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Abstract

Perceptual input changes constantly in an unpredictable fashion, often changing before our some-
what sluggish perceptual systems have adequately processed this input. This can give rise tosource
confusion—how do we know whether a given perceptual activation is due to the current input, or a
previous input that had yet to be completely processed? We propose that activity-dependent neural ac-
commodation naturally limits this source confusion by suppressing items once they have been identified.
We review behavioral paradigms from different literatures that measure the correlates of persistence and
accommodation. Of the various accommodative mechanisms, we focus on synaptic depression, deriving
a rate-coded expression that can be used to produce accommodating dynamics in any neural network with
real valued activation. We implement this expression in a hierarchical model of perception termed, “a
neural mechanism for responding optimally with unknown sources of evidence” (nROUSE). This model
can be viewed as a more detailed version of the more abstract ROUSE model of Huber, Shiffrin, Lyle, and
Ruys (2001), which produces accommodated levels of feature evidence through an optimal calculation.
We apply nROUSE to three short-term priming experiments that manipulated prime duration.
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1. Introduction

One of the most ubiquitous observations in neural processing is that of rapid accommo-
dation with prolonged stimulation. This is seen most clearly in single-cell recording studies
in which the rate of neural firing declines from an initial peak, following presentation of a
preferred stimulus (e.g.,Duysens, Orban, Cremieux, & Maes, 1985). We propose that such
rapid accommodation serves an important role in perceptual processing. Specifically, we sug-
gest that accommodation helps avoid the potential hazards of another ubiquitous aspect of
neural processing: ongoing persistent neural response beyond removal of the preferred stimu-
lus. The brain is slow to respond, requiring integration over time, which results in perceptual
persistence. Accommodation provides a mechanism to clear the system, allowing unobstructed
processing of subsequent input. Most importantly, accommodation is driven by activation, and,
therefore, items are only suppressed once they have been adequately identified. Therefore, ac-
commodation has no single onset time and is expected to occur at different rates for different
regions of the brain and at different rates depending upon experience with different items.
In this manner, accommodation is capable of parsing, or segregating, the ongoing stream of
constantly changing perceptual stimuli in a relatively automatic manner.

In the first section of this article we discuss the behavioral and neurophysiological corre-
lates of perceptual persistence and neural accommodation. A number of behavioral paradigms
demonstrate that short presentations facilitate responses to similar stimuli, whereas longer pre-
sentations provide less facilitation, or even inhibit responses to similar stimuli. We interpret
these results in terms of persistence, resulting in facilitation for similar or identical items,
followed by accommodation, which lessens or reverses this facilitation. With competitive in-
hibition, the opposite pattern is expected for dissimilar items—when a given item is strongly
activated, it will strongly inhibit dissimilar competitors, but when it accommodates, this inhi-
bition will decrease. We propose that these dynamics take place at many levels of processing,
from lower sensory areas up to higher-level association areas. Different levels will exhibit
different time courses for this biphasic response, with higher levels being typically slower
to activate and therefore slower to accommodate. There are a large number of well-specified
low-level biphasic phenomena, such as center-surround inhibition, color opponency, light/dark
adaptation, etc., which employ similar inhibitory and accommodative dynamics. Our particular
implementation may likewise apply in these situations, although they are not the focus of this
paper. Instead, our discussion and modeling focus on somewhat higher-level perceptual and
cognitive phenomena, which are not typically interpreted in terms of such neural dynamics.

Neurons likely have several accommodative mechanisms operating at different time scales,
yet we focus in particular on synaptic depression for its ability to capture neural behavior
without appealing to other synaptic mechanisms. Specifically,Tsodyks and Markram (1997)
performed a series of neurophysiological studies, and were able to adequately describe the
short-term transient coupling of neurons using only synaptic depression. Although our mod-
eling focuses on synaptic depression, we assume that other transient accommodative (and
facilitory) mechanisms are likely subsumed in our particular parameterization. We derive a
generally applicable “rate-coded” expression for synaptic depression that could be used to
modify any of a large number of neural network and dynamic models, allowing greater ability
to handle complex sequences of perceptual input.
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In the second section, we explore the effects of synaptic depression in the context of a neural
network model of word identification called nROUSE (“a neural mechanism for responding
optimally with unknown sources of evidence”). In the model, the offsetting components of
persistence and accommodation are related to the offsetting components of source confusion
and discounting, proposed byHuber et al. (2001)(see alsoHuber, Shiffrin, Lyle, & Quach,
2002a; Huber, Shiffrin, Quach, & Lyle, 2002b). In their short-term word priming studies,
short prime presentations resulted in a bias for repeated or related words, whereas longer
presentations resulted in a bias against repeated words. These results were captured with
a Bayesian model, ROUSE, containing source confusion (i.e., the assumption that the ac-
tivation of primed features lingers, becoming mixed with target activation) and an optimal
decision process that assigns a discounted level of evidence to primed features. In the
online Appendix1 we present a reformulation of ROUSE in terms of a Bayesian belief net-
work. This reformulation makes is clear that discounting is the same concept as “explain-
ing away” (i.e., the activation of primed features is explained away by the knowledge that
the prime may have been the source of activation). Furthermore, the reformulation allows
for continuous prime and target activation states, which is an important step for relating
ROUSE to the neural network nROUSE model. We demonstrate that synaptic depression
in nROUSE produces the same effects as the optimal calculation in ROUSE. Furthermore, we
show that nROUSE can capture the data of several experiments manipulating prime duration.
Finally, we briefly sketch other recent results that specifically address important assumptions of
nROUSE.

Some may find our chosen level of modeling dissatisfying, as we attempt to bridge the gap
between low-level neurophysiology and high-level abstract cognitive modeling. Our approach
is to employ the minimum number of mechanisms to adequately describe the behavioral phe-
nomena, but, at the same time, make sure that the chosen mechanisms are grounded in accepted
neurophysiology. Therefore, we leave out many aspects of neural behavior, and, furthermore,
greatly simplify the ones that remain. At the same time, the remaining neurophysiology com-
plicates the abstract functions required to explain human behavior. This is the unavoidable
consequence of theorizing across domains of expertise, yet we feel that this is an important en-
deavor that will ultimately inform and constrain both the neurophysiology and the explanation
of cognitive phenomena.

2. Biphasic responses in high-level cognitive phenomena

A number of behavioral paradigms are readily interpreted in terms of persistent and accom-
modating responses. That the paradigms we consider all involve visual processing is largely
the byproduct of the authors’ areas of expertise, but we feel that these ideas should apply
more generally to perceptual processing in other modalities. Our discussion is limited to rel-
atively high-level cognitive phenomena. This is intentional, providing a novel interpretation
of these phenomena, which are not usually characterized in terms of automatic neural pro-
cesses. In contrast, low-level perceptual effects such as center-surround inhibition, color op-
ponency, light/dark adaptation, and many other temporally graded phenomena are typically
explained in terms of specific neural dynamics. Our theory may equally apply to these low-level
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Fig. 1. Necker cube. Either the left or the right face can be seen as the front, and the interpretation will spontaneously
alternate between these two views, presumably due to accommodation of the current view.

phenomena, but it is our attempt to explain high-level cognition through the neural dynamics
that is unique, and this is our focus at present.

The notion of lateral inhibition is important for explaining the various transient biphasic
results considered below (i.e., localized neural areas are limited in their total activation due to
non-specific inhibition). Items that are similar or identical will contact the same neural rep-
resentation and, therefore, persistence will facilitate processing. However, residual activation
causes a deficit for dissimilar items due to lateral inhibition (i.e., because something else is
active, inhibition is greater, making it more difficult to activate subsequent items).

The phenomenological experience of accommodation, and its effect on lateral inhibition,
is found in the spontaneous alternation of ambiguous figures. For example, the Necker cube
(Fig. 1) can be seen with either the left or the right face in front, and, furthermore, the perceptual
system will naturally flip back and forth between these views. The two views of the Necker cube
are placed into competition through lateral inhibition. Initially, one view wins the competition,
inhibiting the alternative view. However, once that view is weakened through accommodation,
then the alternative view will spontaneously emerge to win the competition. A recent model of
the related phenomenon of binocular rivalry, where the two eyes are presented with two different
images and perception spontaneously alternates between the two, demonstrates a good fit to the
behavioral data using an accommodation mechanism like that used here (Laing & Chow, 2002).

