
Assuming independence between the choice alternatives and independence between 

the features contained within each alternative, the ROUSE model established features as 

the basic unit of evidence evaluation (Huber et al., 2001). In the original formulation, 

feature likelihood ratios (i.e., the likelihood that the feature belonged to the target) were 

determined for situations in which features were either active, or inactive (i.e., binary 

valued) and features were either known to exist in a prime or not (i.e., certain knowledge 

for the primes). These four likelihood ratios were calculated assuming three potential 

sources of independent feature activation (α = activation from presentation of the primes, 

β = activation from the brief presentation of the target, and γ = noise activation). 

The present reformulation of ROUSE in terms of a Bayesian belief net reworks the 

feature likelihood ratio calculations, unifying the four expressions into a single equation. 

This is done in order to understand the behavior of ROUSE when feature activation and 

prime knowledge are probabilities, rather than dichotomous variables. If these 

probabilities are known values, rather than parameters driving a stochastic process with 

dichotomous results, a mapping is possible between the original ROUSE model, and the 

graded activation dynamics with synaptic depression. 

The belief net seen in Fig. 5 demonstrates the situation. In the real world (the 

activation portion of the figure), a feature is activated by either the prime, with 

probability α, or the target, with probability β. If neither source exists, the feature is 

nevertheless active with probability γ. This noise activation could be included as a 

separate causal link in Fig. 5, although, assuming that noise is always present and 

independent of the other sources, Equations A7-A10 appropriately factor in noise 

activation. Whether the prime and target sources actually exist depends on whether the 



feature has been primed and whether the feature is contained in the target. This 

reformulation presents ROUSE as a generative model, using the same causal structure to 

activate features and to infer the probabilities that the prime and target exist as sources 

based upon the observed feature activation. It is assumed that the real activation state (the 

feature below the dashed line) is copied into the inference activation state (the feature 

above the dashed line). Crucially, it is assumed that the inference process does not have 

access to the true activation probabilities and must use potentially inaccurate estimates of 

these probabilities (i.e., α̂ , β̂ , and γ̂ ). 

In keeping with the original ROUSE model, we first calculate likelihood ratios, 

although any likelihood ratio is easily transformed into a corresponding probability. The 

likelihood ratio, λ (T), is the posterior probability that the target is a source, p( T ), 

divided by the posterior probability that the target is not a source, p( T ),. We initially 

calculate two separate likelihood ratios, conditioning on the feature existing in an active 

state, F , Equation A1, or an inactive state, F , Equation A2. 
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Next, the conditional probabilities are reversed, using Bayes theorem, and the 

common denominator terms are removed, resulting in Equations A3 and A4 in which To 

is the prior probability of the target existing as a source. 
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These equations are expanded by additionally conditioning on whether the prime is, 

P , or is not, P , a potential source of activation, with each possibility appropriately 

weighted by the probability of the prime existing as a source, given the state of the target.  
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However, the graph tells us that the prime and target are independent when the state 

of the feature is unknown (e.g., p(P | T) = p(P)), and, therefore, the probability of prime 

terms need not condition on the state of the target (note that this does not hold true if the 

decision factors in knowledge regarding how often the target is primed, although such a 

situation implies a different graph, including a link between the prime and target).  

Assuming that the prime and target activate the feature in an independent manner, the 

four conditional probabilities necessary to solve Equations A5 and A6 are calculated 

from the estimated activation probabilities. These are most easily expressed as the 

probabilities that the feature is inactive (i.e., the sources of activation have all failed), 

resulting in Equations A7-A10. The corresponding equations for the probability that the 

feature is active are simply 1.0 minus each of these equations.  

