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Mere exposure (i.e., stimulus repetition) and blending (i.e., stimulus averaging) are classic ways to
increase social preferences, including facial attractiveness. In both effects, increases in preference involve
enhanced familiarity. Prominent memory theories assume that familiarity depends on a match between
the target and similar items in memory. These theories predict that when individual items are weakly
learned, their blends (morphs) should be relatively familiar, and thus liked—a beauty-in-averageness
effect (BiA). However, when individual items are strongly learned, they are also more distinguishable.
This “differentiation” hypothesis predicts that with strongly encoded items, familiarity (and thus,
preference) for the blend will be relatively lower than individual items—an ugliness-in-averageness
effect (UiA). We tested this novel theoretical prediction in 5 experiments. Experiment 1 showed that with
weak learning, facial morphs were more attractive than contributing individuals (BiA effect). Experi-
ments 2A and 2B demonstrated that when participants first strongly learned a subset of individual faces
(either in a face-name memory task or perceptual-tracking task), morphs of trained individuals were less
attractive than the trained individuals (UiA effect). Experiment 3 showed that changes in familiarity for
the trained morph (rather than interstimulus conflict) drove the UiA effect. Using a within-subjects
design, Experiment 4 mapped out the transition from BiA to UiA solely as a function of memory training.
Finally, computational modeling using a well-known memory framework (REM) illustrated the famil-
iarity transition observed in Experiment 4. Overall, these results highlight how memory processes
illuminate classic and modern social preference phenomena.
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The origin of preferences is a central topic in social psychol-
ogy (Allport, 1935; Berntson & Cacioppo, 2009; Schwarz,
2007; Zajonc, 1968, 1998). One key social preference is attrac-

tiveness, especially given that human behavior is implicitly and
explicitly shaped by the beauty associated with a person,
group, object, or idea (Reber, Schwarz, & Winkielman, 2004;
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Rhodes & Zebrowitz, 2002). Consequently, understanding such
preferences not only helps to illuminate the mechanisms under-
lying affect and cognition, but it also informs practical appli-
cations.

Among the classic determinants of preferences in psychology,
two have been broadly discussed: mere exposure (i.e., stimulus
repetition) and blending (i.e., stimulus averaging). Both effects
occur (at least partially) because familiarity increases preferences.
Here, we use these classic phenomena to shed light on the memory
mechanisms linking exposure, blending, and preference. More
specifically, we explore predictions generated by modern memory
models, which link familiarity (and thus, preference) to the degree
of match of the target to memory representations. These memory
models predict a nuanced relationship between exposure and pref-
erence for individuals and their blends, which depend on the
amount of learning. To preview the key idea, when individuals are
weakly learned (low exposure), their blend has relatively higher
familiarity (and thus, preference). In contrast, when individuals are
strongly learned (high exposure), their blend has relatively lower
familiarity and preference. Overall, using five experiments and
computational memory modeling, we find ample support for our
general claim that familiarity contributes to preferences for indi-
viduals and blends. Critically, we confirm our seemingly nonin-
tuitive prediction that the relative preferences for individuals and
their blends reverses with increasing prior exposure to the stimuli
used to create the blend. Next, we offer some background on mere
exposure, blending effects, and modern memory models.

Mere Exposure, Blending, and Social Preferences

Among the most well-known psychological phenomena is the
mere exposure effect—or increased preference from unreinforced
stimulus repetition—which dates back at least to Titchener’s
(1915) observations about the “warm glow of familiarity.” Zajonc
(1968) has renewed the field’s interest in mere exposure, and since
then, it has been investigated and applied across psychology and
business settings (Baker, 1999; Balogh, & Porter, 1986; Ober-
miller, 1985; Pettigrew & Tropp, 2008; Thompson, 2017; Trem-
blay, Inoue, McClannahan, & Ross, 2010; Zajonc, 2001). The
effect is robust across a wide range of stimuli (e.g., faces, words,
sounds, and images) and modalities (e.g., vision, audition, touch,
and smell), though subject to important boundary conditions
(Bornstein, 1989).

Theoretically, the mere exposure effect offers an important
window into emotion-cognition links and processes underlying
implicit memory. The connection between repetition and prefer-
ence could occur for many reasons (for reviews, see Fang, Singh,
& Ahluwalia, 2007; Moreland & Topolinski, 2010), but much
evidence suggests that repetition facilitates processing and elicits
an implicit sense of familiarity (Bornstein & D’Agostino, 1992;
Butler & Berry, 2004; Klinger & Greenwald, 1994; Winkielman,
Schwarz, Fazendeiro, & Reber, 2003). Although the mere expo-
sure effect is tied to the subjective sense of familiarity, it does not
depend on the explicit recognition that the stimulus is “old”
(Whittlesea & Price, 2001). Importantly, mere exposure effects on
preferences generalize to stimuli that are similar to ones seen
previously yet objectively new (Whittlesea, 2002), and this gen-
eralization follows a similarity gradient between the original and
test stimulus (Gordon & Holyoak, 1983). Such generalization

effects have also been obtained for social stimuli such as faces
(Rhodes, Halberstadt, & Brajkovich, 2001), and exposure to other-
race faces can increase liking for objectively new faces within that
same race group (Smith, Dijksterhuis, & Chaiken, 2008; Verosky
& Todorov, 2010; Zebrowitz, White, & Wieneke, 2008). Gener-
alization effects also offer a path toward changing real-world
social preferences that extend beyond the specific individuals
engaged in personal interactions (e.g., intergroup contact; Petti-
grew & Tropp, 2008). Therefore, it is important to understand the
nature, mechanisms, and limitations of mere exposure effects and
their generalization.

Another classic phenomenon in the domain of preferences is
blending (or stimulus averaging). Since the original observations
by Galton (1879) on composite portraits, psychologists have doc-
umented that averaging makes stimuli more attractive across a
variety of different modalities and stimuli. This effect occurs for
abstract dot patterns, colors, birds, cars, watches, fish, voices, and
gestures (Bruckert et al., 2010; Halberstadt & Rhodes, 2003;
Winkielman, Halberstadt, Fazendeiro, & Catty, 2006; Wöllner et
al., 2012), but it is especially robust for faces (Halberstadt, 2006;
Langlois & Roggman, 1990; Rhodes & Tremewan, 1996). Many
explanations have been proposed for this beauty-in-averageness
(BiA) effect. Some authors invoke evolutionarily shaped “mutant-
detector” mechanisms, where morphed faces signal greater fitness,
due to greater symmetry and a lack of unusual features (Thornhill
& Gangestad, 1993). However, as with the mere exposure effect,
the dominant explanations are cognitive. Langlois and Roggman
(1990) point out that blending several faces makes the average face
more similar to the central tendency of a local population of faces
encountered by the participants. In fact, the attractiveness of av-
eraged faces varies as a function of exposure to different popula-
tions of faces, suggesting the importance of learning processes
(Dotsch, Hassin, & Todorov, 2016; Principe & Langlois, 2012;
Rubenstein, Kalakanis, & Langlois, 1999). Consistently, the at-
tractiveness of average faces is also associated with their implicit
familiarity (Peskin & Newell, 2004; Rhodes et al., 2001). This fits
with many studies that use abstract patterns (e.g., random dots)
which are derived from a category average. The average (even
when not studied itself) is familiar and preferred because of its
similarity to exemplars in memory, as reflected in liking judgments
and physiological measures (Winkielman et al., 2006).

Memory Models (and How Familiarity Works)

The above discussion highlights the importance of understand-
ing the mechanisms of familiarity for social psychological theories
of preference. We argue that the relevant memory literature not
only helps explain why these classic preference phenomena occur,
but it also helps us to identify the boundary conditions under which
they disappear (and even reverse). For simplicity, we only briefly
review the core assumptions that informed our reasoning behind
the current experiments. However, other important and relevant
aspects of the memory literature, including its quantitative, com-
putational, neuroscientific, and applied components, are available
across several reviews (Gillund & Shiffrin, 1984; Mandler, 1980;
McClelland & Chappell, 1998; Wixted & Mickes, 2014; for a
specific application of the computational or connectionist perspec-
tive to key questions in social psychology, refer to a review by
Smith [1996]).
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To first review our terminology, objective familiarity refers to
the actual exposure history (i.e., how many times the stimulus was
encountered), subjective familiarity refers to a “sense of knowing”
for the stimulus, whereas recognition refers to a judgment about a
previous encounter with the stimulus. These distinctions are im-
portant because, as mentioned above, the relation between famil-
iarity and preference primarily concerns subjective familiarity.
Incidentally, it is worth noting that in the memory models dis-
cussed here, subjective familiarity is often (though not always)
linked to fluency, or the ease of stimulus processing. This is
because a previous encounter with an item is thought to increase
the activation, reprocessing efficiency, and thus retrievability of its
trace. For most of this paper, we will focus on subjective famil-
iarity, but we will revisit the issue of fluency in the General
Discussion.

What elicits subjective familiarity? Prominent memory theories
suggest that familiarity of a probe depends on the “global match”
between the probe and the set of items in memory to which it is
compared (Gillund & Shiffrin, 1984; Hintzman, 1986). These
models assume that memory contains a vast array of separate
memory traces for all previous events. When presented with a
memory probe (e.g., a question asking “Have you seen this face
before?”), the probe item matches a subset of the memory traces,
and this subset is tallied up to provide a “global match” value,
specifying the degree of familiarity for the probe. In short, famil-
iarity is a measure of how well a stimulus matches everything in
memory.

According to these global match memory models, familiarity for
a previously encountered item reflects the summation of one
strong match value (a match to the actual memory trace of the
probe item) and a large number of smaller values owing to partial
matches to similar memory traces. If the actual memory trace is
weak (because only a few item features were stored), the corre-
sponding memory trace will only be weakly active, owing to a
small number of matching features, as compared to a stronger
memory. Thus, familiarity will be higher for strongly learned items
than for weakly learned items. However, familiarity can also be
greatly influenced by the other memory traces, particularly if some
of those memories are similar to the item used to probe memory,
resulting in potential false memories for highly similar, prototyp-
ical, and/or “central” items (Roediger & McDermott, 1995; Shif-
frin, Huber, & Marinelli, 1995), including composite faces (de
Fockert & Wolfenstein, 2009). In these memory models, retrieval
strength for each memory trace is calculated from the number of
matching features between the probe and the memory trace (Hintz-
man, 1986; Murphy, 2002). This helps to explain the mere expo-
sure effect, given that stronger memory traces for actually studied
items will result in a better match (and thus, higher familiarity
values and greater preference). Global matching models were first
developed to explain episodic recognition memory, and they as-
sumed that the memory decision for whether a probe was old or
new was based on the global familiarity of the probe (Hintzman,
1986; Nosofsky, 1986). If the familiarity of the probe exceeds a
threshold, it is judged to be old; otherwise, it is judged to be new
(for our purposes in the current paper, these models also apply to
identification and categorization).

Global match memory models explain the BiA effect from the
following process: First, participants are incidentally exposed to
many exemplars using minimal exposure, which results in the

formation of very weak individual traces. Later, participants are
presented with the blend probe (or morph) that is similar to many
of these memory traces by virtue of being a blend of the stored
memories. The more similarity the blend has to all other face
traces, the more familiar (and preferred) it will be compared with
the weakly learned individual faces. Consistent with this account,
traditional BiA paradigms use only single incidental exposure to
individuals. Further, evidence shows that the BiA effect increases
with the number of faces that compose the blend. In fact, the
classic Langlois and Roggman (1990) paper only observed a clear
BiA effect when averaging eight or more individuals, which may
make the morph appear very familiar (compared to a morph that
averages only two individuals).

Even though global match memory models are among the most
popular and widely accepted (McClelland & Chappell, 1998; Shif-
frin & Steyvers, 1997), one observation that challenged the global
match assumption was the null list-strength effect in recognition
memory (e.g., Ratcliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff,
& Clark, 1990). A list-strength effect occurs when memory re-
trieval becomes more difficult by strengthening competing mem-
ories (usually other items on the study list). As predicted by global
match models, there is a positive list-strength effect when actively
recalling something from memory (e.g., by practicing your new
phone number, it becomes difficult to recall your old phone num-
ber). However, the same prediction does not apply for recognition
(e.g., practicing your new phone number has no effect on your
ability to recognize your old phone number), and there was also
some evidence for a negative list-strength effect in recognition
(e.g., practicing your new phone number helps you to recognize
your old phone number). Subsequently, global match models were
revised by considering not just how well a probe item matches
memory traces but also the extent to which a probe item mis-
matches memory traces. Thus, when a memory trace is strength-
ened through additional exposure, its representation becomes more
complete, increasing the chance that the critical mismatching fea-
tures are stored. If mismatching features are stored, the memory
traces containing these mismatching features are “differentiated”
from the probe item, and these traces contribute less to the summed
global match familiarity signal. In the memory literature, this
process is referred to as differentiation—where stronger encoding
of a stimulus clarifies the differences between it and the test item
(Shiffrin et al., 1990). Most importantly for our purposes, differ-
entiation predicts that with increasing memory strength for actu-
ally encountered individual items, highly similar but actually new
probe items (like a morph) will be become less familiar than the
individual items.

How Do Exposure and Blending Effects Interact to
Drive Familiarity and Preferences?

With the above principles in mind, we derived several predic-
tions regarding the combined effects of exposure and blending on
familiarity and preferences. Our central prediction is that the
effects of blending two faces should depend on the larger memory
context—and more specifically, on the amount of prior exposure to
individual faces contributing to the blend. First, when participants
have no memory traces for any related individual exemplars, there
should be no BiA effect, since the blend is not similar to anything.
Next, when participants have weak, undifferentiated memory
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traces for individual exemplars, there should be a traditional BiA
effect because the blend will at least partially match multiple faces
in memory, producing greater familiarity for the blend compared
to a particular exemplar face. Finally, when participants have
strong memory traces for individual exemplars, those exemplars
become well differentiated from the blend. In turn, the blend will
partially match the stored exemplar while also mismatching it,
resulting in relatively less familiarity for the blend. Thus, with
strong memories for the exemplars, our theoretical perspective
predicts an ugliness-in-averageness (UiA) effect. Importantly, note
that the morph should still benefit from some similarity (or partial
match) to the exposed exemplars, and thus have greater familiarity
and liking than completely unfamiliar stimuli. As such, “ugliness”
is defined here as a relative difference in preference compared to
the components, instead of an absolute decline. In other words,
blending highly familiar exemplars should reduce the benefits of
their exposure, but it should not bring the morph below the original
attractiveness level of unfamiliar face blends.

