depression and decay,
and no inhibition.

The novelty signal used to make behavioral predictions is
generated from the maintained semantics layer. This signal
determines whether the response word was already in main-
tained semantics (as would be expected if the response word
is a repeat of the target word). If so, there is substantial
“residual activation” for the response word in maintained
semantics. Residual activation is a measure of short-term
familiarity (but not long-term episodic familiarity) and the
lack of residual activation reflects novelty. In simulations,
residual activation is the minimum output value of the node
corresponding to the response word after presentation of the
response word (i.e., the low point just before maintained
semantics is updated by the response word). If residual acti-
vation is above a criterial value (the criterion is a free pa-
rameter, but the same criterion is used to simulate perfor-
mance in all conditions), the model produces a “same” re-
sponse, but otherwise it produces a “different” response.
Supplementary Fig. 1 demonstrates how output and re-
sources in the node corresponding to the response word vary
across a trial and highlights the time in each condition at
which this residual activation low-point occurred.

Of note, it might appear that this decision rule should
completely fail for non-words. Indeed, Experiment 1 of
Rieth and Huber (2017) examined non-word repetition prim-
ing with 2AFC testing, finding a similar repetition priming
pattern to that of words, with short prime durations producing
positive priming and longer durations producing negative
priming. The time course of priming was somewhat altered
and although a 400ms prime produced negative priming with
words, this was the crossover point (neither positive nor neg-
ative) for pronounceable non-words, with negative priming
failing to appear until the 2000 prime duration condition.

Rieth and Huber assumed that a non-word is reminiscent of
several orthographically similar valid words. Therefore,
across all lexical entries, the summed activation of non-
words may be roughly similar to that of words (e.g.,
“RUDISH” is reminiscent of “RADISH” and “RUSTIC”),
but the connection strength between the letters of the non-
word and the partially matching lexical entries is weaker.
These weaker connections explained the different time course
for non-words (i.e., a weaker connection is one that does not
lose its synaptic resources as quickly). As applied to the model
augmented with a maintained semantics layer, one might as-
sume either that one or more of the reminiscent value words is
maintained during the trial or else that participant needs to
adopt a different strategy for same/different testing with non-
words, such as by maintaining orthographic representations
rather than semantic identities. Future work could differentiate
between these alternatives through careful manipulation of
orthographic similarity in a same/different testing version of
this task.

While the model nodes are labeled as “target” and “foil,”
the model itself does not use this information to generate its
predictions and cannot internally differentiate between a target
and a foil. The reason this labeling system is used is because
target and foil words in each trial are both semantically and
visually unrelated, dissimilar in meaning and orthography.
Therefore, the model structure represents their activation in
all layers as two different individual nodes (two different
groups of neurons) for simplicity’s sake (since each trial only
uses two unique words, a foil and a target, it is unnecessary to
model each letter and a complete lexicon). The retinotopic
prime is mapped to either target or foil in the visual objects
layer depending on which word was being primed (since the
prime is doubled-up, it needs its own node in the retinotopic
layer, as it does not occupy the exact same screen position as
the target word and the response word).

Because the model is deterministic (i.e., every simulation
conducted with the same parameters produces exactly the
same response), it requires an auxiliary assumption regarding
variability to explain different levels of accuracy. For this
same/different task, trial-by-trial variability is assumed for
the degree of residual activation, with the residual activation
from model simulations specifying the mode of this distribu-
tion. Because residual activation is bounded between 0 and 1,
residual activation variability is captured with a beta distribu-
tion. Besides a free parameter for the response criterion for
residual activation (C), a variability parameter (N for noise)
specifies the variability of the beta distribution about its mode.
In this re-parameterized beta distribution, the N parameter can
be interpreted as a sample size, dictating the certainty of the
residual activation estimate with the stipulation thatN > 2. The
α and β parameters of the beta distribution are calculated
using Eqs. 4 and 5 and then, the probability of responding
“different” is a cumulative beta distribution evaluated at C
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with parameters α and β (the probability of responding
“same” is 1 minus this value).

α ¼ residual* N−2ð Þf g þ 1 ð4Þ
β ¼ 1−residualð Þ* N−2ð Þf g þ 1 ð5Þ

The 5 maintained semantics parameters (S, L, D, C, and N)
were fit to the average observed proportions of “same” and
“different” responses across the 8 experimental conditions (16
probabilities reflecting 8 degrees of freedom), minimizing the
binomial likelihood ratio test statistic G2, which is distributed
as a χ2 (Riefer and Batchelder 1988). The maintained seman-
tics parameter values that best fit the behavioral data were the
following: S = 0.3964, L = 0.0103, D= 0.1036, C= 0.0510,
and N= 38.6155; lateral inhibition (I) in this layer was man-
ually set to zero. The parameters inherited from Experiment 1
of Rieth and Huber (2017) were the following: Θ = 0.15 and
R = 0.022 (also used in the maintained semantics layer), F =
0.25, L = 0.15, I = 0.9844, D = 0.324; S values were the fol-
lowing: 0.0294 (retinotopic), 0.0609 (visual objects), 0.015
(lexical entries). These inherited parameters were obtained
by fitting the behavioral accuracy data from a word priming
task nearly identical to the one presented here (Rieth and
Huber 2017, Experiment 1), except that study examined 5
different prime durations and used 2AFC testing instead of
same/different testing. In addition to including a word repeti-
tion priming condition, that experiment also tested pronounce-
able non-words, non-pronounceable non-words, and inverted
words, with each producing a slightly different priming time
course. As such, that experiment was highly constraining on
the parameter values. Because the only major change as com-
pared with that study is the use of same/different testing and
augmentation with a maintained semantic layer, the only free
parameters in the current study were the 5 new parameters
included in these new aspects of the model.