The canonical patterns of persistence, accommodation, and lateral inhibition that we propose
are illustrated inFig. 2, in the context of a simple priming experiment where a prime stimulus
is presented for a variable duration, followed by either a direct measure of persistence for the
prime, or an indirect measure through immediate presentation of a similar or dissimilar target
item. As a function of prime duration, persistence of the prime representation initially increases
as the prime accrues greater activation, but with longer durations this reverses, and persistence
decreases due to accommodation. For paradigms that measure the indirect effect of a prime on
a target item, the relative processing speed of the target is the measure of interest. Because of
lateral inhibition, the direction of the biphasic response is opposite for dissimilar target items
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Fig. 2. Hypothetical facilitation and inhibition curves for the effect of a prime stimulus as a function of prime
duration. The solid line shows persistence for the prime. As duration increases, persistence also increases, but then
decreases due to accommodation. The dotted line shows the effect of the prime upon a subsequently presented
dissimilar target item. There are no direct persistence effects upon a dissimilar target, but through lateral inhibition
there is a deficit that is related to magnitude of prime persistence. The dashed line shows the effect of the prime upon
an identical or similar target item. For short prime durations there is a benefit, due persistence, but at longer prime
durations there is a relative deficit, because accommodation makes it difficult to reactivate the shared representation.

(i.e., the extent of target inhibition is directly related to the degree of prime persistence). For
a similar or identical target, the situation is more complicated. In this case, persistence gives
the target a head start, facilitating activation of the target. In contrast, accommodation results
in relatively sluggish activation of the target as compared to a situation in which no prime
was presented. For these reasons, short prime durations will facilitate similar targets, but long
prime durations can result in a relative deficit for similar targets.

2.1. Direct behavioral measures of persistence

Persistence can be directly measured using neurophysiological methods, but is difficult to
assess with a behavioral measure. Nevertheless, there are few techniques that directly measure
persistence. One example isSperling’s (1960)partial report paradigm, in which participants
report part of a briefly presented display, as directed by a cue appearing after the display.
However, this paradigm is limited to short prime durations because longer prime durations
allow encoding into long-term memory. Another technique is to require integration between
the prime display and a subsequent display. If the display is sufficiently complex, long-term
memory is not useful, and longer prime durations are possible. An example of a task requiring
integration is the missing dot paradigm (e.g.,Coltheart, 1980; Hogben & Di Lollo, 1974). Half
of a matrix of dots is presented in an initial display and the other half of the matrix, minus one
dot, is presented in a subsequent display. The task is to report the position of the missing dot.
This task requires some degree of visible persistence and integration across the two displays. As
the duration of the first display increases up to 100 ms, the first display gains stimulus energy,
resulting in greater persistence, which improves performance. Beyond 100 ms the opposite
occurs and performance decreases, implying a decrease in persistence. This so-called “inverse
duration effect” has been attributed to various decay or accommodative mechanisms that accrue
with increasing display duration (e.g.,Busey & Loftus, 1994; Dixon & Di Lollo, 1994).
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Next we consider paradigms from different domains that indirectly measure prime persis-
tence, as realized through the effect of the prime upon the ability to rapidly identify a subsequent
stimulus (i.e., the target). Here we see that the effects of prime-target similarity (Fig. 2) and
levels of representation (where higher levels activate and thus accommodate more slowly) are
important.

2.2. Perceptual priming

In the domain of 3-D perception, priming has been used to influence the interpretation of
ambiguous 2-D targets. In particular,Long, Toppino, and Mondin (1992)had participants view
unambiguousNecker cube figures for prime durations ranging from 1 to 150 s (ambiguity
was removed by rotation and occlusion in separate conditions). For short prime durations,
participants initially interpreted a subsequently presented ambiguous Necker cube in accord
with the prime presentation, and for long prime durations the opposite was true. These results
led the authors to conclude that the priming effects result from neural fatigue for the pre-exposed
interpretation. Persistence of the primed view facilitates that view for short prime durations
whereas accommodation of the primed view with long prime durations allows the alternative
view to emerge.

Leopold, O’Toole, Vetter, and Blanz (2001)also studied so-called “high-level aftereffects,”
but in the domain of face perception. Using morphing technology, they constructed a face
space in which target faces and prime anti-faces lay at opposite ends of a similarity trajectory.
Therefore, in this face space, the target face was the most dissimilar, and other potential targets
were closer to the prime. The measure of interest was the threshold along the anti-face to
target-face trajectory at which the target face was correctly identified (in an initial phase of the
experiment, participants learned the four possible target faces). Following 5 s of pre-exposure
to the anti-face, they found that this threshold was significantly lowered, such that the target face
was more readily identified. Assuming that 5 s was sufficient to induce accommodation, this
finding of facilitation is sensible: accommodation to the anti-face made it difficult to activate
the alternative responses (which were more similar to the anti-face prime), thereby biasing
activation in favor of the target.

Huber et al. (2001)used a two-alternative forced choice procedure (2AFC) and found
evidence of both benefits and deficits for repeated words. In their perceptual identification
paradigm, a target word was briefly flashed (e.g., around 50 ms), followed by presentation of
a backwards pattern mask to ensure elimination of the iconic memory, and finally a choice
between two words (Fig. 3). Prior to the target flash, two prime words were presented, allow-
ing priming of the correct target word as well as priming of the incorrect foil word in order
to ascertain whether a pattern of costs and benefits occurred with priming (i.e., a bias), or if a
perceptual advantage was imparted to the target beyond that occurring for a primed foil. For
repetition priming, they found that short (i.e., 500 ms) passively viewed prime durations re-
sulted in a strong preference (i.e., a bias) to choose the word that was just primed. This resulted
in better performance when only the target was primed (i.e., thetargetcondition) and worse
performance when only the foil was primed (i.e., thefoil condition), as compared to the presen-
tation of unrelated prime words (i.e., theneithercondition). Remarkably, for longer, actively
processed prime viewing (e.g., taking 2,000 ms to give a response in relation to the primes),
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Fig. 3. Perceptual identification with forced-choice testing. This short-term priming paradigm was developed by
Huber et al. (2001)and is the basis of the experiments appearing inFigs. 8–10. The particular word examples in
Fig. 3demonstrate repetition priming, although the same four conditions can be tested with other types of priming,
such as associative or orthographic similarity between primes and the test display choice words. The neither condition
assesses baseline performance. In the both condition, any strategic responding would apply equally to both choice
words, and, therefore, this condition provides an unbiased assessment of perceptual benefits or deficits. In the target
and foil conditions, only one of the choice words is primed, and these conditions assess whether there is a preference
for, or against, primed words.

the pattern of costs and benefits reversed, suggesting a preferenceagainstchoosing repeated
words. Subsequent experiments demonstrated that this preference change occurs as the result
of prime duration alone, without need of a second task in relation to the primes (Huber et al.,
2002b; Huber, in preparation). Persistent processing of the primes explains the preference for
repeated words following short prime durations whereas accommodation with longer prime
durations explains the switch to a preference against repeated words. In the second section of
this article we return to these results and discuss various theoretical interpretations of these
and other short-term priming data.

2.3. Semantic priming

The phenomenological experience of semantic satiation, in which repeatedly speaking aloud
the same word results in the loss of meaning for that word, is another example of accom-
modation. It has proven difficult to quantitatively measure this effect, although the use of
priming measures have documented its existence. Specifically,Smith and Klein (1990)had
participants speak aloud a category name (e.g., TOOLS) either 3 or 30 times. Subsequently,
two target words appeared and participants quickly decided whether the target words were
both from the same category (e.g., APPLE and PLUM). When the repeatedly category (e.g.,
FRUIT) matched the target words, there was a priming facilitation in the form of faster re-
sponses for both 3 and 30 repetitions of the category name. However, evidencing semantic
satiation, the magnitude of this priming was significantly reduced following 30 as compared
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to 3 repetitions. Considering that the level of similarity falls short of identity, and that seman-
tic representations may take much longer to fully activate and accommodate, it is in keep-
ing with our theory that the facilitation did not reverse, but rather lessened with accommo-
dation.