Although this novel prediction has never been tested, it is
consistent with studies where participants judge stimuli that are
objectively new but include features of previously learned exem-
plars. For example, in one memory paradigm, participants first
studied words like “blackmail” and “jailbird,” and then were asked
about the word “blackbird,” as well as the original and control
items (Jones & Jacoby, 2001). Another paradigm instructed par-
ticipants to first study word pairs (e.g., table-clock, fish-computer,
etc.) either only once (weak pairs) or several times (strong pairs).
Next, they were asked about intact pairs, rearranged pairs, and
control items (Kelley & Wixted, 2001). In both cases, participants
showed an elevated false alarm rate to the “blended items” (e.g.,
“blackbird” or fish-clock). Crucially, the false alarm rate was lower
than the recognition of actually presented items and was further
reduced (but not eliminated) when participants had a stronger
memory of the initially studied items. Again, the theoretical inter-
pretation is that “blended items” create a sense of familiarity, but
strong memory traces for their individual components increase
differentiation.

Our memory-based prediction is also distinct from other alter-
native accounts. The most intuitive alternative prediction is that the
effects of exposure and blending are additive—that is, preferences
from mere exposure and blending should combine in a positive
fashion, making the morph of familiar individuals very attractive.
This prediction is similar to the additive pattern observed from
combining subliminal affective priming with smiling faces and
mere exposure on liking of ideographs (Monahan, Murphy, &
Zajonc, 2000), which follows from assumptions that mere expo-
sure and blending involve separate mechanisms. Other accounts
make the complete opposite mismatch prediction, where mere
exposure and blending combine negatively, making the morph of
two familiar individuals especially unattractive (reducing liking
for the blend below the level of the contributing individuals). This
prediction follows from theories of ambiguity aversion and cog-
nitive conflict, given that the morph of well-known individuals
falls in-between two established categories (Arnal & Giraud, 2012;
Dreisbach & Fischer, 2015; Hsu, Bhatt, Adolphs, Tranel, & Cam-
erer, 2005). Importantly, these additive and mismatch predictions
differ from our familiarity-based predictions not only in mecha-
nism but also in the actual data pattern: Unlike either of these
frameworks, our account predicts that blends of highly learned

individuals will generate familiarity and preference values in-
between actually exposed individuals and novel individuals (Jones
& Jacoby, 2001; Kelley & Wixted, 2001).

Finally, our account is also supported from related research
using blends of real faces from foreign and local celebrities (e.g.,
Halberstadt, Pecher, Zeelenberg, Wai, & Winkielman, 2013). This
study found that morphs of two celebrity faces were more attrac-
tive than the individual celebrities used to generate them (a stan-
dard BiA effect). However, this only occurred when those “celeb-
rity” individuals were unknown in the participants’ home country
(i.e., they were only famous in another country). When local
celebrities were blended, participants rated the morph as less
attractive than the individual faces (a pattern indicative of a UiA
effect). Although this study is consistent with our hypothesis, it
fails to answer four essential questions. First, it did not offer or
explore any mechanisms for how exposure and blending interact in
driving attractiveness judgments, as we propose here with our
memory-based framework. Second, since Halberstadt et al. (2013)
did not systematically manipulate exposure, those studies cannot
provide any evidence for boundary conditions (e.g., perhaps the
effects require massive experience with the individuals, over many
years and exposures). Third, the study lacked control conditions to
address whether blends of well-known faces are actually disliked
(below novel faces) or just less liked than individual faces of
well-known individuals. Lastly, celebrity morphs do not provide
an effective substitute for learning tasks or exposure manipula-
tions, given other confounds. For instance, participants may simply
dislike distorted images of media celebrities (i.e., “Don’t mess
with the face of my sports hero!”) or dislike blends of individuals
that represent divergent social views (i.e., “Don’t mix liberals and
conservatives!”, in the case of the famous “Bushama” [Bush-
Obama] or “Clump” [Clinton-Trump] blends).

Current Research

The current research offers the first systematic investigation of
the idea that the attractiveness of facial blends varies as a relative
function of their prior exposure. We used five studies and com-
putational memory modeling to examine how the attractiveness of
individual and morph faces changes with learning. The key pre-
diction was that blends of highly familiar faces (with exposure
experimentally manipulated) would be less attractive than their
constituents (UiA effect), but this would not apply to blends of
novel or weakly familiar faces (no effect or BiA effect).

To preview the results, Experiment 1 established the traditional
BiA effect under standard conditions when all the stimuli were
initially unknown and exemplars were only weakly learned. Fur-
thermore, this experiment showed that increased attractiveness for
morphs was mediated by their perceived familiarity. Experiments
2A and 2B tested for the UiA effect under empirical conditions
that directly compared preferences for blends of learned and un-
learned individual faces. Participants were “trained” on a subset of
faces (either using a free-recall task with face-name pairs [Exper-
iment 2A] or a perceptual-tracking task with colored squares
presented on the faces [Experiment 2B]), where they were repeat-
edly exposed to one set of individual faces but not the other, thus
creating a stimulus set of trained and untrained individuals. Both
experiments showed a UiA effect for trained faces, where morphs
of trained individuals were rated as less attractive than the trained
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individuals themselves. In Experiment 3, we restructured the stim-
ulus set to examine whether the UiA effect for trained morphs was
driven by cognitive conflict (mismatch account) or a relative
reduction in similarity (familiarity account). We found strong
support for our familiarity-based hypothesis, where the UiA effect
was still generated for morphs that did not have competing indi-
vidual components (i.e., morphs composed of one trained face and
one untrained face). With Experiment 4, using a within-subjects
design, we varied the number of exposures for individuals across
four different levels, and participants also completed speeded
“old/new” recognition judgments on all face stimuli after giving
their attractiveness and familiarity ratings. The results supported
our memory-based predictions, where a traditional BiA effect
emerged with weak learning on individual exemplars, but this
reversed into a UiA effect with strong learning. Finally, simula-
tions of memory judgments using the Retrieving Effectively from
Memory (REM) model (Shiffrin & Steyvers, 1997) produced the
same crossover interaction we observed in Experiment 4, with a
BiA effect for weak learning and a UiA effect for strong learning.

Experiment 1

In Experiment 1, we tested whether our stimulus set generated
a standard BiA effect using a design with minimal exemplar
learning. We expected that when many individual exemplars are
presented without strong learning of any of the specific exemplars,
the morphs of those exemplars would be rated as more attractive
and familiar. Furthermore, the latter effect (familiarity) should
explain the former effect (attractiveness). This prediction follows
from previous research showing that incidental exposure to several
exemplars, leading to limited item-specific memory, generates
familiarity for a prototypical representation (de Fockert & Wolfen-
stein, 2009; Posner & Keele, 1968; Winkielman et al., 2006).

Method

Participants. One hundred fifty-one University of California,
San Diego (UCSD) undergraduates participated for course-credit,
and all participants signed consent forms approved by the UCSD
Human Research Protection Program (HRPP).

Materials. Our stimulus set included 56 individual face im-
ages of Dutch and New Zealand (NZ) people (28 each), along with
28 50/50 morphs of those faces (14 Dutch-Dutch and 14 NZ-NZ
morphs), for a total of 84 unique stimuli (adapted from a previous
study; see Halberstadt et al., 2013). Each individual was only used
in one of the morphs, and each morph contained two individuals.

Design and procedure. We conducted this as an online study,
where all participants were told that they would be rating 84 faces
on attractiveness and familiarity. Participants were presented with
all 84 faces from our stimulus set (56 individuals and 28 morphs)
one-at-a-time, in a randomized order. Note that one feature of this
standard design is that morphs will sometimes be preceded by their
constituting exemplars (making the morphs somewhat familiar).
For each face, participants were asked to rate each image sepa-
rately on attractiveness and familiarity, using 1 (not at all attrac-
tive/familiar) to 9 (very attractive/familiar) scales.

Results and Discussion

Analysis strategy. To analyze ratings in Experiment 1, we
used mixed-effects modeling via restricted maximum likelihood.
This method offers numerous analytical advantages over more
traditional methods like repeated-measures ANOVA, which were
important for our purposes (see the following for more details:
Bagiella, Sloan, & Heitjan, 2000; West, Welch, & Galecki, 2014).
First, they handle unbalanced designs, unequal sample sizes, and
missing observations more efficiently, thus leading to more reli-
able outcomes. Second, mixed-effects models also involve a model
for the error variance, resulting in more powerful and efficient
estimates. Further, they are more flexible in allowing one to model
the dependence of outcomes on both fixed and random-effect
predictors.

All models were built using the lme4 (Bates, Maechler, Bolker,
& Walker, 2014) and lmerTest (Kuznetsova, Brockhoff, & Chris-
tensen, 2014) packages in R. To obtain p value estimates for
fixed-effects, we used Type III Satterthwaite approximations
(Luke, 2016). Note that this process can result in decimal degrees
of freedom (based on the number of observations), and degrees of
freedom are often greater with mixed-effects models since the
analyses are done on trial-level data (see footnote for more details
on mixed-effects modeling strategy).1 While we report the results
from mixed-effects models in the main text for all experiments,
alternative analyses using traditional repeated-measures ANOVAs
are also reported in the supplementary materials (which corrobo-
rate all the results in the main text).

Attractiveness and familiarity. For Experiment 1, we used
Target Type (2 [within]: individual, morph) as the only fixed-
effect to predict attractiveness and familiarity ratings. As pre-
dicted, participants rated morphs as more attractive (M � 4.32,
SD � 1.17) than individuals (M � 4.20, SD � 1.15), F(1,
150.00) � 26.42, p � .001 (see Figure 1a). This confirms that our
stimulus set yields a traditional BiA effect in the standard para-
digm, when only weak exemplar learning occurs.

Consistently, morphs were also rated as more familiar (M �
2.46, SD � 1.44) than the individuals (M � 2.36, SD � 1.37), F(1,
150.00) � 6.63, p � .01 (see Figure 1a). Note that the familiarity
values are rather low, toward the “not at all” end of the 1–9
familiarity scale. This also confirms that the standard procedure
used by most BiA studies yields only minimal learning of exem-
plars and generates only slightly greater familiarity for the morph.

Multilevel mediation. To gauge the relative impact of partic-
ipants’ familiarity ratings on the relationship between morphing
and attractiveness ratings, we applied multilevel mediation analy-
ses to each participant’s data, via the mediation package in R (R
Core Team, 2015; Tingley, Yamamoto, Hirose, Keele, & Imai,

1 Final mixed-effects models were selected based on top-down model
building. Maximal random intercept and random slope models were cre-
ated using all by-participant effects. Next, the two model fits were tested
against one another via �2 likelihood ratio tests. If there was no significant
difference in model fit, the model with fewer random-effect parameters
(i.e., only random intercepts) was set as the final model; if there was a
significant difference in model fit, the model with more random-effect
parameters (i.e., random intercepts and random slopes) was set as the final
model. This final model was then used for fixed-effects testing, which
employed the lmerTest package in R (Kuznetsova, Brockhoff, & Chris-
tensen, 2014).
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2014). Such a strategy is appropriate for repeated-measures de-
signs to account for observations nested within participants, and
they allow for model-based estimation of the average total, direct,
and indirect mediation effects using hierarchical data structures
(Bauer, Preacher, & Gil, 2006). Mixed-effects models were con-
structed for each of the mediation paths, using by-participant
random effects parameters. All simulations from the mediation
package in R were based on 1,000 samples per estimate, after
which quasi-Bayesian confidence intervals were calculated around
the average total, direct, and causal mediation effects. Our main
predictor was target type (coded as either 0 [individual] or 1
[morph]), our main DV was attractiveness ratings, and our medi-
ator was familiarity ratings.

Figure 1b displays the mediation results. We observed clear
evidence for mediation. The total effect (b � 0.12, CI95% [0.07
0.16], p � .01) and average direct effect (b � 0.11, CI95% [0.06
0.15], p � .01) on attractiveness ratings were both significant.
Target type was a significant predictor of familiarity (a-path: b �
0.09, t(150.00) � 2.57, p � .01), and familiarity was a significant
predictor of attractiveness (b-path: b � 0.16, t(282.65) � 3.73, p �
.001). When controlling for familiarity (c’-path), the original
t-value estimate of target type on attractiveness (c-path: b � 0.12,
t(150.01) � 5.14, p � .001) was reduced but still significant (b �
0.11, t(152.29) � 4.68, p � .001), while familiarity was also
significant (b � 0.13, t(276.30) � 3.13, p � .002). And critically,
the average causal mediation effect was also significant (b � 0.01,
CI95% [0.002 0.03], p � .01), confirming familiarity as a mediator.

Experiment 2A

Experiment 1 demonstrated that with weak exemplar learning,
morphs were judged as more attractive and familiar than individ-
uals (a traditional BiA effect). These results fit with the memory
literature, where in the absence of any strong individual memory
traces, the blend has high global familiarity.

We designed Experiment 2A to address our main question.
Namely, we wanted to test the idea that an ugliness-in-
averageness (UiA) effect could be generated when participants
undergo strong learning on the individual exemplars, before
rating morphs. Recall that when the memory traces for individ-
ual exemplars are strengthened by repeated exposure, they
should now be highly familiar and differentiated. Therefore,
when a blend of such strongly learned individuals is presented,
the blend will be less familiar than the exposed individuals,
leading to a UiA effect. It is also important to note that when
individual exemplar memory is increased, all individuals may
appear overall more familiar (even unexposed individuals),
given that mastering individual exemplars from a particular face
set may give participants a greater sense of familiarity for that
specific “face space.”

To test our predictions in Experiment 2A, we “trained”
participants on a subset of faces (set A vs. set B), using a
free-recall task that required pairing names with individuals.
Over the course of this task, participants were repeatedly ex-
posed to one set of individual faces but not the other, creating
a stimulus set of trained and untrained individuals and morphs.
After training, participants rated the attractiveness and famil-
iarity of all morphs and individuals.

Method

Participants and equipment. Seventy-four UCSD under-
graduates participated for course-credit, and all participants signed
consent forms approved by the UCSD HRPP. During the main
task, all stimuli were presented on 17-inch Dell flat screens from
PCs running Windows XP and E-Prime 2.0.

We planned our sample size in Experiment 2A based on the
effect size of attractiveness ratings between individuals and
morphs in Experiment 1 (dZ � 0.42). We conducted a post hoc
power analysis of Experiment 1 with GPower software (version
3.1.9.2; Faul, Erdfelder, Lang, & Buchner, 2007), which indicated
that we achieved more than 99% power (using a two-tailed test at
� � .05). Because Experiment 2A required in-lab participants, we
instead aimed for 85–90% power. Based on the design and smaller
effect size estimate of f � 0.15 (nonsphericity correction ε � 1),
this forecasted a target n of 70–81 participants.