ERP Source Modeling The parameters that best fit the behav-
ioral data were used to generate predictions for the ERP wave-
forms. More specifically, predictions for the perceptual dy-
namics (P100 and N170) were determined from previously
reported publications of behavioral data (Rieth and Huber
2017) and the maintained semantics dynamics (N400) were
determined from the currently collected same/different behav-
ioral data; these dynamics were tested by comparing them
with the observed ERP data. However, an approximate match
to the ERP data requires auxiliary assumptions regarding the
manner in which neural sources combine to affect each
electrode.

The ERP signal reflects a complex mix of neural sources
with the contribution of each source determined not only by
the dynamic response of that source but also by the cortical
location of the source (closer to the surface producing a strong
localized response versus farther from the surface producing a

weaker diffuse response) as well as the orientation of the
source (one side of a cortical fold might produce a positive
voltage potential while the other side produces a negative
voltage potential). Rather than fitting the cortical positions
and orientations to the full topographic array of the observed
ERP data (Berg and Scherg 1994), we limited our analyses to
the most relevant electrodes, assuming that different layers of
the habituation model contributed in a positive or a negative
manner to the data. Thus, for the occipital electrodes used to
analyze the perceptual P100 and N170 complex, it was as-
sumed that the visual objects layer contributed a positive re-
sponse whereas the lexical entries layer contributed a negative
response. Similarly, for the central electrodes used to analyze
the novelty detection N400, it was assumed that the main-
tained semantics layer contributed a negative response.

Predictions regarding each source of the ERP data were
obtained by summing the output value of all nodes within
each layer at each simulated time point (equivalent to a milli-
second), and plotting this output over time. Nodes were
summed within layers because EEG has a low spatial resolu-
tion and each neural source reflects a cortical area (e.g., the
entire visual word form area rather than separate sources for
each word). After obtaining these layer-specific activation
profiles, they were combined as outlined above in terms of
their mathematical sign, with additional specification of how
strongly to weight each source and the imposition of delays
for each source. In addition, two temporal delay parameters
were needed to capture information transfer times not
contained in the model (e.g., from the eyes to primary visual
cortex, and from word identification in the temporal lobe to
working memory in the frontal lobe). In truth, these are free
parameters, although we chose the approximate values that
seem to work in general, rather than fitting these anatomical
parameters to the ERP data. For completeness and transpar-
ency, the layer-specific activation profiles are displayed in
Supplementary Fig. 2.

These free parameters representing anatomical weighting
and delays between different cortical lobes were as follows:
The P100 and N170 predictions were created by subtracting
three times the lexical entries’ activation profile from the vi-
sual objects’ activation profile (this choice was made such that
lexical entries’ response was sufficiently strong as to reverse
the polarity to produce an N170 after the P100). The
retinotopic layer of the model was not included in this sum-
mation considering that all words were displayed in the center
of the screen; thus, the C1 was not expected to differ between
conditions (Gomez Gonzalez et al. 1994). Because retinotopic
input in the model reflects early visual cortex, the resulting
waveform was temporally delayed by 50 ms, reflecting ex-
pected retinal and sub-cortical processing prior to the time
when information reaches the visual cortex. Of note, this
choice does not change the magnitude of the model’s predic-
tions at all except for changing when the predicted differences

Comput Brain Behav



between conditions were expected to occur (e.g., whether the
P100 effect reaches a peak at 80 ms or 120 ms). For the N400
predictions, the activation profile of the maintained semantics
layer was delayed by 250 ms, representing an additional delay
of 200 ms, reflecting the cortical and sub-cortical connections
between perceptual word representations (presumably located
in the occipital and temporal lobes) and the updating of main-
tained semantics within working memory (presumably locat-
ed in the frontal lobes). In addition, because the central elec-
trodes were topographically adjacent to the occipital P100/
N170 electrodes, we assumed some contamination of the cen-
tral electrodes from ongoing visual objects/lexical entries ac-
tivity, implemented by adding 0.3 times the predicted P100/
N170 waveforms to the value of the predicted N400
waveforms.

Because word reading is not the only neural activity occur-
ring inside a subject’s brain during the course of trial, the
model was not expected to explain the ERP waveforms aver-
aged across conditions. A great many other neural sources
would need to be included if the goal was to provide a full
explanation of the ERP waveforms (e.g., changes in attention,
motor preparation, etc.). We assume that these other sources
(not included in the model) will be the same across conditions,
affecting the ERP waveform averaged across conditions, but
not the differences between conditions. The question asked
was whether the neural dynamics, as dictated by prior publi-
cations (in the case of the P100/N170) and by fitting the dy-
namics of the maintained semantics layer to the behavioral
data (in the case of the N400), could provide a reasonably
qualitative account of the ERP differences between
conditions.

The ERPs were statistically assessed by averaging across a
time window. In theory, one could do the same when compar-
ing the model to data. However, the main reason that a time
window is used for statistical analyses of the ERPs is to aver-
age over subject differences and trial differences regarding
when the peak responses occur. For instance, one subject’s
peak P100 might occur at 80 ms, while another’s occurs at
120 ms. Furthermore, even for a given subject, the timing of
the peak response will vary from trial to trial. Additionally,
time window voltage averages are less affected by noise than
peak voltage measures. Because the model does not include
subject differences and trial differences, nor does it model
voltage variations due to noise, applying a time window to
the model is not necessary, and the magnitudes of the
P100/N170/N400 responses can be directly determined from
the simulated time course of events. For predictions of the
response word-related P100/N170 complex, we obtained the
values for the P100 positive peak and the N170 negative peak;
the latter was inverted and summed with the former. For pre-
dictions of the response word-related N400, we obtained the
values for the negative N400 peak. Finally, we note that the
model predictions, as compared with the statistical analyses,

needs to be rescaled separately for the P100/N170 complex
versus the N400 results, considering that the P100/N170 com-
plex was measured with different electrodes as compared with
the N400 (i.e., the Euclidean distances between neural sources
and electrodes will be different for each set of analyses).