2.4. Affective priming

If persistence and accommodation are truly ubiquitous, then they should occur at all types of
processing, including those of social concepts and affective responses. In the field of social cog-
nition, Murphy and Zajonc (1993)investigated short-term evaluative priming as a function of
prime duration. In Experiment 1, they presented pictures of angry or happy faces for either 4 or
1,000 ms. This prime presentation was immediately followed by a neutral Chinese ideograph,
to which participants gave a liking rating. For the 4 ms prime duration, there was a strong bias
affect such that the target ideographs were liked better following happy faces than following
angry faces (referred to asassimilation primingin the social-cognitive domain). However, for
the 1,000 ms prime duration, this bias was completely gone and there was a nearly significant
effect in the opposite direction (referred to ascontrast primingin the social-cognitive domain).
The authors interpreted these results in terms of rapid affective access at 4 ms, versus a slower,
offsetting, cognitive appraisal at 1,000 ms. Our interpretation also appeals to offsetting com-
ponents (i.e., persistence vs. accommodation), but we suppose these occur within the same
affective representation over the time course of processing.

2.5. Attentional priming

Next we consider the phenomenon termed “Inhibition of Return” (IOR), which is commonly
thought of as an attentional effect, rather than a priming effect. However, if an attentional map
is assumed, in which spatial regions of the display are highlighted, then IOR is analogous to
the above short-term priming paradigms in that cueing some part of the attentional map affects
other parts of the map as dictated by persistence and accommodation.

In IOR, cueing one spatial location of a display results in a biphasic effect on targets presented
at that location, dependent upon the Stimulus Onset Asynchrony (SOA) between cue and target
(seeTaylor & Klein, 1998, for a recent review). On a typical trial, participants view three
horizontally aligned boxes, remaining fixated on the center box, and one of the two peripheral
boxes is brightened in advance of presenting a target in one of the three boxes. If the brightening
cue occurs at the correct location less than 150 ms prior to target onset, targets are responded
to more quickly, whereas if the brightening cue occurs at the correct location 300 ms or longer
before target onset, targets are responded to less quickly. Throughout the trial, participants
do not move their eyes and remain focused on the center box, which is the most likely target
location. Differing accounts of these results locate the effect in the attentional system or in
the motor response system. In either case, persistence and accommodation could provide the
appropriate dynamics, resulting in facilitation for shorter cue-target SOAs and inhibition for
longer cue-target SOAs. Indeed, a neural network model of this task exhibits this dynamic
based on persistent activations and an accommodation mechanism (O’Reilly & Munakata,
2000).
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3. Synaptic depression

All of the above results suggest a role for activity-dependent accommodation. In other words,
the effect of a first stimulus upon a response or second stimulus is ultimately reduced as a func-
tion of increased presentation time and/or SOA between the stimuli. There are several neu-
ral mechanisms that can explain activity-dependent accommodation (e.g., calcium-dependent
potassium channels, GABA-B inhibitory channels with longer time constants, and synaptic
depression). Furthermore, there are also mechanisms for transient synaptic facilitation (e.g.,
Nelson, Varela, Gibson, & Abbott, 1997). Although a fully realistic biological model should
ideally include all of these mechanisms, we have instead focused on the single mechanism of
synaptic depression for simplicity, with the idea that the parameterization of this function likely
includes the effects of these other mechanisms. This is justified in part from the finding that the
activity-dependent effects of coupled neocortical pyramidal cells are adequately characterized
using a mathematical instantiation of synaptic depression (Tsodyks & Markram, 1997), and that
depression appears to be the dominant form of transient neural plasticity (Nelson et al., 1997).

Synaptic depression occurs when one or more of the resources necessary for synaptics trans-
mission depletes as a result of pre-synaptic activity. With this depletion, pre-synaptic action
potentials have a reduced effect, post-synaptically. Candidate resources include neurotransmit-
ter vesicles, calcium (which is necessary for neurotransmitter vesicle release), and activity-de-
pendent post-synaptic de-sensitization. The dynamics of synaptic depression have been studied
by patch-clamping two connected neurons and recording the response of the receiver neuron
to various trains of sender action potentials. A specific example of such recordings, found in
Tsodyks and Markram (1997), appears inFig. 4, which shows a sender neuron producing a
Poisson sequence of action potentials. Despite a stable rate of firing, the initial pre-synaptic
action potentials result in a large post-synaptic depolarization, whereas, after about 200 ms,
the post-synaptic effect of subsequent action potentials is reduced to a low, asymptotic level.

Much of the work on synaptic depression has focused on the functional characteristics
of depressing synapses. For instance,Abbott, Varela, Sen, and Nelson (1997)observed that

Fig. 4. Electrophysiological recordings obtained byTsodyks and Markram (1997)with patch clamping of two
connected neurons. In this example, the pre-synaptic membrane potential (pre Vm) reveals a random, but relatively
consistent train of action potentials. Following a large initial depolarization, the post-synaptic membrane potential
(post Vm) rapidly drops to a low asymptotic level. This neural accommodation is assumed to occur due to synaptic
depression as dictated by the depletion of resources at the synapse.
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depressing synapses serve as a gain control mechanism such that equal changes in pre-synaptic
input produce equal post-synaptic changes, regardless of the baseline pre-synaptic firing rate.
In another example,Pantic, Torres, and Kappen (2001)simulated integrate and fire neurons,
observing that depressing synapses produce enhanced coincidence detection of pre-synaptic ac-
tion potentials. These same authors have also employed Hopfield networks, demonstrating that
synaptic depression allows rapid switching between memory states (Pantic, Torres, & Kappen,
2002) at the expense of reduced storage capacity (Torres, Pantic, & Kappen, 2002). Some re-
searchers have gone beyond these functional observations, suggesting behavioral correlates of
synaptic depression. For instance,Manor and Nadim (2001)observed that depressing synapses
allow a coupled network to switch between different modes of oscillation. Furthermore, they
outlined how such behavior could guide central pattern generators in producing motor output.
Chance, Nelson, and Abbott (1998)performed simulations of primary visual cortex and found
that synaptic depression enabled bandpass filtering, greater sensitivity to transient input, and
other characteristics known to exist in human vision. Also, as mentioned earlier,Laing and
Chow (2002)simulated binocular rivalry using synaptic depression mechanisms. Most recently,
damage to synaptic depression processes has been proposed as the mechanism underlying an
acquired neurophsychological deficit in semantic processing referred to as “access/refractory”
(Gotts & Plaut, 2002).

Most simulations of depressing synapses have been conducted with spiking neurons. How-
ever, rate-code activations offer many practical advantages in neural simulations (O’Reilly &
Munakata, 2000), and we show here that it is possible to derive a rate-coded version of synaptic
depression. We begin with the equation found inChance et al. (1998)for the output amplitude
of a spiking neuron:

da

dt
= R(1 − a)+ a ln(ρD)

∑
µ

δ(t − tµ) (1)

wherea is the post-synaptic amplitude for a single spike, which can range from 1.0 for a fully
“recharged” synapse down to zero,R the rate of amplitude recovery,ρD the proportion of
resources lost with each action potential,tµ the time of a spike, andt is the current time. The
first part of this equation provides for exponential recovery toward 1. According to the second
term of Eq. (1), amplitude decrease as a function of recent spiking activity (the Dirac delta
function,δ, is 1 only whent = tµ, and is 0 otherwise). Thus, the amplitude is reduced by the
value−a ln(ρD) with each action potential. To convert to a rate-coded neuron, we replace the
discrete spikes with an average rate of spiking over some temporal window of size,k, such
that a neuron firing with probabilityp at each time step will produce the following summation
expression:∑

µ

δ(t − tµ) = kp (2)

Further simplifying, we combine the constantsk and ln(ρD) into a single constant,D, for the
rate of synaptic depression:

D = −k ln(ρD) (3)
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Finally, we define a rate-coded output variable,o, which is equal to the product of firing
probability,p, and the post-synaptic firing amplitude,a:

o = pa (4)

SubstitutingEqs. (2)–(4)into Eq. (1), yields the following rate-coded synaptic depression
equation for the change in post-synaptic spike amplitude,a:

da

dt
= R(1 − a)− Do (5)

As seen inEq. (5), the output,o, drives synaptic depression (with rate constantD) and the extent
of depression (1−a), drives recovery (with rate constantR). It is important to note thatEq. (5)
does not include any terms for the strength of connection (i.e., no “weight” value) between
the pre-synaptic and post-synaptic neurons. As such, this version of synaptic depression can
be simulated as a general property of the neuron and does not require separate values for
each synapse; in determining the signaling from one neuron to another, the general output
value,o, is multiplied by the connection strength between the two neurons. However, this is a
simplification, and variants of synaptic depression may include the connection strength in the
amplitude update equation.