Materials. The 56 individuals and 28 morphs from Experi-
ment 1 were used to create two different sets of images (set A and
set B) that each contained half the total number of individual faces
(28 in each set) and half the total number of morph faces (14 in
each set). Using attractiveness ratings from a previous study (Hal-
berstadt et al., 2013), we normed both sets, such that the average
attractiveness ratings for individuals and morphs were similar
across sets. All morphs were 100% within-set, meaning that
morphs could either be 50/50 morphs of two set A individuals
(A-A morphs) or 50/50 morphs of two set B individuals (B-B
morphs). There were no cross-set (A-B) morphs (see the supple-

Figure 1. Experiment 1 results for attractiveness and familiarity (a),
along with multilevel mediation (b). We demonstrated that when weak
exemplar learning occurs, our stimulus set generates a standard beauty-in-
averageness (BiA) effect, where morphs were rated as more attractive than
individuals. Morphs were also rated as more familiar than individuals, and
this familiarity mediated the relationship between target type (individuals
vs. morphs) and attractiveness ratings (b). Error bars represent �1 SEM.
�� p � .01, ��� p � .001.
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mentary materials and Figure S1 for more information on the
stimulus sets).

Design and procedure. All participants were first told that
they would be completing a memory task, where they would have
to recall different face-name pairs, followed by ratings on different
dimensions. Participants were not told until after training that they
would be rating attractiveness and familiarity. For training, partic-
ipants were randomly assigned to study the 28 individual face
stimuli in either set A or B, before progressing through 7 rounds of
a free-recall task.

Figure 2a depicts the structure of the paradigm. At the start of
each round, the 28 individuals in the participant’s assigned
training condition were each randomly presented in a study
phase. Each image was presented with a four-letter name for
3000 ms each, one-at-a-time. Next, after all 28 individuals were
presented, participants were given a test where they had to
recall the name that was paired with each face. They would type
the name in a response box presented on the screen, and
feedback (correct vs. incorrect) was given. During test phases,
RTs were measured from stimulus onset to the final submission
of the participant’s typed response to each face (recorded when

they hit the ENTER key to advance to the next face). Partici-
pants cycled through all 28 faces during every study and test
phase, across all 7 training rounds. The names that were paired
with each face stayed the same across all training rounds. To
encourage high attention and effort throughout the memory
task, participants were told that they would only advance to the
next part of the experiment once they hit a satisfactory level of
performance (in reality, participants always completed 7 train-
ing rounds to keep the level of exposure consistent).

After participants finished the training, they rated each stim-
ulus (56 individuals and 28 morphs) using 9-point scales on
attractiveness (1 � not at all attractive; 9 � very attractive) and
familiarity (1 � not at all familiar; 9 � very familiar). Each
participant always rated the stimuli in the following block
order: (a) morph attractiveness, (b) individual attractiveness, (c)
morph familiarity, and (d) individual familiarity. Morph ratings
always came first to ensure that they were not influenced by
exposure to untrained individuals, because we predicted that
any UiA effect would occur after exposure to trained individ-
uals. On attractiveness ratings, participants were asked “How

Figure 2. Design of the training task for Experiments 2A (a), 2B (b), and 3 (a). Experiments 2A and 3 used
a name-learning task, where all 28 individuals in the participant’s respective training condition (set A vs. set B)
were paired with a four-letter name. Across 7 rounds of study and test phases, participants were instructed to
observe each face (presented for 3000 ms with the name) and type the name in a response box when prompted
(free-recall test after each study round). Experiment 2B used a similar training task, but it was changed to remove
the names, to create training that was perceptually based. Here, participants were instead told that they would
see 28 images that would have square probes appear on them, with a random color (blue vs. green) and number
of squares (1, 2, 3, or 4). Because the names in Experiments 2A and 3 stayed the same across all rounds, the
square probe color/number assigned to each face was also constant across rounds in Experiment 2B. All other
timing/exposure parameters for Experiment 2B training were the same as Experiments 2A and 3. See the online
article for the color version of this figure.
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attractive do you find this individual?” and responded on the
9-point scale described above. On familiarity ratings, partici-
pants were asked “How familiar do you find this individual?”,
and responded on the 9-point scale described above. For the
familiarity ratings, participants were only told to rate familiarity
based on whether they thought they saw the face at all, before
that point in the study session (i.e., they were not explicitly told
to reference the training task for giving their familiarity rat-
ings). Within each of the four different rating blocks, stimulus
presentation was completely randomized.

Results and Discussion

Analysis strategy. We used the same mixed-effects modeling
strategy as Experiment 1.

Training performance (name-learning task). We analyzed
both accuracy and response times (RTs) using a Training Condi-
tion (2 [between]: set A, set B) � Testing Block (7 [within])
fixed-effects structure. To normalize the reaction time (RT) dis-
tribution and reduce the impact of outliers, all incorrect RTs were
excluded, and the remaining correct RTs were log10-transformed.
Confirming the effectiveness of the training, the analysis showed
that participants responded progressively faster, F(6, 388.02) �
111.12, p � .001, and more accurately, F(6, 124.53) � 352.28,
p � .001, across successive test blocks2 (also see supplementary
materials [Figure S2] for more details).

Attractiveness ratings. Attractiveness ratings were analyzed
using a mixed-effects model with a Training Type (2 [within]:
trained, untrained) � Target Type (2 [within]: individual, morph)
fixed-effects structure.3

Figure 3a displays the attractiveness results. There was strong
evidence for a Training Type � Target Type interaction, F(1,
5995.00) � 25.14, p � .001. Follow-up tests demonstrated that
untrained morphs were judged as more attractive than untrained
individuals, although this effect was not significant, b � 0.05,
t(210.30) � 0.58, CI95% [�0.11 0.21], ns. This is consistent with
the notion that with no exemplar learning, there should be minimal
preference for the morph (if any at all). Confirming the key
prediction, trained morphs were judged as less attractive than
trained individuals, b � �0.47, t(210.30) � �5.84, CI95%

[�0.63 �0.31], p � .001. Thus, we observed robust evidence for
the UiA effect (rather than a BiA effect) between trained individ-
uals and morphs. Furthermore, we also found that trained morphs
were still judged as more attractive when compared to untrained
morphs, b � 0.27, t(560.30) � 3.09, CI95% [0.10 0.44], p � .002.
This aligns with our expectation of a relative decrease in prefer-
ence for morphs of familiar individuals, rather than an absolute
dislike of such morphs. Finally, both main effects were significant.
The main effect of Training Type, F(1, 90.60) � 94.79, p � .001,
reflected overall higher ratings for trained targets compared to
untrained targets, whereas the main effect of Target Type, F(1,
73.80) � 11.69, p � .001, demonstrated overall higher ratings for
individuals compared to morphs.

Familiarity ratings. We analyzed familiarity ratings in the
same way as attractiveness ratings, using a mixed-effects model
with a Training Type (2 [within]: trained, untrained) � Target
Type (2 [within]: individual, morph) fixed-effects structure.4

Figure 3b displays the familiarity results. Like attractiveness, we
observed strong evidence for all effects. The main effect of Train-

ing Type, F(1, 73.01) � 83.04, p � .001, demonstrated that trained
targets were judged as more familiar than untrained targets, and the
main effect of Target Type, F(1, 73.00) � 19.80, p � .001, showed
that individuals were judged as more familiar than morphs. Crit-
ically though, we also detected a Training Type � Target Type
interaction, F(1, 73.01) � 14.25, p � .001. This interaction re-
vealed a greater difference between trained and untrained individ-
uals, b � 2.07, t(73.00) � 8.55, CI95% [1.59 2.55], p � .001,
compared to trained and untrained morphs, b � 1.25, t(73.00) �
7.09, CI95% [0.90 1.60], p � .001. Consequently, trained individ-
uals were judged to be more familiar than trained morphs, b �
1.39, t(73.00) � 6.32, CI95% [0.95 1.82], p � .001. Untrained
individuals were also seen as somewhat more familiar than un-
trained morphs, b � 0.57, t(73.00) � 2.12, CI95% [0.04 1.10], p �
.04, but this difference was smaller than the difference between
trained individuals and trained morphs.

Note that the familiarity ratings for Experiment 2A were overall
greater than those from Experiment 1 (i.e., Experiment 1 familiar-
ity ratings fell mostly between 2 and 3, whereas Experiment 2A
familiarity ratings were mostly between 5 and 9). Since strong
learning only occurred in Experiment 2A (not Experiment 1), there
are a couple of factors to consider. First, since individual exem-
plars have much stronger memory traces after training, this would
substantially boost familiarity for trained individuals and their
morphs (as described previously). Second, in Experiment 2A,
familiarity was measured after all attractiveness ratings, in order to
limit participants’ exposure to untrained exemplars before they
rated attractiveness. This would explain why participants rated
“novel” untrained individuals and morphs as generally more fa-
miliar in Experiment 2A, because they did see those individuals
once when rating attractiveness in earlier blocks. Finally, in Ex-
periment 2A, we also observed that untrained individuals were
rated as slightly more familiar than untrained morphs. This is
likely attributable to the fact that learning on the individual exem-

2 In Experiment 2A, on RTs, the maximal random slope model did not
converge, so the random intercept model was set for fixed-effects testing
(AIC � �7413.58, BIC � �7288.47). We observed a main effect of
Testing Block on RTs, F(6, 388.02) � 111.12, p � .001, such that both set
A and set B participants logged faster RTs over successive rounds of the
free-recall task (with performance beginning to level out around block 5).
Here, we did not detect a main effect of Training Condition, F(1, 72.53) �
.51, ns, nor a Training Condition � Testing Block interaction, F(6,
388.02) � 1.67, ns. On recall accuracy, the maximal random slope model
was a significantly better fit than the maximal random intercept model,
�2(26) � 378.10, p � .001, so the random slope model was set for
fixed-effects testing (AIC � 5985.68, BIC � 6310.88). We again found a
main effect of Testing Block, F(6, 124.53) � 352.28, p � .001, where both
set A and set B participants improved their performance over successive
rounds of the free-recall task. Specifically, participants started at approx-
imately 33% correct responses in block 1, but improved to about 98% by
block 7 (and similar to RTs, performance began to plateau around block 5).
We did not detect a main effect of Training Condition, F(1, 72.01) � 1.22,
ns, nor any evidence for a Training Condition � Testing Block interaction,
F(6, 124.53) � .40, ns.

3 On attractiveness ratings for Experiment 2A, there was no significant
difference in model fit between the maximal random intercept and slope
models, �2(6) � 3.50, ns, so the random intercept model was set for
fixed-effects testing (AIC � 26093.67, BIC � 26154.28).

4 With familiarity ratings in Experiment 2A, the maximal random slope
model was a significantly better fit than the maximal random intercept
model, �2(6) � 26.14, p � .001, so the random slope model was set for
fixed-effects testing (AIC � 24869.42, BIC � 24970.44).
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plars gave participants a greater sense of familiarity for that
specific “face space” (compared to the other novel morph face set).

In sum, participants judged both trained individuals and trained
morphs as more familiar than their untrained counterparts, but this
effect was especially amplified for the individuals.

Experiment 2B

To review, Experiment 1 demonstrated that a traditional BiA
effect occurs with weak learning of exemplars in the context of

many new face stimuli. Experiment 2A revealed that brief periods
of training using a name-learning task generates a mere exposure
effect for those trained individuals. This training also elicits a UiA
effect, where trained morphs are judged as less attractive than
trained individuals.

In Experiment 2B, we investigated a different type of training.
According to memory frameworks, the mechanisms for eliciting
the UiA effect should involve generic stimulus familiarity, as
would be the case with low-level visual cues. Indeed, much pre-

Figure 3. Results for attractiveness ratings (a and c), familiarity ratings (b and d), and multilevel mediation (e)
across Experiments 2A and 2B. We observed an ugliness-in-averageness (UiA) effect after training in Exper-
iment 2A, such that trained morphs were judged as less attractive than trained individuals (a). For familiarity
ratings in Experiment 2A, all effects were significant, and the interaction was driven by the fact that there was
a greater increase in familiarity for individuals after training, compared to morphs (b). Experiment 2B replicated
the pattern of attractiveness ratings from Experiment 2A, where trained morphs were judged as less attractive
than trained individuals (c). All familiarity effects were again significant in Experiment 2B, where the interaction
was driven by a greater familiarity increase for individuals after training, compared to morphs (d). Multilevel
mediation across both Experiments 2A and 2B demonstrated that the relationship between Target Type (individual vs.
morph) and the training effect on attractiveness ratings (attractivenesstrained – attractivenessuntrained) was mediated by
the training effect on familiarity ratings (familiaritytrained – familiarityuntrained) (e). Error bars represent �1 SEM.
�� p � .01, ��� p � .001.
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vious work in face memory has focused on its sensory aspects,
particularly on lower-level changes in visual responses to familiar
and unfamiliar faces (Bobes et al., 2013; Buttle & Raymond, 2003;
Davies-Thompson, Newling, & Andrews, 2013; Natu & O’Toole,
2011; Visconti di Oleggio Castello & Gobbini, 2015; Yovel &
Belin, 2013). Thus, on this view, the UiA effect should occur even
if learning is kept only to its “pure” perceptual aspects (without
any name information), as was the case in Experiment 2A. Al-
though face–name pairs are frequently used to examine identity-
specific memory (e.g., Guo, Voss, & Paller, 2005; Schweinberger,
Pickering, Burton, & Kaufmann, 2002; Verosky, Todorov, &
Turk-Browne, 2013; Zeineh, Engel, Thompson, & Bookheimer,
2003), we wanted to replicate the effects from Experiment 2A
using a pure perceptual training task. This would ensure that the
UiA effect is not restricted to the face-name learning task, which
may involve more emphasis on identity-level information.

We addressed this in Experiment 2B by changing the training to
a perceptual-tracking task without names. Participants were ex-
posed to the same faces from Experiment 2A (in either set A or set
B) over similar durations, but they instead had to detect and recall
blue and green square probes that randomly appeared on each
image. If the UiA effect requires any name-based familiarity on the
social identity for trained individuals, then the effect should dis-
sipate in Experiment 2B (because the perceptual-tracking task
would not pair names with trained faces). If the UiA effect instead
only requires visual familiarity for trained individuals, we should
observe similar effects on attractiveness in Experiment 2B (since
participants are still receiving the same amount of exposure to each
of those faces during training).