EEG Recording and Data Analysis Scalp voltages were record-
ed at a sampling rate of 1000Hzwith 0.1–100 Hz bandpassing
from 64 electrodes (ActiCAP and ActiCHamp; Brain
Products). Eye blinks and eye movement measures were col-
lected through auxiliary electrodes (BIP2AUX; Brain
Products). Individual scalp electrodes were adjusted until each
impedance was below 25 kΩ.

EEG and ERP pre-processing and analysis were done using
EEGLAB (Delorme andMakeig 2004) and ERPLAB (Lopez-
Calderon and Luck 2014) inMATLAB. Continuous EEG data
were digitally low-pass filtered at 30 Hz, and faulty channels
(with kurtosis above 10, or spectrum beyond 5 standard devi-
ations) were rejected and replaced via interpolation. EEG data
were re-referenced to an average of all electrodes, epoched,
and baseline corrected. Trials with eye blinks or eye move-
ments (as recorded by the auxiliary electrodes and detected by
ERPLAB functions) or with large artifacts in the scalp elec-
trodes of interest (see Fig. 3; a threshold of 100 μV was used
to detect large artifacts) were excluded from all subsequent
analyses.

Given our interest in the N400 to the response word as a
measure of novelty detection, a traditional pre-stimulus base-
line would confound the analyses by virtue of subtracting
relevant ongoing brain activity that is likely to differ between

P100/N170

N400

Fig. 3 Electrode montage highlighting electrodes used for the P100/
N170 complex and the N400 component. Average waveforms were ob-
tained by averaging across the electrodes in each of the highlighted
groups
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conditions (i.e., the N400 to the target word occurs during the
100ms preceding response word, and if the N400 to the target
differ between conditions, this difference in the baseline peri-
od would contaminate the analyses). Therefore, we opted for a
full-trial baseline as a means of removing electrode drift for
the N400 analyses. Epoching was done from − 900 ms pre-
ceding response word presentation (the point in which the
doubled-up prime word was presented for trials with long
duration primes) up until 700 ms after response word presen-
tation (when the response cue was displayed). In this manner,
baseline correction utilized the average of the entire epoch.
N400 analyses used the average waveform of nine centri-
occipital electrodes (Fig. 3). We obtained the N400 ERP mea-
sures for statistical analysis by averaging the amplitude of the
300–500ms time window following the response word.

We investigated the response word-related P100 and N170
ERP components as a measure of perceptual processing, to
further test the habituation model’s predictions regarding per-
ceptual dynamics. Epoching spanned the 100ms preceding re-
sponse word presentation up until 700 ms after response word
presentation (the point in which the response cue was
displayed). Baseline correction for this epoch used the 100ms
preceding response word display (these electrodes do not ex-
hibit the problem of ongoing responses during the baseline
period, in contrast to the N400 electrodes). The P100/N170
analyses used the average waveform of twelve occipital elec-
trodes (Fig. 3). ERP measures for statistical analysis were ob-
tained using the signed area method (Luck 2014); positive areas
were obtained from a 90–200ms window, and negative areas
from a 140–260ms window. An additional baseline correction
utilizing the data points of 70–280 ms was applied to the wave-
forms prior to obtaining ERP measures; the goal was to center
the P100/N170 complex around a voltage of zero, allowing for
more accurate signed area measures. We conducted the
ANOVA on the sum of the signed areas of the P100 and
N170, with the following justification: in this present paradigm,
the stimuli are either repeated words (identical in terms of letters
and lexical entries) or unrelated words (different letters and
lexical entries), and thus, the neural sources of the P100 and
N170 should be affected in the same manner by the stimulus,
resulting in heavily correlated results. Therefore, we combined
these correlated signals to increase statistical reliability.

To create the P100/N170 full-trial plots in Fig. 5 in a man-
ner equivalent to the N400 plots, we epoched the data from the
400ms preceding the target word up until 500 ms after target
word presentation. This is equivalent to the moment that the
prime word is presented (in trials with long duration primes)
up until the moment that the response word is presented. We
used the time period from − 150 to − 50 ms in relation to the
target word to baseline correct this epoch; this was the 100ms
time window with the least amount of contamination from
other ERP components. Since two separate baselines were
used for the P100/N170 waveforms (as opposed to the N400

waveforms, which used a full-trial average baseline), the nat-
ural trial continuity of the EEG signal was broken. To remedy
this, the difference between the last time point of the pre-
response word P100/N170 epoch and the first time point of
the response word P100/N170 epoch was calculated, and then
subtracted from each data point in the response word P100/
N170 waveform. This resulted in the two epochs lining up to
provide a continuous waveform for simpler visualization.
These two different baseline corrections are needed because
if just one was used, ERPs that were temporally far from that
baseline period (e.g., more than 700 ms) would have drifted
owing to random fluctuations in charge, making comparisons
between conditions meaningless. Therefore, our solution is to
stitch together these two different baseline-corrected epochs,
noting that this is in truth a temporal continuum (no time
points were removed).

SVM Classification Using LIBSVM (Chang and Lin 2011)
with default parameters, we developed a classifier that could
predict choice behavior on a trial-by-trial basis across subjects
and conditions to ascertain which electrodes and time points
reflected novelty detection. Our a priori hypothesis was that
this would correspond to the N400.