Taylor, Cottrell, and Kristan (2002)recently proposed a similar equation for synaptic de-
pression in rate-coded neurons, applying the result to reciprocally coupled inhibitory networks.
In our expression (Eq. (5)), the depleted output,o, drives further depletion whereas, in their
expression, the non-depleted spike probability,p, determined further depletion. For relatively
recovered (i.e.,a near 1.0) synapses, there is little difference between these two versions of
synaptic depression, but, as depletion accrues, spike amplitude can catastrophically drop to
zero in their expression, whereas an amplitude of zero is never fully achieved withEq. (5).
We have performed simulations with their expression and found that it is very difficult to
produce post-synaptic responses similar toFig. 4, in which a low, but above zero, asymp-
tote is achieved after the initially large response. In addition, we favor our expression for
functional reasons specific to the ROUSE model. In accounting for short-term priming pref-
erence reversals,Huber et al. (2001)proposed that the discounting of primed features should
result in lower, but above zero levels of evidence in favor of the target. In other words, per-
sistent responses to previous stimuli (primes) should not be completely suppressed because
these features may also be part of the current stimulus (the target). Likewise,Eq. (5)provides
for a reduction, but not elimination, of activation associated with accommodated (primed)
features.

In the second half of this article, we implementEq. (5) in a neural network model
of short-term priming. The success of this implementation is important, yetEq. (5) stands
on its own as a method for introducing synaptic depression into the dynamics of any rate-
coded cascaded neural network (e.g.,Usher & McClelland, 2001). In traditional neural net-
works, there is often an activation value, ranging from 0 to 1, produced by a sigmoidal
“squashing function.” Synaptic depression can be implemented in such networks by assign-
ing this activation value to the spike probability,p, in Eq. (5), and modifying unit cou-
pling by multiplying the activation values by the spike amplitude,a, of the sending
unit.
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4. Synaptic depression in a neural network model of short-term priming

In this section we apply the synaptic depression instantiation of neural accommodation
to short-term word priming data. We model the results of several experiments manipulat-
ing prime duration (Huber & O’Reilly, in preparation; Huber et al., 2002b; Huber, in
preparation). Huber et al. (2001)found that briefly presented, passively viewed, prime words
resulted in a preference for repeated words, whereas actively responded to prime words that
were presented for longer, resulted in a preference against repeated words. The ROUSE model
captured this difference, assuming a high level of evidence for prime information follow-
ing short durations and a low, discounted, level of prime evidence following long prime
durations. Because different levels of prime evidence are free parameters, ROUSE is inca-
pable of making quantitative,a priori, predictions of preference as a function of prime du-
ration. In contrast, the synaptic depression model makes specific time course predictions for
accommodation (i.e., discounting). Therefore, prime duration experiments are particularly
diagnostic and each experiment motivates additional assumptions found in the synaptic de-
pression model. In addition, we reformulate the ROUSE model in terms of a Bayesian belief
net, allowing comparison between the dynamics of synaptic depression and optimal evidence
evaluation.

4.1. The Bayesian ROUSE model

The synaptic depression priming model of short-term priming borrows much from the
Responding Optimally with Unknown Sources of Evidence (ROUSE) model ofHuber et al.
(2001), but, in addition, provides a neural mechanism for the discounted level of evidence
for primed features. Therefore, we refer to the new model as nROUSE. Before presenting the
specifics of nROUSE, we briefly sketch the original ROUSE model.

ROUSE consists of an activation process and an inference process (Fig. 5). In the ac-
tivation process, features contained in choice words are activated by multiple sources, in-
cluding the prime and the target for the case of a feature contained in a primed target.
Critically, it is assumed that the perceiver cannot directly access these sources, and, there-
fore, must infer them on the basis of the observed feature activation together with some gen-
eral knowledge about the preceding perceptual events. This general knowledge is expressed
in ROUSE in terms ofa priori estimates of prime and target source activations, which are
assumed to be influenced by various task factors such as prime duration, stimulus similar-
ity, etc. If it is estimated that a feature has been primed, the observed feature activation is
“explained away” by the prime, and the posterior probability that the activation is due to
the target is reduced (refer to the online Appendix for more details of the Bayesian calcu-
lation). This reduction of evidence in the face of priming is referred to asdiscountingin
the attempt to respond optimally. For excessive estimates of prime feature activation (i.e.,
high α̂), the inference calculation can reverse the direction of preference. In translating these
components into the language of nROUSE, source confusion results from persistent feature
activation, and discounting results from accommodation through synaptic depression. Below,
we provide a specific example, demonstrating synaptic depression’s ability to mimic optimal
discounting.
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Fig. 5. The Bayesian belief net underlying the ROUSE model ofHuber et al. (2001). A primed target feature is
independently activated by the prime (with probabilityα), the target (with probabilityβ), or noise (with probability
γ , which is not shown as a separate source, but factors into the conditional probabilities as seen in the online
Appendix). An inference process determines the posterior probability that the target could have been a source
of activation, given the estimated activation probabilities (α̂, β̂, andγ̂ ). The posterior probability of the target is
reduced (discounted) when it is known that the prime is a potential source. In other words, the observed activation
of the feature is “explained away” by the prime, reducing the posterior probability of the target. In relating ROUSE
to synaptic depression, the prime plays the role of residual activation from previous inputs and the target plays the
role of activation from a current input.

4.2. The neural ROUSE model: nROUSE

nROUSE is based on a simplifiedpoint neuronmodel that captures important aspects of
the temporal integration of information in real neurons, while simplifying their geometry to a
single mathematical point (O’Reilly & Munakata, 2000). These point neurons have a simulated
membrane potential,v, that integrates excitatory, inhibitory, and leak currents as dictated by
the electrical and diffusion forces operating in real neurons. The general form of this membrane
potential update equation is

dv(t)

dt
= τ

∑
c

gc(t)(Ec − v(t)) (6)

wheregc(t) andEc represent the conductance and reversal potential, respectively, of channelc,
and the sum is over the three channels of excitation, inhibition, and leak.τ is a time constant
reflecting capacitive currents, among other things. The conductance term for excitation,ge(t),
as elaborated below, reflects the excitatory synaptic inputs from other neurons (often called
the net input in neural network models), and the inhibitory conductance,gi (t) similarly reflects
inhibitory synaptic inputs. The leak conductance,gl (t), is a constant.

The probability of spiking, computed as a real-valued number (i.e., a rate code) instead of
discrete spikes, is related to the difference between membrane potential and firing threshold,θ ,
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and is zero for membrane potentials at or below threshold. Substituting this spike probability
in Eq. (4)results inEq. (7)for the output,o, of a simulated neuron in nROUSE. It is useful to
think of this rate code as representing the average response of a population of spiking neurons
all of which have similar inputs and outputs:

o = (v −Θ)a (7)

We do not claim that the difference between the membrane and firing threshold is literally
equal to the probability of spiking, but rather that the two can be related with some constant
of proportionality. This spiking probability is the equivalent of activation in traditional neural
network theories, as typically determined with a sigmoidal squashing function. However, we
do not utilize such a squashing function, instead, allowing the non-linearities inherent inEq. (6)
to saturate activation in an appropriate manner (e.g.,Eq. (8)presents a specific instantiation of
Eq. (6), which gradually saturates at membrane potential equal to 1.0).