Method

Participants. One hundred twenty-eight UCSD undergradu-
ates participated for course-credit, and all participants signed con-
sent forms approved by the UCSD HRPP. To plan our sample size
in Experiment 2B, we conducted an a priori power analysis partly
based on the effect sizes from Experiments 1 and 2A (we used a
slightly lower effect size estimate of f � 0.12, given the changes
to the training task). When implementing this analysis according to
the design of Experiment 2B in GPower (version 3.1.9.2; Faul et
al., 2007), to achieve 85–90% power, this forecasted a target range
for n at 119–137 participants (two-tailed test at � � .05 and
nonsphericity correction ε � 1).

Materials. All stimuli and materials were the same as Exper-
iment 2A.

Design and procedure. Our main changes focused on the
training task we used. Figure 2b shows the main revisions to this
task in Experiment 2B. Participants still had to progress through 7
rounds of the free-recall task on the 28 individuals in their ran-
domly assigned training set (set A or B). However, the type of
recall they performed at the test phase during each round was
different. Instead of recalling names, participants were instructed
that they would have to recall “both the color and number of either
blue or green square probes that would randomly appear on the
different images” (no names were presented with the faces). Dur-
ing each study phase presentation (3000 ms for each image), 200
ms blue or green square probes would then appear at random
intervals, and participants were tasked with remembering both the

color and number of squares that appeared on the face. Each face
was assigned to a constant color (either blue or green) and number
(between 1 and 4) of square probes, and this color-number assign-
ment did not change across successive rounds of training (similar
to the names used in Experiment 2A). All attractiveness and
familiarity ratings after the training task were the same as Exper-
iment 2A.

Results and Discussion

Analysis strategy. Our analysis strategy was the same as
Experiment 2A.

Training performance (perceptual-tracking task). Similar
to Experiment 2A, we gauged participants’ accuracy and RT
performance over all 7 testing blocks during training. We struc-
tured this analysis according to a Training Condition (2 [between]:
set A, set B) � Testing Block (7 [within]) fixed-effects design, on
both accuracy and RTs. As before, all RTs were log10-transformed,
after excluding error trials. We also analyzed accuracy and RT
performance separately for both the color (blue vs. green) and
number (between 1 and 4) of square probes that were assigned to
each trained individual.

Once again, our training task was effective, since participants
became progressively faster, Fs � 82.37, p � .001, and more
accurate, Fs � 159.43, p � .001, over successive training rounds.
Note that there were some less theoretically important effects
between performance on color versus number recall, which we do
not discuss here5 (also see supplementary materials [Figure S3] for
more details).

Attractiveness ratings. We analyzed participants’ attractive-
ness ratings using a mixed-effects model with a Training Type (2
[within]: trained, untrained) � Target Type (2 [within]: individual,
morph) fixed-effects structure.6

Figure 3c displays the attractiveness results. Most importantly,
we found a Training Type � Target Type interaction, F(1,
10370.80) � 39.54, p � .001. Follow-up tests on this interaction
revealed a similar UiA effect as Experiment 2A, with trained
morphs judged as less attractive than trained individuals,
b � �0.48, t(222.10) � �6.05, CI95% [�0.65 �0.33], p � .001.
Untrained morphs were rated as more attractive than untrained
individuals, but not significantly so, b � 0.01, t(222.10) � 0.15,
CI95% [�0.15 0.17], ns. Also similar to Experiment 2A, trained
morphs were still judged as more attractive when compared to
untrained morphs, b � 0.27, t(768.50) � 3.98, CI95% [0.14 0.41],
p � .001. We also observed a mere exposure effect because trained
individuals were judged more attractive than untrained individuals,
b � 0.77, t(239.10) � 15.19, CI95% [0.67 0.87], p � .001. Main
effects of both Training Type, F(1, 151.80) � 132.67, p � .001,

5 In Experiment 2B, on RTs, maximal random slope models were a signif-
icantly better fit than maximal random intercept models for both color,
�2(26) � 168.21, p � .001 (AIC � �14732.81, BIC � �14398.80), and
number, �2(26) � 132.44, p � .001 (AIC � �335.35, BIC � �12.91), so
they were set for fixed-effects testing. On accuracy, maximal random slope
models would not converge, so maximal random intercept models were set for
fixed-effects testing on both color (AIC � 30258.18, BIC � 30396.39) and
number (AIC � 31539.63, BIC � 31677.85).

6 On attractiveness ratings for Experiment 2B, there was no significant
difference in model fit between the maximal random intercept and slope
models, �2(6) � 11.33, ns, so the random intercept model was set for
fixed-effects testing (AIC � 45412.52, BIC � 45478.07).
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and Target Type, F(1, 127.40) � 11.48, p � .001, showed that
trained targets were judged as more attractive overall (compared to
untrained targets), and individuals were judged as more attractive
overall (compared to morphs).

Familiarity ratings. We tested familiarity ratings with a similar
method to the attractiveness ratings, using a mixed-effects model with
a Training Type (2 [within]: trained, untrained) � Target Type (2
[within]: individual, morph) fixed-effects structure.7

Figure 3d displays the familiarity results. All effects were sig-
nificant. First, we observed strong evidence for a Training Type �
Target Type interaction, F(1, 127.01) � 36.55, p � .001. This
interaction revealed the expected effect that trained individuals
were rated the most familiar, compared to untrained individuals,
b � 2.63, t(127.00) � 13.74, CI95% [2.25 3.00], p � .001, trained
morphs, b � 1.33, t(127.00) � 10.64, CI95% [1.08 1.57], p � .001,
and untrained morphs, b � 2.95, t(127.00) � 14.25, CI95% [2.54
3.36], p � .001. Crucially though, this interaction yielded a similar
pattern to Experiment 2A, where the difference in familiarity
ratings between trained individuals and trained morphs was more
amplified, compared with the smaller difference between untrained
individuals and untrained morphs, b � 0.33, t(127.00) � 2.05,
CI95% [0.01 0.64], p � .04. Main effects for both Training Type,
F(1, 127.00) � 195.80, p � .001, and Target Type, F(1, 127.00) �
50.32, p � .001, also demonstrated that trained targets were rated
as more familiar overall, and individuals were rated as more
familiar than morphs.

Generally, these results replicated the familiarity findings from
Experiment 2A. Also similar to Experiment 2A, familiarity ratings
in Experiment 2B fell mostly between 5 and 9, and untrained
individuals were still judged as more familiar than untrained
morphs. This is presumably because learning on the individual
exemplars gave participants a greater sense of familiarity for that
specific “face space” (rather than the novel morph face set).

Multilevel mediation across Experiments 2A and 2B. We
used the same multilevel mediation procedure as Experiment 1, but
with some important changes (because of updates in the data and
experiment structure in Experiments 2A and 2B). First, we in-
cluded data from both Experiments 2A and 2B in one multilevel
mediation model, given that these two experiments were very
similar and analyzing both data sets in one model allowed for more
powerful effect estimates (but we report statistics from mediation
analyses on the individual experiments later in the main text and
footnotes of this section). Second, note that our main prediction in
Experiments 2A and 2B is that the relationship between target type
(individual vs. morph) and the training effect on attractiveness
ratings is mediated by the training effect on familiarity ratings. In
other words, the way in which training impacts attractiveness
ratings (for individuals vs. morphs) should be driven by how that
training impacts familiarity ratings (for individuals vs. morphs).
To address this, we created a new multilevel mediation model
where our main predictor was target type (individual vs. morph),
our main DV was the training effect on attractiveness (i.e., differ-
ence score between attractiveness of trained targets and attractive-
ness of untrained targets), and our mediator was the training effect
on familiarity (i.e., difference score between familiarity of trained
targets and familiarity of untrained targets). As before, mixed-
effects models were constructed for each of the mediation paths,
using by-participant random effects parameters. All simulations
from the mediation package in R were based on 1,000 samples per

estimate, after which quasi-Bayesian confidence intervals were
calculated around the average total, direct, and causal mediation
effects.

Figure 3e shows the mediation results. We observed convincing
evidence for mediation. Target type was a significant predictor of
the training effect on familiarity ratings (a-path: b � �0.93,
t(201.00) � �7.11, p � .001), and this familiarity training effect
was a significant predictor of the attractiveness training effect
(b-path: b � 0.07, t(338.70) � 4.73, p � .001). When controlling
for the familiarity training effect (c’-path), the original t-value
estimate of target type on the attractiveness training effect (c-path:
b � �0.51, t(201.00) � �10.20, p � .001) was reduced but still
significant (c’-path: b � �0.47, t(221.30) � �9.07, p � .001),
while familiarity was also significant (b � 0.04, t(350.00) � 2.70,
p � .007). Finally, this further demonstrated that the average
causal mediation effect was also significant (b � �0.04, CI95%

[�0.07 �0.01], p � .01).
Note that when we conducted additional analyses using similar

multilevel mediation models for each individual experiment, we
observed similar results.8 Specifically, the parallel average causal
mediation effect was significant in Experiment 2A (b � �0.05,
CI95% [�0.10 �0.01], p � .01) and marginal in Experiment 2B
(b � �0.03, CI95% [�0.07 0.005], p � .09).

In sum, the multilevel mediation analysis on Experiments 2A
and 2B showed clear evidence that the relationship between target
type (individual vs. morph) and the attractiveness training effect
was mediated by the familiarity training effect.

Experiment 3

Experiments 2A and 2B established that repetition of individual
faces generates a standard mere exposure effect, while also gen-
erating an ugliness-in-averageness (UiA) effect for morphs of
trained faces. We observed similar findings using both a name-
learning task (Experiment 2A) and perceptual-tracking task (Ex-
periment 2B). These results not only offer a major qualification to
the classic beauty-in-averageness (BiA) effect, but they also sug-
gest that generic familiarity is sufficient for eliciting a UiA effect
(as would be the case with low-level visual cues; Natu & O’Toole,

7 With familiarity ratings in Experiment 2B, the maximal random slope
model was a significantly better fit than the maximal random intercept
model, �2(6) � 33.37, p � .001, so the random slope model was set for
fixed-effects testing (AIC � 44133.39, BIC � 44242.63).

8 On the multilevel mediation for Experiment 2A, target type was a
significant predictor of the training effect on familiarity ratings (a-path:
b � �0.81, t(73.00) � �3.78, p � .001), and the familiarity training effect
was a significant predictor of the attractiveness training effect (b-path: b �
0.09, t(146.00) � 3.90, p � .001). When controlling for the familiarity
training effect (c’-path), the original t-value estimate of target type on the
attractiveness training effect (c-path: b � �0.52, t(73.00) � �7.14, p �
.001) was reduced but still significant (c’-path: b � �0.47, t(78.62) � �6.22,
p � .001), while familiarity was also significant (b � 0.06, t(131.25) �
2.69, p � .008). On Experiment 2B, similarly, target type was a significant
predictor of the training effect on familiarity ratings (a-path: b � �1.00,
t(127.00) � �6.05, p � .001), and the familiarity training effect was a
significant predictor of the attractiveness training effect (b-path: b � 0.06,
t(214.93) � 3.20, p � .002). When controlling for the familiarity training
effect (c’-path), the original t-value estimate of target type on the attrac-
tiveness training effect (c-path: b � �0.50, t(127.00) � �7.52, p � .001)
was reduced but still significant (c’-path: b � �0.47, t(141.45) � �6.75,
p � .001), while familiarity was trending but not quite significant (b �
0.03, t(217.57) � 1.56, ns).
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2011). Importantly, the decline in attractiveness for morphs of
familiar individuals was relative—they were still more attractive
than untrained individuals. Note that these effects were obtained
with relatively minor amounts of exposure, demonstrating that the
UiA effect does not require extensive expertise. Theoretically,
these results are consistent with predictions from modern memory
frameworks, which emphasize the critical role of the amount of
learning in familiarity (and thus, preference) for exemplars and
their blends.

With Experiment 3, we wanted to further examine the underly-
ing mechanism driving the UiA effect. Recall that in the Introduc-
tion, we outlined three alternative patterns for possible results after
exemplar training. First, the additive prediction would posit that
preferences from mere exposure and blending should combine in a
positive fashion, making morphs of familiar individuals especially
attractive. This prediction seems most intuitive when assuming
these two manipulations enhance liking via separate and indepen-
dent mechanisms. However, both Experiments 2A and 2B offer
clear evidence against this idea, because morphs of trained indi-
viduals were judged as less attractive than trained individuals
themselves (UiA effect). This leaves two other possibilities. First,
a mismatch account suggests that encountering a blend of two
familiar individuals causes a cognitive conflict (Arnal & Giraud,
2012; Dreisbach & Fischer, 2015; Hsu et al., 2005), perhaps not
unlike conflict triggered by bistable figures (Kornmeier & Bach,
2012; Topolinski, Erle, & Reber, 2015). The negative affect gen-
erated from this conflict is then misattributed to subsequent rat-
ings, causing the relative unattractiveness of trained morphs. Sec-
ond, per our familiarity account, the UiA effect is driven by a
relative reduction in familiarity for morphs of trained exemplars.

Experiments 2A and 2B offer some preliminary evidence in
favor of our memory-based familiarity account. If cognitive mis-
match played a primary role in the UiA effect, we would expect
that trained morphs would be judged as not only less attractive
than trained individuals, but also less attractive than untrained
morphs, but this is not what we observed. Instead, blends of
well-learned individuals generated familiarity and preference val-
ues in-between actually exposed individuals and novel individuals,
which would be predicted by memory frameworks (Jones & Ja-
coby, 2001; Kelley & Wixted, 2001). Also, the multilevel medi-
ation analysis on Experiments 2A and 2B showed that the training
effect on familiarity ratings mediated the relationship between
target type (individual vs. morph) and the training effect on attrac-
tiveness ratings.

However, Experiments 2A and 2B do not offer a definitive test
between the mismatch and familiarity accounts. In these studies,
the trained morphs could potentially generate both high conflict
and high familiarity, given that they blend two highly familiar
individual exemplars. We used Experiment 3 to address this issue
with a simple change to Experiments 2A and 2B. In Experiments
2A and 2B, recall that all morphs were 100% within-set, meaning
that morphs would either be A-A or B-B, but never A-B (see
Figure S1 in supplementary materials). In Experiment 3, we cre-
ated new versions of the sets (once again based on attractiveness
ratings from a previous study; Halberstadt et al., 2013) that instead
used cross-set A-B morphs, so the two individuals composing each
morph were always in different sets. With this setup, the cross-set
morphs should yield familiarity values in-between that of trained
and untrained individuals (since they are composed of one trained

and untrained individual). Note that this would be similar to the
within-set morphs from Experiments 2A and 2B (which showed
familiarity ratings in-between untrained individuals and trained
individuals; see Figures 3b and 3d), but if anything, within-set
morphs should yield somewhat greater familiarity than cross-set
morphs (yet still in-between trained and untrained individuals,
since they are instead composed of two trained individuals).