The input data consisted of trial EEG epochs spanning
700 ms following response word presentation; these epochs
went through the same pre-processing described in the “EEG
Recording and Data Analysis” section above and were base-
line corrected using the average of the entire trial. Only trials
in which the subject provided a response were used, regardless
of accuracy. The 700ms epochs were divided into 14 windows
of 50 ms, and the voltage of each window was averaged. This
was done independently for each of the 64 electrodes,
resulting in a data matrix containing 64 electrodes at each of
14 time periods. This matrix was then reshaped into a vector
of 896 features; the classifier, therefore, had no information
about the temporal relationship between the time windows or
the spatial relationship between the electrodes. Every individ-
ual trial for each subject was transformed into a vector of 896
features using the method outlined above, and each vector was
normalized with z-scoring.

To parse out variability from random sampling, an SVM
classifier was trained and validated 1000 times. Each time, 40
trials for each subject were set aside for validation (5 randomly
selected trials from each of the 8 conditions). The remaining
trials were used for classifier training (trial number per subject
varied, as trials with no response or with EEG artifacts were
discarded). For each iteration, classifier performance was val-
idated on all test data, on test data broken down by condition,
and on test data broken down by subject; therefore, each iter-
ation produced condition- and subject-specific classification
accuracy values, on top of global accuracy. The model re-
ceived no subject or condition information at any point.
These procedures were run 1000 times, and the accuracy
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values and model weights for each iteration were averaged to
provide the final results.

The SVM classifier is non-linear, meaning that the most
predictive pattern might involve interactions between different
time windows. Therefore, to measure the predictive power of
individual time windows in isolation, we also trained and val-
idated the classifier on each time window separately, follow-
ing the same method above. We then plotted the weights’
scalp maps of highly predictive windows to visualize which
electrodes were driving the predictions.

Results

We reiterate that the eight conditions represent combinations
of three factors: prime duration (short or long), response word
priming (whether the response word matched the prime word:
primed or unprimed), and trial type (same or different). To
shorten descriptions and allow for easier visualization of the
conditions, the letters A and B are used to represent the rela-
tionship between the words within a trial. For instance, if a
trial began with the prime word GUEST, followed by the
target word SHADE, and finally the response word GUEST,
it would be an instance of the A-B-A condition (see Table 1).

Behavioral Accuracy Results

Behavioral accuracy (Fig. 4) was calculated for each condition
across trials in which subjects provided a response. Statistical
analysis of accuracy results revealed significant interactions
between prime duration and same/different trial type
(F(1,19) = 42.07, p < .001), between response word priming
and same/different trial type (F(1,19) = 7.93, p = .011), and a
three-way interaction between all factors (F(1,19) = 46.59, p

< .001). It also revealed a marginal main effect of whether the
response word had been primed (F(1,19) = 4.125, p = .0565).

The model captures these results based on the predicted
level of residual activation for the response word in the main-
tained semantics layer as compared with a response criterion.
Supplementary Fig. 1 shows the level of residual activation in
the model for each of the 8 conditions and the figure caption
explains the manner in which residual activation varied across
conditions. As seen in Fig. 4, predictions fell within the con-
fidence interval for all conditions other than the A-A-B con-
dition. In this condition, the response word (B) was not seen
prior its appearance as the response word, and so the model
necessarily predicts that accuracy will be unaffected by prime
duration (for both prime durations, there is no residual activa-
tion for word B). The observed change in A-A-B accuracy
might reflect a situation in which subjects adopt a slightly
different response criterion following long duration primes
as compared with short duration primes (indeed, a different
model fit with two different criteria rather than one was better
able to capture the data, although we did not think this level of
misfit warranted an additional free parameter). An important
caveat to any model fit is the degree of overfitting (too much
model flexibility). Demonstrating that the model is highly
constrained, Supplementary Fig. 3 shows that the model
completely fails to capture these same data, using the same 5
free parameters, if the data are time reversed by labeling the
observed data from the 400ms conditions as being the 50ms
conditions, and vice versa.

We highlight that the prime can influence behavior in two
different ways: by interacting with the target word (making it
easier or harder to perceive) and by interacting with the re-
sponse word (affecting the novelty judgment). We first con-
sider how the prime affects perception of the briefly flashed
target word. The main behavioral effect of the prime-target
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Fig. 4 Average subject
performance across conditions
and equivalent model predictions,
with separate graphs for the four
conditions where the correct
answer was “same” versus the
four conditions where the correct
answer was “different.” The
letters “A” and “B” in the legend
represent the relationship between
the words displayed within a trial,
and the order corresponds to
prime-target-response. For
instance, the A-B-A condition
presents one word (word A) as a
prime, then a different word
(word B) as the briefly flashed
target, and then finally, the prime
word reappears as the response
word
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interaction is the performance crossover between A-A (target-
primed) and A-B (target unprimed) when moving from short
to long prime durations. When the prime is presented for a
short duration, it blends with the target, improving target iden-
tification when they match, but impairing target identification
when they do not. When the prime is presented for a long
duration, increased habituation from the prime hinders identi-
fication of a repeated target, but it also enhances perception of
a novel target, owing to less competition from the now habit-
uated prime word.

The largest source of variance in the results is themanner in
which the prime interacts with the target (i.e., accuracy for the
same trials is largely similar to different trials), but there are
important and reliable differences between same trials and
different trials (a reliable three-way interaction). The benefits
of neural habituation on novelty detection of the response
word can be seen when comparing A-B-B and A-B-A trials,
both of which entail the same prime-target interactions (both
are A-B). Accuracy in the A-B-A condition is at 62% with a
50ms prime (the short prime gives a mistaken sense of famil-
iarity), rising to 86% with a 400ms prime (the familiarity is
eliminated, and novelty detection is enhanced). Meanwhile, in
the A-B-B condition, accuracy only increases from 69 to 81%
(owing to improved target identification). In the model, this
occurs because following A-B, the residual activation for a
primed response word (A) is reduced with increased habitua-
tion, and this reduced residual activation in working memory
correctly indicates that the response word A is novel (or at
least different than the target word). On the other hand, when
comparing A-A-A and A-A-B trials, repetition blindness ef-
fects (when moving from short to long prime durations) are
much more pronounced on A-A-A trials (worse familiarity
detection). In the model, this occurs because following A-A,
the residual activation for a primed response word (A) is re-
duced with increased habituation, and this reduced residual
activation in working memory incorrectly suggests that the
response word A is novel.