 ˆp(F | TP) 1= − γ  (A7) 

 
ˆ ˆp(F | TP) (1 )(1 )= − β − γ  (A8) 

 ˆ ˆp(F | TP) (1 )(1 )= − α − γ  (A9) 



 
ˆˆ ˆp(F | TP) (1 )(1 )(1 )= − α − β − γ  (A10) 

After substituting Equations A7-A10 (and 1.0 minus these equations), and performing 

algebraic reduction and simplification, Equations A5 and A6 become Equations A11 and 

A12. 
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If the prior probability that the target is a source, To, equals one half, such as is with 

2-AFC testing, Equation A11 and A12 reduce to the original four feature likelihood 

ROUSE equations, provided that the probability of the prime existing as a source, p(P), is 

set to the extreme values of 0.0 or 1.0. Huber et al. (2001) demonstrated that the estimate 

of prime activation, α̂ , critically determines whether priming results in a preference for 

or against primed alternatives. Underestimates of α result in too little discounting of 

primed features whereas overestimates of α result in too much discounting of primed 

features. As seen in Equation A11, every term that contains the estimate of α is also 

multiplied by the probability that the prime is a source, p(P). Therefore, this suggests an 

alternative interpretation of discounting. Rather than over or underestimating α, it may be 

that the system always overestimates α, but in some circumstances, such as with short 

prime durations, it is uncertain whether the feature has been primed (i.e., p(P) is low). 

Distinguishing between these interpretations is extremely difficult. Nevertheless, this 

reformulation makes it clear that the discounting referred to by Huber et al. is equivalent 

to the phenomenon referred to as “explaining away” in the belief net literature. If the 



feature is active, the basic question is whether this activation is due to the prime or the 

target. As the probability that the prime is a source, p(P), increases, the feature activation 

is explained away, and the probability that the target is a source decreases. 

Next, we continue with our proof in an attempt to include a term for the probability of 

the feature being active. We can convert Equations A11 and A12 into conditional 

probabilities using Equations A13 and A14. 
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At this point, we would like to combine these conditional probabilities using a term 

for the probability of the feature being active, p(F). This can be accomplished with 

Equation A15. However, in the first step of deriving the likelihood ratios we included a 

term for the priors of the target. These priors on the target are theoretically the same 

probability as the one calculated in A15. Although Equation A15 is correct on its own, 

according to probability theory it is incorrect to plug in our results from Equations A13 

and A14, which include the priors of the target. Nevertheless, we are left with no 

alternative. Indeed, for this causal graph, any attempt to factor the joint probability 

distribution into the fundamental generative conditional probabilities (i.e., Equations A7-

A10), necessitates a term for the probability of the target and another for the probability 

of the prime. This means that there can be no exact posterior probability of the target 

except when conditioning on the state of the feature. Instead, we define the calculation 

performed in A15 as the expected posterior probability of the target, keeping separate the 

outcome of this calculation and the target priors used in calculating Equations A13 and 



A14. Essentially, this calculation gives us a method for smoothly mapping between the 

extremes of Equation A13 and Equation A14. 

There are two situations in which including priors for the target in Equation A15 can 

be viewed as accurate. The first assumes a population of identical belief nets, which have 

their feature values fixed in the present or absent state, as stochastically determined by 

p(F). The calculation in A15 is the expected value for p(T), conditional on whatever 

feature value is observed for the randomly sampled belief net. The second situation turns 

A15 into an exact conditional probability. For this situation, we add a new node called O, 

for observation, which has a directed link from F. If the feature is present, it will result in 

an observation with some probability, and, if the feature is absent, it will result in an 

observation with some lesser probability. Similar to signal detection theory, a probability 

that the feature is present can be inferred, based upon the observation. For such a 

situation, the probability of the target is now conditional on the observation, and the 

probability of the feature is also conditional on this observation. Because the calculation 

is conditional on the observation, it is allowable to include a term for the priors of the 

target in equation A15. 

 E[p(T)] p(F)p(T | F) p(F)p(T | F)= +  (A15) 

Finally, combining across Equations A11 thru A15, results in Equation A16, which is 

a general expression for the expected posterior probability that the target exists as a 

potential source of the feature. 
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Equation A16 includes real valued levels of discounting, p(P), and real valued levels 

of feature activation, p(F). This allows us to relate the probability of feature activation to 

neural activation and the probability that the prime is a source to the level of synaptic 

depletion. In the text this is done in Figure 6, in which post-synaptic output is related to 

the expected posterior probability of the target existing as a source, E[p(T)]. Essentially, 

through synaptic depression, the synapse is calculating the probability that activation is 

due to a new input (the target), rather than a previous input (the prime). 