Critically though, with the cross-set morphs, any conflict from
blending two highly familiar individual exemplars would be re-
duced or eliminated. Therefore, if conflict is the driving mecha-
nism for the UiA effect, cross-set morphs should now appear more
attractive than trained individuals (thus, a standard BiA effect).
Essentially, this cross-set morph design directly pits the two re-
maining theories against one another:

H1: This assumes that the UiA effect for trained morphs is
driven by a mismatch (conflict) between two strongly learned
individuals. This conflict generates negative affect, which
leads to lower attractiveness ratings for those morphs. If so,
cross-set morphs should be rated as more attractive than
trained individuals (thus, a standard BiA effect). Since the
cross-set morphs contain one trained and one untrained iden-
tity, any such conflict that would emerge from blending two
known individuals would be substantially reduced (and any
UiA effect should dissipate). Further, without such conflict,
cross-set morphs would presumably be judged more attractive
than trained individuals from the usual benefits of blending
faces.

H2: This assumes that the UiA effect for trained morphs is
driven by a relative decrease in familiarity of two strongly
learned individuals. The specific trained individuals receive
increased attractiveness ratings than morphs because they are
exact replicates of items from training, whereas the morph is
less similar to the trained set. If so, cross-set morphs should be
rated as less attractive than trained individuals (thus, a UiA
effect). Because the cross-set morphs contain one trained and
one untrained identity, they should still be judged as relatively
less familiar (and less attractive) than the trained individuals.

Method

Participants. One hundred fifty-one UCSD undergraduates
participated for course-credit, and all participants signed consent
forms approved by the UCSD HRPP. To plan our sample size in
Experiment 3, we conducted an a priori power analysis partly
based on the effect sizes from Experiments 1, 2A, and 2B (once
again using an effect size estimate of f � 0.12). We applied this
analysis in GPower (version 3.1.9.2; Faul et al., 2007), according
to the design of Experiment 3. To achieve 85–90% power, this
forecasted a target range for n at 141–163 participants (two-tailed
test at � � .05 and nonsphericity correction ε � 1).

Materials. We made only one change to the stimulus setup
from Experiments 2A and 2B. Although both sets A and B each
still contained 28 individuals and 14 morphs each, they were
reorganized (once again based on attractiveness ratings from a
previous study; Halberstadt et al., 2013) so that the two individuals
composing each morph were always in different sets. Therefore, in
Experiment 3, all morphs were cross-set A-B morphs that blended
one trained and one untrained individual (rather than the within-set
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A-A and B-B morphs used in Experiments 2A and 2B; see Figure
S1 in supplementary materials).

Design and procedure. We used the same name-learning task
as Experiment 2A (see Figure 2a).

Results and Discussion

Analysis strategy. Our analysis strategy was the same as
Experiments 2A and 2B.

Training performance (name-learning task). As before, we
examined participants’ accuracy and RT performance over all 7
testing blocks during training. This analysis was structured accord-
ing to a Training Condition (2 [between]: set A, set B) � Testing
Block (7 [within]) fixed-effects design, on both accuracy and RTs.
All RTs were log10-transformed after excluding error trials.

Once again, our training task was effective, since participants
became progressively faster, F(6, 855.43) � 247.36, p � .001, and
more accurate, F(6, 307.55) � 519.55, p � .001, over successive
rounds of the free-recall task9 (also see supplementary materials
[Figure S4] for more details).

Attractiveness ratings. Given that the cross-set morphs used
in Experiment 3 were neither 100% trained nor untrained, we
analyzed attractiveness ratings using a mixed-effects model with
Target Type (3 [within]: morph, trained individual, untrained
individual) as the only fixed-effects factor.10

Figure 4a displays the attractiveness results. We detected a
strong main effect of Target Type, F(2, 150.00) � 111.13, p �
.001. Critically, a UiA effect still emerged, such that morphs were
rated as less attractive than trained individuals, b � �0.55,
t(150.00) � �9.07, CI95% [�0.68 �0.43], p � .001. Interestingly,
even though participants did not rate the morphs as more familiar
than the untrained individuals (see next section), they still rated the
morphs as relatively more attractive, b � 0.13, t(150.00) � 2.22,
CI95% [0.01 0.24], p � .03. And as expected, we replicated the
mere exposure effect, where trained individuals were judged as
more attractive than untrained individuals, b � 0.68, t(150.00) �
14.69, CI95% [0.59 0.77], p � .001.

Familiarity ratings. We analyzed familiarity ratings in the
same way as attractiveness, using a mixed-effects model with
Target Type (3 [within]: morph, trained individual, untrained
individual) as the only fixed-effects factor.11

Figure 4b displays the familiarity results. We observed a clear
main effect of Target Type, F(2, 150.03) � 132.79, p � .001.
Trained individuals were judged as more familiar than both un-
trained individuals, b � 2.17, t(150.00) � 12.18, CI95% [1.82
2.52], p � .001, and morphs, b � 2.27, t(150.00) � 15.40, CI95%

[1.98 2.56], p � .001. Note that there was also no difference when
comparing mean familiarity ratings between morphs and untrained
individuals, b � �0.10, t(150.00) � �0.60, CI95% [�0.43 0.23],
ns, though as discussed below, familiarity still played a role in the
attractiveness ratings of those targets.

Multilevel mediation. We built multilevel mediation models
in Experiment 3 using a similar procedure as the previous studies,
but with one important change. Because we used cross-set morphs
in Experiment 3 that were neither 100% trained nor untrained, this
was collapsed into one three-level factor for Training Target Type
(3 [within]: morph, trained individual, untrained individual). Note
that treatment variables with more than two levels need to be
handled differently than binary treatment variables in multilevel

mediation (Imai, Keele, & Tingley, 2010). This can be done by
creating separate mediation models with different treatment val-
ues, compared across the same control value. Therefore, for Ex-
periment 3, we created two separate multilevel mediation models.
The first model compared trained individuals with untrained indi-
viduals, and the second model compared trained individuals to
morphs. With both models, our main predictor was training
(trained individuals vs. untrained individuals in Model 1 [M1];
trained individuals vs. morphs in Model 2 [M2]), our main DV was
attractiveness ratings, and our mediator was familiarity ratings.

Figure 4c shows a summary of the mediation results.12 After
testing the total, indirect, and average causal mediation effects, we
detected evidence for mediation in both models. For M1 (compar-
ing trained individuals vs. untrained individuals), the total effect
(b � 0.68, CI95% [0.59 0.78], p � .01), average direct effect (b �
0.53, CI95% [0.42 0.66], p � .01), and average causal mediation
effect (b � 0.15, CI95% [0.06 0.23], p � .01) were all highly
significant. We saw similar results with M2 (comparing trained
individuals vs. morphs), with a significant total effect (b � 0.55,
CI95% [0.43 0.67], p � .01), average direct effect (b � 0.39, CI95%

[0.21 0.56], p � .01), and average causal mediation effect (b �
0.16, CI95% [0.03 0.29], p � .01). In short, familiarity mediated the
relationship between training and attractiveness (both for trained

9 In Experiment 3, on RTs, maximal random slope models would not
converge, so maximal random intercept models were set for fixed-effects
testing (AIC � �18806.29, BIC � �18668.33). A main effect of Testing
Block, F(6, 855.43) � 247.36, p � .001, showed that participants got
progressively faster over successive training rounds. We observed no
evidence for a main effect of Training Condition, F(6, 149.89) � 1.19, ns,
nor a Training Condition � Testing Block interaction, F(6, 855.43) � 0.43,
ns. On accuracy, the maximal random slope model was a significantly
better fit than the maximal random intercept model, �2(26) � 861.33, p �
.001, so the random slope model was set for fixed-effects testing (AIC �
10404.80, BIC � 10761.50). We observed the expected main effect of
Testing Block, F(6, 307.55) � 519.55, p � .001, where participants
improved their recall throughout the task (starting at approximately 36%
correct in block 1 and improving to about 98% correct by block 7, with
performance beginning to level out at block 5). We also observed a
marginal main effect of Training Condition, F(1, 149.08) � 3.35, p � .07,
such that set A participants (Macc � 84.71%, SDacc � 7.79%) performed
better than set B participants (Macc � 82.27%, SDacc � 8.60%) throughout
the entirety of the memory task. The Training Condition � Testing Block
interaction was not significant, F(6, 307.55) � 0.82, ns.

10 On attractiveness ratings for Experiment 3, the maximal random slope
model was a significantly better fit than the maximal random intercept
model, �2(4) � 18.61, p � .001, so the random slope model was set for
fixed-effects testing (AIC � 52268.69, BIC � 52343.17).

11 With familiarity ratings in Experiment 3, the maximal random slope
model was a significantly better fit than the maximal random intercept
model, �2(4) � 33.05, p � .001, so the random slope model was set for
fixed-effects testing (AIC � 51837.35, BIC � 51911.83).

12 Training target type was a significant predictor of familiarity (a-path
[M1]: b � 2.17, t(150.00) � 12.18, p � .001; a-path [M2]: b � 2.27,
t(150.00) � 15.40, p � .001), and familiarity was a significant predictor of
attractiveness (b-path [M1]: b � 0.18, t(193.46) � 10.49, p � .001; b-path
[M2]: b � 0.16, t(205.08) � 7.85, p � .001). When controlling for
familiarity, the original t-value estimate of training on attractiveness (c-
path [M1]: b � 0.68, t(150.00) � 14.69, p � .001; c-path [M2]: b � 0.55,
t(150.00) � 9.07, p � .001) was reduced but still significant (c’-path [M1]:
b � 0.53, t(171.81) � 8.65, p � .001; c’-path [M2]: b � 0.39, t(200.57) �
4.38, p � .001), while familiarity was also significant (c’-path [M1]: b �
0.07, t(203.77) � 3.56, p � .001; c’-path [M2]: b � 0.07, t(254.25) � 2.52,
p � .01).
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individuals vs. untrained individuals and trained individuals vs.
morphs).

Correlations by target type. Finally, we also wanted to
assess the relationship between attractiveness and familiarity
within trained individuals and morphs (rather than comparing
across them). In other words, are morphs that appear more
familiar rated higher on attractiveness, compared to other
morphs that appear relatively unknown? We investigated this
by simply aggregating participants’ mean attractiveness and
familiarity ratings for morphs and trained individuals, then

running separate Pearson (r) product-moment correlation tests
within each target type.

Figure 4d shows the results of this analysis. Attractiveness and
familiarity were positively correlated for both morphs, r(149) �
.20, CI95% [.05 .35], p � .01, and trained individuals, r(149) � .24,
CI95% [.09 .39], p � .002. This demonstrates that familiarity not
only impacted attractiveness ratings across target types (i.e.,
morphs vs. trained individuals), but it also affected attractiveness
within target types as well (i.e., more familiar morphs were more
attractive than less familiar morphs).

Figure 4. Attractiveness ratings (a), familiarity ratings (b), multilevel mediation results (c), and correlation
analyses (d) in Experiment 3. We still observed an ugliness-in-averageness (UiA) effect after training using
cross-set morphs (rather than the within-set morphs from Experiments 2A and 2B), such that morphs were
judged as less attractive than trained individuals (a). Trained individuals were judged as more familiar than both
untrained individuals and cross-set morphs (b). Multilevel mediation demonstrated that the relationship between
training target type (trained individuals vs. cross-set morphs & trained individuals vs. untrained individuals) and
attractiveness ratings were significantly mediated by familiarity (c). Separate correlation analyses within morphs
(left plot in panel d) and trained individuals (right plot in panel d) showed significant positive correlations
between familiarity and attractiveness. Linear fits are shown in each plot in panel d, along with 95% confidence
interval bands. Error bars represent �1 SEM. �� p � .01, ��� p � .001. See the online article for the color version
of this figure.
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Overall, Experiment 3 favored H2 (familiarity account) over H1

(mismatch account). Results from attractiveness and familiarity rat-
ings, multilevel mediation, and correlational analyses all suggest that
the UiA effect depends on the similarity of the morph to the exem-
plars. This idea assumes that increased exemplar learning leads to
greater familiarity for those trained individuals. In turn, the “dip” in
attractiveness ratings for trained morphs is actually due to the relative
reduction of those familiarity cues (where trained individuals feel
more familiar than trained morphs, since they are “pure” replicates of
what was shown during the memory task).

Experiment 4

To recap, Experiment 1 showed that a traditional BiA effect
occurs with weak learning of individual exemplars. We also dem-
onstrated that brief periods of training using both a name-learning
task (Experiments 2A and 3) and perceptual-tracking task (Exper-
iment 2B) generates a mere exposure effect for those trained
individuals. Importantly, these memory tasks also produce a UiA
effect, where trained morphs are judged as less attractive than
trained individuals. Finally, we extended these findings in Exper-
iment 3 using cross-set morphs, which showed that these results
are driven by a relative reduction in familiarity cues between
trained individuals and morphs—thus supporting the familiarity-
driven (memory-based) framework for the UiA effect (over the
additive and mismatch frameworks).

We used Experiment 4 to address two unanswered questions.
One issue is a potential role of differences in task goals across the
previous experiments. Recall that in Experiments 2A, 2B, and 3,
we instructed participants to pair and memorize name or square
information with different faces, whereas in Experiment 1, partic-
ipants merely proceeded through all the faces to give ratings (no
memorization required). It might be the case that these different
tasks induced different goals while encoding the faces. The weak
learning context in Experiment 1 may have biased participants
toward a more global encoding strategy, because they did not have
to actively engage with the stimuli (thus leading morphs to appear
more familiar and attractive). In contrast, the strong learning
contexts in Experiments 2A, 2B, and 3 may have encouraged a
more specific encoding strategy, since the task requires more
detailed memory on the individual exemplars (thus leading trained
individuals to appear more familiar and attractive). On this ac-
count, our effects are not driven by the amount of exposure per se,
but rather individuation of different face stimuli depending on the
task at-hand (which is believed to increase differentiation by
changing the structure of the stimulus space; e.g., McGugin,
Tanaka, Lebrecht, Tarr, & Gauthier, 2011). A second issue is that
in our previous experiments, we did not have any measures of
more objective memory strength—only ratings of subjective fa-
miliarity. If our effects are indeed driven by memory processes,
then differences in attractiveness between individuals and morphs
should also be reasonably linked to objective performance in
recognition of the face stimuli (i.e., “old/new” judgments), though
we will return to the difference between familiarity and recogni-
tion judgments later.