In summary, above and beyond the crossover interaction
between prime and target, priming of the response word led to
a bias to say “different,”with better performance in the A-B-A
condition (compared with A-B-B) with increasing prime du-
ration, but worse performance in the A-A-A condition (com-
pared with A-A-B) with increasing prime duration. It is this
bias effect that evidences enhanced novelty detection. Next,
we analyzed the EEG data to determine the neural correlate of
novelty detection and then address whether the neural dynam-
ics correctly predicts the ERP effects.

ERP Results

Average waveforms across all conditions were obtained from
both data and model; these are shown in Fig. 5 (for the
P100/N170) and Fig. 6 (for the N400). This global average

was subtracted from each condition waveform to generate
effects of waveforms. By plotting the condition averages and
the effects separately, it is easier to qualitatively assess the
model’s predictions regarding the manner in which neural
response was expected to change across the different condi-
tions. Importantly, any additions to model designed to capture
the on-average waveforms (averaged across conditions)
would not affect the model’s predictions of differences be-
tween conditions.

The occipital electrodes displayed a pronounced P100 and
N170 response to the response word, and an ANOVA on the
signed areas of the P100 and the N170 revealed an interaction
between prime duration and response word priming (Fig. 7;
F(1,19) = 12.23, p = 0.002). No other effects were significant.
The model was not necessarily expected to capture the results
averaged across conditions (because the model only includes
word reading areas of the brain), but nevertheless does a rea-
sonable job capturing the major trends. To examine whether
the model captured the significant interaction, the absolute
value of the predicted P100 and N170 were summed for each
of the eight conditions (equivalent to the signed area sum for
the real observed data), and then, these values were averaged
across the “same” and “different” conditions. The model pre-
dictions were then rescaled to have the same range as the
observed data to place the predictions on the same range as
the observed interaction. As seen in the right hand side of Fig.
7, the P100/N170 complex reduced in magnitude for a primed
response word, as a function of increasing prime duration, and
the model captured this effect, supporting the claim that prime
duration increased neural habituation for perceptual
representations.

Next, we consider the manner in which this increased per-
ceptual habituation affected the N400. Centri-parietal elec-
trodes displayed a canonical N400 to both the target word
and the response word, characterized by a stronger negativity
if the word was seen for the first time in a trial. Although the
model did not capture the results averaged across conditions, it
closely captured the condition effects.

An ANOVA performed on the average N400 amplitude to
the response word (Fig. 7; measured between 300 and 500 ms
following presentation) revealed a significant three-way inter-
action between all factors (F(1,19) = 9.908, p = .005) plus
main effects of response word being primed (F(1,19) = 55,
p < .001) and same/different trial type (F(1,19) = 40.72, p
< .001), along with an interaction between the two
(F(1,19) = 9.948, p = 0.005). The magnitude of the N400
ERP is shown in Fig. 7 for all eight conditions, along with
equivalent model predictions. The model’s behavior is in
terms of output activity (arbitrary units) and so the model
predictions were rescaled to have the same range (i.e., the
same minimum and maximum values) as the observed data
to allow a qualitative comparison between predicted and ob-
served N400magnitude.While the model’s predictions for the
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N400 and the P100/N170 share different degrees of contribu-
tions from the lexical entries and visual objects layers,
rescaling was done independently because the neural sources
of the P100/N170 are anatomically distinct from the sources
of the N400; therefore, the magnitude detected by a particular
electrode will differ (completely distinct electrode groups
were chosen for the N400 and the P100/N170).

As seen in the left hand side of Fig. 7, the three-way inter-
action reflects convergence between the A-A-A and A-B-B
conditions with increasing prime duration. The model cap-
tured the ordering of the four basic conditions, regardless of
prime duration, as well as the three-way interaction that in-
cludes prime duration.

SVM Classification to Determine Which EEG
Responses Predict Behavior

The model assumes that residual activation for the response
word in working memory underlies behavior; a previously

seen word should have more residual activation, making it
easier to update working memory to include the response
word. This corresponds to a reduced N400 according to the
model. To ascertain whether the N400 might be related to
behavioral responses, an SVM classifier was trained to predict
same/different response from EEG trial data, using one clas-
sifier for all subjects and conditions, with an overall accuracy
rate of 66.34% (chance = 50.8%—proportion of “different”
responses across all subjects and conditions). The classifier
was above chance for all subjects; the lowest classification
performance when validating on an individual subject was
56.38%. As seen in Fig. 8, the classifier was also above
chance for all of the eight conditions.

To determine which time window is the most important for
classifier accuracy (i.e., whether N400 amplitude predicts
“different” responses on trial-by-trial basis), the classifier
was trained and validated on each time window separately;
classification accuracy over time is shown in Fig. 9a.
Accuracy in the initial time windows is close to chance, until
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Fig. 5 P100/N170 grand average ERP waveforms and model predictions
for different prime durations. The first row shows the average of all
conditions within each prime duration; subsequent rows show this
condition average subtracted from each condition to highlight
condition-specific effects. Full-trial waveforms are shown, with timing

relative to the onset of the response word test display. ERP waveforms
were obtained from the average of occipital electrodes (see Fig. 3), while
model predictions, based on previously published parameter values, were
extracted from the visual objects layer and the lexical entries layer. For
layer-specific activation profiles, see Supplementary Fig. 2
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it begins rapidly increasing with the 200–250ms window, fi-
nally peaking at 61.14% in the 350–400ms window.
Afterwards, it decreases sharply, rising again over the final
three time windows, reaching 56.87% in the 650–700ms win-
dow, which immediately precedes the cue indicating that the
subject can now respond. We hypothesize that the high-
accuracy classification value in the 350–400 window reflect
the N400, whereas the moderate classification accuracy rise
prior to the response cue reflects motor planning.