Coupling togetherEqs. (5)–(7), the right-hand panel ofFig. 6 shows the response of a
simulated unit, with synaptic depression, using parameters consistent with visual layer of the
perceptual hierarchy explained below (the figure caption reports the parameter values). In this

Fig. 6. Comparison between the ROUSE model and synaptic depression. Synaptic output (solid line in right-hand
panel) is analogous to the expected posterior probability that feature activation is due to a current input (solid
line in left-hand panel), and both are similar to the post-synaptic membrane potential seen inFig. 4. For synaptic
depression, the n-shaped synaptic output (i.e., post-synaptic membrane potential) results from multiplying spike
amplitude (a), by the rated-coded activation (v−θ ). As membrane potential quickly rises, this produces an increase
in output, but later, as spike amplitude depletes, output decreases. In ROUSE, the probability of feature activation
plays the role of membrane potential (dotted lines in both figures) and the probability of previous input plays the role
of synaptic depletion (dashed lines in both figures). Dynamics were added to ROUSE by activating the feature at a
fast rate (exponential constant= 0.05) for 500 ms, followed by a deactivation at that same fast rate. The probability
that a previous input may have been a source of activation was activated and deactivated at a slow rate (exponential
constant= 0.003). ROUSE parameter values were:To = 0.12, α̂ = 1.0, β̂ = 1.0, andγ̂= 0. Synaptic depression
parameter values were:I = 0.3, θ = 0.15,L = 0.15,D = 0.2,R = 0.03, andS = 0.05.
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example, a single unit was driven with an excitatory input of 1.0, starting at 0 ms, and then
the input was removed at 500 ms. There was no feedback and no other sources of inhibition
except for self-inhibition. As seen in the figure, the membrane potential,v, quickly reached an
asymptotic level, then fell towards zero with stimulus offset, as dictated by the leak conductance,
L, self-inhibition,I, and the rate of integration,SV (seeEq. (8)for the relation between these
constants andEq. (6)). Synaptic depletion (i.e., 1− a) was initially zero, and slowly rose
to an asymptotic level as synaptic resources (a) were consumed. At stimulus offset, synaptic
depletion dropped back to zero as synaptic resources were replaced. Note that the simulated
synaptic output is very similar to the post-synaptic membrane potential recorded byTsodyks
and Markram (1997)in Fig. 4.

The left-hand panel ofFig. 6shows the analog of membrane potential, synaptic depletion,
and post-synaptic output, as realized within the Bayesian ROUSE model (the figure caption
reports the parameter values used). In order to accomplish this, we reformulated ROUSE as
a Bayesian belief network (see the online Appendix), allowing continuous probabilities of
feature activation,p(F), which is similar to membrane potential, and continuous probabilities
of previous input,p(P), which is similar to synaptic depletion. As seen inFig. 5, the sources
of feature activation in the original ROUSE model were restricted to the target (T), primes (P),
and constant noise activation (which is not shown as a separate source, but instead factors into
the conditional probabilities). Relating ROUSE to synaptic depression, prime activation is the
equivalent of residual activation from a previous input and target activation is the equivalent
of current input from a new item. The inference process explains away activation that may be
residual from a previous presentation, allowing accurate estimation of new input. The expected
posterior probability of the target as a source,E[p(T)], is this estimation, and, as seen in the
figure, is similar to post-synaptic output (see the online Appendix for the derivation of this
expression). ROUSE does not contain activation dynamics, so we provided simple exponential
activation in order to drive ROUSE in a manner similar to the neural model. The ability of
synaptic depression to mimic the optimal inference calculation in ROUSE suggests that the
transition between pre-synaptic firing rate and post-synaptic output, as mediated by synaptic
depression, may have evolved to calculate the posterior probability that current input is due to
novel presentations, rather than residuals from previous presentations.

Besides introducing activation dynamics through integration and synaptic depression, the
nROUSE model specifies the representation, placing units into a perceptual hierarchy such
that higher levels are more abstract, and lower levels are more closely tied to the perceptual
input. In particular, for visual word identification, nROUSE assumes the three processing lev-
els appearing inFig. 7: visual, orthographic, and lexical-semantic. Units in the visual layer
receive an input of 1.0 when the preferred visual stimulus is presented at the corresponding
spatial location, but otherwise receive no input. The spatial locations (e.g., the three boxes
across the bottom ofFig. 7) include units for all possible visual features at a given location.
The visual level has excitatory bottom-up projections to a general pool of orthographic (and
possibly phonemic) units that process orthography regardless of spatial location (nevertheless,
orthography is sensitive to the relative position of letters within a word). In theory, we could
include top-down excitatory feedback between orthographic and visual units, but this was not
needed in the current application, and can be problematic, causing the model to “hallucinate”
non-existent visual features. Orthographic units have excitatory bottom-up projections to a
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Fig. 7. A perceptual hierarchy for word reading, in the neural mechanism for responding optimally with unknown
sources of evidence (nROUSE) model. The bottom level includes visual features for each spatial region, the middle
level is a general pool of orthographic features, and the top level is a general pool of lexical-semantic features. Conne-
ctions between levels in both directions are excitatory. Connections within each square are inhibitory, with every unit
connecting with every other unit, including self-inhibition. This “lateral inhibition” limits the amount of total activa-
tion within a level and sets up winner-take-all attractor dynamics. See the text for further discussion and details.

general pool of lexical-semantic units. In turn, the lexical-semantic units have excitatory
top-down projections (i.e., feedback) to the corresponding orthography. This recurrence sets
up “attractor dynamics” between orthographic and lexical processing such that the system can
gradually settle into the appropriate state given the orthographic and lexical constraints.

Crucial to the development of attractor, dynamics is an assumption of lateral inhibition
within each patch of units (i.e., within each box inFig. 7), which is produced in the brain by
local inhibitory interneurons. In the model, we simplify the situation, using direct inhibitory
connections among all the units within a patch (including self-inhibition). This results in a
winner-take-all dynamic in which the entire network gradually settles upon a presented word.

Incorporating these architectural properties, the complete membrane potential (v) update
equation for each millisecond of time, for a particular uniti, at leveln in the perceptual hierarchy,
is

�vni (t)

Sn
= (1 − vni )




∑
∀j
wijo

n−1
j + F

∑
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n+1
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 − vni

{
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∑
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}
(8)

The bottom-up (i.e., connections from then−1 level) and top-down (i.e., connections from the
n+ 1 level) excitatory inputs combine to drive the membrane potential towards the excitatory
reversal potential (Ee) of 1.0 (i.e., the first term in curly brackets, multiplied by 1− v). The
sum of the bottom-up connections is given a default strength of 1.0, whereas the sum of the
top-down feedback, from lexical-semantic units, is given the strength value (0< F < 1). In
opposition to the excitatory input, lateral inhibition (i.e., the summation over thel units within
level n) is given a strength ofI and combines with a fixed term for leak,L. Together, these
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Fig. 8.Huber (in preparation)repetition priming experiment. Only one prime was presented on each trial, appearing
directly above and below the midline, with no space between. In the pattern condition, a pattern mask, rather than
a prime word, was presented in the above and below positions. Prime presentation durations: 17, 50, 150, 400, and
2,000 ms. Best-fitting nROUSE parameters:SV = 0.054,SO = 0.046,SL = 0.015,D = 0.324,R = 0.022, and
N = 0.036.