To address these concerns, we made three main changes to the
design from Experiment 2B (which used the perceptual-tracking
task on trained and untrained faces). First, instead of dividing the
faces into study sets, we varied the number of exposures for

individual faces (i.e., 14 individual faces each at 0, 1, 3, or 7
exposures), with all participants receiving all levels of prior expo-
sure as a within-subjects manipulation of training. Second, we
changed the nature of the perceptual-tracking task such that no
consistent information was paired with the faces—participants
only had to remember general spatial locations for where blue/
green squares were presented. With this version of the task, the
exposure is completely passive and does not require any individ-
uating information to be paired with the trained exemplars. Obvi-
ously, this also means that even at high levels of exposure in
Experiment 4 (i.e., 7 exposures), the individual exemplars are
going to be less strongly encoded than the more “active” exposures
in previous experiments, and on our account, this should slightly
decrease subjective familiarity for those individuals. Finally, we
also had participants make speeded “old/new” judgments on all
face stimuli, after they gave all their attractiveness and familiarity
ratings. This allowed us to calculate objective measures of memory
strength (i.e., proportion “old” judgments and response times).

Method

Participants. One hundred UCSD undergraduates partici-
pated for course-credit, and all participants signed consent forms
approved by the UCSD HRPP. As before, to plan our sample size
in Experiment 4, we conducted an a priori power analysis based on
the effect sizes from Experiments 1, 2A, 2B, and 3 (once again
using an effect size estimate of f � 0.12). We generated this
analysis in GPower (version 3.1.9.2; Faul et al., 2007), according
to the updated design of Experiment 4. To achieve 85–90% power,
this forecasted a target range for n at 92–105 participants (two-
tailed test at � � .05 and nonsphericity correction ε � 1).

Materials. We used the same stimuli as the previous experi-
ments, but study sets (A or B) were not used in Experiment 4.
Instead, for each participant, individual faces were randomly as-
signed to one of four exposure levels during training as a within-
subjects manipulation (see next).

Design and procedure. As with previous experiments, par-
ticipants went through a training task and subsequently provided
attractiveness and familiarity ratings for individual and morph
faces. However, we made three main changes for the design in
Experiment 4.

First, individual face stimuli were not divided into study sets (A
or B). Instead, individual faces were randomly assigned to one of
four exposure levels during the training task (i.e., 0, 1, 3, or 7
exposures), with 14 individual faces at each level. In turn, there
were 154 exposures during the training task, which was divided
into 7 blocks of 22 trials (see Figure 5).

Second, we also modified the perceptual-tracking task from
Experiment 2B. Figure 5 displays the training task used in Exper-
iment 4. During each trial, an individual face stimulus was pre-
sented for 3000 ms, along with random 200 ms blue or green
square probes that would briefly appear at different locations on
the images. At the end of each block, participants were asked to
indicate whether they thought there were more blue/green squares
on the left/right or upper/lower part of the images for that block
(where the stems for square color and location were randomly
selected across blocks). Importantly, the color, number, and loca-
tion of square presentations was randomized across trials and
stimuli (i.e., individual faces were not paired with a specific
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color/number of squares, in contrast to Experiment 2B). This was
done to ensure that exposure to the individuals was completely
passive and to avoid having participants attach any individuating
information to the trained faces.

Lastly, at the end of the experiment, we had participants make
speeded “old/new” judgments on all face stimuli, in order to obtain
measures of memory strength. More specifically, after the attrac-
tiveness and familiarity ratings in Experiment 4, participants pro-
gressed through all 84 face stimuli (56 individuals and 28 morphs;
trial order randomized). They were instructed to judge, as quickly
and accurately as possible, whether each face was “old or new”
(using the A and L keys on the keyboard), and we specified that
they should make their judgments according to what they saw
during the blue/green square training task.

Results and Discussion

Analysis strategy. We used the same mixed-effects modeling
strategy as the previous experiments.

Training performance (perceptual-tracking task). Like the
previous studies, we examined participants’ accuracy and RT
performance over all 7 testing blocks during training. We did this
with Testing Block (7 [within]) as the only fixed-effect, on both
accuracy and RTs.13

Once again, overall, our training task was effective. Participants
responded progressively faster across successive rounds in the
training task, as evident from a main effect of Testing Block on
log10-transformed RTs, F(6, 594.00) � 51.26, p � .001. We did
not observe any main effect of Testing Block on accuracy, F(6,
637.00) � 0.30, ns, but when collapsing across all 7 blocks,
participants showed stable above-chance performance (Macc �
57.66%, SDacc � 18.57%), t(99) � 4.13, CI95% [0.54 0.61], p �
.001 (see supplementary materials [Figure S5] for more details).

Attractiveness ratings. To analyze attractiveness ratings in
Experiment 4, we created a mixed-effects model with an Exposure

Level (4 [within]: 0, 1, 3, 7 exposures) � Target Type (2 [within]:
individual, morph) fixed-effects structure.14

Figure 6a displays the results for attractiveness. Critically,
we observed an Exposure Level � Target Type interaction, F(3,
7897.70) � 3.45, p � .016. This showed that the attractiveness
advantage for morphs (traditional BiA effect) emerged at low
levels of exposure, but eventually dissipated and reversed with
increasing exposure to the constituent faces. Specifically,
morphs were judged as more attractive than their constituent
individuals at the lower exposure levels, including no exposure
(level 0), b � 0.23, t(409.60) � 2.34, CI95% [0.04 0.42], p �
.02, and weak exposure (level 1), b � 0.23, t(409.60) � 2.34,
CI95% [0.04 0.42], p � .02. However, this changed at higher
exposure levels. At medium exposure (level 3), morphs were
still judged as more attractive, but this difference did not reach
significance, b � 0.09, t(409.60) � 0.89, CI95% [�0.11 0.28],
ns. And importantly, with high exposure (level 7), morphs were
actually judged as less attractive than their constituent individ-
uals (albeit this comparison did not reach significance),
b � �0.09, t(409.60) � 0.89, CI95% [�0.28 0.11], ns. This
suggests the transition of a traditional BiA effect at lower
exposure levels to a UiA effect at higher exposure levels. Note
that we also observed a main effect of Exposure Level, F(3,
336.80) � 8.63, p � .001, which just showed that targets were
judged as overall more attractive with greater exposure. The
main effect of Target Type was marginal, F(1, 99.30) � 2.79,

13 Note that participants were required to answer fewer questions during
test in Experiment 4 compared to the previous studies (i.e., 7 questions in
Experiment 4 vs. 196 questions in Experiments 2A, 2B, and 3). Thus, RTs
were still log10-transformed before analysis, but RTs on both correct and
incorrect trials were included.

14 On attractiveness ratings for Experiment 4, the maximal random slope
model would not converge, so the random intercept model was set for
fixed-effects testing (AIC � 33968.03, BIC � 34059.50).

Figure 5. Design of the training task for Experiment 4, modified from Experiment 2B (see Figure 2b).
Individual faces were randomly assigned to be exposed 0, 1, 3, or 7 times during training, which totaled 154
exposures ([14 individuals � 0 exposures] 	 [14 individuals � 1 exposure] 	 [14 individuals � 3 exposures] 	
[14 individuals � 7 exposures]). These 154 exposures were divided into 7 blocks with 22 trials each, with equal
probabilities for each of the exposures being assigned to one of the blocks. During the task, individual faces
would be presented for 3000 ms each, along with random 200 ms blue or green square probes that would briefly
appear at different locations on the images. After each block of images, participants were asked to report the
general spatial location (i.e., left/right or upper/lower, depending on the testing block) for a specific square color
(i.e., blue or green, depending on the testing block). In the above figure, the bracketed text on the question screen
indicates fields that would vary by testing block. See the online article for the color version of this figure.
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p � .098, revealing that morphs appeared marginally more
attractive than individuals when collapsing across exposure
levels.

Familiarity ratings. We analyzed familiarity in Experiment 4
using similar mixed-modeling methods as attractiveness, accord-
ing to an Exposure Level (4 [within]: 0, 1, 3, 7 exposures) �
Target Type (2 [within]: individual, morph) fixed-effects struc-
ture.15

Figure 6b displays the results for familiarity. We observed the
predicted Exposure Level � Target Type interaction, F(3,
7896.70) � 11.97, p � .001. Although there were no clear famil-

iarity differences between individuals and morphs with no expo-
sure (level 0), b � 0.12, t(175.90) � 0.78, CI95% [�0.18 0.42], ns,
or weak exposure (level 1), b � 0.06, t(175.90) � 0.42, CI95%

[�0.24 0.36], ns, individuals were judged as marginally more
familiar with medium exposure (level 3), b � 0.27, t(175.90) �
1.76, CI95% [�0.03 0.57], p � .08, and significantly more familiar

15 With familiarity ratings in Experiment 4, the maximal random slope
model would not converge, so the maximal random intercept model was set
for fixed-effects testing (AIC � 35547.64, BIC � 35639.11).

Figure 6. Attractiveness ratings (a), familiarity ratings (b), proportion “old” on old/new judgments (c), and
log10-transformed RTs on old/new judgments (panel d) in Experiment 4. Morphs were judged as more attractive
with no/weak exposure (levels 0 and 1) showing a traditional BiA effect, but individuals were judged more
attractive with high exposure (level 7), trending toward a UiA effect (a). We did not observe any clear differences
in familiarity between individuals and morphs with no/weak exposure (levels 0 and 1), but as the number of
exposures increased (levels 3 and 7), individuals were judged to be more familiar (b). Proportion “old”
judgments mirrored the subjective familiarity ratings, with better performance for individuals (relative to
morphs) as the number of exposures increased from low (levels 0 and 1) to high (levels 3 and 7) (panel c).
Participants showed faster old/new RTs to individuals, but similar to familiarity and proportion “old” judgments,
this difference grew larger with more exposures (d). Error bars represent �1 SEM.
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with high exposure (level 7), b � 0.59, t(175.90) � 3.88, CI95%

[0.29 0.89], p � .001. Note, however, that at high exposure in
Experiment 4 (level 7), the maximum level of familiarity (Ms
between 6 and 7 on 9-point scale) was lower than in Experiments
2A, 2B, and 3 (Ms between 7.5–8.5 on 9-point scale). This is
important because it demonstrates that the presence of the UiA
effect (and its transition from the BiA effect) was less dramatic in
Experiment 4 compared to previous studies. This is likely attrib-
utable to the modified passive exposure task in Experiment 4,
which led to lower overall ratings of subjective familiarity across
exposure levels (we will return to this issue in the General Dis-
cussion). We also observed a main effect of Exposure Level, F(3,
343.60) � 43.09, p � .001, which showed, unsurprisingly, that
both morphs and individuals were rated as more familiar at higher
exposure levels. The main effect of Target Type was not signifi-
cant, F(1, 99.00) � 2.32, ns.

Comparative analysis between attractiveness and
familiarity. One important consideration is the extent to which
the attractiveness and familiarity ratings were similar for individ-
uals and morphs, across different levels of exposure. To examine
this, we z-scored participants’ attractiveness and familiarity rat-
ings, then combined them into one dataset (to put all ratings on the
same scale). Next, we created a new mixed-effects model that
predicted the z-scored ratings, according to an Exposure Level (4
[within]: 0, 1, 3, 7 exposures) � Target Type (2 [within]: individ-
ual, morph) � Rating Type (2 [within]: attractiveness, familiarity)
fixed-effects structure.16

Crucially, we did not observe a three-way interaction between
Exposure Level, Target Type, and Rating Type, F(3, 297.02) �
0.34, ns. This suggests that the rating curves across exposure levels
for individuals and morphs did not significantly differ by the type
of rating (attractiveness vs. familiarity). We also observed some
less theoretically important effects, which we do not discuss
here.17

Multilevel mediation. We once again built multilevel medi-
ation models using a similar procedure as the previous studies.
However, given that we had four different exposure levels in
Experiment 4, we needed to create three separate mediation mod-
els with different treatment values (i.e., exposure levels 1, 3, and
7) compared with the same control value (i.e., exposure level 0) for
each target type (i.e., individuals vs. morphs). Recall that treatment
variables with more than two levels need to be handled differently
than binary treatment variables in multilevel mediation (Imai,
Keele, & Tingley, 2010). Therefore, in Experiment 4, we gener-
ated six separate multilevel mediation models—where two models
compared exposure levels 0 versus 1 (i.e., M1(individual) and
M1(morph)), two models compared exposure levels 0 versus 3 (i.e.,
M3(individual) and M3(morph)), and two models compared exposure
levels 0 versus 7 (i.e., M7(individual) and M7(morph)). Across all
models, our main predictor was amount of exposure, our main DV
was attractiveness ratings, and our mediator was familiarity rat-
ings.

Table 1 displays complete results for all multilevel mediation
models in Experiment 4.18 On individuals, familiarity mediated the
relationship between exposure and attractiveness in all models
(i.e., M1(individual), M3(individual), and M7(individual)). Critically, this
average causal mediation effect (ACME) from familiarity became
steadily stronger as the amount of exposure increased from
M1(individual) to M3(individual) to M7(individual). This pattern suggests

that the mediating effect of familiarity between exposure and
attractiveness for individuals becomes especially robust in strong
learning contexts (i.e., level 7). Interestingly, for morphs, the
reverse effect seemed to emerge. As exposure increased from
M1(morph) to M7(morph), the mediating effects of familiarity gener-
ally dissipated with increasing exposure (i.e., the ACME was
marginal in M1(morph) and significant in M3(morph) but not signif-
icant in M7(morph)). This demonstrates that familiarity drives the
relationship between exposure and attractiveness for morphs, but
more so in conditions of weaker learning (i.e., levels 1 and 3).

Note that this aligns with predictions from our memory-based
framework. Under conditions of weak learning, increased famil-
iarity should drive attractiveness for morphs (and thus, a traditional
BiA effect). Under conditions of strong learning, there is a degra-
dation of familiarity cues for morphs relative to individuals (and
thus, a UiA effect occurs).

Old/new judgments. In Experiment 4, after all attractiveness
and familiarity ratings, we also had participants do speeded trials
of “old or new” judgments on all individual and morph stimuli,
based on the memory for the faces that they were exposed to
during the training task. This allowed us to obtain two measures

16 For the comparative analysis between attractiveness and familiarity in
Experiment 4, there was no significant difference between the maximal
random slope and intercept models, �2(14) � 0, ns, so the random intercept
model was set for fixed-effects testing (AIC � 2620.42; BIC � 2749.49).