Interpreting the weight vectors of a classifier is tricky, as
significant nonzero weights may be observed at channels that
do not reflect the neural process of interest (Haufe et al.
2014). Nevertheless, a rough characterization of the weights
is gained by plotting the topography of the weights at each
time window of interest (Fig. 9b) next to the observed ERP
data (Fig. 9c—grand average voltage difference between tri-
als in which subjects responded “different” minus trials in
which subjects responded “same”). The model was coded
with “same” responses as − 1 and “different” responses as
+ 1; therefore, in the presence of negative weights, more

negative voltages predict a “different” response, while more
positive voltages predict a “same” response. The opposite is
true for positive weights. With this in mind, the 300–350 and
350–400 windows revealed strong negative weights that
overlap with the observed topography of the ERP data volt-
age difference; in the data, trials in which subjects responded
“different” displayed stronger central negative voltages be-
tween 300 and 350, and between 350 and 400 than trials in
which subjects responded “same”; the model seems to be
using this difference (which is, essentially, the N400) by
placing strong negative weights in this area (which, paired
with more negative voltages, would lead to a “different”
prediction). In contrast, the 650–700ms time window re-
vealed a strong asymmetry between the hemispheres consis-
tent with preparation to press one button or the other button
(the left button was used to indicate “same” and was pressed
by the left thumb whereas the right button was used to indi-
cate “different” and was pressed by the right thumb). This
asymmetry was present both in the weights topography and
the observed ERP data.
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Fig. 6 N400 grand average ERP waveforms and model predictions for
different prime durations. The first row shows the average of all
conditions within each prime duration; subsequent rows show this
condition average subtracted from each condition to highlight
condition-specific effects. Full-trial waveforms are shown, with timing

relative to the onset of the response word test display. ERP waveforms
were obtained from the average of centri-parietal electrodes (see Fig. 3),
while model predictions, based on fits to the behavioral data, were ex-
tracted primarily from the maintained semantics layer, with smaller con-
tributions from the visual objects and lexical entries layers
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Experiment 2: Response-Locked ERPs

The behavioral data from Experiment 1 indicated that novelty
detection was enhanced with increasing prime duration and
the P100/N170 results suggest that neural habituation was the
cause of this effect, with the magnitude of the P100/N170
response to a primed response word decreasing with increas-
ing prime duration. Prime duration also affected the N400,
with the two “same” conditions (A-A-A and A-B-B)

producing a similar magnitude N400 following a long dura-
tion prime. Application of the model to the behavioral results
assumed that that key measure of performance was not
summed maintained semantics activation, which is the signal
used to model the N400, but rather just the component of
maintained semantics activation that is unique to the response
word. Better measurement of this response word response is
addressed in Experiment 2, which replicated Experiment 1,
but with a response-locked design rather than stimulus-
locked.

Experiment 2 was identical to Experiment 1 except that
there was no response cue and this experiment asked subjects
to respond quickly once the response word appeared. The goal
of this experiment was to test the model’s assumption regard-
ing maintained semantics residual activation as the novelty
detection variable underlying the decision process. More spe-
cifically, because the timing of the response to the response
word is likely to vary across trials, this response-locked para-
digm should temporally align trials based on the subject’s
decision to respond, allowing a cleaner measure of the neural
activity leading up to the novelty detection decision.

A different cohort of 20 subjects was used in this experi-
ment; other than the instruction to provide speeded responses,
every aspect of experiment design, EEG acquisition, and EEG
pre-processing was the same. EEG epochs spanned 600 ms
preceding the moment a response was made; baseline correc-
tion utilized the average of the full epoch. Mean waveforms
were obtained by averaging across the same N400 centri-
parietal electrodes (see Fig. 3). ERP measures for statistical

Prime Duration
50 ms 400 ms

A
ve

ra
g

e 
am

p
lit

u
d

e 
(µ

V
)

-3

-2

-1

0

1

2

3 N400

Prime Duration
50 ms 400 ms

S
ig

n
ed

 a
re

a 
su

m

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37
P100+N170

Primed, data
Primed, model
Unprimed, data
Unprimed, modelData

Model

A-A-A
A-B-B
A-B-A
A-A-B

Fig. 7 Significant response word ERP results and model predictions.
N400 measures were collected from the average amplitude of centri-
parietal waveforms between 300 and 500 ms following response word
presentation. “Primed” and “Unprimed” refers to whether the response
word was or was not a repeat of the prime word. Subject values are
represented as circle outlines; some extreme subject values fall outside
of the plotted range of values. Response word P100 and N170 measures
were collected from the sum of the positive area of the P100 and the

negative area of the N170. Cousineau-Morey confidence intervals
(Cousineau 2005; Morey 2008) are used to reflect variability in light of
large individual differences with this repeated measures’ design. Model
predictions for the P100/N170 were based on previously published pa-
rameter values, and model predictions for the N400 were based on fits to
the behavioral data. To assess whether the model captured differences
between conditions, the range of the model’s predictions across the con-
ditions was rescaled tomatch the range of the observed conditions’means
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analysis were obtained from the average voltage of 100 ms
preceding the response.

Results

EEG epochs were locked to the moment the response was
made and averaged to produce ERPwaveforms.We examined
the mean average voltage for 100 ms preceding the response
to isolate response-related activity. Voltages were obtained

from the same set of centri-parietal electrodes used for the
N400 analyses of the first experiment (see Fig. 3). Mean volt-
ages and model predictions were z-scored within each prime
duration to isolate the interaction between prime duration and
condition separate from any main effect of prime duration
(Fig. 10).