inputs drive the membrane potential towards the reversal potential ofEi = El = 0 (i.e., the
second term in curly brackets, multiplied by−v). We assume that each level in the perceptual
hierarchy may integrate at a different speed, as dictated by the parameter,Sn (i.e., there are three
differentSparameters for the three levels of the hierarchy). In general, as seen in the best-fitting
parameters reported inFigs. 8–10, higher levels of the hierarchy integrate more slowly (i.e.,
have smallerSvalues) than lower levels. This is sensible considering that visual input changes
frequently (e.g., across different saccades), whereas high-level concepts (e.g., the meaning of
a word), persist for seconds or longer. For a given level, the same rate of integration, Sn, is
used in the spike amplitude update, giving rise toEq. (9)(we assume the same depletion,D,
and recovery,R, strengths for all three levels):

�ani (t)

Sn
= R(1 − ani )− Doni (9)

The weight magnitudes inEq. (8), are assumed to be 1.0 for learned connections and 0 for
unknown, or inappropriate connections. This simplifying assumption is adequate for the stud-
ies under consideration because stimulus materials were always drawn from the same class.
However, if words in one condition had been of higher natural language frequency than words
in another condition, then it would be necessary to either allow different free parameter for
the connection weights in each case or to actually simulate learning for the different classes
of words. In addition, we assume symmetric weights such that the same value connecting two
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Fig. 9.Huber and O’Reilly (in preparation)for the four shorter prime durations, andHuber et al. (2002b)for the two
longer prime duration. Both experiments were repetition priming experiments with two primes presented on every
trial, as seen inFig. 3. In order to capture the difference between a centrally presented prime (i.e., the results ofFigs. 8
and 10) and these experiments, which used more peripheral primes, a prime salience parameter (PS< 1) was used
to scale down the visual input for the primes. Prime presentation durations: 14, 43, 128, and 386 ms (Huber &
O’Reilly); and 500 and 2,500 ms (Huber et al.). Best-fitting nROUSE parameters:SV = 0.034, SO = 0.075,
SL = 0.015,D = 0.159,R = 0.055,N = 0.031, and PS= 0.266.

Fig. 10.Huber and O’Reilly (in preparation)associative priming experiment with a single, centrally located prime
word. Lexical-semantic similarity was modeled with a parameter for the proportion of shared lexical-semantic
features (PL< 1). Prime presentation durations: 0, 29, 57, 114, 457, and 1,829 ms. Best-fitting nROUSE parameters:
SV = 0.046,SO = 0.056,SL = 0.015,D = 0.102,R = 0.072,N = 0.022, and PL= 0.267.
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units is used for both bottom-up and top-down feedback (although feedback is scaled by the
value,F < 1, and there is no feedback to the visual layer; seeO’Reilly, 1998; O’Reilly &
Munakata, 2000for discussion of the multiple motivations for such symmetric connectivity).

4.2.1. Representations in nROUSE
Next, we consider the representational scheme used in nROUSE to simulate the behavioral

priming experiments. In principle, we imagine that there are distributed representations at each
level of the model. However, actually constructing these representations for the corpora of
words used in the experiments would result in a very large model that would render precise
parameter fitting nearly impossible. Therefore, we employ a simplified localist instantiation of
a distributed representation, such that a single unit was used to represent all the features that
a given word has in common with other word(s), and additional units were used to represent
the features unique to each word. These units were then weighted to reflect the relative extent
of similarity or difference between the words. For example, in the case of repetition priming
with dissimilar choice words (i.e., having no overlapping features), it was only necessary to
simulate one unit for each word at the orthographic and lexical-semantic levels. The visual
input required one unit at each spatial location (seeFig. 3) where that word might appear.
To see how similar words were represented, consider the word “CAT” priming the choice
word “DOG.” These words are completely different at the visual and orthographic levels and
therefore separate units would be used for each word at these levels. However, cats and dogs
are both pets and there is some degree of overlap at the lexical-semantic level. This would be
captured with three aggregate units: one for the lexical-semantic features shared between cat
and dog (i.e., cat-dog features), one for the cat-not-dog features, and a third for the dog-not-cat
features. The output of the cat-dog unit would be weighted by a similarity parameter, PL (i.e.,
the proportion of shared features at the lexical level), and the cat-not-dog and dog-not-cat units
would be each weighted by 1− PL.

All simulations mimicked the exact spatial and temporal characteristics of the experimental
display sequences. Pattern masks were assumed to involve as many visual features as words.
Therefore, a separate pattern mask visual unit, also of size 1.0, received input at times appro-
priate to the pattern mask presentation. Because the pattern mask was assumed to be dissimilar
from the orthography of any known word, the only effect of the pattern mask was inhibition of
the target flash visual unit (i.e., the pattern mask more rapidly “turned off” the visual features
of the target). At the visual level, masking is specific to particular spatial regions, as dictated by
lateral inhibition within a patch (higher level, “meta-masking” effects can nevertheless occur
in the orthographic and lexical levels).

4.2.2. Forced-choice responding and reaction time in nROUSE
In the 2AFC short-term priming paradigm, the participant must choose one of the two choice

words. Choice responding in nROUSE is based on the neural activation from presenting these
choice words as it propagates through the network in parallel for both words. The only manner
in which the target flash affects behavior is via residual target activation (we assume that ex-
plicit identification of the target flash does not occur on most trials, due to the threshold-level
presentation of the target). Through simulation, we found that a horse-race decision rule, in
which the first choice word to reach peak activation is chosen, provides a good indication of
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residual target activation, whereas other logical alternatives do not. Simply reading out the
residual target activation is not appropriate considering that the system does know the choice
alternative in advance. Using peak magnitude in response to the choice words does not index
residual activation—peak magnitude is greatest for a novel word, whereas previously viewed
words have lower peaks due to synaptic depression. Essentially, peak magnitude gauges the
extent of depleted resources (which word was seen longer), instead of the degree of residual
activation (which word was seen more recently). In contrast, the time-to-peak horse-race de-
cision rule measures residual target activation because this residual activation gives the target
item a head start.

As a result of the horse race, nROUSE predicts reaction times as well as accuracy, with
a tight coupling between the two. Specific predictions of the decision rule were tested by
Huber (in preparation), and are discussed later in the “Future work with nROUSE” section.
Residual prime activation (i.e., persistence) speeds the response to a primed word, but synaptic
depression (i.e., accommodation) makes the system sluggish to respond to primed words. These
factors offset one another to various degrees, causing a preference for or against primed words
in a well-specified manner as a function of prime duration.

One concern with the decision rule is reliability in the face of stochastic variability. If
synaptic output varies from moment to moment, it is difficult to determine the true peak in light
of the many transient false peaks. Although the reported simulations do not employ any noise
processes, we have investigated this issue in other simulations. A robust “peak detector” can
be constructed from neurons with different rates of integration. In particular, slow integrators
accumulate a “go” signal for each of the choice alternatives. However, inhibition from fast
integrators suppresses these go signals (i.e., a “no-go” signal). Only release from inhibition,
as occurs on the downside of a peak, allows the go signal through to the motor system. The
rate of integration of the fast integrator can be modified, allowing robust detection in the face
of noise. This modification slows down transmission of the go signal, adding a fixed delay to
all conditions, but does not qualitatively change accuracy as a function of priming condition.
Such a “go/no-go,” response system is known to exist in the basal ganglia, which has been
simulated using the same point-neurons employed in nROUSE (Frank, Loughry, & O’Reilly,
2001).

For the reported simulations, we do not assume a specific noise process and instead use a
generic noise level,N, which reduces performance as a function of the difference between the
lexical peak time of the target and the lexical peak time of the foil. The particular function used
is the logistic function appearing inEq. (10), which yields the proportion correct,p(c), given
the peak time of the target lexical representation,TT, as compared to the peak time of the foil
lexical representation,TF, expressed in milliseconds:

p(c) = eN(TF−TT)

1 + eN(TF−TT)
(10)

4.3. Empirical results and nROUSE assumptions

Next, we apply the nROUSE model to several short-term priming experiments that var-
ied prime duration. Beyond synaptic depression, different experiments motivate different
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components of the nROUSE model (i.e., levels of processing, lateral inhibition, threshold,
and feedback). To facilitate comparison of parameters across the experiments, we fixed several
parameters to specific “default” values across all experiments, while allowing others to freely
vary to capture the data. Specifically, we fixed the “structural” parameters, while allowing the
“dynamic” parameters to vary. These fixed structural parameters were: inhibition,I = 0.3,
feedback,F = 0.25, threshold,θ = 0.15, and leak,L = 0.15. The freely varying dynamic
parameters were: rate of visual integration,SV, rate of orthographic integration,SO, rate of
lexical-semantic integration,SL, depletion,D, and recovery,R. In addition, different perfor-
mance levels occurred in each experiment, and a noise parameter,N (seeEq. (10)), was used
to capture these differences.