17 On the comparative analysis between attractiveness and familiarity in
Experiment 4, we did observe a main effect of Exposure Level, F(3,
297.20) � 26.81, p � .001, which only showed that the z-scored ratings
varied with different levels of exposure. An Exposure Level � Target Type
interaction, F(3, 297.03) � 14.64, p � .001, indicated that across both
attractiveness and familiarity, individuals received steadily increasing rat-
ings from low exposure (level 0) to high exposure (level 7). For morphs,
there was a similar rating increase from no exposure (level 0) to medium
exposure (level 3), but this decreased at high exposure (level 7). A
marginal Exposure Level � Rating Type interaction, F(3, 297.16) � 2.34,
p � .07, demonstrated that for both individuals and morphs, attractiveness
gradually increased from no exposure (level 0) to medium exposure (level
3) but then dropped off during high exposure (level 7). For familiarity,
there was a more linear increase in ratings from no exposure (level 0) to
high exposure (level 7). Finally, a Target Type � Rating Type interaction,
F(1, 99.00) � 6.00, p � .016, showed that morphs were rated as more
attractive than individuals, but individuals were rated as more familiar than
morphs.

18 In Experiment 4, all a-path models for individuals and morphs were
significant (M1(individual): b � 0.50, t(99.00) � 6.68, p � .001; M3(individual):
b � 0.88, t(99.00) � 9.76, p � .001; M7(individual): b � 1.18, t(99.00) �
9.83, p � .001; M1(morph): b � 0.32, t(99.00) � 3.13, p � .002; M3(morph):
b � 0.49, t(99.00) � 4.93, p � .001; M7(morph): b � 0.47, t(99.00) � 4.59,
p � .001), and all b-path models for individuals were significant
(M1(individual): b � 0.16, t(154.06) � 4.04, p � .001; M3(individual): b � 0.18,
t(170.52) � 4.89, p � .001; M7(individual): b � 0.17, t(197.28) � 5.06, p �
.001). For morphs, only the b-path for M3(morph) was significant (M1(morph):
b � 0.07, t(132.43) � 1.88, p � .06; M3(morph): b � 0.12, t(141.93) � 2.84,
p � .005; M7(morph): b � 0.06, t(151.16) � 1.56, ns). All c-path models
were also significant except for M7(morph) (M1(individual): b � 0.28,
t(99.00) � 3.86, p � .001; M3(individual): b � 0.45, t(99.00) � 5.56, p �
.001; M7(individual): b � 0.43, t(99.00) � 5.48, p � .001; M1(morph): b �
0.28, t(99.00) � 2.67, p � .009; M3(morph): b � 0.30, t(99.00) � 3.00, p �
.003; M7(morph): b � 0.11, t(99.00) � 1.18, ns). On the c’-path models,
familiarity still significantly predicted attractiveness while reducing the
significance of exposure, except for M1(morph) and M7(morph) (M1(individual):
b � 0.21, t(112.08) � 2.89, p � .005; M3(individual): b � 0.34, t(127.55) �
3.90, p � .001; M7(individual): b � 0.30, t(135.82) � 3.36, p � .001;
M1(morph): b � 0.26, t(101.37) � 2.47, p � .015; M3(morph): b � 0.26,
t(105.20) � 2.52, p � .01; M7(morph): b � 0.09, t(105.34) � 0.88, ns).
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indicative of memory strength—proportion “old” responses and
RTs. Importantly, recall that old/new judgments are widely con-
sidered in memory literature to be more context-bound than ge-
neric “familiarity” judgments, as answering the old/new recogni-
tion question requires determining whether the item was on the
particular list the experimenter is asking about. Accordingly,
global familiarity and recognition judgments can show somewhat
different patterns (Whittlesea & Price, 2001; Wixted & Mickes,
2014).

For both DVs, we used similar mixed-effects modeling methods
as attractiveness and familiarity, according to an Exposure Level
(4 [within]: 0, 1, 3, 7 exposures) � Target Type (2 [within]: individ-
ual, morph) fixed-effects structure. RTs were log10-transformed be-
fore analysis to reduce the impact of outliers (both correct and incor-
rect RTs were included here).19

Proportion “old” responses. Figure 6c displays the results
for proportion “old” responses. We observed the predicted Expo-
sure Level � Target Type interaction, F(3, 329.46) � 16.93, p �
.001. With no exposure (level 0), participants logged marginally
more “old” responses (i.e., false alarms) to morphs than individ-
uals, b � 0.05, t(303.70) � 1.81, CI95% [�0.004 0.10], p � .07.
This effect was in the same direction with weak exposure (level 1)
but did not reach significance, b � 0.02, t(303.70) � 0.62, CI95%

[�0.03 0.07], ns. With greater exposure, the proportion of “old”
responses between individuals and morphs started to diverge,
where participants logged more “old” judgments for individuals at
medium exposure (level 3), b � 0.06, t(303.70) � 2.29, CI95%

[0.008 0.11], p � .02, with this significant difference increasing
further at high exposure (level 7), b � 0.14, t(303.70) � 5.69,
CI95% [0.09 0.19], p � .001. Aside from the interaction, we also
detected a main effect of Exposure Level, F(3, 329.48) � 59.70,
p � .001, which just revealed that there were greater proportions
of “old” responses as exposure increased. The main effect of
Target Type was marginal, F(1, 99.51) � 3.83, p � .053, which
just showed that individuals garnered greater “old” proportions
than morphs when collapsing across exposure levels.

It is also worth noting that participants’ proportion “old” re-
sponses closely tracked their familiarity ratings, even though these
old/new judgments were given under time pressure in a later,
separate phase of the experiment. More specifically, although there
were no clear differences between individuals and morphs with
low exposure (levels 0–1) for either familiarity or proportion
“old,” these differences grew larger when moving to medium
exposure (level 3) and high exposure (level 7).

RTs. Figure 6d displays the RT results. We observed a mar-
ginal Exposure Level � Target Type interaction, F(3, 358.01) �
2.50, p � .059, along with significant main effects for both
Exposure Level, F(3, 359.28) � 5.47, p � .001, and Target Type,
F(1, 97.85) � 10.03, p � .002. Participants showed overall faster
RTs when responding to individuals, and not surprisingly, their
RTs were faster at higher exposure levels. A breakdown of the
interaction revealed that participants made faster “old/new” re-
sponses to individuals than morphs with no exposure (level 0),
b � �0.02, t(431.40) � �1.99, CI95% [�0.03 �0.0002], p �
.047, and high exposure (level 7), b � �0.03, t(433.50) � �3.74,
CI95% [�0.04 �0.01], p � .001. Participants were still faster to
respond to individual faces with weak exposure (level 1),
b � �0.001, t(432.80) � �0.14, CI95% [�0.02 0.01], ns, and
medium exposure (level 3), b � �0.01, t(431.50) � �1.23, CI95%

[�0.02 0.006], ns, but these differences did not reach significance.

Computational Memory Modeling

Our experiments suggest the critical role of memory processes
underlying subjective familiarity in preferences for individual
faces and their blends. One additional way to appreciate the role of
such memory processes is to use simple computational memory
modeling and examine whether our assumptions can produce the
observed empirical patterns—especially the crossover interaction
from Experiment 4. Here, we offer a very simple REM model
(Shiffrin & Steyvers, 1997) that implements such core assumptions
and provides a concrete “existence proof” that the global match
memory models actually produce the patterns we observed (again,
without trying to fit all aspects of the data).

Before we go into some details of our particular model, let us
note a few general issues concerning modeling the BiA and UiA
effects using memory models with differentiation (Criss, 2006;
Criss, Wheeler, & McClelland, 2013). Although a variety of mem-
ory models with differentiation naturally predict a greater UiA
effect with increasing prior training, they do not necessarily predict
BiA with weak prior training, particularly for a two-face blend.
This is because memory models that include differentiation nec-
essarily stipulate that the retrieval strength between a blend and a

19 For proportion “old” in Experiment 4, the maximal random slope
model would not converge, so the maximal random intercept model was set
for fixed-effects testing (AIC � 10654.60, BIC � 10746.07). The same
was true for old/new RTs (AIC � �6752.61, BIC � �6661.69).

Table 1
Multilevel Mediation Results for Experiment 4

Target type Exposure level (IV) Model index ACME [CI95%] ADE [CI95%] TE [CI95%]

Individuals Level 0 vs. Level 1 M1(individual) .06 [.02 .11]�� .21 [.06 .37]�� .27 [.12 .42]��

Level 0 vs. Level 3 M3(individual) .11 [.04 .18]�� .34 [.17 .50]�� .45 [.29 .60]��

Level 0 vs. Level 7 M7(individual) .13 [.04 .23]�� .30 [.13 .46]�� .43 [.28 .59]��

Morphs Level 0 vs. Level 1 M1(morph) .02 [�.004 .05]# .27 [.06 .47]�� .28 [.07 .49]��

Level 0 vs. Level 3 M3(morph) .05 [.008 .10]� .26 [.06 .45]�� .31 [.12 .49]��

Level 0 vs. Level 7 M7(morph) .03 [�.01 .08] .09 [�.09 .29] .12 [�.06 .32]

Note. In all models, familiarity was our mediator, and attractiveness was our DV. ACME � average causal
mediation effect; ADE � average direct effect; IV � independent variable (treatment); TE � total effect.
# p � .10. � p � .05. �� p � .01.
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memory trace that halfway matches the blend will be less than half
the strength of a perfectly matching memory trace. Thus, in the
global match familiarity signal, the two half-matches for the blend
add up to a familiarity value that is less than the familiarity value
for one whole match.

However, this idea ignores two highly plausible assumptions,
which in turn allows these models to produce a BiA effect even
for a two-face blend (despite a reduction in familiarity owing to
differentiation). First, it is likely that the blend can appear
similar to a large number of faces in memory (beyond only the
constituent faces that compose it). If so, the collection of partial
matches can readily add up to more than one whole match,
despite the inclusion of differentiation. Second, it is also safe to
assume that attention fluctuates when participants are studying
the faces. As a result, some faces are well-encoded even with
just one exposure, whereas other faces are missed entirely. By
including the well-supported assumption of trial-by-trial encod-
ing variability (e.g., Young & Bellezza, 1982), a BiA effect is
produced for a two-face blend.

With trial-by-trial encoding variability, the key question is
whether each individual face was or was not encoded during
training. To make this more concrete with an extreme example,
suppose that there was only a 10% chance that each face was
encoded during training, in a situation of a two-face blend
between faces that received just one training exposure. If we
label the blend A-B, we can consider the separate possible
outcomes of training: (a) face A was encoded (10%) but face B
was not (90%), with this combination of encoding occurring
with a 9% chance (the product of 10% and 90%); (b) face A was
not encoded (90%) but face B was (10%), with this combination
of encoding occurring with a 9% chance; (c) and finally, both
face A (10%) and B (10%) were encoded, with this combination
of encoding occurring with a 1% chance. Thus, across these
outcomes, there is a 19% chance (9% 	 9% 	 1%) that at least
one of the two individual faces were encoded. This 19% is the
chance that the blend will elicit an above-baseline level of
familiarity. Next, when you consider the familiarity for a test
with one of the individual faces (either face A or face B), the
chance of an above-baseline level of familiarity is only 10%
(i.e., the chance that face was or was not encoded). In turn, due
to trial-by-trial encoding variability, this extreme example pro-
duces nearly twice the chance that the A-B blend will produce
above-baseline familiarity, compared to an individual face.
Keep in mind that with increasing numbers of prior exposures,
it becomes certain that both the A and B faces will have been
encoded, and once this occurs, the A-B blend and both the A
and B individual faces will assuredly elicit above-baseline
familiarity. Differentiation thus takes over, and the two half-
matches for the A-B blend will add up to a familiarity total that
is less than that which occurs for a test of the A or B individual
faces.

REM model. Many memory models include differentiation,
but for our specific implementation, we chose the Bayesian
Retrieving Effectively from Memory (REM; Shiffrin &
Steyvers, 1997) model as representative of this class of memory
models. The REM model is arguably the most successful of this
class of memory models, and its differentiation assumption is well-
supported (Criss, 2006; Criss, Wheeler, & McClelland, 2013). As
mentioned, rather than fitting this model to our data, we present

an existence proof that this model produces the observed cross-
over interaction when comparing familiarity for parents versus
morphs as a function of training for the parent faces. Our
simulation with the REM model was straightforward, using the
“off-the-shelf” original version of the model, except for one
simple change. The original model assumed an independent
storage probability for each feature of a studied item (e.g., the
first time you study an item, you might store 50% of the
features, and then the second time you might store 50% of
the remaining features [yielding 75% in total], etc.). However,
this simplifying assumption ignores the earlier discussed prin-
ciple of encoding variability, whereby the participant is some-
times in a state of high arousal during encoding, creating strong
memories, while other times they completely fail to encode
anything into memory (Young & Bellezza, 1982). A more
realistic model would involve a mixture of feature-by-feature
and trial-by-trial encoding variability. Based on our account of
the BiA effect, we suspected that trial-by-trial variability would
be the more important factor. Thus, our simulation only used
trial-by-trial encoding in which the encoding probability param-
eter dictated the chance of encoding all the features versus none
of the features with each study trial.20

As shown in Figure 7, our version of the REM model produces
the crossover interaction, with a BiA effect for low training and a
UiA effect for high training.

Additional issues and alternative frameworks. As we have
emphasized throughout, our REM model is intended to provide a
simple existence proof that computationally simulating memory
mechanisms can generate the empirically observed transitions of
familiarity responses from exemplars to blends. We also want to
briefly address some questions about this choice and related frame-
works. One issue is why we chose a simple memory model (REM)
and not a face-space model (see O’Toole, 2011 for a review). This
is because we focused on memory processes, collected familiarity
ratings, and manipulated face exposure levels, whereas the face-
space literature cares more about representing the similarity rela-
tion between many faces and their features (an important issue, but
not for our purposes here). Another issue is why we did not model
additional influences on familiarity and preference for morphs—
most critically, the fact that morphs are more likely to be in the
center of the face space (especially with large numbers of faces).
Indeed, empirically, with a very large number of faces (like in
Experiment 4), the morphs are empirically more “familiar” even
with 0 exposures to individual exemplars. However, modeling this
influence is not central to our main point about the degree of
learning, and this would make our REM model more complicated.
Finally, one could also argue that it might be more optimal to
capture the underlying changes in memory representation by mod-
eling changes in probability distributions associated with each face
or its features (Dailey, Cottrell, & Busey, 1999). Repeated expo-
sure to a face essentially makes the variance of the probability for
that specific presented face narrower and taller (sharper). Conse-

20 Without any trial-by-trial variability, the REM model typically pro-
duces a UiA effect (i.e., less familiarity for the morph than its parents).
This is true even for low levels of training, although the magnitude of the
UiA effect increases with training. The exception to this is when feature-
by-feature encoding probability is set very low, which then produces a
similar curve, even without trial-by-trial variability.
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quently, weakly learned faces have wider and shallower probabil-
ity distributions, making their blend more probable than each
individual face (BiA effect). In contrast, strongly learned faces
have narrower and taller probability distributions, making the
blend relatively less probable than the specific face (UiA effect).21

For our purposes in the current studies, however, we decided to
focus on a simpler memory model, like REM, which easily pro-
duces our observed effects.