Model predictions in Fig. 7 for the N400 reflected the max-
imum of the summed activation of the maintained semantics
layer. However, for response-locked results, the neural data
reflect signals preceding the decision, rather than signals
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locked to the onset of the response word. We assumed that
response locking isolated signals unique to the decision pro-
cess (rather than the summed response across maintained se-
mantics), and so the measure used to explain behavior (i.e.,
residual activation for the response word) was directly used in
making predictions for the response-locked data. As seen in
the figure, pre-response voltages displayed the same ordering
of conditions as the predicted maintained semantics residual
activation values. An ANOVA performed on pre-response
mean voltages revealed a significant main effect of prime du-
ration (F(1,19) = 14.9, p = 0.001), with increased voltages on
trials with long duration primes, and of same/different trial
type (F(1,19) = 20.04, p < .001). It also revealed a marginal
three-way interaction between all three factors (F(1,19) =
3.39, p = 0.08) in the form of convergence between primed
and unprimed same trials (A-A-A and A-B-B) whereas prime
duration had little effect on the two kinds of different trials (A-
B-A and A-A-B). According to the habituation model, the
convergence between the “same” conditions reflects increased
neural habituation in response to the prime word. In the A-A-
A condition, this increased habituation produces weaker lin-
gering activation to the target word A, and so the residual
activation of this word in maintained semantics at the time
of response word presentation is lower. On the other hand,
in the A-B-B condition, the increased habituation to the prime

word A allows the representation of the target word B to reach
higher levels of activation due to less lateral inhibition fromA,
resulting in greater lingering activation for the target word B.

Discussion

According to the habituation model, neural habituation as a
result of resource depletion is beneficial, clearing the way for
rapid identification of new visual objects with minimal inter-
ference from recently viewed objects. Thus, short-term synap-
tic depression enhances novelty detection. However, repeti-
tion blindness is a necessary side effect of neural habituation.
Habituation is assumed to exist at all levels of perceptual
processing, from low-level perception of lines, motions, and
colors (e.g., color aftereffects) to high-level perception of let-
ters and lexical entry processing (e.g., negative word priming).
A prior ERP study found evidence of neural habituation in a
word priming paradigm that produced negative priming, and
the habituation model successfully predicted P100 and N170
repetition suppression effects in response to the target word
(Huber et al. 2008b). However, that study was not able to
measure the separate neural responses to response words that
did or did not match the target word because the response
display included both a matching and a mismatching word
for a forced choice decision. Consequently, the prior study
did not assess whether neural habituation supported enhanced
novelty detection (e.g., an enhanced response to a response
word that differed from the target). The current experiments
tested this hypothesis by using same/different testing rather
than forced choice responding. This allowed examination of
neural responses to a single response word following presen-
tation of the prime and target words, with the results
supporting the hypothesis that resource depletion in response
to a prime (reduced P100/N170 with increasing prime dura-
tion) enhances novelty detection.

Enhanced novelty detection was evidenced both behavioral
and neurally. Above and beyond interactions between the
prime word and target word (which were documented in a
number of previous publications with 2AFC testing), there
was an increased bias to respond “different” for response
words that matched the prime, as a function of increasing
prime duration. This resulted in larger improvements in the
A-B-A condition (as compared with the A-B-B condition) but
also larger deficits in the A-A-A condition (as compared with
the A-A-B condition) as a function of increasing prime dura-
tion. Experiment 1 examined stimulus-locked ERPs, finding
that perceptual responses (P100/N170) to primed response
words decreased with increasing prime duration, providing
evidence of perceptual habituation. More importantly, there
was a complex three-way interaction for the N400 as a func-
tion of prime duration, priming status, and same/different sta-
tus, which corresponded to qualitative predictions based on
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Fig. 10 Pre-response ERP measures were obtained from the mean
voltage of 100 ms preceding the response for the N400 electrodes.
Subject values are represented as circle outlines. Model predictions
correspond to the variable assumed to underlie the same/different deci-
sion, which is the lowest activation value of the response word’s node in
maintained semantics (i.e., residual activation for that word), after presen-
tation of the response word. As seen in the figure, increasing prime du-
ration differentiated same trials (A-A-A and A-B-B) from different trials
(A-B-A and A-A-B). All values were z-scored separately (for average
data results, for each subject, and for the model) within each prime
duration

Comput Brain Behav



the summed working memory activity in the neural network
model based on parameters that best fit the behavior data. To
isolate the signal unique to the response word in the decision
process, Experiment 2 was identical to Experiment 1, but ex-
amined speeded response-locked ERPs, confirming the pre-
diction that with increasing prime duration, the neural signal
for the same conditions became better separated from the dif-
ferent conditions.

An increased N400 can occur in response to a word that
violates semantic expectations—e.g., “I like my coffee with
cream and SOCKS” (Lau et al. 2008)—and we anticipated
that a different response word (as opposed to a response word
that was the same as the target word) would produce a larger
N400 considering that the target word and response word
were semantically unrelated. To test whether this semantic
novelty was the basis of behavior, we used an SVM classifier
to predict trial-by-trial behavioral responses from EEG, find-
ing the greatest predictive power around 400 ms after the
presentation of the response word, with a topographic pattern
that is consistent with the N400. In modeling the N400 and its
relation to behavior, we assumed that the meaning of each
word is encoded into maintained semantics, with the N400
reflecting this encoding. With this assumption, a word that is
semantically expected is a word that is partially active inmain-
tained semantics, whereas the encoding of an unexpected
word into maintained semantics requires a more substantial
update. Thus, an effective measure of whether the response
word differs from the immediately preceding target word is
the degree of residual activation in working memory for that
word.