4.3.1. Repetition priming with a single prime—Huber (in preparation)
The word repetition priming experiment ofHuber (in preparation)is ideally suited to test

the core nROUSE proposal of accommodation through synaptic depression. This experiment
varied prime duration from 17 to 2,000 ms (seeFig. 8). Unlike the paradigmatic example seen
in Fig. 3, only one prime word was presented, appearing simultaneously in the above and
below locations. Furthermore, there was no vertical space between the above/below locations,
ensuring that participants directly foveated the prime. Because there was only one prime, the
both-primed condition could not be tested. To test the levels of processing assumption, one
condition presented a pattern mask, rather than a prime word.

As seen in the lower left panel ofFig. 8, there were dramatic preference changes as a func-
tion of prime duration. For durations less than 200 ms, there was a strong tendency to choose
the repeated (primed) word such that performance in the target condition was better than per-
formance in the foil condition. This preference peaked with a 50 ms prime presentation diving
the foil condition significantly below chance. The preference switched at 400 ms, resulting in a
preference against choosing repeated words, such that performance in the target condition was
worse than performance in the foil condition. As seen in the lower right panel, the nROUSE
model captured this highly non-linear pattern through persistence, resulting in positive prefer-
ence for shorter prime durations, and the offsetting effect of accommodation through synaptic
depression, resulting in a negative preference for longer prime durations (see the figure caption
for the best-fitting parameter values).

The upper panels ofFig. 8test the levels of processing and lateral inhibition assumptions of
the nROUSE model. In these conditions, preference plays no role because neither choice word
is primed. However, there are still indirect, interference effects of the prime due to inhibition
from lingering prime activation. nROUSE predicts “u-shaped” interference effects because of
its “n-shaped” synaptic output function (seeFig. 6). The prime acts as a forward mask on
the target flash, with the strength of masking dependent upon the degree of persistence and
accommodation of the prime and the types of features contained in the prime. In the case of a
pattern mask prime (i.e., thepatterncondition), there is only interference at the visual level,
whereas an unrelated prime word (i.e., theneithercondition) also includes orthographic and
lexical-semantic features, and therefore greater interference. These predictions are confirmed
in the data of the upper left hand panel ofFig. 8. Pattern performance was better than neither
performance for all prime durations. Besides confirming these qualitative predictions, nROUSE
was able to quantitatively fit these data, as shown in the upper right hand panel ofFig. 8. The
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best-fitting parameters produced an almost indiscernible amount of u-shaped interference in the
pattern condition due to very little persistence at the visual level. To capture the small u-shaped
effect for the pattern condition seen in the behavioral data, it would be necessary to give the
pattern mask some degree of higher representation at the orthographic or lexical-semantic
levels.

4.3.2. Repetition priming with two primes—Huber and O’Reilly (in preparation)and
Huber et al. (2002b)

Because the repetition priming experiment ofHuber (in preparation)used only a single
prime word, it was not possible to include a both-primed condition. Nevertheless, such a
condition is of interest from the standpoint of unbiased perceptual benefits and/or deficits—if
performance changes when both choice words are primed, this change cannot be due to bias
effects, which affect both choice words equally. The repetition priming experiments ofHuber
et al. (2001)used two prime words and always observed deficits in the both primed condition.
However, those experiment only looked at 500 ms or longer prime durations. Next, we consider
the repetition priming experiment ofHuber and O’Reilly (in preparation), which used shorter
prime durations.Fig. 9presents this experiment (i.e., the four shorter prime durations) combined
with the repetition prime duration experiment ofHuber et al. (2002b), which tested two longer
prime durations using an identical paradigm. The sequence of events for these experiments is
the same as shown inFig. 3.

As seen in the lower left panel ofFig. 9, there were preference changes with prime duration,
although these changes were not as large, and were somewhat delayed, compared with the
single prime repetition experiment (i.e., compared toFig. 8). A preference for repeated words
emerged (i.e., target better than foil), reaching its peak around 400 ms, followed by diminishing
preference, but not a reversal (i.e., at 2,500 ms, target and foil performance were equal). In
other words, the rate of preference change was relatively slow with two more peripherally
presented prime words (Fig. 9) as compared with a single centrally presented prime word
(Fig. 8). With primes presented more peripherally, participants remain focused on the blank
area between the primes. We modeled this through a prime salience parameter, PS, which
scaled the visual input of the prime words (PS set to 1.0 inFig. 8). With a lower level of
visual input, the primes asymptote at a lower level of output, and, therefore, accommodation
through synaptic depression occurs more slowly. With this modification, nROUSE captured
the observed preference changes using very similar parameters to those used inFig. 8(see the
figure captions for best-fitting parameter values). Recently,Weidemann, Huber, and Shiffrin
(submitted for publication)demonstrated that both vertical separation (i.e., more peripheral
prime presentation), and the number of primes are important factors in determining these
preference effects.

The upper panel ofFig. 9 shows the neither and both conditions, as a function of prime
duration. As with the single prime experiment, a u-shaped prime interference pattern is seen
for the neither condition. As before, nROUSE captured this through increasing inhibition due
to increasing persistence, followed by decreasing inhibition due to decreasing persistence (i.e.,
increasing synaptic depression). In addition, both-primed deficits gradually accrue as a function
of prime duration. Due to lexical feedback, nROUSE produces both-primed benefits, as seen
in the next experiment. However, synaptic depression at the orthographic level offsets the
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benefits of feedback, causing both-primed deficits for repetition priming. Synaptic depression
of orthographic units limits the amount information gained from the brief flash of the target
word. Because these deficits result from synaptic depression, they are seen to monotonically
grow as function of prime duration.

Finally, the shorter prime durations inFig. 9 justify the use of a threshold (i.e.,Eq. (7))
in relating the membrane potential to spike probability (there is ample neurophysiological
justification for this assumption as well). At 14 ms there was no difference between any of
the conditions, and, at 43 ms, there was only a small difference between the target and foil
conditions. Because of the reduced rate of prime processing due to the reduced prime salience
(see the discussion above), nearly 40 ms of prime processing was required in nROUSE before
the threshold was crossed for the orthographic representation of the primes. This thresholding
explains the observed lack of priming effects for very short prime durations.

4.3.3. Associative priming with a single prime—Huber and O’Reilly (in preparation)
The first repetition priming experiment demonstrated a need for different levels of process-

ing in order to handle different levels of forward masking. However, none of the experiments
discussed so far motivate the assumption of feedback between levels. The associative priming
experiment ofHuber and O’Reilly (in preparation)used a single, centrally presented, prime
word that was either unrelated to the choice words (i.e., the neither condition) or was asso-
ciatively related to both choice words (e.g., GRAVY priming the choice words SAUCE and
TRAIN). Performance in this both condition was slightly better than the neither condition at
nearly all prime durations (seeFig. 10). This perceptual benefit implies some sort of inter-
action between the prime and the amount of information gained (or retained) from the target
flash. Feedback between the lexical-semantic level and orthography provides the necessary
interaction to produce both-primed benefits. In the case of repetition priming, as discussed
above, synaptic depression of orthographic units counteracts the beneficial effect of feedback.
However, the associatively related words used byHuber and O’Reilly (in preparation)were
orthographically dissimilar, allowing perceptual benefits to emerge.

As seen inFig. 10, nROUSE captures both the u-shaped word interference in the neither
condition, as well as the associative both-primed benefit, that reaches its peak at the duration of
greatest interference (i.e., the prime duration producing the greatest persistence and interference
also produces the greatest amount of lexical feedback, for semantically related words).