General Discussion

The current research addressed the mechanisms underlying clas-
sic social preference effects and tested predictions generated by
modern models of memory that include the mechanism of differ-
entiation. With five experiments and computational memory mod-
eling, we found that different amounts of exposure predictably
change the absolute and relative preferences for individuals and
morphs. Our experiments replicate classic phenomena of mere
exposure (all experiments) and the beauty-in-averageness (BiA)
effect (Experiments 1 and 4). Critically, they also extensively
document an ugliness-in-averageness (UiA) effect, where morphs
of familiar individuals are judged as less attractive than contrib-
uting individuals (Experiments 2A, 2B, 3, and 4). The experiments

also suggest that the UiA effect is attributable to a relative reduc-
tion in familiarity for morphs of trained individuals, where the
attractiveness of highly familiar exemplars “trumps” the less fa-
miliar morphs. Moreover, consistent with predictions derived from
memory theories, the UiA effect does not require a conflict be-
tween two well-known individuals, but only requires a decrease of
familiarity of a single well-known exemplar (Experiment 3). This
suggests a relatively basic, low-level process, especially given that
the UiA effects can be generated by both identity-specific famil-
iarity (e.g., names; Experiment 2A) and basic visual familiarity
(e.g., perceptual tracking; Experiment 2B). Note that different
encoding goals across experiments cannot explain our findings,
given that parametrically scaling the number of exposures pro-
duces a BiA effect with weak learning and a UiA effect with strong
learning (within the same task, using a within-subject design).
These attractiveness effects also paralleled subjective familiarity
ratings and objective measures of memory strength (Experiment
4). Finally, we replicated the crossover interaction for attractive-
ness ratings in Experiment 4 using simulations from the well-
established Retrieving Effectively from Memory (REM) model
(Shiffrin & Steyvers, 1997). Taken together, these studies offer the
first systematic and mechanistic demonstration of the UiA effect,
which combines two classic determinants of preferences in social
psychology—mere exposure (i.e., stimulus repetition) and blend-
ing (i.e., stimulus averaging). Our findings not only highlight the
importance of memory processes in understanding social judg-
ments like attractiveness, but the results also represent a major
qualification to the classic BiA effect, known since Galton (1879)
and confirmed by a multitude of studies using a variety of different
paradigms, stimuli, and modalities (e.g., Halberstadt & Rhodes,
2003; Langlois & Roggman, 1990; Rhodes & Tremewan, 1996).
As such, our results should extend beyond social judgments of
faces, since the interaction between prototypicality (blending) and
exposure is evident in a variety of other domains (e.g., understand-
ing market dynamics; Landwehr, Wentzel, & Herrmann, 2010).

We will now review in detail each of the major findings, while
highlighting their broader theoretical implications—but first, let us
restate some major assumptions of modern memory theories. Re-
call that on those theories, memories contain traces for individual
exemplars (e.g., specific faces that are studied). The familiarity of

21 The perceptual categorization literature often represents similar pro-
cesses using so-called “Bayesian mixture models.” Basically, such models
are learning stimulus features in some multidimensional space, with values
represented by the mean and precision (width) of two Gaussian compo-
nents. In such a model, one can consider the plausibility of the average
stimulus, given what the model learned about the two individuals or
categories. With weak learning, there is a lot of uncertainty about what the
two individuals/categories are like. As a result, much probability gets
assigned to middle values, thus making the blend of two individuals
plausible. With greater certainty (strong learning), all the probability gets
assigned quite precisely to the actual trained features. In turn, the blend
stops being plausible. Simply put, with weak learning, the model has
learned the values imprecisely (wide distribution and high uncertainty).
Consequently, the stimulus in the middle is relatively more probable as a
member of the previous category. However, with sufficient learning, the
probability density in the middle decreases. That is, the probability that the
average (blended) stimulus was in the training set decreases because
learning leads to greater precision (separation and narrowing) of two
probability clusters (for an example, see Feldman, Griffiths, & Morgan,
2009).

Figure 7. Simulations with the Retrieving Effectively from Memory
(REM) model of Shiffrin and Steyvers (1997). The simulations assumed
study of 28 individual parent faces followed by testing of these same
individual faces or testing of morph faces. With 20 features per face, morph
faces were created by having 10 features match the features of one parent
face and the remaining 10 features match the features of the other parent
face. The encoding probability parameter (u) was set to 0.2, the geometric
distribution parameter (g) was set to 0.2, and the correct storage parameter
(c) was set to 0.7. These are typical values for the REM model, but a wide
range of parameter values produce the same results (all parameter values
produced a UiA effect with high training and a subset of parameter values
also produced a BiA effect with low training). The criterion for “old”
responses was set to the default value of log odds equal to 0. The only
substantive change made to the model was all-or-none encoding for all the
features of a studied face, rather than feature-by-feature encoding.
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a probe (target) is calculated from the similarity values of the
probe with all traces in memory (a so-called “global match”
familiarity signal). The similarity between the probe and the mem-
ory trace is a function of the overlap between them and the strength
of the memory. If the memory trace is weak (because only a few
features of the item were stored), the similarity between the probe
and the memory trace will be lower than when the memory trace
contains many stored features. Thus, familiarity (and preference)
will be higher for strong items than for weak items (i.e., mere
exposure effect). With weak learning of multiple items, blend
probes will partially match several memory traces and the sum of
these partial matches can add up to a greater familiarity signal than
what occurs for a nonblended face that only matches itself in
memory. This situation predicts the BiA effect, as shown with our
computational REM model that included parameters for trial-by-
trial encoding variability. Crucially though, with strong learning, it
is easier to note the differences between the known individual
faces and the blend (also called “differentiation”), so the global
familiarity signal elicited by the blend will be reduced, predicting
the UiA effect. When participants rate morphs made from exem-
plars without any previous training at all, the memory literature
predicts no BiA or UiA effects, assuming the “novel” faces do not
activate familiarity signals for exposed faces (but see the next
paragraph). Finally, note that our framework is not a simple
extension of previous experiments on celebrity blends (e.g., Hal-
berstadt et al., 2013). Aside from obvious challenges of using real
local celebrities as stimuli, these previous studies (a) did not
systematically manipulate exposure, (b) did not assess whether
blends of well-known individuals are actually disliked or simply
less liked than novel individual, (c) did not provide any evidence
for boundary conditions, and (d) did not explore underlying mech-
anisms or ground the findings in broader cognitive principles (as
we have done here with our memory-based framework).

Moving on to the main results, in Experiment 1, we found that
weak training on exemplars generates the standard BiA effect—
where morphs are judged as more attractive and familiar than
individuals. This finding matches our memory account and fits
with previous cognitive explanations of the BiA effect, which posit
that blending two faces makes it better match to the “gist” or
prototype (Principe & Langlois, 2012). Critically, the relationship
between target type (individual vs. morph) and attractiveness was
mediated by familiarity (such that morphs appear more familiar,
and thereby more attractive). This is consistent with findings that
attractiveness of average faces is associated with their implicit
familiarity (Peskin & Newell, 2004; Rhodes, Halberstadt, & Bra-
jkovich, 2001). Experiments 2A and 2B investigated the attrac-
tiveness for morphs of highly learned exemplars (i.e., when the
individual exemplars have strong traces in memory) and morphs
made from completely unfamiliar exemplars. In these experiments,
no BiA effect emerged for morphs made from completely unfa-
miliar individuals, whereas the UiA effect emerged for trained
morphs in both experiments. Interestingly, however, we did ob-
serve a BiA effect in Experiment 4 when using a passive exposure
paradigm that parametrically varied the number of exposures
within-subject. Here, not only was there a BiA effect when indi-
viduals were weakly learned (level 1), but it also occurred when
there was no exposure (level 0). This is likely attributable to
subjects having a noisier representation of the overall face space
obtained during training. Recall that the memory literature would

seem to predict no BiA or UiA effects on blends of novel faces, but
this assumes that the novel faces do not share any similarity with
actually exposed faces. In Experiment 4, the exposures during
training encompassed a greater variety of faces (i.e., 196 exposures
of 28 different individuals in Experiments 2A and 2B vs. 154
exposures of 42 different individuals in Experiment 4). Conse-
quently, the setup in Experiment 4 would also lead to a greater
likelihood that a “novel” morph (i.e., blend of two unknown
individuals) would share seemingly similar features with a face at
one of the other three exposure levels, thus generating more
familiarity (i.e., “false alarms”) and attractiveness (i.e., BiA effect)
over its constituent individuals. Indeed, this is what we observed in
Experiment 4. It is also worth noting that the UiA effect in
Experiment 4 was weaker than in the other experiments, presum-
ably because of the change to more passive exposures during
training. In short, the 7 passive exposures in Experiment 4 were
likely not as strongly encoded as the 7 more “active” exposures
during the other studies (Experiments 2A, 2B, and 3), which also
explains the relatively lower subjective familiarity ratings in Ex-
periment 4 (see Figure 6b).

The results from Experiment 4 and the memory modeling
clearly show that the BiA effect transitions into a UiA effect with
greater exposure, which is driven by increased familiarity and
memory strength for the learned individuals. Theoretically, this
follows from our memory-based predictions, because individual
target faces are more similar to strong memory traces than blended
faces. Another feature of our data that offers additional support to
the familiarity (memory-based) account is that blends of well-
learned individuals generated familiarity and preference values
in-between actually exposed individuals and novel individuals.
This makes sense from a memory-based viewpoint, given that
familiarity and liking is reduced with increased dissimilarity of the
probe, but there are still positive effects from partial familiarity
(Gordon & Holyoak, 1983). These robust confirmations of our
memory-based account of familiarity can be contrasted with alter-
native theoretical predictions (additive and mismatch accounts), as
previously described in the Introduction. Of particular note, in
Experiment 3, our data directly supported the familiarity (memory-
based) account over the mismatch (conflict-based) account, be-
cause a UiA effect still emerged when using cross-set morphs
composed of one trained and one untrained individual (as opposed
to the within-set morphs in Experiments 2A and 2B). Keep in
mind, however, that our results do not challenge the overall validity
of mismatch accounts (conflict-based or prediction-error-based) in the
generation of negative affect (Dreisbach & Fischer, 2015; Shackman
et al., 2011).

The current research also observed very strong support for a
familiarity-positivity link. This connection has long been assumed
to be at the core of the mere exposure effect (Titchener, 1915), and
it works in a bidirectional manner, with positivity breeding famil-
iarity (Garcia-Marques et al., 2004; Monin, 2003; Phaf & Rotte-
veel, 2005). Note, however, that this “warm glow” of familiarity
can also fluctuate based on contextual factors, like mood, motiva-
tion, or goals (de Vries, Holland, Chenier, Starr, & Winkielman,
2010; Freitas, Azizian, Travers, & Berry, 2005; Hertwig, Herzog,
Schooler, & Reimer, 2008). It also may depend on the specific
judgment in-question, with attractiveness, liking, and desirability
ratings sometimes showing different sensitivity to manipulations
of mere exposure and prototypicality (DeBruine, 2005; Rhodes,
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Halberstadt, & Brajkovich, 2001; Rhodes, Halberstadt, Jeffery, &
Palermo, 2005). Thus, an interesting avenue for future research
would be to investigate the role of affective, motivational, and
judgmental contexts in the UiA effect.

Mechanistically, the familiarity-preference link could arise from
underlying changes in perceptual fluency (Winkielman et al., 2003).
However, there are also alternative models in which familiarity arises
via alternative processes, linked to context-free recognition (e.g.,
Wagner & Gabrieli, 1998). While the fine-grained distinctions be-
tween “pure” fluency and “pure” familiarity are not essential for our
main points, future research should disentangle these constructs. For
instance, future studies could manipulate both fluency and familiarity
to gauge the consequences on responses to individual and blended
faces. This would be especially interesting, given that much previous
research has shown a tight connection between familiarity- and
fluency-based judgments (e.g., Whittlesea, 1993; Whittlesea, Jacoby,
& Girard, 1990; Whittlesea & Williams, 2000, 2001a, 2001b). More-
over, the distinctions left open by the current studies could be ad-
dressed by neural measures (e.g., event-related potentials or fMRI)
that have been shown to separate fluency from familiarity, via differ-
ences in activation timing (Wolk et al., 2004) and spatial localization
(Nessler, Mecklinger, & Penney, 2005; Voss et al., 2008).

Going forward, the current work prompts many other intrigu-
ing questions. As one example, our experiments do not fully
address how changes in typicality drive attractiveness ratings
(rather than only familiarity). Previous research has shown that
both typicality and familiarity are highly correlated with attrac-
tiveness, and the strength of these relationships depends on the
specific stimulus category (Bartlett, Hurry, & Thorley, 1984;
Halberstadt & Rhodes, 2003). It would be interesting for future
studies to simultaneously manipulate both typicality and famil-
iarity, to gauge the underlying links to attractiveness for both
individual and morphed faces. Moreover, the current studies
focused on neutral faces, but did not investigate the role of
emotional expressions (e.g., smiling and frowning faces). Not
only can valence modify our effects, but with such expressions,
social familiarity may become more important. This is likely,
given that fMRI studies have found activation of unique brain
regions to person-based familiarity (Cloutier, Kelley, & Heath-
erton, 2011), and more generally, between social and nonsocial
stimuli (Gobbini & Haxby, 2007; Haxby, Hoffman, & Gobbini,
2000; Johnson, 2005). Clearly, dimensions with social com-
plexity also need to be considered (e.g., race or gender), as the
effects of blending on these dimensions go substantially beyond
simple memory processes (Bernstein, Young, & Hugenberg,
2007; Malpass & Kravitz, 1969; Hugenberg & Bodenhausen,
2004). Finally, it would also be interesting to gauge whether our
UiA effect extends to modalities beyond vision (e.g., audition,
via blended tones or melodies; Bruckert et al., 2010) or even
cross-modal blends (Winkielman, Ziembowicz, & Nowak,
2015).

In sum, our studies represent the first systematic investiga-
tion of the UiA effect. We demonstrated how mere exposure
and blending combine to impact familiarity—and how memory-
based processes modify and reverse classic patterns of facial
attractiveness. Simply put, the current experiments reveal that
when it comes to highly familiar individuals, blends are not
always most beautiful.
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