To implement these theoretical assumptions, the main-
tained semantics layer was assumed to exhibit relatively less
synaptic depression and no inhibition, allowing it to maintain
the identity of previously presented words for longer periods
of time than the perceptual layers. The dynamics of the per-
ceptual layers were specified by previously published param-
eter values and the dynamics of the maintained semantics
layer were adjusted to fit the behavioral data. These parameter
values were then fixed to generate a priori predictions for the
full-trial ERP waveforms for all eight of the conditions
representing combinations of prime duration, primed/
unprimed, and same/different response words. The examined
electrodes captured the P100, N170, and N400 responses,
corresponding to visual objects, lexical entries, and main-
tained semantics processing in the model. The model only
included these three components and as such could not pro-
vide a full quantitative account of all neural behavior, but
nonetheless, the model produced a qualitative account of the
ERP differences between conditions. The success of this ac-
count not only supports the proposal that synaptic depression
enhances novelty detection but also supports the auxiliary
assumption that the N400 reflects the process of loading
new content into maintained semantics, explaining why the

N400 is smaller for an expected word (i.e., semantic content
that is already active based on the preceding sentential
context).

Providing support for the conclusion that semantic novelty
is the basis of performance in this word identification task, the
SVM classifier was able to predict choice behavior across
subjects and conditions, and the time window with highest
predictive power was between 350 and 400 ms after presen-
tation of the response word, with a weight topography consis-
tent with the N400. Demonstrating that the N400 is a robust
predictor of behavior, classifier accuracy was 66.34% and was
above chance for all subjects and conditions. The manner in
which classifier accuracy differed across conditions provided
further support for this conclusion: the classifier achieved its
best performance for A-A-B trials, which produced the largest
N400; second best performance for A-A-A trials, which pro-
duced the weakest N400; and worst performance for the A-B-
A and A-B-B conditions, which produced intermediate N400
effects.

Despite the success of the SVM classifier for the stimulus-
locked experiment, the neural habituation model assumes that
residual activation in working memory is the neural correlate
of the decision process, rather than the magnitude of the N400.
In general, more residual activation should result in a smaller
N400 and less residual activation should result in a larger
N400, but there may be subtle differences between these mea-
sures. To better isolate the hypothesized decision-related re-
sponse, we performed a response-locked version of the exper-
iment, examining N400 electrodes during the time period im-
mediately preceding the response. This response-locked re-
sponse was affected by prime duration, exhibiting the same
ordering of conditions as the residual activation values from
the model.

Our approach in using a layered dynamic neural network to
make sense of ERP data highlights the potential limitations of
treating separate ERP components as separate processes (see
Anderson et al. (2016), for a more statistical approach for
tackling this problem based on trial-by-trial variability). For
instance, in separate studies, the P100 is examined as a marker
of mid-level visual processing and visual attention (Foxe and
Simpson 2002; Di Russo et al. 2002), the N170 is examined as
a marker of face processing or expertise (Kappenman et al.
2012), and the N400 is examined as a marker of semantic
novelty (Kutas and Federmeier 2011). In contrast, we assume
that all layers of processing contribute to all of these ERP
waveforms, but with each ERP more strongly driven by a
specific layer, with higher layers achieving maximal activa-
tion at longer delays after stimulus presentation. Thus, in ap-
plying the habituation model to the ERP data, visual objects
identification is the primary determinant of the P100, lexical
identification is the primary determinant of the N170, and the
updating of maintained semantics is the primary determinant
of the N400, and yet there is contamination of the ERP
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responses from all layers. Untangling this contamination re-
quires a formal model to specify the dynamic time course of
each layer and our approach used the behavioral data to spec-
ify this time course. This can be contrasted with sourcemodel-
ing algorithms that impose no constraints on the time course
of the neural sources (Baillet et al. 2001).

The habituation model is primarily a perceptual identifica-
tion model, rather than an N400 model; however, it provides a
novel and easily generalizable explanation for the neural basis
of this component that is consistent with prior results. In some
respects, prior N400 models are similar to the maintained se-
mantics layer in the current model (Frank et al. 2015; Cheyette
and Plaut 2017; Rabovsky et al. 2018; Laszlo and Plaut 2012;
Brouwer et al. 2017; Laszlo and Armstrong 2014; Rabovsky
andMcRae 2014), but these prior models are not well-suited to
explain repetition priming effects and the shift from positive to
negative priming with increasing prime duration. This exten-
sion of the habituation model assumes that perceptual dynam-
ics, andmore specifically synaptic depression, is the root cause
of this shift, and a complete account of the N400 should incor-
porate the manner in which perceptual dynamics interact with
semantic novelty to produce an N400 effect.

This study is a part of a larger investigation into the pro-
posal that short-term synaptic depression is adaptive, serving
to temporally parse the stream of constantly changing percep-
tual inputs. Many paradigms reveal behavioral effects that rise
and fall with increasing presentations and delays, including
the inverse duration effect (Di Lollo and Dixon 1992; Di
Lollo and Bischof 1995), priming of depth perception (Long
et al. 1992), repetition word priming (Burt et al. 2014), seman-
tic word priming (Rieth and Huber 2017), face priming
(Webster and MacLin 1999), response priming (Eimer and
Schlaghecken 2003; Lleras and Enns 2004), inhibition of re-
turn (Posner and Cohen 1984), the psychological refractory
period (Pashler 1994), and the attentional blink (Chun and
Potter 1995). The time course of these effects is remarkably
similar, and as reviewed in the introduction, the habituation
model has been applied to many of these “cognitive afteref-
fects” and explained them. According to the habituation mod-
el, these effects reflect a deficit when something repeats for
sufficiently long (i.e., a repeated dot, depth plane, word, face,
response, location, response selection, or categorically defined
target). However, this study is the first true test of the model’s
proposal that synaptic depression is beneficial, serving to ac-
centuate responses to a novel stimulus.
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