5. General discussion

A variety of behavioral paradigms demonstrate that stimuli persist for some period of time
past their removal. Presumably, this persistence is the natural byproduct of the need to inte-
grate information over time. Experiments manipulating stimulus duration find that persistence
increases, up to a point, and then decreases with even longer presentations. We attribute this
reduction to neural accommodation. Specifically, we propose that accommodation is a use-
ful mechanism, serving to limit persistence of previous stimuli and allow for relatively un-
obstructed processing of subsequent stimuli. In this manner, accommodation segregates the
continual flow of perceptual input such that items are suppressed once they are identified.
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Several neural mechanisms produce activity-dependent accommodation, although we fo-
cused on synaptic depression for its ability to encompass other activity-dependent synaptic
efficacy effects. Synaptic depression arises from the depletion of resources at the synapse with
each additional action potential. Electrophysiological experiments have mapped out the time
course of synaptic depression, allowing mathematical specification of the underlying dynamics.
We derived a rate-coded version of these dynamics that can be applied to any neural network.

Support for accommodation through synaptic depression was found by incorporating synap-
tic depression into a rate-coded neural network model of short-term word priming. The model
consists of a perceptual hierarchy, with each level integrating at a different rate, such that
identification, and accommodation, occur at differential speeds at different levels of process-
ing. The model was successfully applied to three different experiments in which a preference
for or against primed words was produced by varying prime duration. In addition, perceptual
benefits/deficits and masking/interference phenomena were explained.

5.1. Similarities and differences between ROUSE and nROUSE

Both the ROUSE model ofHuber et al. (2001), and the nROUSE model, presented here,
reduce the influence of previously presented stimuli through the discounting of features. Given
a system in which external input contacts the same internal representations and it is unknown
by which sources a feature has become active (i.e., source confusion), both models specify
appropriate levels of reduced evidence for previously presented features. However, the imple-
mentation of the two models is vastly different. Nevertheless, these implementation differences
are a strength, with each model informing the other. In ROUSE, feature evidence is the result
of an optimal calculation: For a previously presented feature, a discounted level of evidence
is assigned according to the estimated activation probabilities. In contrast, feature discounting
in nROUSE results from the relatively automatic process of neural accommodation through
synaptic depression. In combination, the models suggest there is a need to reduce persistent
feature activation from the standpoint of optimal processing and that synaptic depression may
have evolved as a means to satisfy this need.

Besides allowing such a “neural to functional” mapping, nROUSE was developed for its
ability to handle aspects of the data that were either unknown, or problematic, for the original
ROUSE model. In particular, because nROUSE is a dynamic model in which processing is
directly related to the sequence of events, it makes specific predictions as a function of stim-
ulus duration. In contrast, different free parameters are necessary for different durations in
the original ROUSE model. Therefore, nROUSE requires fewer parameters to handle a range
of prime durations, although this reduction comes at the cost of increased complexity (see
Pitt, Myung, & Zhang, 2002, for the latest discussion of model complexity and the number
of free parameters). Moreover, nROUSE is a general model of perceptual identification and is
readily applicable to a wide range of perceptual phenomena, including most, if not all, of the
results discussed in the first section of this paper. Because of its hierarchical architecture, with
feedback between levels, nROUSE is able to produce perceptual benefits, such as occurred
with associative priming. The original ROUSE model supposed no such interactions between
previous and current presentations, and could not handle these benefits. The perceptual hierar-
chy also allows nROUSE to make predictions regarding different types of features, at different
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levels of processing, each with their own temporal characteristics. The original ROUSE model
easily handled priming data, assuming only a general pool of features, all behaving identically.
However, this lack of architecture makes it difficult to predict differences for different stimulus
classes using ROUSE (e.g., pattern masks vs. letter strings vs. words).

5.2. Other work with nROUSE

The nROUSE model is still in a relatively early stage of development. In order to quantita-
tively address these short-term priming results, it was necessary to make several simplifying
assumptions. Most notably, simulations were run deterministically, with non-extreme accuracy
arising from a logistic function (Eq. (10)). In other simulations, we have begun the process
of exploring different forms of stochastic variability. The long list of potential noise mecha-
nisms includes, but is not limited to, selective attention, processing noise, criterial shifts, and
encoding variability. The most promising possibility is the effect of stimulus differences, as
realized through connection strength variability (i.e., different weight values). In support of
this mechanism,Wagenmakers, Zeelenberg, and Raaijmakers (2000)observed a bias for words
of higher written language frequency in forced-choice perceptual identification. nROUSE nat-
urally explains this result, assuming high frequency words have larger connection weights.
Larger connection weights cause a word to asymptote at a higher level, resulting in more rapid
identification and accommodation. In any case, the most accurate noise formulation will most
likely include a combination of stochastic processes and stimulus characteristics.

To inform our understanding of variability in nROUSE, we ran perceptual identification ex-
periments requiring same/different judgment for a single test word. This allowed us to collect
Receiver Operating Characteristics (ROCs), which indicate the distribution of the underlying
response variable (Huber, O’Reilly, & Cousineau, in preparation). Remarkably, these experi-
ments showed that priming causes thez-transformed ROC slope to exceed 1.0, indicating that
the time to identify a primed target is less variable than the time to identify a primed foil.
For unprimed words, the slope was less than 1.0, indicating the opposite pattern of variability.
These data provide an important additional constraint in producing a reasonable formulation
of the noise processes.

Finally, the shape of the reaction time (RT) distributions, for both correct and error trials,
provides yet another constraint on the correct noise formulation. Because the decision rule
in nROUSE is a horse race, a tight coupling is assumed between reaction time and accuracy.
Specifically, persistence results in a speedup, whereas accommodation results in a slow down,
for the primed alternative. Given this assumption, nROUSE makes specific qualitative pre-
dictions regarding mean RT for correct and error trials. Assuming that the time for the target
to reach its peak activation largely determines RT for correct trials, nROUSE predicts that
short prime durations will result in fast correct RTs whereas long prime durations will result
in slow correct RTs, when the target has been primed. This same pattern is expected for error
RTs when the foil has been primed, and, therefore, the relationship between correct and error
RTs is opposite for priming the target as opposed to priming the foil. This pattern of RTs was
observed in the single prime repetition priming experiment ofHuber (in preparation). In order
to explain RT distributions,Huber and Cousineau (submitted for publication)assumed target
and foil peak activation times are distributed as Weibulls, and successfully fit RT distributions
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for the various priming conditions. Their results suggested an interaction between the target
and foil, such as produced by lateral inhibition in nROUSE.

One of the strengths of nROUSE is its ability to predict activation levels at each millisecond
of processing time. Temporal brain imaging techniques, such as stimulus locked Event Re-
lated Potential (ERPs), allow testing of these neural dynamics. Therefore,Huber, Curran, and
O’Reilly (in preparation)performed short-term priming experiments similar to those reported
in Figs. 8–10, while collecting ERPs to the target flash. By mapping the nROUSE theoretical
output curves in the various experimental conditions onto the observed ERP differences, they
identified signals associated with orthographic and lexical-semantic processing and observed
the correlates of persistence and accommodation upon these signals. Importantly, there was a
good correspondence between the dynamics of these signals and the dynamics predicted by
nROUSE, both as a function of ongoing processing, and for different prime duration conditions.

5.3. Conclusions

We have provided detailed fits to complex patterns of behavioral priming data using a
neural-level model incorporating synapse-level accommodation mechanisms. By spanning
levels of analysis in one model, we provide multiple constraints on our understanding of
the dynamics of perceptual processes and neural accommodation mechanisms. These neural
mechanisms allowed us to make testable predictions regarding behavioral manipulations of
prime duration. In addition, our implementation of perceptual processing and accommodation
is sufficiently specified to make testable predictions regarding a wide variety of other empirical
manipulations.

Note

1. The online Appendix can be found at:http://cogsci.psy.utexas.edu/supplements/.
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